JP2015094498A - Indoor temperature control system - Google Patents

Indoor temperature control system Download PDF

Info

Publication number
JP2015094498A
JP2015094498A JP2013233188A JP2013233188A JP2015094498A JP 2015094498 A JP2015094498 A JP 2015094498A JP 2013233188 A JP2013233188 A JP 2013233188A JP 2013233188 A JP2013233188 A JP 2013233188A JP 2015094498 A JP2015094498 A JP 2015094498A
Authority
JP
Japan
Prior art keywords
temperature control
pipe
indoor
temperature
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013233188A
Other languages
Japanese (ja)
Inventor
茂男 木賊
Shigeo Tokusa
茂男 木賊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KOEI CORP
Original Assignee
NIHON KOEI CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KOEI CORP filed Critical NIHON KOEI CORP
Priority to JP2013233188A priority Critical patent/JP2015094498A/en
Publication of JP2015094498A publication Critical patent/JP2015094498A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an indoor temperature control system that enables uniform control of a temperature of an entire indoor side in a well-balanced manner, suppression of dew formation by reducing a difference between a temperature of a temperature control pipe and an indoor temperature and reduction in energy loss in a flow path of a heat exchange medium.SOLUTION: An indoor temperature control system 1 includes: a temperature control device 2 that has a temperature control surface comprising an inorganic substance enabling emission/absorption of far infrared rays; and an indoor surface component 40 that has an emission/absorption surface 40a comprising an inorganic substance enabling emission/absorption of far infrared rays. As the temperature control device 2, the indoor temperature control system includes: a pair of tanks 10, 11 disposed at an interval; a plurality of temperature control pipes 13 each of which has the temperature control surface with an outer peripheral surface covered with the inorganic substance enabling emission/absorption of far infrared rays and which are disposed in parallel between both of the tanks 10, 11 so that both ends of the pipes communicate with both of the tanks 10, 11; a temperature control medium filled between both of the tanks 10, 11 and inside of the temperature control pipes 13; and an outdoor nit 4 serving as temperature control means for controlling the temperature of the temperature control medium.

Description

本発明は、室内温調システムに関するものである。   The present invention relates to an indoor temperature control system.

室温の調整方法として、エアー・コンディショナーやファンヒータなどのように、加熱または冷却した空気を送風する方法や、石油ストーブやオイルヒータや床暖房システムなどのように対流による方法や、セラミックスヒータや遠赤外線ヒータのように放射(輻射)を利用した方法が知られている。   As a method of adjusting the room temperature, a method of blowing heated or cooled air such as an air conditioner or a fan heater, a method of convection such as an oil stove, an oil heater or a floor heating system, a ceramic heater or a remote heater A method using radiation (radiation) like an infrared heater is known.

一方、遠赤外線を利用した空調システムとして、遠赤外線を放射・吸収可能な遠赤外線放射物質を含む材料で構成された室内面構成部材と、室内面構成部材の遠赤外線放射物質と同一の遠赤外線放射物質を含む材料で構成された、冷却面を有する冷却源及び加熱面を有する加熱源とを具備し、冷却面が冷却されると、室内面構成部材が放射する遠赤外線を冷却面で吸収し、加熱面が加熱されると、加熱面が放射する遠赤外線を室内面構成部材で吸収するようになした空調システムも提案されている(例えば、特許文献1参照。)。   On the other hand, as an air conditioning system using far-infrared rays, an indoor surface component made of a material containing a far-infrared radiation material that can radiate and absorb far-infrared rays, and the same far infrared ray as the far-infrared radiation material of the indoor surface component A cooling source having a cooling surface and a heating source having a heating surface, which are made of a material containing a radioactive material, and when the cooling surface is cooled, far infrared rays radiated from the indoor surface components are absorbed by the cooling surface. In addition, an air conditioning system has been proposed in which, when the heating surface is heated, far-infrared rays radiated from the heating surface are absorbed by the indoor surface constituent members (see, for example, Patent Document 1).

特開2010−96485号公報JP 2010-96485 A

ところで、特許文献1記載の発明では、加熱源として電気加熱ヒータを用いており、加熱源をホットカーペットなどで構成することで、床面を利用して加熱面を形成でき、室内空間全体を一様に効率良く温めることができる。しかし、冷却源としては、一般的な空調装置や冷蔵庫に利用されているものと同様に、冷媒を用いて冷却面を冷却する冷媒冷却装置を設けており、冷却面と室内空間との温度差がどうしても大きくなることから、冷却面周辺のみが冷やされ、室内空間全体を一様に冷やすことが困難であるとともに、冷却面において結露が発生し易くなるという問題があった。   By the way, in the invention described in Patent Document 1, an electric heater is used as a heating source, and by forming the heating source with a hot carpet or the like, the heating surface can be formed using the floor surface, and the entire indoor space can be integrated. Can be efficiently heated. However, as a cooling source, a refrigerant cooling device that cools the cooling surface using a refrigerant is provided in the same manner as that used in general air conditioners and refrigerators, and a temperature difference between the cooling surface and the indoor space is provided. However, there is a problem that only the periphery of the cooling surface is cooled, it is difficult to cool the entire indoor space uniformly, and condensation is likely to occur on the cooling surface.

また、冷媒冷却装置で冷却面を直接的に冷却する場合には、フィン等を設けて冷却効率を高めているが、それだけでは十分に冷却効率を高めることが困難で、冷媒の流量がどうしても多くなることから、冷媒冷却装置の室内機と室外機間における冷媒の配管が太くなり、冷媒の流通途中におけるエネルギーロスが大きくなるという問題がある。   When the cooling surface is directly cooled by the refrigerant cooling device, the cooling efficiency is increased by providing fins or the like. However, it is difficult to sufficiently increase the cooling efficiency by itself, and the flow rate of the refrigerant is inevitably high. Therefore, there is a problem that the refrigerant piping between the indoor unit and the outdoor unit of the refrigerant cooling device becomes thick, and energy loss during the circulation of the refrigerant increases.

更に、室内面構成部材の遠赤外線物質と、冷却面及び加熱面の遠赤外線物質とを同一の材料で構成する必要があるので、建物側及び空調システム側の設計自由度が大幅に制約されるという問題もある。   Furthermore, the far-infrared substance of the indoor surface constituent member and the far-infrared substance of the cooling surface and the heating surface must be made of the same material, which greatly restricts the design freedom on the building side and the air conditioning system side. There is also a problem.

本発明の目的は、室内全体をバランスよく一様に温調可能で、しかも温調パイプと室内温度の温度差を小さくして結露の発生を抑制でき、熱交換媒体の流通経路におけるエネルギーロスを少なくし得る室内温調システムを提供することである。   The object of the present invention is to uniformly control the temperature of the entire room in a balanced manner, and to suppress the occurrence of condensation by reducing the temperature difference between the temperature control pipe and the room temperature, thereby reducing energy loss in the heat exchange medium flow path. It is to provide an indoor temperature control system that can be reduced.

本発明に係る室内温調システムは、遠赤外線を放射吸収可能な無機物質からなる温調面を有する温調装置と、遠赤外線を放射吸収可能な無機物質からなる放射吸収面を有する室内面構成部材とを備え、温調面と放射吸収面間における遠赤外線共鳴現象により、前記温調装置による温調面の加熱時には、温調面から放射される遠赤外線を放射吸収面で吸収し、前記温調装置による温調面の冷却時には、放射吸収面から放射される遠赤外線を温調面で吸収するようになした室内温調システムであって、前記温調装置として、間隔をあけて配置した1対のタンクと、遠赤外線を放射吸収可能な無機物質で外周面を被覆した温調面を有し、両端部が両タンクに連通するように、前記両タンク間に複数本並列状に配置した温調パイプと、前記両タンクと温調パイプ内に充填した温調媒体と、前記温調媒体を温調する温調手段とを備えたものを用いたものである。   An indoor temperature control system according to the present invention includes a temperature control device having a temperature control surface made of an inorganic substance capable of absorbing and absorbing far infrared rays, and an indoor surface configuration having a radiation absorption surface made of an inorganic substance capable of absorbing and absorbing far infrared rays. Member, and by the far-infrared resonance phenomenon between the temperature control surface and the radiation absorption surface, when the temperature control surface is heated by the temperature control device, the far infrared ray radiated from the temperature control surface is absorbed by the radiation absorption surface, When the temperature control surface is cooled by the temperature control device, it is an indoor temperature control system that absorbs far-infrared rays radiated from the radiation absorption surface with the temperature control surface, and is arranged at intervals as the temperature control device. A pair of tanks and a temperature control surface coated with an inorganic substance capable of radiating and absorbing far infrared rays, and a plurality of tanks arranged in parallel between both tanks so that both ends communicate with both tanks. The arranged temperature control pipes and both tanks A temperature control medium filled in the tone pipe, in which was used a temperature control means for temperature control of the temperature control medium.

