JP2015093405A - Method for producing glass laminate and electronic device - Google Patents
Method for producing glass laminate and electronic device Download PDFInfo
- Publication number
- JP2015093405A JP2015093405A JP2013233109A JP2013233109A JP2015093405A JP 2015093405 A JP2015093405 A JP 2015093405A JP 2013233109 A JP2013233109 A JP 2013233109A JP 2013233109 A JP2013233109 A JP 2013233109A JP 2015093405 A JP2015093405 A JP 2015093405A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic layer
- glass
- glass substrate
- support substrate
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/06—Interconnection of layers permitting easy separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
- Electroluminescent Light Sources (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
本発明は、ガラス積層体および電子デバイスの製造方法に関する。 The present invention relates to a glass laminate and a method for manufacturing an electronic device.
近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などの電子デバイス(電子機器)の薄型化、軽量化が進行しており、これらの電子デバイスに用いるガラス基板の薄板化が進行している。一方、薄板化によりガラス基板の強度が不足すると、電子デバイスの製造工程において、ガラス基板の取り扱い性が低下する。 In recent years, electronic devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and a thin glass substrate used for these electronic devices. Progress is being made. On the other hand, when the strength of the glass substrate is insufficient due to the thin plate, the handleability of the glass substrate is lowered in the manufacturing process of the electronic device.
そこで、最近では、ガラス基板の取り扱い性を向上させる観点から、無機薄膜付き支持ガラスの無機薄膜上にガラス基板を積層した積層体を用意し、積層体のガラス基板上に素子の製造処理を施した後、積層体からガラス基板を分離する方法が提案されている(特許文献1)。 Therefore, recently, from the viewpoint of improving the handleability of the glass substrate, a laminated body in which a glass substrate is laminated on an inorganic thin film of a supporting glass with an inorganic thin film is prepared, and an element manufacturing process is performed on the laminated glass substrate. After that, a method of separating the glass substrate from the laminate has been proposed (Patent Document 1).
本発明者らは、特許文献1で具体的に記載される金属酸化物で構成された無機薄膜付き支持ガラスについて検討を行なった。その結果、無機薄膜上にガラス基板を積層させる際の積層性(積層しやすさ)が劣る場合があることが分かった。すなわち、無機薄膜とガラス基板とを重ねても自然には密着しないばかりか、機械的にプレスしても密着しなかったり、容易に剥離したりする場合があることが分かった。 The present inventors examined the supporting glass with an inorganic thin film comprised by the metal oxide specifically described in patent document 1. FIG. As a result, it was found that the laminating property (ease of laminating) when laminating a glass substrate on an inorganic thin film may be inferior. That is, it has been found that even if the inorganic thin film and the glass substrate are stacked, they do not naturally adhere to each other, and even if mechanically pressed, they do not adhere or may be easily peeled off.
また、近年、電子デバイスの高性能化の要求に伴い、電子デバイスの製造の際により高温条件下での処理の実施が望まれていることから、特許文献1の無機薄膜付き支持ガラスについて、高温条件下(例えば、600℃、1時間)での加熱処理を施した。その結果、たとえ積層性は良好であっても、加熱処理後に特定の方法でガラス基板を剥離しようとした場合に、剥離できない等、剥離性が劣る場合があることが分かった。この場合、高温条件下でのデバイス製造後に、素子が形成されたガラス基板を積層体から剥離できないという問題が生じる。 In recent years, with the demand for higher performance of electronic devices, it is desired to perform treatment under high temperature conditions when manufacturing electronic devices. Heat treatment was performed under conditions (for example, 600 ° C., 1 hour). As a result, it was found that even if the laminate property is good, the peelability may be inferior, for example, when the glass substrate is peeled off by a specific method after the heat treatment. In this case, after the device is manufactured under a high temperature condition, there arises a problem that the glass substrate on which the element is formed cannot be peeled from the laminate.
本発明は、以上の点を鑑みてなされたものであり、支持基板上に配置された無機層とガラス基板との積層性が優れ、かつ、高温条件下での処理後であっても無機層とガラス基板との剥離性が優れるガラス積層体、および、該ガラス積層体を用いた電子デバイスの製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and has excellent laminating properties between an inorganic layer disposed on a support substrate and a glass substrate, and even after treatment under high-temperature conditions. It aims at providing the manufacturing method of the electronic device using the glass laminated body which is excellent in the peelability of a glass substrate, and this glass laminated body.
本発明者らは、上記目的を達成するために鋭意検討を行った結果、特定の表面組成および表面粗さを有する無機層を支持基板上に形成することで、ガラス基板に対する積層性および剥離性が共に優れることを見出し、本発明を完成させた。 As a result of intensive investigations to achieve the above object, the present inventors have formed an inorganic layer having a specific surface composition and surface roughness on a supporting substrate, so that the laminateability and releasability with respect to a glass substrate can be achieved. Were found to be excellent, and the present invention was completed.
すなわち、本発明は、以下の(1)〜(8)を提供する。
(1)支持基板および上記支持基板上に配置された無機層を有する無機層付き支持基板と、上記無機層における上記支持基板側とは反対側の表面である無機層表面上に剥離可能に積層されたガラス基板と、を備え、上記無機層が、上記無機層表面の組成として、SiC1-xOx(x=0.10〜0.90)および/またはSiN1-yOy(y=0.10〜0.90)を含み、上記無機層表面の表面粗さ(Ra)が、0.20〜1.00nmである、ガラス積層体。
(2)上記無機層表面の表面粗さ(Ra)が、0.30nm以上である、上記(1)に記載のガラス積層体。
(3)上記無機層表面の表面粗さ(Ra)が、0.50nm以下である、上記(1)または2に記載のガラス積層体。
(4)上記xおよびyが、0.20以上の数である、上記(1)〜(3)のいずれかに記載のガラス積層体。
(5)上記xおよびyが、0.50以下の数である、上記(1)〜(4)のいずれかに記載のガラス積層体。
(6)上記支持基板が、ガラス基板である、上記(1)〜(5)のいずれかに記載のガラス積層体。
(7)600℃で1時間加熱処理を施した後も上記無機層付き支持基板と上記ガラス基板とが剥離可能である、上記(1)〜(6)のいずれかに記載のガラス積層体。
(8)上記(1)〜(7)のいずれかに記載のガラス積層体中の上記ガラス基板の表面上に電子デバイス用部材を形成し、電子デバイス用部材付き積層体を得る部材形成工程と、上記電子デバイス用部材付き積層体から上記無機層付き支持基板を剥離し、上記ガラス基板および上記電子デバイス用部材を有する電子デバイスを得る分離工程と、を備える電子デバイスの製造方法。
That is, the present invention provides the following (1) to (8).
(1) A support substrate and an inorganic layer-supported substrate having an inorganic layer disposed on the support substrate, and a peelable laminate on the surface of the inorganic layer on the opposite side of the inorganic layer from the support substrate side And the inorganic layer has SiC 1-x O x (x = 0.10 to 0.90) and / or SiN 1-y O y (y = 0.10 to 0.90), and the surface roughness (Ra) of the surface of the inorganic layer is 0.20 to 1.00 nm.
(2) The glass laminate according to (1), wherein the surface roughness (Ra) of the inorganic layer surface is 0.30 nm or more.
(3) The glass laminate according to (1) or 2, wherein the surface roughness (Ra) of the inorganic layer surface is 0.50 nm or less.
(4) The glass laminate according to any one of (1) to (3), wherein x and y are numbers of 0.20 or more.
(5) The glass laminate according to any one of (1) to (4), wherein x and y are numbers of 0.50 or less.
(6) The glass laminate according to any one of (1) to (5), wherein the support substrate is a glass substrate.
(7) The glass laminate according to any one of (1) to (6), wherein the support substrate with an inorganic layer and the glass substrate can be peeled even after heat treatment at 600 ° C. for 1 hour.
(8) A member forming step of forming an electronic device member on the surface of the glass substrate in the glass laminate according to any one of (1) to (7) to obtain a laminate with an electronic device member; And a separation step of peeling the support substrate with an inorganic layer from the laminate with the member for electronic devices to obtain the electronic device having the glass substrate and the member for electronic devices.
本発明によれば、支持基板上に配置された無機層とガラス基板との積層性が優れ、かつ、高温条件下での処理後であっても無機層とガラス基板との剥離性が優れるガラス積層体、および、該ガラス積層体を用いた電子デバイスの製造方法を提供できる。 According to the present invention, a glass having excellent laminating properties between an inorganic layer disposed on a supporting substrate and a glass substrate, and excellent releasability between the inorganic layer and the glass substrate even after treatment under high temperature conditions. A laminate and a method for producing an electronic device using the glass laminate can be provided.
以下、本発明のガラス積層体および電子デバイスの製造方法の好適形態について図面を参照して説明するが、本発明は、以下の実施形態に限定されることはなく、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えることができる。 Hereinafter, preferred embodiments of the method for producing a glass laminate and an electronic device of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments and departs from the scope of the present invention. Without limitation, various modifications and substitutions can be made to the following embodiments.