この室内温調システムでは、温調装置の温調面が加熱されると、温調面から遠赤外線が放射され、該遠赤外線を受けた室内面構成部材の放射吸収面が温められ、該室内面構成部材の温度が高くなると、該室内面構成部材の放射吸収面から遠赤外線が放射され、該遠赤外線を受けた他の室内面構成部材が温められるという遠赤外線共鳴現象により、室内が一様に温められるとともに、室内面構成部材から放射される遠赤外線により、室内に居る人の体が温められることになる。一方、温調装置により温調面が冷却されると、室内面構成部材の放射吸収面から放射された遠赤外線が温調面で吸収され、該室内面構成部材の放射吸収面の温度が低下し、該室内面構成部材の放射吸収面が他の室内面構成部材から放射される遠赤外線を吸収するという遠赤外線共鳴現象により、室内が一様に冷やされることになる。   In this indoor temperature control system, when the temperature control surface of the temperature control device is heated, far infrared rays are radiated from the temperature control surface, and the radiation absorbing surfaces of the indoor surface constituent members that have received the far infrared rays are warmed. When the temperature of the surface constituent member increases, far infrared rays are emitted from the radiation absorbing surface of the indoor surface constituent member, and the other indoor surface constituent members that have received the far infrared ray are warmed. The body of the person in the room is warmed by the far infrared rays emitted from the indoor surface constituent members. On the other hand, when the temperature control surface is cooled by the temperature control device, far infrared rays emitted from the radiation absorbing surface of the indoor surface constituting member are absorbed by the temperature adjusting surface, and the temperature of the radiation absorbing surface of the indoor surface constituting member is lowered. Then, the room is uniformly cooled by a far-infrared resonance phenomenon in which the radiation absorbing surface of the indoor surface constituent member absorbs far infrared rays emitted from other indoor surface constituent members.

また、温調装置として、間隔をあけて配置した1対のタンクと、外周面に遠赤外線を放射吸収可能な無機物質で被覆した温調面を有し、両端部が両タンクに連通するように、前記両タンク間に複数本並列状に配置した温調パイプと、前記両タンクと温調パイプ内に充填した温調媒体と、前記温調媒体を温調する温調手段とを備えたものを用いているので、加熱手段や冷却手段により直接的に温調面を加熱したり冷却したりする場合と比較して、室内温度と温調面間の温度差を小さくして、加熱時には、温調面に触れることによる火傷を防止でき、冷却時には、温調面における結露の発生を抑制乃至防止できる。また、温調パイプを用いることで温調面の面積を広く設定しつつ、両タンク内と温調パイプ内とに充填した温調媒体の対流により、温調面の全面を一様な温度に温調することが可能となる。   Moreover, as a temperature control device, it has a pair of tanks arranged at intervals and a temperature control surface coated with an inorganic substance capable of radiating and absorbing far infrared rays on the outer peripheral surface, so that both ends communicate with both tanks. A plurality of temperature control pipes arranged in parallel between the tanks, a temperature control medium filled in the tanks and the temperature control pipe, and a temperature control means for controlling the temperature of the temperature control medium. Compared with the case where the temperature adjustment surface is directly heated or cooled by the heating means or the cooling means, the temperature difference between the room temperature and the temperature adjustment surface is reduced, In addition, it is possible to prevent burns caused by touching the temperature control surface, and to suppress or prevent the occurrence of condensation on the temperature control surface during cooling. In addition, while using a temperature control pipe, the area of the temperature control surface is set wide, and the entire surface of the temperature control surface is made uniform by convection of the temperature control medium filled in both tanks and the temperature control pipe. The temperature can be adjusted.

ここで、前記温調手段として、前記1対のタンクの少なくとも一方に内装したヒートパイプであって、作動液を減圧封入した外パイプと、前記作動液に浸漬した下部パイプ及び作動液よりも上方位置に配置した上部パイプからなる内パイプとを有するヒートパイプと、前記内パイプへ供給する熱交換媒体を加熱又は冷却する熱源手段とを備えたものを用いることが好ましい実施の形態である。この温調手段により温調媒体を加熱する場合には、熱源手段から加熱した熱交換媒体を例えば下部パイプに供給することになる。すると作動液が下部パイプ周辺の熱を吸収して蒸発し、蒸気流となって外パイプの上部内壁へ移動し、蒸気はそこで冷却され凝縮する。そして凝縮した作動液は重力によって外パイプの底部側へ戻され、蒸発→移動→凝縮を繰り返しながら熱が連続的に外パイプから温調媒体へ供給されることになる。一方、下部パイプを通過した熱交換媒体は、作動液よりも上側に配置される上部パイプへ供給される。その上部パイプ内の熱交換媒体は、外パイプの上部内壁部に残存する蒸気流の温度により、降温が妨げられた状態で、上部パイプの基端部側(外パイプの基端部側)へ戻されることになる。このことで戻り側の熱交換媒体は、ヒートパイプの外部に戻りパイプを設けた方式と比べ、不要な降温が防止されながら、外パイプの基端部側へ戻されることになる。このように下部パイプと上部パイプとを外パイプ内に配置させるので、下部パイプへの熱交換媒体の供給と上部パイプからの熱交換媒体の排出を外パイプの基端部側で行うことが可能となり、ヒートパイプへの配管を簡略に構成できる。しかも、下部パイプ内の熱交換媒体の温度は、外パイプの先端側(上部パイプ側)へ行くにしたがって低下するが、上部パイプ内の熱交換媒体は外パイプの基端部側へ行くにしたがって低下するので、外パイプの長さ方向の各部における作動液の蒸気温度を一様に設定することが可能となり、作動液により温調媒体を一様に加熱することが可能となる。一方、この温調手段により温調媒体を冷却する場合には、熱源手段から冷却した熱交換媒体を例えば下部パイプに供給することになる。このとき、外パイプ内の作動液は、外気温度により一部又は全部が蒸気になっていることから、該作動液の蒸気が下部パイプ及び上部パイプで冷やされて凝縮して、外パイプ内における蒸気圧が低下し、作動液が外パイプの熱で加熱されて蒸発し、外パイプが順次冷却されることになる。このように、ヒートパイプを用いると、熱交換媒体により作動液を介して効率的に温調媒体を温調でき、ヒートパイプへの熱交換媒体の供給量を少なくできるので、熱交換媒体の配管を小径に構成して、熱交換媒体の流通途中におけるエネルギーロスを極力少なくすることができる。   Here, as the temperature control means, a heat pipe built in at least one of the pair of tanks, the outer pipe in which the hydraulic fluid is sealed under reduced pressure, the lower pipe immersed in the hydraulic fluid, and the hydraulic fluid above In a preferred embodiment, a heat pipe having an inner pipe made of an upper pipe disposed at a position and a heat source means for heating or cooling a heat exchange medium supplied to the inner pipe is used. When the temperature control medium is heated by the temperature control means, the heat exchange medium heated from the heat source means is supplied to, for example, the lower pipe. Then, the working fluid absorbs the heat around the lower pipe and evaporates, and becomes a steam flow and moves to the upper inner wall of the outer pipe, where the steam is cooled and condensed. The condensed hydraulic fluid is returned to the bottom side of the outer pipe by gravity, and heat is continuously supplied from the outer pipe to the temperature control medium while repeating evaporation → movement → condensation. On the other hand, the heat exchange medium that has passed through the lower pipe is supplied to the upper pipe disposed above the hydraulic fluid. The heat exchange medium in the upper pipe is moved to the base end side of the upper pipe (base end side of the outer pipe) in a state where the temperature drop is hindered by the temperature of the steam flow remaining on the upper inner wall of the outer pipe. Will be returned. Thus, the heat exchange medium on the return side is returned to the base end side of the outer pipe while preventing unnecessary temperature drop, as compared with the method in which the return pipe is provided outside the heat pipe. Since the lower pipe and the upper pipe are arranged in the outer pipe in this way, it is possible to supply the heat exchange medium to the lower pipe and discharge the heat exchange medium from the upper pipe on the base end side of the outer pipe. Thus, the piping to the heat pipe can be simplified. Moreover, the temperature of the heat exchange medium in the lower pipe decreases as it goes to the distal end side (upper pipe side) of the outer pipe, but the heat exchange medium in the upper pipe goes to the proximal end side of the outer pipe. Therefore, the vapor temperature of the working fluid in each part in the length direction of the outer pipe can be set uniformly, and the temperature control medium can be uniformly heated by the working fluid. On the other hand, when the temperature adjustment medium is cooled by the temperature adjustment means, the heat exchange medium cooled from the heat source means is supplied to, for example, the lower pipe. At this time, since the hydraulic fluid in the outer pipe is partially or entirely vapor due to the outside air temperature, the vapor of the hydraulic fluid is cooled and condensed in the lower pipe and the upper pipe, The vapor pressure is lowered, the working fluid is heated by the heat of the outer pipe, evaporates, and the outer pipe is sequentially cooled. In this way, when the heat pipe is used, the temperature of the temperature control medium can be efficiently controlled by the heat exchange medium via the hydraulic fluid, and the amount of heat exchange medium supplied to the heat pipe can be reduced. The energy loss during the circulation of the heat exchange medium can be reduced as much as possible.

前記温調パイプをアルミ合金材で構成し、該温調パイプの表面に遠赤外線を放射吸収する無機質物質からなる酸化被膜を形成し、前記酸化被膜で温調面を構成することが好ましい実施の形態である。この場合には、温調パイプの製作コストが高くなることを抑制しつつ、温調パイプの外周面に遠赤外線を放射吸収する酸化被膜を形成することができる。   It is preferable that the temperature control pipe is made of an aluminum alloy material, an oxide film made of an inorganic substance that radiates and absorbs far infrared rays is formed on the surface of the temperature control pipe, and the temperature control surface is configured by the oxide film. It is a form. In this case, an oxide film that radiates and absorbs far-infrared rays can be formed on the outer peripheral surface of the temperature control pipe while suppressing an increase in the manufacturing cost of the temperature control pipe.