本発明のガラス積層体は、概略的には、支持基板とガラス基板との間に、ガラス基板と接する面として特定の表面(無機層表面)を有する無機層を介在させたものであり、これにより、無機層とガラス基板との積層性が優れ、かつ、高温条件下での処理後であっても無機層とガラス基板との剥離性が優れる。 The glass laminate of the present invention is generally obtained by interposing an inorganic layer having a specific surface (inorganic layer surface) as a surface in contact with the glass substrate between the support substrate and the glass substrate. Therefore, the laminate property between the inorganic layer and the glass substrate is excellent, and the peelability between the inorganic layer and the glass substrate is excellent even after the treatment under high temperature conditions.
以下においては、まず、ガラス積層体の好適態様について詳述し、その後、このガラス積層体を使用した電子デバイスの製造方法の好適態様について詳述する。 Below, the suitable aspect of a glass laminated body is explained in full detail first, and the suitable aspect of the manufacturing method of the electronic device using this glass laminated body is explained in full detail after that.
<ガラス積層体>
図1は、本発明に係るガラス積層体の一実施形態の模式的断面図である。
図1に示すように、ガラス積層体10は、支持基板12および無機層14からなる無機層付き支持基板16と、ガラス基板18とを有する。ガラス積層体10中において、無機層付き支持基板16の無機層14の無機層表面14a(支持基板12側とは反対側の表面)と、ガラス基板18の第1主面18aとを積層面として、無機層付き支持基板16とガラス基板18とが剥離可能に積層している。つまり、無機層14は、その一方の面が支持基板12の層に固定されると共に、その他方の面がガラス基板18の第1主面18aに接し、無機層14とガラス基板18との界面は剥離可能に密着されている。言い換えると、無機層14は、ガラス基板18の第1主面18aに対して易剥離性を具備している。
<Glass laminate>
FIG. 1 is a schematic cross-sectional view of an embodiment of a glass laminate according to the present invention.
As shown in FIG. 1, the glass laminate 10 includes a support substrate 16 with an inorganic layer composed of a support substrate 12 and an inorganic layer 14, and a glass substrate 18. In the glass laminate 10, the inorganic layer surface 14 a of the inorganic layer 14 of the support substrate 16 with an inorganic layer (surface opposite to the support substrate 12 side) and the first main surface 18 a of the glass substrate 18 are used as the laminate surface. The support substrate 16 with an inorganic layer and the glass substrate 18 are laminated so as to be peelable. That is, the inorganic layer 14 has one surface fixed to the layer of the support substrate 12 and the other surface in contact with the first main surface 18 a of the glass substrate 18, and the interface between the inorganic layer 14 and the glass substrate 18. Are in close contact with each other. In other words, the inorganic layer 14 is easily peelable from the first main surface 18 a of the glass substrate 18.
また、このガラス積層体10は、後述する部材形成工程まで使用される。即ち、このガラス積層体10は、そのガラス基板18の第2主面18b表面上に液晶表示装置などの電子デバイス用部材が形成されるまで使用される。その後、無機層付き支持基板16の層は、ガラス基板18の層との界面で剥離され、無機層付き支持基板16の層は電子デバイスを構成する部材とはならない。分離された無機層付き支持基板16は新たなガラス基板18と積層され、新たなガラス積層体10として再利用できる。 Moreover, this glass laminated body 10 is used until the member formation process mentioned later. That is, the glass laminate 10 is used until an electronic device member such as a liquid crystal display device is formed on the surface of the second main surface 18b of the glass substrate 18. Thereafter, the layer of the support substrate 16 with the inorganic layer is peeled off at the interface with the layer of the glass substrate 18, and the layer of the support substrate 16 with the inorganic layer does not become a member constituting the electronic device. The separated support substrate 16 with an inorganic layer is laminated with a new glass substrate 18 and can be reused as a new glass laminate 10.
本発明において、上記固定と(剥離可能な)密着は、剥離強度(すなわち、剥離に要する応力)に違いがあり、固定は密着に対し剥離強度が大きいことを意味する。具体的には、無機層14と支持基板12との界面の剥離強度が、ガラス積層体10中の無機層14とガラス基板18との界面の剥離強度よりも大きくなる。
また、剥離可能な密着とは、剥離可能であると同時に、固定されている面の剥離を生じさせることなく剥離可能であることも意味する。つまり、本発明のガラス積層体10において、ガラス基板18と支持基板12とを分離する操作を行った場合、密着された面(無機層14とガラス基板18との界面)で剥離し、固定された面では剥離しないことを意味する。したがって、ガラス積層体10をガラス基板18と支持基板12とに分離する操作を行うと、ガラス積層体10はガラス基板18と無機層付き支持基板16との2つに分離される。
In the present invention, the above-mentioned fixing and (separable) adhesion have a difference in peeling strength (that is, stress required for peeling), and fixing means that the peeling strength is larger than the adhesion. Specifically, the peel strength at the interface between the inorganic layer 14 and the support substrate 12 is greater than the peel strength at the interface between the inorganic layer 14 and the glass substrate 18 in the glass laminate 10.
Further, the peelable adhesion means that it can be peeled at the same time that it can be peeled without causing peeling of the fixed surface. That is, in the glass laminate 10 of the present invention, when the operation of separating the glass substrate 18 and the support substrate 12 is performed, the glass substrate 10 is peeled and fixed on the closely contacted surface (interface between the inorganic layer 14 and the glass substrate 18). It means that it does not peel on the surface. Therefore, when the operation of separating the glass laminate 10 into the glass substrate 18 and the support substrate 12 is performed, the glass laminate 10 is separated into two, the glass substrate 18 and the support substrate 16 with an inorganic layer.
以下では、まず、ガラス積層体10を構成する無機層付き支持基板16およびガラス基板18について詳述し、その後ガラス積層体10の製造の手順について詳述する。 Below, the support substrate 16 with an inorganic layer and the glass substrate 18 which comprise the glass laminated body 10 are explained in full detail first, and the procedure of manufacture of the glass laminated body 10 is explained in full detail after that.
[無機層付き支持基板]
無機層付き支持基板16は、支持基板12と、その表面上に配置(固定)される無機層14とを備える。無機層14は、後述するガラス基板18と剥離可能に密着するように、無機層付き支持基板16中の最外側に配置される。
以下に、支持基板12、および、無機層14の態様について詳述する。
[Support substrate with inorganic layer]
The support substrate 16 with an inorganic layer includes a support substrate 12 and an inorganic layer 14 disposed (fixed) on the surface thereof. The inorganic layer 14 is arrange | positioned in the outermost side in the support substrate 16 with an inorganic layer so that it may closely_contact | adhere with the glass substrate 18 mentioned later so that peeling.
Below, the aspect of the support substrate 12 and the inorganic layer 14 is explained in full detail.
(支持基板)
支持基板12は、第1主面と第2主面とを有し、第1主面上に配置された無機層14と協働して、ガラス基板18を支持して補強し、後述する部材形成工程(電子デバイス用部材を製造する工程)において電子デバイス用部材の製造の際にガラス基板18の変形、傷付き、破損などを防止する基板である。
支持基板12としては、例えば、ガラス板、プラスチック板、SUS板などの金属板などが用いられる。支持基板12は、部材形成工程が熱処理を伴う場合、ガラス基板18との線膨張係数の差の小さい材料で形成されることが好ましく、ガラス基板18と同一材料で形成されることがより好ましく、支持基板12はガラス板であることが好ましい。特に、支持基板12は、ガラス基板18と同じガラス材料からなるガラス板であることが好ましい。
(Support substrate)
The support substrate 12 has a first main surface and a second main surface, cooperates with the inorganic layer 14 disposed on the first main surface, supports and reinforces the glass substrate 18, and a member to be described later It is a substrate that prevents the glass substrate 18 from being deformed, scratched or damaged during the production of the electronic device member in the forming step (the step of producing the electronic device member).
As the support substrate 12, for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used. When the member forming step involves heat treatment, the support substrate 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 18, and more preferably formed of the same material as the glass substrate 18, The support substrate 12 is preferably a glass plate. In particular, the support substrate 12 is preferably a glass plate made of the same glass material as the glass substrate 18.
支持基板12の厚さは、後述するガラス基板18よりも厚くてもよいし、薄くてもよい。好ましくは、ガラス基板18の厚さ、無機層14の厚さ、および後述するガラス積層体10の厚さに基づいて、支持基板12の厚さが選択される。例えば、現行の部材形成工程が厚さ0.5mmの基板を処理するように設計されたものであって、ガラス基板18の厚さおよび無機層14の厚さの和が0.1mmの場合、支持基板12の厚さを0.4mmとする。支持基板12の厚さは、通常の場合、0.2〜5.0mmが好ましい。 The thickness of the support substrate 12 may be thicker or thinner than a glass substrate 18 described later. Preferably, the thickness of the support substrate 12 is selected based on the thickness of the glass substrate 18, the thickness of the inorganic layer 14, and the thickness of the glass laminate 10 described later. For example, when the current member forming process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the glass substrate 18 and the thickness of the inorganic layer 14 is 0.1 mm, The thickness of the support substrate 12 is 0.4 mm. In general, the thickness of the support substrate 12 is preferably 0.2 to 5.0 mm.