前記温調面に、抗菌性のある光触媒物質を含む機能層を形成することも好ましい実施の形態である。このように構成することで、温調面において結露が発生した場合でも、雑菌やカビの繁殖を抑制できる。また、機能層により臭い物質を分解することも可能なので、室内環境を向上できる。   It is also a preferred embodiment to form a functional layer containing an antibacterial photocatalytic substance on the temperature control surface. By comprising in this way, even when dew condensation occurs in the temperature control surface, propagation of various germs and molds can be suppressed. Moreover, since the odorous substance can be decomposed by the functional layer, the indoor environment can be improved.

前記温調パイプに、金属材料の熱交換フィンを取り付けたり、前記温調パイプ周辺の空気を移動させる送風機を設けたりすることも、好ましい実施の形態である。このように構成することで、室内空間を所望温度に調整するまでの時間を短縮できる。   It is also a preferred embodiment to attach a heat exchange fin made of a metal material to the temperature control pipe or to provide a blower that moves the air around the temperature control pipe. By comprising in this way, time until adjusting indoor space to desired temperature can be shortened.

前記温調面と放射吸収面とを対面配置することが好ましい実施の形態である。このように構成すると、温調面と放射吸収面間における遠赤外線共鳴現象を促進することができる。   In a preferred embodiment, the temperature control surface and the radiation absorption surface are arranged facing each other. If comprised in this way, the far-infrared resonance phenomenon between a temperature control surface and a radiation absorption surface can be accelerated | stimulated.

前記室内面構成部材が、遠赤外線を放射吸収する無機質物質からなる酸化被膜を形成したアルミ合金からなるパネル材、または該アルミ合金のパネル材の表面に調湿作用を有する珪素土と抗菌性のある光触媒物質を含む機能層を形成したパネル材を備えることが好ましい実施の形態である。このようなパネル材を用いると、既存の建築物に対しても容易に室内面構成部材を設けることができる。また、機能層により、湿気を吸収したり、雑菌やカビの繁殖を抑制したり、臭い物質を分解したりできるので、室内環境を向上できる。   The indoor surface constituent member is a panel material made of an aluminum alloy formed with an oxide film made of an inorganic substance that radiates and absorbs far-infrared rays, or silicon soil having a humidity control action on the surface of the aluminum alloy panel material and an antibacterial property It is a preferred embodiment to include a panel material on which a functional layer containing a certain photocatalytic substance is formed. When such a panel material is used, an indoor surface constituent member can be easily provided for an existing building. In addition, the functional layer can absorb moisture, suppress the propagation of germs and fungi, and decompose odorous substances, thereby improving the indoor environment.

前記室内面構成部材により、隣接し合う第1の部屋と第2の部屋間の隔壁の両面を構成し、前記隔壁両面の室内面構成部材が遠赤外線共鳴現象を起こすように構成することもできる。このように構成すると、第1の部屋にのみ温調面を設置するだけで、隣接する第2の部屋に関しても、第1の部屋との隔壁の両面を構成する室内面構成部材を通じて温調することができる。   It is also possible to form both surfaces of the partition wall between the first and second rooms adjacent to each other by the indoor surface constituting member, and the indoor surface constituting members on both surfaces of the partition wall may cause a far-infrared resonance phenomenon. . If comprised in this way, only by installing a temperature control surface in the 1st room, temperature control is carried out also about the adjacent 2nd room through the indoor surface constituent member which constitutes both sides of the partition with the 1st room. be able to.

前記室内面構成部材により、環境調整する室内の壁面と天井面と床面のうちのいずれかの面の少なくとも一部を構成することができる。
なお、前記課題を解決するための手段に記載の構成は、任意に組み合わせて室内温調システムを構成することができる。
The indoor surface constituting member can constitute at least a part of any one of a wall surface, a ceiling surface, and a floor surface of the room whose environment is adjusted.
In addition, the structure as described in the means for solving the said subject can be combined arbitrarily and can comprise an indoor temperature control system.

本発明に係る室内温調システムによれば、温調面と放射吸収面間や、放射吸収面同士間における遠赤外線共鳴現象により、室内を温調することができる。しかも、温調装置として、間隔をあけて配置した1対のタンクと、外周面に遠赤外線を放射吸収可能な無機物質で被覆した温調面を有し、両端部が両タンクに連通するように、前記両タンク間に複数本並列状に配置した温調パイプと、前記両タンクと温調パイプ内に充填した温調媒体と、前記温調媒体を温調する温調手段とを備えたものを用いているので、加熱手段や冷却手段により直接的に温調面を加熱したり冷却したりする場合と比較して、室内温度と温調面間の温度差を小さくして、加熱時には、温調面に触れることによる火傷を防止でき、冷却時には、温調面における結露の発生を抑制乃至防止できる。また、温調パイプを用いることで温調面の面積を広く設定しつつ、両タンク内と温調パイプ内とに充填した温調媒体の対流により、温調面の全面を一様な温度に温調することが可能となる。   According to the indoor temperature control system according to the present invention, the temperature of the room can be controlled by the far-infrared resonance phenomenon between the temperature control surface and the radiation absorption surface or between the radiation absorption surfaces. Moreover, as a temperature control device, it has a pair of tanks arranged at intervals, and a temperature control surface coated with an inorganic substance capable of radiating and absorbing far infrared rays on the outer peripheral surface so that both ends communicate with both tanks. A plurality of temperature control pipes arranged in parallel between the tanks, a temperature control medium filled in the tanks and the temperature control pipe, and a temperature control means for controlling the temperature of the temperature control medium. Compared with the case where the temperature adjustment surface is directly heated or cooled by the heating means or the cooling means, the temperature difference between the room temperature and the temperature adjustment surface is reduced, In addition, it is possible to prevent burns caused by touching the temperature control surface, and to suppress or prevent the occurrence of condensation on the temperature control surface during cooling. In addition, while using a temperature control pipe, the area of the temperature control surface is set wide, and the entire surface of the temperature control surface is made uniform by convection of the temperature control medium filled in both tanks and the temperature control pipe. The temperature can be adjusted.

室内温調システムの全体構成図Overall configuration of indoor temperature control system 温調装置の斜視図Perspective view of temperature control device 図2のIII-III線断面図Sectional view along line III-III in Fig. 2 図2のIV-IV線断面図Sectional view taken along line IV-IV in FIG. 温調パイプの横断面図Cross section of temperature control pipe 他の構成の温調パイプの要部正面図Front view of main parts of temperature control pipe of other configuration ヒートパイプの縦断面図Longitudinal section of heat pipe 図7のVIII-VIII線断面図VIII-VIII sectional view of FIG. (a)は室内面構成部材の縦断面図、(b)は他の構成の室内面構成部材の縦断面図(A) is a longitudinal cross-sectional view of an indoor surface constituent member, (b) is a longitudinal cross-sectional view of an indoor surface constituent member of another configuration 隣接する部屋を区画する隔壁の縦断面図Longitudinal sectional view of partition walls that divide adjacent rooms

以下、本発明を実施するための形態について、図面を参照しながら説明する。
図1、図2に示すように、室内温調システム1は、遠赤外線を放射吸収可能な無機物質からなる温調面13aを有する温調装置2と、遠赤外線を放射吸収可能な無機物質からなる放射吸収面40aを有する室内面構成部材40とを備え、温調面13aと放射吸収面40a間や、放射吸収面40a同士間における遠赤外線共鳴現象により、室内を暖房状態と冷房状態とに温調可能に構成したものである。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the indoor temperature control system 1 includes a temperature control device 2 having a temperature control surface 13 a made of an inorganic substance capable of absorbing and absorbing far infrared rays, and an inorganic substance capable of absorbing and absorbing far infrared rays. And the indoor surface constituting member 40 having the radiation absorbing surface 40a, and the room is heated and cooled by a far-infrared resonance phenomenon between the temperature control surface 13a and the radiation absorbing surface 40a or between the radiation absorbing surfaces 40a. The temperature can be adjusted.

(温調装置)
温調装置2は、図1〜図8に示すように、室内に設置される室内機3と、室外に設置される温調手段としての室外機4と、室内機3と室外機4間において熱交換媒体5を循環供給するための配管6と、室内温度を設定するためのコントローラ7とを備えている。
(Temperature control device)
As shown in FIGS. 1 to 8, the temperature control device 2 includes an indoor unit 3 installed indoors, an outdoor unit 4 as a temperature control unit installed outdoors, and between the indoor unit 3 and the outdoor unit 4. A pipe 6 for circulating and supplying the heat exchange medium 5 and a controller 7 for setting the room temperature are provided.

室内機3は、上下に間隔をあけて配置した上部タンク10及び下部タンク11と、外周面に遠赤外線を放射吸収可能な無機物質で被覆した温調面13aを有し、両端部が上部タンク10と下部タンク11とに連通するように、上部タンク10と下部タンク11間に縦向きに、複数本並列状に配置した温調パイプ13と、上部タンク10及び下部タンク11と温調パイプ13内に充填した温調媒体14と、上部タンク10及び下部タンク11に内装したヒートパイプ20と、温調パイプ13へ向けて後方から室内空気を送風する送風手段30とを備えている。   The indoor unit 3 includes an upper tank 10 and a lower tank 11 that are arranged at intervals in the vertical direction, and a temperature control surface 13a that is coated with an inorganic substance that can absorb and absorb far-infrared rays on the outer peripheral surface, and both ends are upper tanks. 10 and a lower tank 11, and a plurality of temperature control pipes 13 arranged in parallel in a vertical direction between the upper tank 10 and the lower tank 11, and the upper tank 10, the lower tank 11 and the temperature control pipe 13. A temperature control medium 14 filled therein, a heat pipe 20 provided in the upper tank 10 and the lower tank 11, and a blowing means 30 for blowing room air from the rear toward the temperature control pipe 13 are provided.

上部タンク10と下部タンク11とは左右方向に細長い角筒状のタンクで構成され、上部タンク10と下部タンク11とは左右1対の側部フレーム15で連結され、上部タンク10は左右の側部フレーム15を介して下部タンク11の上側に一定間隔をあけて支持されている。上部タンク10と下部タンク11間には複数本の温調パイプ13が左右に間隔をあけて並列状に配置されるとともに前後に2列配置され、温調パイプ13の上下両端部は上部タンク10と下部タンク11とにそれぞれ連通されている。下部タンク11の上面の前後両側縁には左右方向に延びる立起壁16が上方へ突出状に形成され、下部タンク11の上側には結露水を排出するための左右方向に延びる排水通路17が形成され、結露水は排水通路17の一端部から外部へ排出されるように構成されている。なお、温調パイプ13の本数や配列は任意に設定可能である。また、本実施の形態では室内機3を縦向きに配置したが、図1に仮想線で示すように天井や床面に沿って水平に配置することも可能で、この場合には、両タンクは水平面内に間隔をあけて配置することになる。   The upper tank 10 and the lower tank 11 are composed of rectangular tanks that are elongated in the left-right direction. The upper tank 10 and the lower tank 11 are connected by a pair of left and right side frames 15, and the upper tank 10 is connected to the left and right sides. It is supported on the upper side of the lower tank 11 via the part frame 15 at a predetermined interval. Between the upper tank 10 and the lower tank 11, a plurality of temperature control pipes 13 are arranged in parallel with a space left and right, and arranged in two rows on the front and rear sides. And the lower tank 11 are communicated with each other. Standing walls 16 extending in the left-right direction are formed on the front and rear side edges of the upper surface of the lower tank 11 so as to protrude upward, and a drainage passage 17 extending in the left-right direction for discharging condensed water is formed above the lower tank 11. The condensed water is formed and discharged from one end of the drainage passage 17 to the outside. In addition, the number and arrangement | sequence of the temperature control pipe 13 can be set arbitrarily. Further, in the present embodiment, the indoor unit 3 is arranged vertically, but as shown in phantom lines in FIG. 1, it can also be arranged horizontally along the ceiling or floor surface. In this case, both tanks Are arranged at intervals in a horizontal plane.

図5に示すように、温調パイプ13は横断面円形のパイプで構成され、温調パイプ13の外周面には遠赤外線を放射吸収可能な無機物質を被覆してなる温調面13aがその全面にわたって形成されている。温調パイプ13を構成する素材としては、熱伝導性の高い素材が好ましく、例えば、鉄、アルミニウム、ステンレス、銅などの金属、セラミックや合成樹脂材料からなるものを採用できる。温調面13aを構成する無機物質としては、遠赤外線を効率良く放射吸収可能なものであれば任意の素材からなるものを採用でき、活性炭などの炭化物、ケイ素やアルミナなどのセラミックス、トルマリンやゼオライトやセピオライトなどの鉱物、アルミニウムやチタンやジルコニウムなどの金属酸化物などを採用できる。特に、温調パイプ13をアルミニウム合金で構成し、その表面にアルミニウム合金の酸化被膜からなる温調面13aを形成すると、温調パイプ13の製作コストを安くできるので好ましい。また、温調面13aの表面に、酸化チタンなどの抗菌性のある光触媒物質を含む機能層を形成することも好ましい。この場合には、機能層により、温調パイプ13の表面における雑菌やカビの繁殖を抑制したり、室内空間の臭い物質を分解したりして、室内環境を向上できる。   As shown in FIG. 5, the temperature control pipe 13 is configured by a circular pipe having a circular cross section, and the temperature control surface 13 a formed by coating the outer peripheral surface of the temperature control pipe 13 with an inorganic substance that can absorb and absorb far-infrared rays. It is formed over the entire surface. The material constituting the temperature control pipe 13 is preferably a material having high thermal conductivity, and for example, a material made of a metal such as iron, aluminum, stainless steel, or copper, a ceramic, or a synthetic resin material can be employed. As the inorganic material constituting the temperature control surface 13a, any material can be adopted as long as it can efficiently absorb and absorb far infrared rays. Carbides such as activated carbon, ceramics such as silicon and alumina, tourmaline and zeolite Or minerals such as sepiolite, metal oxides such as aluminum, titanium and zirconium can be used. In particular, it is preferable that the temperature control pipe 13 is made of an aluminum alloy and the temperature control surface 13a made of an oxide film of the aluminum alloy is formed on the surface because the manufacturing cost of the temperature control pipe 13 can be reduced. It is also preferable to form a functional layer containing an antibacterial photocatalytic substance such as titanium oxide on the surface of the temperature control surface 13a. In this case, the indoor environment can be improved by suppressing the propagation of germs and fungi on the surface of the temperature control pipe 13 or decomposing odorous substances in the indoor space by the functional layer.

温調パイプ13の横断面形状は、円形に形成したが、4角形や6角形や8角形などの多角形状に形成してもよい。また、温調パイプ13の外周面に突起やフィンなどからなる放熱部を形成することも好ましく、またこの放熱部を遠赤外線を放射吸収可能な無機物質で被覆することも好ましい。例えば、図6に示すように、外方へ突出する螺旋状の熱交換フィン18を全長にわたって設け、その表面を、遠赤外線を放射吸収可能な無機物質で被覆することが好ましい。更に、上部タンク10及び下部タンク11を、温調パイプ13と同じ素材で構成して、その外面を、遠赤外線を放射吸収可能な無機物質で被覆することも好ましい。   The transverse cross-sectional shape of the temperature control pipe 13 is formed in a circular shape, but may be formed in a polygonal shape such as a quadrangular shape, a hexagonal shape, or an octagonal shape. It is also preferable to form a heat radiating portion made of protrusions or fins on the outer peripheral surface of the temperature control pipe 13, and it is also preferable to coat the heat radiating portion with an inorganic substance capable of radiating and absorbing far infrared rays. For example, as shown in FIG. 6, it is preferable that a spiral heat exchange fin 18 projecting outward is provided over the entire length, and the surface thereof is coated with an inorganic substance capable of absorbing and absorbing far infrared rays. Furthermore, it is also preferable that the upper tank 10 and the lower tank 11 are made of the same material as that of the temperature control pipe 13 and the outer surface thereof is coated with an inorganic substance capable of absorbing and absorbing far infrared rays.

上部タンク10と下部タンク11と温調パイプ13とに充填される温調媒体14としては、水、油などの液体を採用することができる。   As the temperature control medium 14 filled in the upper tank 10, the lower tank 11, and the temperature control pipe 13, a liquid such as water or oil can be employed.

送風手段30は、縦向きに並列配置した温調パイプ13の後方全体を覆うように室内機3の後部に設けた後部カバー31と、後部カバー31の中央部に配置した送風機32とを備えている。後部カバー31は後方へ行くにしたがって縦断面積が小さくなるように構成した四角錐状に形成され、後部カバー31の後端部には送風機32が設けられ、送風機32のモータを駆動すると、室内機3の後方の室内空気が、室内機3内に導入されて、温調パイプ13に向けて吹き出されるように構成されている。ただし、送風手段30は、温調パイプ13に向けて室内空気を放出可能なものであれば任意の構成のものを採用することができる。なお、送風手段30は、室内温度の上昇を促進するために設けたが、省略することも可能である。   The air blowing means 30 includes a rear cover 31 provided at the rear part of the indoor unit 3 so as to cover the entire rear side of the temperature control pipe 13 arranged in parallel in the vertical direction, and a blower 32 arranged at the central part of the rear cover 31. Yes. The rear cover 31 is formed in a quadrangular pyramid shape so that the longitudinal cross-sectional area decreases as it goes rearward. A blower 32 is provided at the rear end of the rear cover 31. When the motor of the blower 32 is driven, the indoor unit 3 indoor air is introduced into the indoor unit 3 and blown out toward the temperature control pipe 13. However, the blower unit 30 may have any configuration as long as it can release room air toward the temperature control pipe 13. In addition, although the ventilation means 30 was provided in order to accelerate | stimulate the raise of room temperature, it is also omissible.