支持基板12がガラス板の場合、ガラス板の厚さは、扱いやすく、割れにくいなどの理由から、0.08mm以上が好ましい。また、ガラス板の厚さは、電子デバイス用部材形成後に剥離する際に、割れずに適度に撓むような剛性が望まれる理由から、1.0mm以下が好ましい。 When the support substrate 12 is a glass plate, the thickness of the glass plate is preferably 0.08 mm or more because it is easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.
(無機層)
無機層14は、支持基板12の主面上に配置(固定)され、ガラス基板18の第1主面18aと接触する層である。無機層14を支持基板12上に設けることにより、高温条件下の長時間処理後においても、ガラス基板18の接着を抑制できる。
(Inorganic layer)
The inorganic layer 14 is a layer disposed (fixed) on the main surface of the support substrate 12 and in contact with the first main surface 18 a of the glass substrate 18. By providing the inorganic layer 14 on the support substrate 12, adhesion of the glass substrate 18 can be suppressed even after long-time treatment under high temperature conditions.
本発明において、無機層14は、無機層表面14aの組成として、SiC1-xOx(x=0.10〜0.90)および/またはSiN1-yOy(y=0.10〜0.90)を含む。
ここで、xおよびyが0.10未満の数であるとガラス基板18に対する剥離性が劣り、0.90超の数であるとガラス基板18に対する積層性が劣るが、この範囲であれば、積層性および剥離性が共に優れる。
この理由は明らかではないが、元素どうしの電気陰性度の差が比較的小さい炭化ケイ素および/または窒化ケイ素が、適量の酸素を含むことで、表面平坦度が最適化されたり、加熱処理時に無機層とガラス基板との間で弱い結合から強結合への転換が行いにくくなったりするためと考えられる。
In the present invention, the inorganic layer 14 is composed of SiC 1-x O x (x = 0.10-0.90) and / or SiN 1-y O y (y = 0.0.10) as the composition of the inorganic layer surface 14a. 0.90).
Here, when x and y are numbers less than 0.10, the peelability to the glass substrate 18 is inferior, and when it is greater than 0.90, the laminate property to the glass substrate 18 is inferior. Both laminateability and peelability are excellent.
The reason for this is not clear, but silicon carbide and / or silicon nitride, which have a relatively small difference in electronegativity between elements, contains an appropriate amount of oxygen, so that the surface flatness can be optimized or inorganic during heat treatment. This is thought to be because it is difficult to convert weak bonds to strong bonds between the layer and the glass substrate.
なお、xおよびyは、剥離性がより優れるという理由からは0.20以上の数が好ましく、積層性がより優れるという理由からは0.50以下の数が好ましく、積層性および剥離性が共により優れるという理由からは、0.20〜0.50がより好ましい。 In addition, x and y are preferably 0.20 or more for the reason that the peelability is more excellent, and preferably 0.50 or less for the reason that the stackability is more excellent. Is more preferably 0.20 to 0.50.
ここで、無機層14の無機層表面14aとは、無機層14の最表面(支持基板12側とは反対側の最表面)を含む部位であって、具体的には、無機層14の最表面から支持基板12側に向けて1.0nmの距離までの部位、または、無機層14の厚さ(全厚)を100%として最表面から支持基板12側に向けて10%の距離までの部位のうち、いずれか薄い方と定義される。なお、ここでいう「最表面」とは、「表面粗さを無視した表面最高点部を含めた平面」のことをいう。 Here, the inorganic layer surface 14a of the inorganic layer 14 is a portion including the outermost surface of the inorganic layer 14 (the outermost surface opposite to the support substrate 12 side), and specifically, the outermost layer of the inorganic layer 14. The part up to a distance of 1.0 nm from the surface toward the support substrate 12 or the thickness (total thickness) of the inorganic layer 14 is 100%, and the distance from the outermost surface to the support substrate 12 is up to a distance of 10%. It is defined as the thinner of the parts. Here, the “outermost surface” means “a plane including the highest surface portion ignoring the surface roughness”.
無機層14における無機層表面14aおよび無機層表面14a以外の組成は、X線光電子分光法(XPS)により測定できる。
なお、無機層14における無機層表面14a以外の組成としては、無機層表面14aの組成と異なっていてもよいし、同一であってもよい。
The composition of the inorganic layer 14 other than the inorganic layer surface 14a and the inorganic layer surface 14a can be measured by X-ray photoelectron spectroscopy (XPS).
In addition, as a composition other than the inorganic layer surface 14a in the inorganic layer 14, it may differ from the composition of the inorganic layer surface 14a, and may be the same.
また、本発明において、無機層表面14aの表面粗さ(Ra)は、0.20〜1.00nmである。ガラス基板18に接する無機層表面14aの表面粗さ(Ra)が0.20nm未満であるとガラス基板18に対する剥離性が劣り、1.00nm超であるとガラス基板18に対する積層性が劣るが、この範囲であれば、積層性および剥離性が共に優れる。
無機層表面14aの表面粗さ(Ra)は、剥離性がより優れるという理由からは0.30nm以上が好ましく、積層性がより優れるという理由からは0.50nm以下が好ましく、積層性および剥離性が共により優れるという理由からは、0.30〜0.50nmがより好ましい。
無機層表面14aの表面粗さを制御する方法としては、例えば、無機層14の形成条件(成膜条件)を変更する方法が挙げられ、具体的には、無機層14の厚さを変更する方法などが挙げられる。
なお、Ra(算術平均粗さ)は、JIS B 0601(2001年改正)に従って測定される。
In the present invention, the surface roughness (Ra) of the inorganic layer surface 14a is 0.20 to 1.00 nm. If the surface roughness (Ra) of the inorganic layer surface 14a in contact with the glass substrate 18 is less than 0.20 nm, the peelability to the glass substrate 18 is poor, and if it exceeds 1.00 nm, the laminate property to the glass substrate 18 is poor. If it is this range, both lamination property and peelability will be excellent.
The surface roughness (Ra) of the inorganic layer surface 14a is preferably 0.30 nm or more for the reason that the peelability is more excellent, and 0.50 nm or less is preferable for the reason that the stackability is more excellent. Is more preferably 0.30 to 0.50 nm.
Examples of a method for controlling the surface roughness of the inorganic layer surface 14a include a method of changing the formation conditions (film formation conditions) of the inorganic layer 14, and specifically, the thickness of the inorganic layer 14 is changed. The method etc. are mentioned.
Ra (arithmetic mean roughness) is measured according to JIS B 0601 (revised in 2001).
無機層14の25〜300℃における平均線膨張係数(以下、単に「平均線膨張係数」という)は特に限定されないが、支持基板12としてガラス板を使用する場合は、その平均線膨張係数は10×10-7〜200×10-7/℃が好ましい。該範囲であれば、ガラス板(SiO2)との平均線膨張係数の差が小さくなり、高温環境下におけるガラス基板18と無機層付き支持基板16との位置ずれを抑制できる。 The average linear expansion coefficient at 25 to 300 ° C. of the inorganic layer 14 (hereinafter simply referred to as “average linear expansion coefficient”) is not particularly limited, but when a glass plate is used as the support substrate 12, the average linear expansion coefficient is 10 × 10 −7 to 200 × 10 −7 / ° C. is preferable. If the range, the difference in average linear expansion coefficient between the glass plates (SiO 2) is reduced, it is possible to suppress the positional deviation of the glass substrate 18 and the inorganic layer with the supporting substrate 16 in a high temperature environment.
無機層14は、上述したSiC1-xOx(x=0.10〜0.90)および/またはSiN1-yOy(y=0.10〜0.90)が主成分として含まれていることが好ましい。ここで、主成分とは、これらの総含有量が、無機層14全量に対して、90質量%以上であることを意味し、98質量%以上が好ましく、99質量%以上がより好ましく、99.999質量%以上が特に好ましい。 The inorganic layer 14 includes the above-described SiC 1-x O x (x = 0.10 to 0.90) and / or SiN 1-y O y (y = 0.10 to 0.90) as a main component. It is preferable. Here, the main component means that the total content thereof is 90% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, with respect to the total amount of the inorganic layer 14. 999% by mass or more is particularly preferable.
無機層14の厚さとしては、耐擦傷性の観点からは、5〜5000nmが好ましく、10〜500nmがより好ましい。
無機層14は、図1において単層として記載されているが、2層以上の積層であってもよい。2層以上の積層の場合、各層ごとが異なる組成であってもよい。
The thickness of the inorganic layer 14 is preferably 5 to 5000 nm, more preferably 10 to 500 nm, from the viewpoint of scratch resistance.
The inorganic layer 14 is described as a single layer in FIG. 1, but may be a laminate of two or more layers. In the case of two or more layers, each layer may have a different composition.
無機層14は、通常、図1に示すように支持基板12の全面に設けられるが、本発明の効果を損なわない範囲で、支持基板12表面上の一部に設けられていてもよい。例えば、無機層14が、支持基板12表面上に、島状や、ストライプ状に設けられていてもよい。 The inorganic layer 14 is usually provided on the entire surface of the support substrate 12 as shown in FIG. 1, but may be provided on a part of the surface of the support substrate 12 as long as the effects of the present invention are not impaired. For example, the inorganic layer 14 may be provided on the surface of the support substrate 12 in an island shape or a stripe shape.