図3、図7、図8に示すように、ヒートパイプ20は、上部タンク10と下部タンク11の略全長にわたってそれぞれ設けられ、作動液21を減圧封入した外パイプ22と、外パイプ22の内側に配置した内パイプ23であって、作動液21に浸漬した下部パイプ24と、作動液21よりも上方位置に配置した上部パイプ25と、下部パイプ24と上部パイプ25の先端部を連通するU字管からなる連通パイプ26となる内パイプ23とを有している。下側のヒートパイプ20の下部パイプ24と上部パイプ25は、上部タンク10の側方位置まで延設され、下側のヒートパイプ20の下部パイプ24は上側のヒートパイプ20の下部パイプ24に接続されている。室外機4から供給された熱交換媒体5は、上側のヒートパイプ20の上部パイプ25と、上側のヒートパイプ20の下部パイプ24と、下側のヒートパイプ20の下部パイプ24と、下側のヒートパイプ20の上部パイプ25とを順次経て室外機4に戻され、室外機4により上下のヒートパイプ20へ循環供給される。なお、上側のヒートパイプ20と下側のヒートパイプ20とのパイプの接続形態は、前記以外の接続形態でもよい。また、上下のヒートパイプ20を室外機4に対して直列状に接続したが、並列状に接続することも可能である。   As shown in FIGS. 3, 7, and 8, the heat pipe 20 is provided over substantially the entire length of the upper tank 10 and the lower tank 11, and includes an outer pipe 22 in which the hydraulic fluid 21 is sealed under reduced pressure, and an inner side of the outer pipe 22. The lower pipe 24 immersed in the hydraulic fluid 21, the upper pipe 25 arranged at a position higher than the hydraulic fluid 21, and the U and the lower pipe 24 and the upper pipe 25 are in communication with each other. It has the inner pipe 23 used as the communicating pipe 26 which consists of a character pipe. The lower pipe 24 and the upper pipe 25 of the lower heat pipe 20 extend to the side position of the upper tank 10, and the lower pipe 24 of the lower heat pipe 20 is connected to the lower pipe 24 of the upper heat pipe 20. Has been. The heat exchange medium 5 supplied from the outdoor unit 4 includes an upper pipe 25 of the upper heat pipe 20, a lower pipe 24 of the upper heat pipe 20, a lower pipe 24 of the lower heat pipe 20, and a lower pipe 24. The heat pipe 20 and the upper pipe 25 are sequentially returned to the outdoor unit 4 and circulated and supplied to the upper and lower heat pipes 20 by the outdoor unit 4. In addition, the connection form other than the above may be sufficient as the connection form of the pipe of the upper heat pipe 20 and the lower heat pipe 20. Moreover, although the upper and lower heat pipes 20 are connected in series to the outdoor unit 4, they can also be connected in parallel.

このヒートパイプ20では、下部パイプ24と上部パイプ25とを外パイプ22内に配置させているので、下部パイプ24への熱交換媒体5の供給と上部パイプ25からの熱交換媒体5の排出を外パイプ22の基端部側で行うことが可能となり、ヒートパイプ20への配管6を簡略に構成できる。   In this heat pipe 20, since the lower pipe 24 and the upper pipe 25 are arranged in the outer pipe 22, supply of the heat exchange medium 5 to the lower pipe 24 and discharge of the heat exchange medium 5 from the upper pipe 25 are performed. It becomes possible to carry out at the base end side of the outer pipe 22, and the piping 6 to the heat pipe 20 can be configured simply.

内パイプ23と外パイプ22とは、熱伝導性が高い材質で構成することが好ましく、例えば、鉄、アルミニウム、ステンレス、銅などの金属、セラミックや合成樹脂材料などが挙げられるが、これらに限定はされない。また、配管6は、折り曲げ可能な材料で構成することが好ましく、鉄、アルミニウム、ステンレス、銅などの金属、軟質な合成樹脂材料などで構成できる。この配管6は、熱交換媒体5の循環供給途中におけるエネルギーロスを極力少なくするため、断熱材で被覆することが好ましい。   The inner pipe 23 and the outer pipe 22 are preferably made of a material having high thermal conductivity, and examples thereof include metals such as iron, aluminum, stainless steel, and copper, ceramics and synthetic resin materials, but are not limited thereto. Not done. The pipe 6 is preferably made of a foldable material, and can be made of a metal such as iron, aluminum, stainless steel, or copper, or a soft synthetic resin material. The pipe 6 is preferably covered with a heat insulating material in order to minimize energy loss during the circulation and supply of the heat exchange medium 5.

作動液21としては、揮発性の液体を採用でき、例えば、アンモニア、プロパン、ブタン、アルコール、多価アルコール、変性アルコール、イソブチルアルコールの混合物、アセトン、プロプレングリコールモノブチルアセテート等を採用することができる。特に、メチルアルコールは、安価に入手でき、取り扱いが容易なので好ましい。   As the working fluid 21, a volatile liquid can be employed. For example, ammonia, propane, butane, alcohol, polyhydric alcohol, denatured alcohol, a mixture of isobutyl alcohol, acetone, propylene glycol monobutyl acetate, or the like can be employed. it can. In particular, methyl alcohol is preferable because it is available at low cost and is easy to handle.

(室外機)
室外機4は、室内機3のヒートパイプ20へ循環供給する熱交換媒体5を加熱したり冷却したりする熱源手段35を備えている。
(Outdoor unit)
The outdoor unit 4 includes a heat source means 35 that heats or cools the heat exchange medium 5 that is circulated and supplied to the heat pipe 20 of the indoor unit 3.

熱源手段35は、ヒートパイプ20へ供給する熱交換媒体5を加熱冷却可能なものであれば任意の構成のものを採用することができ、例えば周知の構成のヒートポンプで構成することができる。この熱源手段35により、熱交換媒体5を、暖房時には例えば55℃に加熱し、冷房時には6℃に冷却することになる。ただし、加熱温度及び冷却温度は熱交換媒体5の沸点以下で凝固点以上であれば任意の温度に設定できる。   The heat source means 35 can adopt any configuration as long as the heat exchange medium 5 supplied to the heat pipe 20 can be heated and cooled. For example, the heat source means 35 can be configured by a heat pump having a known configuration. The heat source means 35 heats the heat exchange medium 5 to, for example, 55 ° C. during heating, and cools it to 6 ° C. during cooling. However, the heating temperature and the cooling temperature can be set to arbitrary temperatures as long as they are below the boiling point of the heat exchange medium 5 and above the freezing point.

熱源手段35からヒートパイプ20へ循環供給される熱交換媒体5としては、水、油などの液体採用することができる。     As the heat exchange medium 5 circulated and supplied from the heat source means 35 to the heat pipe 20, a liquid such as water or oil can be employed.

(コントローラ)
コントローラ7は、室内温度を設定のための入力手段と、室内温度を測定する温度センサと、熱源手段35及び送風機32を制御する制御手段などを備えたもので、制御手段により、室内温度が予め設定した設定温度となるように、室外機4を制御するように構成されている。例えば、コントローラ7にて予め設定した設定温度を中心とした一定範囲(例えば±2℃)の温度領域内に、室内温度がなったときに、熱源手段35及び送風機32を停止し、該温度領域外になったときに熱源手段35及び送風機32を作動させることになる。
(controller)
The controller 7 includes an input means for setting the room temperature, a temperature sensor for measuring the room temperature, a control means for controlling the heat source means 35 and the blower 32, and the like. The outdoor unit 4 is configured to control the set temperature. For example, when the room temperature falls within a temperature range of a certain range (for example, ± 2 ° C.) centered on a preset temperature preset by the controller 7, the heat source means 35 and the blower 32 are stopped, and the temperature range When it becomes outside, the heat source means 35 and the blower 32 are operated.

この温調装置2により、温調面13aを加熱する場合には、熱源手段35から加熱した熱交換媒体5を上下のヒートパイプ20に循環供給する。するとヒートパイプ20の外パイプ22内の作動液21が下部パイプ24周辺の熱を吸収して蒸発し、蒸発した作動液21は上部パイプ25内の熱交換媒体5により更に温められ、蒸気流となって外パイプ22の上部内壁へ移動し、蒸気はそこで冷却され凝縮する。そして凝縮した作動液21は重力によって外パイプ22の底部側へ戻され、蒸発→移動→凝縮を繰り返しながら熱が連続的に外パイプ22から温調媒体14へ供給され、温調媒体14により温調面13aが加熱されることになる。また、このとき、下部パイプ24内の熱交換媒体5の温度は、下流側へ行くにしたがって低下するが、上部パイプ25内の熱交換媒体5は下部パイプ24の上流側へ行くにしたがって低下するので、外パイプ22の長さ方向の各部における作動液21の蒸気温度を一様に設定することが可能となり、作動液21により温調媒体14を一様に加熱することが可能となる。   When the temperature adjustment surface 2 is heated by the temperature adjustment device 2, the heat exchange medium 5 heated from the heat source means 35 is circulated and supplied to the upper and lower heat pipes 20. Then, the hydraulic fluid 21 in the outer pipe 22 of the heat pipe 20 absorbs the heat around the lower pipe 24 and evaporates, and the evaporated hydraulic fluid 21 is further warmed by the heat exchange medium 5 in the upper pipe 25, It moves to the upper inner wall of the outer pipe 22 and the steam is cooled and condensed there. The condensed hydraulic fluid 21 is returned to the bottom side of the outer pipe 22 by gravity, and heat is continuously supplied from the outer pipe 22 to the temperature control medium 14 while repeating evaporation → movement → condensation. The surface adjustment 13a is heated. At this time, the temperature of the heat exchange medium 5 in the lower pipe 24 decreases as it goes downstream, but the heat exchange medium 5 in the upper pipe 25 decreases as it goes upstream of the lower pipe 24. Therefore, the vapor temperature of the working fluid 21 in each part of the outer pipe 22 in the length direction can be set uniformly, and the temperature control medium 14 can be uniformly heated by the working fluid 21.

一方、温調面13aを冷却する場合には、熱源手段35から冷却した熱交換媒体5を上下のヒートパイプ20に循環供給することになる。温調面13aを冷却する場合、つまり室内温度が高い場合には、外パイプ22内の作動液21は、温調媒体14からの熱により一部又は全部が蒸気になっていることから、この状態で、内パイプ23に冷却した熱交換媒体5が供給されると、外パイプ22内の作動液21の蒸気が下部パイプ24及び上部パイプ25で冷やされて凝縮し、熱交換媒体5の温度が上昇する。一方、外パイプ22内における蒸気圧が低下し、温調媒体14の熱で外パイプ22内の作動液21が加熱されて蒸発し、外パイプ22の熱が作動液21に奪われて、外パイプ22の温度が低下し、これにより温調媒体14が冷却されて温調面13aが順次冷却されることになる。   On the other hand, when cooling the temperature control surface 13 a, the heat exchange medium 5 cooled from the heat source means 35 is circulated and supplied to the upper and lower heat pipes 20. When the temperature control surface 13a is cooled, that is, when the room temperature is high, the hydraulic fluid 21 in the outer pipe 22 is partly or entirely steamed by the heat from the temperature control medium 14, so this In this state, when the cooled heat exchange medium 5 is supplied to the inner pipe 23, the vapor of the working fluid 21 in the outer pipe 22 is cooled and condensed by the lower pipe 24 and the upper pipe 25, and the temperature of the heat exchange medium 5 is increased. Rises. On the other hand, the vapor pressure in the outer pipe 22 decreases, the working fluid 21 in the outer pipe 22 is heated and evaporated by the heat of the temperature control medium 14, and the heat in the outer pipe 22 is taken away by the working fluid 21. The temperature of the pipe 22 is lowered, whereby the temperature adjustment medium 14 is cooled, and the temperature adjustment surface 13a is sequentially cooled.

この温調装置2では、温調媒体14を介して温調面13aを温調するので、加熱手段や冷却手段により直接的に温調面13aを加熱したり冷却したりする場合と比較して、室内温度と温調面13a間の温度差を小さくして、加熱時には、温調面13aに触れることによる火傷を防止でき、冷却時には、温調面13aにおける結露の発生を抑制乃至防止できる。また、温調パイプ13を用いることで温調面13aの面積を広く設定しつつ、両タンク内と温調パイプ13内とに充填した温調媒体14の対流により、温調面13aの全面を一様な温度に温調することが可能となる。更に、ヒートパイプ20を用いて温調媒体14を加熱冷却して温調面13aを温調するので、熱交換媒体5により作動液21を介して効率的に温調媒体14を温調でき、ヒートパイプ20への熱交換媒体5の供給量を少なくできるので、熱交換媒体5の配管6を小径に構成して、熱交換媒体5の流通途中におけるエネルギーロスを極力少なくすることができる。   In this temperature adjustment device 2, the temperature adjustment surface 13a is temperature-controlled through the temperature adjustment medium 14, so that the temperature adjustment surface 13a is directly heated or cooled by the heating means or the cooling means. By reducing the temperature difference between the room temperature and the temperature control surface 13a, it is possible to prevent burns caused by touching the temperature control surface 13a during heating, and to suppress or prevent the occurrence of condensation on the temperature control surface 13a during cooling. Further, by using the temperature control pipe 13, the entire surface of the temperature control surface 13 a is set by convection of the temperature control medium 14 filled in both tanks and the temperature control pipe 13 while setting the area of the temperature control surface 13 a wide. It becomes possible to control the temperature to a uniform temperature. Furthermore, since the temperature adjustment surface 13a is temperature-controlled by heating and cooling the temperature adjustment medium 14 using the heat pipe 20, the temperature adjustment medium 14 can be efficiently adjusted by the heat exchange medium 5 via the hydraulic fluid 21, Since the supply amount of the heat exchange medium 5 to the heat pipe 20 can be reduced, the pipe 6 of the heat exchange medium 5 can be configured to have a small diameter, and the energy loss during the circulation of the heat exchange medium 5 can be minimized.

なお、温調装置2では、温調媒体14の自然対流を利用して、複数の温調パイプ13の全体を一様な温度となるように温調することになるが、1乃至複数の温調パイプ13内にモータにて回転駆動されるスクリュー等を配置したり、ポンプ等を設けたりして、温調媒体14を強制的に循環させて、複数の温調パイプ13が一様に温調させるように構成することも可能である。また、複数の温調パイプ13内の温調媒体14に温度差が形成されるように構成して、該温度差を利用して温調媒体が円滑に自然循環するように構成することも可能である。例えば、前側に配置される複数の温調パイプ13の直上位置及び直下位置にヒートパイプ20を配置させ、前側の温調パイプ13内の温調媒体14と後側の温調パイプ13内の温調媒体14に温度差が形成されるように構成して、暖房時には、前側の温調パイプ13に上側へ向かう温調媒体14の対流を形成し、後側の温調パイプ13に下側へ向かう温調媒体14の対流を形成し、冷房時には、前側の温調パイプ13に下側へ向かう温調媒体14の対流を形成し、後側の温調パイプ13に上側へ向かう温調媒体14の対流を形成することも好ましい。   In the temperature control device 2, the temperature of the plurality of temperature control pipes 13 is adjusted to a uniform temperature by using natural convection of the temperature control medium 14. A screw or the like that is rotationally driven by a motor is disposed in the adjustment pipe 13 or a pump or the like is provided to forcibly circulate the temperature adjustment medium 14 so that the plurality of temperature adjustment pipes 13 are uniformly heated. It is also possible to configure to adjust. It is also possible to configure so that a temperature difference is formed in the temperature control medium 14 in the plurality of temperature control pipes 13 so that the temperature control medium smoothly circulates naturally using the temperature difference. It is. For example, the heat pipe 20 is disposed at a position directly above and below the plurality of temperature control pipes 13 disposed on the front side, and the temperature control medium 14 in the temperature control pipe 13 on the front side and the temperature in the temperature control pipe 13 on the rear side. A temperature difference is formed in the conditioning medium 14, and at the time of heating, a convection of the temperature regulation medium 14 heading upward is formed on the front temperature regulation pipe 13, and the rear temperature regulation pipe 13 is directed downward. Convection of the temperature control medium 14 heading is formed, and during cooling, a convection of the temperature control medium 14 heading downward is formed in the front temperature control pipe 13, and the temperature control medium 14 heading upward is formed in the rear temperature control pipe 13. It is also preferable to form a convection.

(室内面構成部材)
室内面構成部材40とは、室内面を構成する部材のことであり、天井材、床材、壁材、扉、襖、障子、階段などの内装建材41や、内装建材41の表面を被覆する被覆建材42のことで、本発明では、内装建材41を、遠赤外線を放射吸収可能な無機物質で構成したり、被覆建材42を、遠赤外線を放射吸収可能な無機物質で構成したりして、遠赤外線を放射吸収可能な放射吸収面40aを形成することになる。なお、室内面構成部材40は、少なくとも室内機3に対面する位置に設けることが好ましい。
(Interior surface components)
The interior surface constituent member 40 is a member that configures the interior surface, and covers the interior building material 41 such as a ceiling material, a floor material, a wall material, a door, a fence, a shoji, and a staircase, and the surface of the interior building material 41. With the covering building material 42, in the present invention, the interior building material 41 is made of an inorganic substance capable of absorbing and absorbing far infrared rays, or the covering building material 42 is made of an inorganic substance capable of absorbing and absorbing far infrared rays. The radiation absorbing surface 40a capable of absorbing and absorbing far infrared rays is formed. The indoor surface constituting member 40 is preferably provided at a position facing at least the indoor unit 3.

遠赤外線を放射吸収可能な無機物質としては、活性炭などの炭化物、ケイ素やアルミナなどのセラミックス、トルマリンやゼオライトやセピオライトなどの鉱物、アルミニウムやチタンやジルコニウムなどの金属酸化物などを採用できる。また、室内環境を向上するため、銀イオンや銅イオンなどの抗菌物質を添加したり、消臭などのため酸化チタンなどの光触媒物質を添加したり、調湿のため珪素土を添加したりすることができる。   Examples of inorganic substances that can absorb far-infrared radiation include carbides such as activated carbon, ceramics such as silicon and alumina, minerals such as tourmaline, zeolite, and sepiolite, and metal oxides such as aluminum, titanium, and zirconium. In order to improve the indoor environment, antibacterial substances such as silver ions and copper ions are added, photocatalytic substances such as titanium oxide are added for deodorization, and silicon earth is added for humidity control. be able to.