無機層14は、優れた耐熱性を示す。そのため、ガラス積層体10を高温条件に曝しても層自体の化学変化が起きにくく、後述するガラス基板18との間でも化学結合を生じにくく、重剥離化によるガラス基板18の無機層14への付着が生じにくい。
ここで、重剥離化とは、無機層14とガラス基板18との界面の剥離強度が、支持基板12と無機層14との界面の剥離強度、および、無機層14の材料自体の強度(バルク強度)のいずれかよりも大きくなることをいう。無機層14とガラス基板18との界面で重剥離化が起こると、ガラス基板18表面に無機層14の成分が付着しやすく、その表面の清浄化が困難となりやすい。ガラス基板18表面への無機層14の付着とは、無機層14全体がガラス基板18表面に付着すること、および、無機層14表面が損傷し無機層14表面の成分の一部がガラス基板18表面に付着すること、などを意味する。
The inorganic layer 14 exhibits excellent heat resistance. Therefore, even if the glass laminate 10 is exposed to a high temperature condition, the chemical change of the layer itself does not easily occur, and it is difficult for chemical bonding to occur with the glass substrate 18 to be described later. Adhesion hardly occurs.
Here, heavy peeling means that the peel strength at the interface between the inorganic layer 14 and the glass substrate 18 is the peel strength at the interface between the support substrate 12 and the inorganic layer 14 and the strength of the material of the inorganic layer 14 (bulk). (Strength) means greater than any of the above. When heavy peeling occurs at the interface between the inorganic layer 14 and the glass substrate 18, the components of the inorganic layer 14 are likely to adhere to the surface of the glass substrate 18, making it difficult to clean the surface. The adhesion of the inorganic layer 14 to the surface of the glass substrate 18 means that the entire inorganic layer 14 adheres to the surface of the glass substrate 18 and that the surface of the inorganic layer 14 is damaged and some of the components on the surface of the inorganic layer 14 are glass substrate 18. It means to adhere to the surface.
(無機層付き支持基板の製造方法)
無機層付き支持基板16の製造方法として、例えば、SiCターゲットまたはSiNターゲットを用いて、Ar等の不活性ガスとO2またはCO2等の酸素原子含有ガスとの混合ガスを導入しながら、蒸着法、スパッタリング法、または、CVD法などにより、支持基板12上に、上述した無機層表面14aの組成を有する無機層14を設ける方法が挙げられる。このとき、混合ガス中の酸素原子含有ガスの量を調整することで、無機層表面14aの酸素量(すなわち、xおよびyの値)を制御できる。なお、製造条件は、使用される材料等に応じて、適宜最適な条件が選択される。
(Method for producing support substrate with inorganic layer)
As a manufacturing method of the support substrate 16 with an inorganic layer, for example, using a SiC target or a SiN target, vapor deposition is performed while introducing a mixed gas of an inert gas such as Ar and an oxygen atom-containing gas such as O 2 or CO 2. Examples thereof include a method of providing the inorganic layer 14 having the above-described composition of the inorganic layer surface 14a on the support substrate 12 by a method, a sputtering method, a CVD method, or the like. At this time, the amount of oxygen on the inorganic layer surface 14a (that is, the values of x and y) can be controlled by adjusting the amount of the oxygen atom-containing gas in the mixed gas. As manufacturing conditions, optimum conditions are appropriately selected according to the materials used.
また、支持基板12上に無機層14を形成した後、無機層表面14aの表面粗さ(Ra)を制御するために、無機層14の表面を削る処理を施すことができる。該処理としては、例えば、イオンスパッタリング法などが挙げられる。 Moreover, after forming the inorganic layer 14 on the support substrate 12, in order to control the surface roughness (Ra) of the inorganic layer surface 14a, the process of shaving the surface of the inorganic layer 14 can be given. Examples of the treatment include an ion sputtering method.
[ガラス基板]
ガラス基板18は、第1主面18aが無機層14と密着し、無機層14側とは反対側の第2主面18bに後述する電子デバイス用部材が設けられる。
ガラス基板18の種類は、一般的なものであってよく、例えば、LCD、OLEDといった表示装置用のガラス基板などが挙げられる。ガラス基板18は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低い。熱収縮率の指標としては、JIS R 3102(1995年改正)に規定されている線膨張係数が用いられる。
[Glass substrate]
As for the glass substrate 18, the 1st main surface 18a closely_contact | adheres to the inorganic layer 14, The member for electronic devices mentioned later is provided in the 2nd main surface 18b on the opposite side to the inorganic layer 14 side.
The kind of the glass substrate 18 may be a common one, and examples thereof include a glass substrate for a display device such as an LCD or an OLED. The glass substrate 18 is excellent in chemical resistance and moisture permeability and has a low thermal shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
ガラス基板18は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えば、フロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法などが用いられる。また、特に厚さが薄いガラス基板は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸などの手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。 The glass substrate 18 is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. In addition, a glass substrate having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature, and stretching it by means of stretching or the like to make it thin (redraw method).
ガラス基板18のガラスは、特に限定されないが、無アルカリホウケイ酸ガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40〜90質量%のガラスが好ましい。 The glass of the glass substrate 18 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable. As the oxide glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
ガラス基板18のガラスとしては、デバイスの種類やその製造工程に適したガラスが採用される。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなる(ただし、通常アルカリ土類金属成分は含まれる)。このように、ガラス基板18のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。 As the glass of the glass substrate 18, glass suitable for the type of device and its manufacturing process is adopted. For example, a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included). Thus, the glass of the glass substrate 18 is appropriately selected based on the type of device to be applied and its manufacturing process.
ガラス基板18の厚さは、特に限定されないが、ガラス基板18の薄型化および/または軽量化の観点から、通常0.8mm以下であり、好ましくは0.3mm以下であり、さらに好ましくは0.15mm以下である。0.8mm超の場合、ガラス基板18の薄型化および/または軽量化の要求を満たせない。0.3mm以下の場合、ガラス基板18に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板18をロール状に巻き取ることが可能である。また、ガラス基板18の厚さは、ガラス基板18の製造が容易であること、ガラス基板18の取り扱いが容易であることなどの理由から、0.03mm以上が好ましい。 The thickness of the glass substrate 18 is not particularly limited, but is usually 0.8 mm or less, preferably 0.3 mm or less, more preferably 0.8 mm or less from the viewpoint of reducing the thickness and / or weight of the glass substrate 18. It is 15 mm or less. If it exceeds 0.8 mm, the glass substrate 18 cannot meet the demand for thinning and / or lightening. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 18. In the case of 0.15 mm or less, the glass substrate 18 can be wound into a roll. Moreover, the thickness of the glass substrate 18 is preferably 0.03 mm or more because the glass substrate 18 is easy to manufacture and the glass substrate 18 is easy to handle.
なお、ガラス基板18は2層以上からなっていてもよく、この場合、各々の層を形成する材料は同種材料であってもよいし、異種材料であってもよい。また、この場合、「ガラス基板の厚さ」は全ての層の合計の厚さを意味するものとする。 The glass substrate 18 may be composed of two or more layers. In this case, the material forming each layer may be the same material or a different material. In this case, “the thickness of the glass substrate” means the total thickness of all the layers.
ガラス基板18の第1主面18a上には、さらに無機薄膜層が積層されていてもよい。
無機薄膜層がガラス基板18上に配置(固定)される場合、ガラス積層体中においては、無機層付き支持基板16の無機層14と無機薄膜層とが接触する。無機薄膜層をガラス基板18上に設けることにより、高温条件下の長時間処理後においても、ガラス基板18と無機層付き支持基板16との接着をより抑制できる。
無機薄膜層の態様は特に限定されないが、好ましくは、金属酸化物、金属窒化物、金属酸窒化物、金属炭化物、金属炭窒化物、金属珪化物および金属弗化物からなる群から選ばれる少なくとも1つを含む。なかでも、ガラス基板18の剥離性がより優れる点で、金属酸化物を含むことが好ましく、酸化インジウムスズがより好ましい。
An inorganic thin film layer may be further laminated on the first main surface 18 a of the glass substrate 18.
When the inorganic thin film layer is disposed (fixed) on the glass substrate 18, the inorganic layer 14 and the inorganic thin film layer of the support substrate 16 with the inorganic layer are in contact with each other in the glass laminate. By providing the inorganic thin film layer on the glass substrate 18, adhesion between the glass substrate 18 and the support substrate 16 with the inorganic layer can be further suppressed even after long-time treatment under high temperature conditions.
The mode of the inorganic thin film layer is not particularly limited, but preferably at least one selected from the group consisting of metal oxides, metal nitrides, metal oxynitrides, metal carbides, metal carbonitrides, metal silicides and metal fluorides. Including one. Especially, it is preferable that a metal oxide is included at the point which the peelability of the glass substrate 18 is more excellent, and an indium tin oxide is more preferable.