例えば、図9(a)に示す室内面構成部材40のように、表面に遠赤外線を放射吸収可能な酸化被膜43aを形成した、アルミニウム合金製のパネル材43を建築物の内装建材41の表面に接着剤やボルトなどにより固定して、遠赤外線を放射吸収可能な放射吸収面40aを有する被覆建材42を構成することができる。また、図9(b)に示す室内面構成部材40のように、アルミニウム合金製のパネル材44を建築物の内装建材41の表面に接着剤やボルトなどにより固定して、該パネル材44の表面に、遠赤外線を放射吸収可能な珪素土と、酸化チタンなどの抗菌性のある光触媒物質とを含む機能層45を形成して、遠赤外線を放射吸収可能な放射吸収面40aを有する被覆建材42を構成することもできる。更に、図9(c)に示す室内面構成部材40のように、建築物の内装建材41の表面に、遠赤外線を放射吸収可能な珪素土と、酸化チタンなどの抗菌性のある光触媒物質とを含む機能層46を形成して、遠赤外線を放射吸収可能な放射吸収面40aを有する被覆建材42を構成することもできる。更にまた、壁紙として、遠赤外線を放射吸収可能な無機物質を添加したものを用いて、遠赤外線を放射吸収可能な放射吸収面40aを有する被覆建材42を構成することもできる。   For example, as shown in FIG. 9A, an aluminum alloy panel member 43 having a surface formed with an oxide film 43a capable of absorbing and absorbing far-infrared rays is formed on the surface of the interior building material 41 of the building. The coated building material 42 having the radiation absorbing surface 40a capable of absorbing and absorbing far infrared rays can be configured by fixing to the surface with an adhesive or a bolt. 9B, an aluminum alloy panel material 44 is fixed to the surface of the interior building material 41 of the building with an adhesive, a bolt, or the like. Formed on the surface is a coated building material having a radiation absorbing surface 40a capable of radiating and absorbing far infrared rays by forming a functional layer 45 including silicon earth capable of radiating and absorbing far infrared rays and an antibacterial photocatalytic substance such as titanium oxide. 42 can also be configured. Furthermore, like the interior surface constituent member 40 shown in FIG. 9 (c), on the surface of the interior building material 41 of the building, silicon earth capable of radiating and absorbing far infrared rays, and an antibacterial photocatalytic substance such as titanium oxide It is also possible to form a covered building material 42 having a radiation absorbing surface 40a capable of absorbing and absorbing far infrared rays by forming a functional layer 46 including Furthermore, the covering building material 42 which has the radiation absorption surface 40a which can absorb and absorb a far infrared ray can also be comprised using what added the inorganic substance which can absorb and absorb a far infrared ray as wallpaper.

この室内温調システム1では、温調装置2の温調面13aが加熱されると、温調面13aから遠赤外線が放射され、該遠赤外線を受けた室内面構成部材40の放射吸収面40aが温められ、該室内面構成部材40の温度が高くなると、該室内面構成部材40の放射吸収面40aから遠赤外線が放射され、該遠赤外線を受けた他の室内面構成部材40が温められるという遠赤外線共鳴現象により、室内が一様に温められるとともに、室内面構成部材40から放射される遠赤外線により、室内に居る人の体が温められることになる。一方、温調装置2により温調面13aが冷却されると、室内面構成部材40の放射吸収面40aから放射された遠赤外線が温調面13aで吸収され、該室内面構成部材40の放射吸収面40aの温度が低下し、該室内面構成部材40の放射吸収面40aが他の室内面構成部材40から放射される遠赤外線を吸収するという遠赤外線共鳴現象により、室内が一様に冷やされることになる。   In this indoor temperature control system 1, when the temperature adjustment surface 13a of the temperature adjustment device 2 is heated, far infrared rays are emitted from the temperature adjustment surface 13a, and the radiation absorbing surface 40a of the indoor surface constituent member 40 that has received the far infrared rays. When the temperature of the indoor surface constituting member 40 is increased, far infrared rays are emitted from the radiation absorbing surface 40a of the indoor surface constituting member 40, and the other indoor surface constituting members 40 that have received the far infrared light are heated. As a result of the far-infrared resonance phenomenon, the room is uniformly warmed, and the body of a person in the room is warmed by the far-infrared radiation emitted from the indoor surface constituent member 40. On the other hand, when the temperature control surface 13a is cooled by the temperature control device 2, far infrared rays radiated from the radiation absorbing surface 40a of the indoor surface constituting member 40 are absorbed by the temperature adjusting surface 13a, and the radiation of the indoor surface constituting member 40 is emitted. Due to the far-infrared resonance phenomenon in which the temperature of the absorbing surface 40a decreases and the radiation absorbing surface 40a of the indoor surface constituting member 40 absorbs far infrared rays emitted from other indoor surface constituting members 40, the room is uniformly cooled. Will be.

なお、図10に示すように、隣接し合う第1の部屋50と第2の部屋51間の隔壁52においては、遠赤外線を放射吸収可能な放射吸収面40aを両面に形成した室内面構成部材40を隔壁52の両面に配置し、隔壁52の両面の室内面構成部材40が遠赤外線共鳴現象を起こすように構成することができる。このように構成すると、第1の部屋50にのみ室内機3を設置するだけで、隣接する第2の部屋51に関しても、第1の部屋50との隔壁52を通じて温調することができる。   In addition, as shown in FIG. 10, in the partition 52 between the adjacent first chamber 50 and second chamber 51, an indoor surface constituent member formed with radiation absorbing surfaces 40a capable of absorbing and absorbing far infrared rays on both surfaces. 40 can be arranged on both surfaces of the partition wall 52 so that the indoor surface constituent members 40 on both surfaces of the partition wall 52 cause a far-infrared resonance phenomenon. With this configuration, the temperature of the adjacent second room 51 can be controlled through the partition wall 52 with the first room 50 only by installing the indoor unit 3 only in the first room 50.

以上、本発明の実施形態について説明したが、本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲においてその構成を変更し得ることは勿論である。   The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and it goes without saying that the configuration can be changed without departing from the gist of the present invention.

1:室内温調システム
2:温調装置
3:室内機
4:室外機
5:熱交換媒体
6:配管
7:コントローラ
10:上部タンク
11:下部タンク
13:温調パイプ
13a:温調面
14:温調媒体
15:側部フレーム
16:立起壁
17:排水通路
18:熱交換フィン
20:ヒートパイプ
21:作動液
22:外パイプ
23:内パイプ
24:下部パイプ
25:上部パイプ
26:連通パイプ
30:送風手段
31:後部カバー
32:送風機
35:熱源手段
40:室内面構成部材
40a:放射吸収面
41:内装建材
42:被覆建材
43:パネル材
43a:酸化被膜
44:パネル材
45:機能層
46:機能層
50:第1の部屋
51:第2の部屋
52:隔壁
1: Indoor temperature control system 2: Temperature control device 3: Indoor unit 4: Outdoor unit 5: Heat exchange medium 6: Pipe 7: Controller 10: Upper tank 11: Lower tank 13: Temperature control pipe 13a: Temperature control surface 14: Temperature control medium 15: side frame 16: upright wall 17: drainage passage 18: heat exchange fin 20: heat pipe 21: hydraulic fluid 22: outer pipe 23: inner pipe 24: lower pipe 25: upper pipe 26: communication pipe 30: Blower means 31: Rear cover 32: Blower 35: Heat source means 40: Indoor surface constituent member 40a: Radiation absorption surface 41: Interior building material 42: Covered building material 43: Panel material 43a: Oxide film 44: Panel material 45: Functional layer 46: Functional layer 50: 1st room 51: 2nd room 52: Partition

Claims (10)

遠赤外線を放射吸収可能な無機物質からなる温調面を有する温調装置と、遠赤外線を放射吸収可能な無機物質からなる放射吸収面を有する室内面構成部材とを備え、温調面と放射吸収面間における遠赤外線共鳴現象により、前記温調装置による温調面の加熱時には、温調面から放射される遠赤外線を放射吸収面で吸収し、前記温調装置による温調面の冷却時には、放射吸収面から放射される遠赤外線を温調面で吸収するようになした室内温調システムであって、
前記温調装置として、間隔をあけて配置した1対のタンクと、遠赤外線を放射吸収可能な無機物質で外周面を被覆した温調面を有し、両端部が両タンクに連通するように、前記両タンク間に複数本並列状に配置した温調パイプと、前記両タンクと温調パイプ内に充填した温調媒体と、前記温調媒体を温調する温調手段とを備えた、
ことを特徴とする室内温調システム。
A temperature control device having a temperature control surface made of an inorganic substance capable of absorbing and absorbing far infrared rays, and an indoor surface constituent member having a radiation absorption surface made of an inorganic material capable of absorbing and absorbing far infrared rays, and the temperature control surface and radiation Due to the far-infrared resonance phenomenon between the absorption surfaces, when the temperature adjustment surface is heated by the temperature adjustment device, far infrared rays radiated from the temperature adjustment surface are absorbed by the radiation absorption surface, and when the temperature adjustment surface is cooled by the temperature adjustment device An indoor temperature control system that absorbs far-infrared rays radiated from the radiation absorption surface with a temperature control surface,
As said temperature control apparatus, it has a temperature control surface which coat | covered the outer peripheral surface with the inorganic substance which can radiate and absorb far-infrared rays, and a both-ends part is connected to both tanks arrange | positioned at intervals. A plurality of temperature control pipes arranged in parallel between the tanks, a temperature control medium filled in the tanks and the temperature control pipe, and a temperature control means for controlling the temperature of the temperature control medium,
An indoor temperature control system.
前記温調手段として、前記1対のタンクの少なくとも一方に内装したヒートパイプであって、作動液を減圧封入した外パイプと、前記作動液に浸漬した下部パイプ及び作動液よりも上方位置に配置した上部パイプからなる内パイプとを有するヒートパイプと、前記内パイプへ供給する熱交換媒体を加熱又は冷却する熱源手段とを備えたものを用いた請求項1記載の室内温調システム。   The temperature control means is a heat pipe built in at least one of the pair of tanks, and is disposed at an upper position than the outer pipe in which the hydraulic fluid is sealed under reduced pressure, the lower pipe immersed in the hydraulic fluid, and the hydraulic fluid. The indoor temperature control system according to claim 1, comprising a heat pipe having an inner pipe made of an upper pipe and heat source means for heating or cooling a heat exchange medium supplied to the inner pipe. 前記温調パイプをアルミ合金材で構成し、該温調パイプの表面に遠赤外線を放射吸収する無機質物質からなる酸化被膜を形成し、前記酸化被膜で温調面を構成した請求項1又は2記載の室内温調システム。   The temperature control pipe is made of an aluminum alloy material, an oxide film made of an inorganic substance that radiates and absorbs far-infrared rays is formed on the surface of the temperature control pipe, and the temperature control surface is made of the oxide film. The indoor temperature control system described. 前記温調面に、抗菌性のある光触媒物質を含む機能層を形成した請求項1〜3のいずれか1項記載の室内温調システム。   The indoor temperature control system according to any one of claims 1 to 3, wherein a functional layer containing an antibacterial photocatalytic substance is formed on the temperature control surface. 前記温調パイプに、金属材料の熱交換フィンを取り付けた請求項1〜4のいずれか1項記載の室内温調システム。   The indoor temperature control system according to any one of claims 1 to 4, wherein a heat exchange fin made of a metal material is attached to the temperature control pipe. 前記温調パイプ周辺の空気を移動させる送風機を設けた請求項1〜5のいずれか1項記載の室内温調システム。   The indoor temperature control system according to any one of claims 1 to 5, further comprising a blower that moves air around the temperature control pipe. 前記温調面と放射吸収面とを対面配置した請求項1〜6のいずれか1項記載の室内温調システム。   The room temperature control system according to any one of claims 1 to 6, wherein the temperature control surface and the radiation absorption surface are arranged to face each other. 前記室内面構成部材が、遠赤外線を放射吸収する無機質物質からなる酸化被膜を形成したアルミ合金からなるパネル材、または該アルミ合金のパネル材の表面に調湿作用を有する珪素土と抗菌性のある光触媒物質を含む機能層を形成したパネル材を備えた請求項1〜7のいずれか1項記載の室内温調システム。   The indoor surface constituent member is a panel material made of an aluminum alloy formed with an oxide film made of an inorganic substance that radiates and absorbs far-infrared rays, or silicon soil having a humidity control action on the surface of the aluminum alloy panel material and an antibacterial property The indoor temperature control system of any one of Claims 1-7 provided with the panel material which formed the functional layer containing a certain photocatalytic substance. 前記室内面構成部材により、隣接し合う第1の部屋と第2の部屋間の隔壁の両面を構成し、前記隔壁両面の室内面構成部材が遠赤外線共鳴現象を起こすように構成した請求項1〜8のいずれか1項記載の室内温調システム。   2. The interior surface constituting member constitutes both surfaces of a partition wall between a first room and a second room adjacent to each other, and the interior surface constituting members on both surfaces of the partition wall are configured to cause a far-infrared resonance phenomenon. The indoor temperature control system of any one of -8. 前記室内面構成部材により、環境調整する室内の壁面と天井面と床面のうちのいずれかの面の少なくとも一部を構成した請求項1〜9のいずれか1項記載の室内温調システム。

The indoor temperature control system according to any one of claims 1 to 9, wherein at least a part of any one of a wall surface, a ceiling surface, and a floor surface of the room whose environment is adjusted is configured by the indoor surface constituent member.

JP2013233188A 2013-11-11 2013-11-11 Indoor temperature control system Pending JP2015094498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233188A JP2015094498A (en) 2013-11-11 2013-11-11 Indoor temperature control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233188A JP2015094498A (en) 2013-11-11 2013-11-11 Indoor temperature control system

Publications (1)

Publication Number Publication Date
JP2015094498A true JP2015094498A (en) 2015-05-18

Family

ID=53197016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233188A Pending JP2015094498A (en) 2013-11-11 2013-11-11 Indoor temperature control system

Country Status (1)

Country Link
JP (1) JP2015094498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003967A1 (en) * 2017-06-29 2019-01-03 Kft株式会社 Indoor environment regulation system
JP7301286B1 (en) 2022-11-16 2023-07-03 將之 佐藤 Oil heater heat exchange direct device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336777A (en) * 2000-05-30 2001-12-07 Sasso Kogyo Kk Heat-exchanging panel
JP2002162053A (en) * 2000-11-24 2002-06-07 Matsushita Electric Ind Co Ltd Air conditioner
JP2002256639A (en) * 2001-02-28 2002-09-11 Ig Tech Res Inc Partition wall structure
US6619557B1 (en) * 2000-06-27 2003-09-16 Giuseppe Bonura High-efficiency system for the thermoregulation of a room by silent radiant panels, particularly equipped to operate as doors
JP2004156888A (en) * 2002-11-08 2004-06-03 Tojo Seisakusho:Kk Heat pipe, and heating device and cooling device utilizing heat pipe
JP2005153472A (en) * 2003-11-28 2005-06-16 Sekisui Jushi Co Ltd Laminated plate
JP2008039381A (en) * 2006-07-12 2008-02-21 Sekisui Chem Co Ltd Synthetic resin tube for radiation heating/cooling and panel for radiation heating/cooling
JP2010096485A (en) * 2008-04-23 2010-04-30 Ishinoyu Co Ltd Indoor environment regulation system
JP2013217562A (en) * 2012-04-09 2013-10-24 Misawa Homes Co Ltd Heating/cooling system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336777A (en) * 2000-05-30 2001-12-07 Sasso Kogyo Kk Heat-exchanging panel
US6619557B1 (en) * 2000-06-27 2003-09-16 Giuseppe Bonura High-efficiency system for the thermoregulation of a room by silent radiant panels, particularly equipped to operate as doors
JP2002162053A (en) * 2000-11-24 2002-06-07 Matsushita Electric Ind Co Ltd Air conditioner
JP2002256639A (en) * 2001-02-28 2002-09-11 Ig Tech Res Inc Partition wall structure
JP2004156888A (en) * 2002-11-08 2004-06-03 Tojo Seisakusho:Kk Heat pipe, and heating device and cooling device utilizing heat pipe
JP2005153472A (en) * 2003-11-28 2005-06-16 Sekisui Jushi Co Ltd Laminated plate
JP2008039381A (en) * 2006-07-12 2008-02-21 Sekisui Chem Co Ltd Synthetic resin tube for radiation heating/cooling and panel for radiation heating/cooling
JP2010096485A (en) * 2008-04-23 2010-04-30 Ishinoyu Co Ltd Indoor environment regulation system
JP2013217562A (en) * 2012-04-09 2013-10-24 Misawa Homes Co Ltd Heating/cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003967A1 (en) * 2017-06-29 2019-01-03 Kft株式会社 Indoor environment regulation system
JP2019011883A (en) * 2017-06-29 2019-01-24 Kft株式会社 Indoor environment adjustment system
JP7301286B1 (en) 2022-11-16 2023-07-03 將之 佐藤 Oil heater heat exchange direct device

Similar Documents

Publication Publication Date Title
KR20130049790A (en) Air-conditioner and heater using electric vent type
JP4351175B2 (en) Wall-mounted or self-supporting panel type air conditioner
DK2986181T3 (en) Table with heating
JP2015094498A (en) Indoor temperature control system
KR20170007891A (en) Cold air circulation apparatus for double greenhouse
JP2014095544A (en) Air-conditioning system
JP2014040951A (en) Heat storage type radiation heating and cooling system utilizing heat pump air conditioner
JP6208194B2 (en) Air conditioning ventilation system
KR101935005B1 (en) Floor heating type drying equipment
JP2014113139A (en) Plant cultivation system
US10663198B2 (en) Heat pump system and air-conditioner
JP2014095490A (en) Air-conditioning system
KR101734784B1 (en) Refrigerator of defrosting and aging
WO2011033138A1 (en) Heating element
JP4605759B2 (en) Indoor air conditioning system for buildings
US7904974B2 (en) Device for active temperature equalization in a sauna room
JP6692991B2 (en) Radiant cooling / heating type building
JP2007163023A (en) Heating device and cooling device associated with structure of house
KR20220040160A (en) Radiant Panel for Heating and Cooling and Heating and Cooling System Using the Same
JP6708432B2 (en) Radiant cooling/heating system and radiant cooling/heating method
JP2017180905A (en) Radiation air-conditioning device
KR101790633B1 (en) Far infrared radiation heater
KR20160136126A (en) Low energy and high efficiency heater
JP6823316B2 (en) Heat pump type cold / hot water generator
JP5611676B2 (en) Heat pump type water heater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515