金属酸化物、金属窒化物、金属酸窒化物としては、例えば、Si、Hf、Zr、Ta、Ti、Y、Nb、Na、Co、Al、Zn、Pb、Mg、Bi、La、Ce、Pr、Sm、Eu、Gd、Dy、Er、Sr、Sn、InおよびBaから選ばれる1種類以上の元素の酸化物、窒化物、酸窒化物が挙げられる。より具体的には、酸化チタン(TiO2)、酸化インジウム(In2O3)、酸化スズ(SnO2)、酸化亜鉛(ZnO)、酸化ガリウム(Ga2O3)、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛スズ(ZTO)、ガリウム添加酸化亜鉛(GZO)などが挙げられる。 Examples of the metal oxide, metal nitride, and metal oxynitride include Si, Hf, Zr, Ta, Ti, Y, Nb, Na, Co, Al, Zn, Pb, Mg, Bi, La, Ce, and Pr. , Sm, Eu, Gd, Dy, Er, Sr, Sn, In, and Ba, oxides, nitrides, and oxynitrides of one or more elements selected from Ba and the like. More specifically, titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), gallium oxide (Ga 2 O 3 ), indium tin oxide (ITO) Indium zinc oxide (IZO), zinc tin oxide (ZTO), gallium-doped zinc oxide (GZO), and the like.
金属炭化物、金属炭窒化物としては、例えば、Ti、W、Si、Zr、Nbから選ばれる1種以上の元素の炭化物、炭窒化物が挙げられる。金属珪化物としては、例えば、Mo、W、Crから選ばれる1種以上の元素の珪化物が挙げられる。金属弗化物としては、例えば、Mg、Y、La、Baから選ばれる1種以上の元素の弗化物が挙げられる。 Examples of the metal carbide and metal carbonitride include carbides and carbonitrides of one or more elements selected from Ti, W, Si, Zr, and Nb. Examples of the metal silicide include a silicide of one or more elements selected from Mo, W, and Cr. Examples of the metal fluoride include fluorides of one or more elements selected from Mg, Y, La, and Ba.
<ガラス積層体>
本発明のガラス積層体10は、上述した無機層付き支持基板16の無機層表面14aとガラス基板18の第1主面18aとを積層面として、無機層付き支持基板16とガラス基板18とを剥離可能に積層してなる積層体である。言い換えると、支持基板12とガラス基板18との間に、無機層14が介在する積層体である。
<Glass laminate>
The glass laminate 10 of the present invention comprises the support layer 16 with an inorganic layer and the glass substrate 18 with the inorganic layer surface 14a of the support substrate 16 with an inorganic layer and the first main surface 18a of the glass substrate 18 described above as a laminate surface. It is a laminated body which is laminated so as to be peelable. In other words, it is a laminate in which the inorganic layer 14 is interposed between the support substrate 12 and the glass substrate 18.
<ガラス積層体の製造方法>
本発明のガラス積層体10の製造方法は特に限定されないが、具体的には、常圧環境下で無機層付き支持基板16とガラス基板18とを重ねた後に、例えば、ガラス基板18の自重またはガラス基板18の第2主面18bを軽く一か所押すことにより、重ね合わせ面内に密着起点を発生させ、その密着起点から密着を自然に広げる方法;ロールやプレスを用いて圧着することで、密着起点からの密着を広げる方法;等が挙げられる。ロールやプレスによる圧着により、無機層14とガラス基板18とがより密着するうえ、両者の間に混入している気泡が比較的容易に除去されるので好ましい。
<Method for producing glass laminate>
Although the manufacturing method of the glass laminated body 10 of this invention is not specifically limited, Specifically, after laminating | stacking the support substrate 16 with an inorganic layer and the glass substrate 18 in a normal pressure environment, for example, the self-weight of the glass substrate 18 or A method of generating an adhesion starting point in the overlapping surface by pushing the second main surface 18b of the glass substrate 18 lightly at one place, and naturally expanding the adhesion from the adhesion starting point; by pressing using a roll or a press And a method of expanding the adhesion from the adhesion starting point. The inorganic layer 14 and the glass substrate 18 are more closely adhered to each other by pressure bonding using a roll or a press, and air bubbles mixed between the two are relatively easily removed.
なお、真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保が好ましく行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、ゆがみ欠陥につながりにくいという利点もある。 In addition, it is more preferable to perform pressure bonding by a vacuum laminating method or a vacuum pressing method because it is preferable to suppress mixing of bubbles and ensure good adhesion. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are less likely to cause distortion defects.
無機層付き支持基板16とガラス基板18とを剥離可能に密着させる際には、無機層14およびガラス基板18の互いに接触する側の面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。クリーン度が高いほどその平坦性は良好となるので好ましい。
洗浄の方法は特に限定されないが、例えば、無機層14またはガラス基板18の表面をアルカリ水溶液で洗浄した後、さらに水を用いて洗浄する方法が挙げられる。
さらに、良好な積層状態を得るためには、無機層14およびガラス基板18の互いに接触する側の面を洗浄後にプラズマ処理を施してから、積層することが好ましい。プラズマ処理に用いるプラズマとしては、例えば、大気プラズマ、真空プラズマ等が挙げられる。
When the support substrate 16 with the inorganic layer and the glass substrate 18 are detachably adhered, the surfaces of the inorganic layer 14 and the glass substrate 18 that are in contact with each other are sufficiently washed and laminated in a clean environment. Is preferred. The higher the degree of cleanness, the better the flatness.
The cleaning method is not particularly limited, and examples thereof include a method of cleaning the surface of the inorganic layer 14 or the glass substrate 18 with an aqueous alkaline solution and then using water.
Furthermore, in order to obtain a good laminated state, it is preferable to laminate the inorganic layer 14 and the glass substrate 18 after performing plasma treatment after cleaning the surfaces that are in contact with each other. Examples of the plasma used for the plasma treatment include atmospheric plasma and vacuum plasma.
本発明のガラス積層体10は、種々の用途に使用でき、例えば、後述する表示装置用パネル、PV、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品を製造する用途などが挙げられる。なお、該用途では、ガラス積層体10が高温条件(例えば、350℃以上)で曝される(例えば、1時間以上)場合が多い。
ここで、表示装置用パネルとは、LCD、OLED、電子ペーパー、フィールドエミッションパネル、量子ドットLEDパネル、MEMS(Micro Electro Mechanical Systems)シャッターパネル等が含まれる。
The glass laminate 10 of the present invention can be used for various applications, for example, a display panel, PV, a thin film secondary battery, and an electronic component such as a semiconductor wafer having a circuit formed on its surface. Is mentioned. In this application, the glass laminate 10 is often exposed (for example, 1 hour or longer) under high temperature conditions (for example, 350 ° C. or higher).
Here, the display device panel includes LCD, OLED, electronic paper, field emission panel, quantum dot LED panel, MEMS (Micro Electro Mechanical Systems) shutter panel, and the like.
<電子デバイスおよびその製造方法>
次に、電子デバイスおよびその製造方法の好適実施態様について詳述する。
図2は、本発明の電子デバイスの製造方法の好適実施態様における各製造工程を順に示す模式的断面図である。本発明の電子デバイスの好適実施態様は、部材形成工程および分離工程を備える。
以下に、図2を参照しながら、各工程で使用される材料およびその手順について詳述する。まず、部材形成工程について詳述する。
<Electronic device and manufacturing method thereof>
Next, preferred embodiments of the electronic device and the manufacturing method thereof will be described in detail.
FIG. 2 is a schematic cross-sectional view sequentially showing each manufacturing process in a preferred embodiment of the method for manufacturing an electronic device of the present invention. A preferred embodiment of the electronic device of the present invention includes a member forming step and a separation step.
Hereinafter, the materials used in each step and the procedure thereof will be described in detail with reference to FIG. First, a member formation process is explained in full detail.
[部材形成工程]
部材形成工程は、ガラス積層体中のガラス基板上に電子デバイス用部材を形成する工程である。
より具体的には、図2(A)に示すように、本工程において、ガラス基板18の第2主面18b上に電子デバイス用部材20が形成され、電子デバイス用部材付き積層体22が製造される。
まず、本工程で使用される電子デバイス用部材20について詳述し、その後工程の手順について詳述する。
[Member forming process]
A member formation process is a process of forming the member for electronic devices on the glass substrate in a glass laminated body.
More specifically, as shown in FIG. 2A, in this step, the electronic device member 20 is formed on the second main surface 18b of the glass substrate 18, and the electronic device member laminated body 22 is manufactured. Is done.
First, the electronic device member 20 used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.
(電子デバイス用部材(機能性素子))
電子デバイス用部材20は、ガラス積層体10中のガラス基板18の第2主面18b上に形成され電子デバイスの少なくとも一部を構成する部材である。より具体的には、電子デバイス用部材20としては、表示装置用パネル、太陽電池、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品などに用いられる部材が挙げられる。表示装置用パネルとしては、有機ELパネル、フィールドエミッションパネル等が含まれる。
(Electronic device components (functional elements))
The electronic device member 20 is a member that is formed on the second main surface 18b of the glass substrate 18 in the glass laminate 10 and constitutes at least a part of the electronic device. More specifically, examples of the electronic device member 20 include a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface thereof. Examples of the display device panel include an organic EL panel and a field emission panel.
例えば、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
また、電子部品用部材としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
For example, as a member for a solar cell, a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
Further, as a member for a thin film secondary battery, in the lithium ion type, a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc. In addition, various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
In addition, as a member for electronic components, in CCD and CMOS, metal of conductive part, silicon oxide and silicon nitride of insulating part, etc., other various sensors such as pressure sensor and acceleration sensor, rigid printed board, flexible printed board And various members corresponding to a rigid flexible printed circuit board.
(工程の手順)
上述した電子デバイス用部材付き積層体22の製造方法は特に限定されず、電子デバイス用部材の構成部材の種類に応じて従来公知の方法にて、ガラス積層体10のガラス基板18の第2主面表面18b上に、電子デバイス用部材20を形成する。
なお、電子デバイス用部材20は、ガラス基板18の第2主面18bに最終的に形成される部材の全部(以下、「全部材」という)ではなく、全部材の一部(以下、「部分部材」という)であってもよい。部分部材付きガラス基板を、その後の工程で全部材付きガラス基板(後述する電子デバイスに相当)とすることもできる。また、全部材付きガラス基板には、その剥離面(第1主面)に他の電子デバイス用部材が形成されてもよい。また、全部材付き積層体を組み立て、その後、全部材付き積層体から無機層付き支持基板16を剥離して、電子デバイスを製造することもできる。さらに、全部材付き積層体を2枚用いて電子デバイスを組み立て、その後、全部材付き積層体から2枚の無機層付き支持基板16を剥離して、電子デバイスを製造することもできる。
(Process procedure)
The manufacturing method of the laminated body 22 with the member for electronic devices mentioned above is not specifically limited, According to the conventionally well-known method according to the kind of structural member of the member for electronic devices, the 2nd main of the glass substrate 18 of the glass laminated body 10 is used. The electronic device member 20 is formed on the surface 18b.
The electronic device member 20 is not all of the members finally formed on the second main surface 18b of the glass substrate 18 (hereinafter referred to as “all members”), but a part of all members (hereinafter referred to as “parts”). May be referred to as a member. The glass substrate with partial members can be made into a glass substrate with all members (corresponding to an electronic device described later) in the subsequent steps. Moreover, the member for electronic devices may be formed in the peeling surface (1st main surface) in the glass substrate with all the members. Moreover, an electronic device can also be manufactured by assembling a laminate with all members and then peeling off the support substrate 16 with an inorganic layer from the laminate with all members. Furthermore, an electronic device can also be manufactured by assembling an electronic device using two laminates with all members, and then peeling the two support substrates 16 with inorganic layers from the laminate with all members.
例えば、OLEDを製造する場合を例にとると、ガラス積層体10のガラス基板18の第2主面18bの表面上に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。 For example, taking the case of manufacturing an OLED as an example, in order to form an organic EL structure on the surface of the second main surface 18b of the glass substrate 18 of the glass laminate 10, a transparent electrode is further formed. Various layer formation and processing such as vapor-depositing hole injection layer, hole transport layer, light emitting layer, electron transport layer, etc. on the surface on which is formed, forming a back electrode, sealing with a sealing plate, etc. Done. Specific examples of these layer formation and treatment include film formation treatment, vapor deposition treatment, sealing plate adhesion treatment, and the like.
また、例えば、TFT−LCDの製造方法は、ガラス積層体10のガラス基板18の第2主面18b上に、レジスト液を用いて、CVD法およびスパッター法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成するTFT形成工程と、別のガラス積層体10のガラス基板18の第2主面18b上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成するCF形成工程と、TFT付きデバイス基板とCF付きデバイス基板とを積層する貼り合わせ工程等の各種工程を有する。 In addition, for example, the TFT-LCD manufacturing method is formed on the second main surface 18b of the glass substrate 18 of the glass laminate 10 by a general film forming method such as a CVD method and a sputtering method using a resist solution. Forming a thin film transistor (TFT) by patterning a metal film and a metal oxide film to be formed, and patterning a resist solution on the second main surface 18b of the glass substrate 18 of another glass laminate 10 And a CF forming step for forming a color filter (CF) and a bonding step for laminating a device substrate with TFT and a device substrate with CF.
TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、ガラス基板18の第2主面18bにTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。
なお、TFTやCFを形成する前に、必要に応じて、ガラス基板18の第2主面18bを洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。
In the TFT formation process and the CF formation process, the TFT and CF are formed on the second main surface 18b of the glass substrate 18 by using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
In addition, before forming TFT and CF, you may wash | clean the 2nd main surface 18b of the glass substrate 18 as needed. As a cleaning method, known dry cleaning or wet cleaning can be used.
貼り合わせ工程では、TFT付き積層体と、CF付き積層体との間に液晶材を注入して積層する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。 In the bonding step, a liquid crystal material is injected and laminated between the laminated body with TFT and the laminated body with CF. Examples of the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
[分離工程]
分離工程は、上記部材形成工程で得られた電子デバイス用部材付き積層体22から無機層付き支持基板16を剥離して、電子デバイス用部材20およびガラス基板18を含む電子デバイス24(電子デバイス用部材付きガラス基板)を得る工程である。つまり、電子デバイス用部材付き積層体22を、無機層付き支持基板16と電子デバイス用部材付きガラス基板24とに分離する工程である。
剥離時のガラス基板18上の電子デバイス用部材20が必要な全構成部材の形成の一部である場合には、分離後、残りの構成部材をガラス基板18上に形成することもできる。
[Separation process]
In the separation step, the support substrate 16 with the inorganic layer is peeled from the laminate 22 with the member for electronic devices obtained in the member forming step, and the electronic device 24 (for electronic device) including the electronic device member 20 and the glass substrate 18 is peeled off. This is a step of obtaining a glass substrate with a member. That is, it is a step of separating the laminate 22 with the electronic device member into the support substrate 16 with the inorganic layer and the glass substrate 24 with the electronic device member.
When the electronic device member 20 on the glass substrate 18 at the time of peeling is a part of the formation of all necessary constituent members, the remaining constituent members can be formed on the glass substrate 18 after separation.
無機層14の無機層表面14aとガラス基板18の第1主面18aとを剥離(分離)する方法は、特に限定されない。例えば、無機層14とガラス基板18との界面に鋭利な刃物状のものを差し込み、剥離のきっかけを与えたうえで、水と圧縮空気との混合流体を吹き付けたりして剥離できる。 The method of peeling (separating) the inorganic layer surface 14a of the inorganic layer 14 and the first main surface 18a of the glass substrate 18 is not particularly limited. For example, a sharp blade-like object is inserted into the interface between the inorganic layer 14 and the glass substrate 18 to provide a trigger for peeling, and then a mixed fluid of water and compressed air is sprayed to peel off.
好ましくは、電子デバイス用部材付き積層体22の支持基板12が上側、電子デバイス用部材20側が下側となるように定盤上に設置し、電子デバイス用部材20側を定盤上に真空吸着し(両面に支持基板が積層されている場合は順次行う)、この状態で、まず、刃物を無機層14とガラス基板18との界面に刃物を侵入させる。そして、その後に支持基板12側を複数の真空吸着パッドで吸着し、刃物を差し込んだ箇所付近から順に真空吸着パッドを上昇させる。そうすると無機層14とガラス基板18との界面へ空気層が形成され、その空気層が界面の全面に広がり、無機層付き支持基板16を容易に剥離できる。 Preferably, the laminate 22 with electronic device members is placed on a surface plate so that the support substrate 12 is on the upper side and the electronic device member 20 side is on the lower side, and the electronic device member 20 side is vacuum-adsorbed on the surface plate. (In the case where support substrates are laminated on both sides, the steps are sequentially performed). In this state, first, the blade is inserted into the interface between the inorganic layer 14 and the glass substrate 18. Then, the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. If it does so, an air layer will be formed in the interface of inorganic layer 14 and glass substrate 18, the air layer will spread over the whole surface of an interface, and support substrate 16 with an inorganic layer can be peeled easily.
また、例えば、無機層付き支持基板16の一部を、ガラス基板18から突出させて積層した場合、ガラス基板18を固定台(後述する図3中の符号31を参照)に固定して、上記のように剥離のきっかけを与えたうえで、または、与えないで、無機層表面14aに、L字型治具(後述する図3中の符号32を参照)を引っ掛けて、固定台から離れる方向に引き上げることにより、無機層14とガラス基板18とを剥離する方法が挙げられる。 Further, for example, when a part of the support substrate 16 with an inorganic layer protrudes from the glass substrate 18 and is laminated, the glass substrate 18 is fixed to a fixing base (see reference numeral 31 in FIG. 3 described later), and A direction in which an L-shaped jig (see reference numeral 32 in FIG. 3 to be described later) is hooked on the inorganic layer surface 14a and separated from the fixing base with or without giving a trigger for peeling as shown in FIG. The method of peeling the inorganic layer 14 and the glass substrate 18 by pulling up to (1) is mentioned.
上記工程によって得られた電子デバイス24は、携帯電話、スマートフォン、PDA、タブレット型PCなどのモバイル端末に使用される小型の表示装置の製造に好適である。表示装置は主としてLCDまたはOLEDであり、LCDとしては、TN型、STN型、FE型、TFT型、MIM型、IPS型、VA型等を含む。基本的にパッシブ駆動型、アクティブ駆動型のいずれの表示装置の場合でも適用できる。 The electronic device 24 obtained by the above process is suitable for manufacturing a small display device used for a mobile terminal such as a mobile phone, a smartphone, a PDA, or a tablet PC. The display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like. Basically, it can be applied to both passive drive type and active drive type display devices.
以下に、実施例などにより本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
以下の例(実施例および比較例)では、ガラス基板として、無アルカリホウケイ酸ガラスからなるガラス板(幅100mm、奥行き30mm、厚さ0.2mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。
また、支持基板としては、同じく無アルカリホウケイ酸ガラスからなるガラス板(幅90mm、奥行き30mm、厚さ0.5mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。
In the following examples (Examples and Comparative Examples), a glass plate made of non-alkali borosilicate glass (width 100 mm, depth 30 mm, thickness 0.2 mm, coefficient of linear expansion 38 × 10 −7 / ° C., Asahi Glass) The product name “AN100” manufactured by the company was used.
Also, as the support substrate, a glass plate made of alkali-free borosilicate glass (width 90 mm, depth 30 mm, thickness 0.5 mm, linear expansion coefficient 38 × 10 −7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd.) It was used.
<例I−1〜8>
(無機層の形成)
支持基板の一方の主面をアルカリ性水溶液で洗浄して清浄化した。さらに、清浄化した面に、SiCターゲットを用いて、ArおよびO2の混合ガスを導入しながら、マグネトロンスパッタリング法により、無機層表面組成としてSiC1-xOx(x=0.50)を含む無機層(厚さ10〜200nm)を形成し、各例の無機層付き支持基板を得た。
なお、無機層表面組成は、X線光電子分光装置(XPS−7000、リガク社製)を用いてXPSにより測定した(以下、同様)。
<Examples I-1 to 8>
(Formation of inorganic layer)
One main surface of the support substrate was cleaned by washing with an alkaline aqueous solution. Furthermore, SiC 1-x O x (x = 0.50) was used as the inorganic layer surface composition by magnetron sputtering while introducing a mixed gas of Ar and O 2 into the cleaned surface using a SiC target. The inorganic layer (thickness 10-200 nm) containing was formed, and the support substrate with an inorganic layer of each example was obtained.
The inorganic layer surface composition was measured by XPS using an X-ray photoelectron spectrometer (XPS-7000, manufactured by Rigaku Corporation) (hereinafter the same).
(表面粗さの制御)
各例の無機層を形成する際に、組成を変えずに無機層の厚さを調整することで、各例の無機層表面の表面粗さ(Ra)を異ならせた。
なお、表面粗さ(Ra)は、AFM(機種:L−trace(Nanonavi)、日立ハイテクノロジーズ社製)を用いて、JIS B 0601(2001年改正)に準拠して、測定した(以下、同様)。
(Surface roughness control)
When forming the inorganic layer of each example, the surface roughness (Ra) of the inorganic layer surface of each example was varied by adjusting the thickness of the inorganic layer without changing the composition.
The surface roughness (Ra) was measured in accordance with JIS B 0601 (revised in 2001) using AFM (model: L-trace (Nanoavi), manufactured by Hitachi High-Technologies Corporation) (hereinafter the same). ).
(積層性の評価)
次に、各例の無機層付き支持基板の無機層の無機層表面と、ガラス基板の第1主面とに、アルカリ水溶液による洗浄および水による洗浄を施し、両面を清浄化した。
その後、無機層表面にガラス基板を重ね合わせ、無機層とガラス基板との積層性を下記基準で評価した。結果を下記第1表に示す。なお、「○」または「△」であれば、積層性が優れるものとして評価できる。
○:重ね合わせた後に、ガラス基板の自重またはガラス基板を軽く一か所押すことにより、重ね合わせ面内に密着起点が発生し、発生した密着起点から密着が自然に広がり、最終的に密着が重ね合わせ面内全体に渡った。
△:密着起点は発生するものの、密着は自然に広がらず、真空プレスを用いて圧着することで、密着が重ね合わせ面内全体に渡った。
×:真空プレスを用いて圧着しても密着起点の発生ないし密着の広がりが見られなかった、または、真空プレスを用いて圧着することで密着起点の発生ないし密着の広がりが見られたが、圧着から開放すると重ね合わせ面が容易に剥がれた。
(Evaluation of stackability)
Next, the inorganic layer surface of the inorganic layer of the support substrate with an inorganic layer in each example and the first main surface of the glass substrate were cleaned with an aqueous alkali solution and with water to clean both surfaces.
Then, the glass substrate was piled up on the inorganic layer surface, and the lamination property of an inorganic layer and a glass substrate was evaluated on the following reference | standard. The results are shown in Table 1 below. In addition, if it is "(circle)" or "(triangle | delta)", it can evaluate that it is excellent in lamination property.
○: After overlapping, the glass substrate itself or the glass substrate is pressed lightly at one place to generate an adhesion start point within the overlap surface, and the adhesion naturally spreads from the generated adhesion start point. The entire surface overlapped.
(Triangle | delta): Although the contact | adherence start point generate | occur | produced, contact | adherence did not spread naturally, but contact | adherence spread | superposed over the whole in-plane by press-bonding using a vacuum press.
X: Even if pressure bonding was performed using a vacuum press, no generation of adhesion starting point or spread of adhesion was observed, or generation of adhesion starting point or expansion of adhesion was observed by pressure bonding using a vacuum press, When released from the crimping, the overlapped surface was easily peeled off.
(剥離性の評価)
図3は、剥離性の評価方法を示す模式的断面図である。
まず、積層性の評価と同様にして、無機層の無機層表面およびガラス基板の第1主面を清浄化した。その後、各例の無機層付き支持基板と、ガラス基板とを、奥行き方向の位置を揃えつつ、幅方向の長さが異なるため、図3に示すように一端で揃えて重ね合わせた。なお、一端を揃えたため、他端では、図3に示すように、無機層付き支持基板の一部がガラス基板から突出している。
重ね合わせた後、密着起点を発生させ、真空プレスを用いて圧着して、密着を重ね合わせ面内全体に渡らせて、各例のガラス積層体を得た。
次に、得られた各例のガラス積層体に対して、大気雰囲気にて、600℃で1時間加熱処理を施した。
次に、剥離試験を行った。具体的には、まず、ガラス積層体におけるガラス基板の第2主面を固定台(図3中符号31で示す)上に両面テープを用いて固定した。
次に、図3に示すように、ガラス基板から突出している無機層付き支持基板の無機層表面に、L字型治具(図3中符号32で示す)を引っ掛けて、固定台から離れる方向に機械を用いて10mm/minで引き上げることで、無機層とガラス基板との剥離性を下記基準で評価した。結果を下記第1表に示す。なお、「○」または「△」であれば、高温条件下の長時間処理の後であっても剥離性が優れるものとして評価できる。
○:無機層付き支持基板が割れることなく、剥離できた。
△:一部剥離できたが途中で無機層付き支持基板が割れた。
×:剥離できなかった。
(Evaluation of peelability)
FIG. 3 is a schematic cross-sectional view showing a peelability evaluation method.
First, the inorganic layer surface of the inorganic layer and the first main surface of the glass substrate were cleaned in the same manner as in the evaluation of the laminate property. Thereafter, the support substrate with an inorganic layer in each example and the glass substrate were aligned at one end as shown in FIG. 3 because the lengths in the width direction were different while aligning the positions in the depth direction. Since one end is aligned, at the other end, as shown in FIG. 3, a part of the support substrate with an inorganic layer protrudes from the glass substrate.
After the overlapping, an adhesion starting point was generated and pressure-bonded using a vacuum press, and the adhesion was spread over the entire overlapping surface to obtain a glass laminate of each example.
Next, the obtained glass laminate of each example was subjected to heat treatment at 600 ° C. for 1 hour in an air atmosphere.
Next, a peel test was performed. Specifically, first, the second main surface of the glass substrate in the glass laminate was fixed on a fixing base (indicated by reference numeral 31 in FIG. 3) using a double-sided tape.
Next, as shown in FIG. 3, the L-shaped jig (indicated by reference numeral 32 in FIG. 3) is hooked on the inorganic layer surface of the support substrate with an inorganic layer protruding from the glass substrate, and the direction away from the fixing base By using a machine to pull up at 10 mm / min, the peelability between the inorganic layer and the glass substrate was evaluated according to the following criteria. The results are shown in Table 1 below. In addition, if it is "(circle)" or "(triangle | delta)", it can evaluate that it is excellent in peelability even after long-time processing under high temperature conditions.
○: The support substrate with an inorganic layer could be peeled without cracking.
(Triangle | delta): Although it was able to peel partially, the support substrate with an inorganic layer cracked on the way.
X: It was not able to peel.
上記第1表に示すように、表面粗さ(Ra)が0.20nm未満である例I−1は剥離性が劣り、1.00nm超である例I−8は積層性が劣っていたが、表面粗さ(Ra)が0.20〜1.00nmの範囲である例I−2〜7は、積層性および剥離性が共に優れていた。また、例I−2〜7のうち、表面粗さ(Ra)が0.30nm以上である例I−3〜7は剥離性がより優れ、0.50nm以下である例I−2〜5は積層性がより優れていた。
なお、上記結果より、実施例においては、無機層と支持基板の層との界面の剥離強度が、無機層とガラス基板との界面の剥離強度よりも大きいことが確認された(以下、同様)。
As shown in Table 1 above, Example I-1 having a surface roughness (Ra) of less than 0.20 nm has inferior peelability and Example I-8 having a surface roughness of more than 1.00 nm has inferior laminate properties. In Examples I-2 to 7 having a surface roughness (Ra) in the range of 0.20 to 1.00 nm, both the laminate property and the peelability were excellent. Further, among Examples I-2 to 7, Examples I-3 to 7 having a surface roughness (Ra) of 0.30 nm or more are more excellent in peelability, and Examples I-2 to 5 having a surface roughness (Ra) of 0.50 nm or less are Laminability was more excellent.
From the above results, in the examples, it was confirmed that the peel strength at the interface between the inorganic layer and the support substrate layer was larger than the peel strength at the interface between the inorganic layer and the glass substrate (hereinafter the same). .
<例II−1〜6>
(無機層の形成)
支持基板の一方の主面をアルカリ性水溶液で洗浄して清浄化した。さらに、清浄化した面に、SiCターゲットを用いて、ArおよびO2の混合ガスを導入しながら、マグネトロンスパッタリング法により、無機層表面組成としてSiC1-xOx(x=0.05〜0.99)を含む無機層を形成し、各例の無機層付き支持基板を得た。
このとき、各例ごとに、体積比(Ar/O2)の異なる混合ガスを用いることで、SiC1-xOxにおけるxの数を異ならせた。
<Examples II-1 to 6>
(Formation of inorganic layer)
One main surface of the support substrate was cleaned by washing with an alkaline aqueous solution. Furthermore, SiC 1-x O x (x = 0.05 to 0) as the inorganic layer surface composition by magnetron sputtering while introducing a mixed gas of Ar and O 2 into the cleaned surface using a SiC target. .99) to form a support substrate with an inorganic layer in each example.
At this time, the number of x in SiC 1-x O x was varied by using mixed gases having different volume ratios (Ar / O 2 ) for each example.
(表面粗さの制御)
各例の無機層を形成する際に、無機層の厚さを10〜200nmの範囲で調整することで、無機層表面の表面粗さ(Ra)を0.40nmに制御した。
(Surface roughness control)
When forming the inorganic layer of each example, the surface roughness (Ra) of the inorganic layer surface was controlled to 0.40 nm by adjusting the thickness of the inorganic layer in the range of 10 to 200 nm.
(積層性および剥離性の評価)
次に、例I−1〜8と同様にして、積層性および剥離性を評価した。評価基準についても同様である。結果を下記第2表に示す。
(Evaluation of lamination and peelability)
Next, laminateability and peelability were evaluated in the same manner as in Examples I-1 to 8. The same applies to the evaluation criteria. The results are shown in Table 2 below.
上記第2表に示すように、無機層表面組成のSiC1-xOxにおけるxが0.10未満である例II−1は剥離性が劣り、0.90超である例II−6は積層性が劣っていたが、xが0.10〜0.90の範囲である例II−2〜5は、積層性および剥離性が共に優れていた。また、例II−2〜5のうち、xが0.20以上である例II−3〜5は剥離性がより優れ、xが0.50以下である例II−2〜4は積層性がより優れていた。 As shown in Table 2 above, Example II-1 in which x in SiC 1-x O x of the inorganic layer surface composition is less than 0.10 is inferior in peelability, and Example II-6 in which it exceeds 0.90 is Although the laminateability was inferior, Examples II-2 to 5 in which x was in the range of 0.10 to 0.90 were excellent in both laminateability and peelability. Moreover, among Examples II-2 to 5, Examples II-3 to 5 in which x is 0.20 or more have better peelability, and Examples II-2 to 4 in which x is 0.50 or less have laminating properties. It was better.
<例III−1〜6>
(無機層の形成)
支持基板の一方の主面をアルカリ性水溶液で洗浄して清浄化した。さらに、清浄化した面に、SiNターゲットを用いて、ArおよびO2の混合ガスを導入しながら、マグネトロンスパッタリング法により、無機層表面組成としてSiN1-yOy(y=0.05〜0.99)を含む無機層を形成し、各例の無機層付き支持基板を得た。
このとき、各例ごとに、体積比(Ar/O2)の異なる混合ガスを用いることで、SiN1-yOyにおけるyの数を異ならせた。
<Examples III-1 to 6>
(Formation of inorganic layer)
One main surface of the support substrate was cleaned by washing with an alkaline aqueous solution. Furthermore, SiN 1-y O y (y = 0.05 to 0) was used as the inorganic layer surface composition by magnetron sputtering while introducing a mixed gas of Ar and O 2 into the cleaned surface using a SiN target. .99) to form a support substrate with an inorganic layer in each example.
At this time, the number of y in SiN 1-y O y was varied by using mixed gases having different volume ratios (Ar / O 2 ) for each example.
(表面粗さの制御)
例II−1〜6と同様にして、無機層表面の表面粗さ(Ra)を0.40nmに制御した。
(Surface roughness control)
In the same manner as in Examples II-1 to 6, the surface roughness (Ra) of the inorganic layer surface was controlled to 0.40 nm.
(積層性および剥離性の評価)
次に、例I−1〜8と同様にして、積層性および剥離性を評価した。評価基準についても同様である。結果を下記第3表に示す。
(Evaluation of lamination and peelability)
Next, laminateability and peelability were evaluated in the same manner as in Examples I-1 to 8. The same applies to the evaluation criteria. The results are shown in Table 3 below.
上記第3表に示すように、無機層表面組成のSiN1-yOyにおけるyが0.10未満である例III−1は剥離性が劣り、0.90超である例III−6は積層性が劣っていたが、yが0.10〜0.90の範囲である例III−2〜5は、積層性および剥離性が共に優れていた。また、例III−2〜5のうち、yが0.20以上である例III−3〜5は剥離性がより優れ、yが0.50以下である例III−2〜4は積層性がより優れていた。 As shown in Table 3 above, Example III-1 in which y in SiN 1-y O y of the inorganic layer surface composition is less than 0.10 is inferior in peelability, and Example III-6 in which it exceeds 0.90 is Although the laminateability was inferior, Examples III-2 to 5-5 in which y was in the range of 0.10 to 0.90 were excellent in both laminateability and peelability. Further, among Examples III-2 to 5, Examples III-3 to 5 in which y is 0.20 or more are more excellent in peelability, and Examples III-2 to 4 in which y is 0.50 or less have lamination properties. It was better.
<例IV>
本例では、特許文献1で具体的に使用されている金属酸化物であるITOの無機層を形成した。具体的には、支持基板の一方の主面をアルカリ性水溶液で洗浄して清浄化した。さらに、清浄化した面に、マグネトロンスパッタリング法により、厚さ150nmのITO層(酸化インジウムスズ層)を形成し、ITO層付き支持基板を得た。ITO層の表面粗さRaは、0.85nmであった。
例I−1〜8と同様にして積層性および剥離性を評価したところ、積層性は「△」であったが剥離性は「×」であった。
<Example IV>
In this example, an inorganic layer of ITO, which is a metal oxide specifically used in Patent Document 1, was formed. Specifically, one main surface of the support substrate was cleaned by washing with an alkaline aqueous solution. Further, an ITO layer (indium tin oxide layer) having a thickness of 150 nm was formed on the cleaned surface by a magnetron sputtering method to obtain a support substrate with an ITO layer. The surface roughness Ra of the ITO layer was 0.85 nm.
When laminateability and peelability were evaluated in the same manner as in Examples I-1 to 8, the laminateability was “Δ”, but the peelability was “x”.
<例V>
本例では、例I−4で製造された、ガラス積層体を用いてOLEDを作製した。
より具体的には、ガラス積層体におけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成した。次に、プラズマCVD法により、ゲート電極を設けたガラス基板の第2主面側に、さらに窒化シリコン、真性アモルファスシリコン、n型アモルファスシリコンの順に成膜し、続いてスパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングにより、ゲート絶縁膜、半導体素子部およびソース/ドレイン電極を形成した。次に、プラズマCVD法により、ガラス基板の第2主面側に、さらに窒化シリコンを成膜してパッシベーション層を形成した後に、スパッタリング法により酸化インジウム錫を成膜して、フォトリソグラフィ法を用いたエッチングにより、画素電極を形成した。
続いて、ガラス基板の第2主面側に、さらに蒸着法により正孔注入層として4,4’,4”−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N−ナフチル)−N−フェニル]ベンジジン、発光層として8−キノリノールアルミニウム錯体(Alq3)に2,6−ビス[4−[N−(4−メトキシフェニル)−N−フェニル]アミノスチリル]ナフタレン−1,5−ジカルボニトリル(BSN−BCN)を40体積%混合したもの、電子輸送層としてAlq3をこの順に成膜した。次に、ガラス基板の第2主面側にスパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成した。次に、対向電極を形成したガラス基板の第2主面上に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止した。上記手順によって得られた、ガラス基板上に有機EL構造体を有するガラス積層体は、電子デバイス用部材付き積層体に該当する。
続いて、得られたガラス積層体の封止体側を定盤に真空吸着させたうえで、ガラス積層体のコーナー部の無機層とガラス基板との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス積層体から無機層付き支持基板を分離して、OLEDパネル(電子デバイスに該当。以下パネルAという)を得た。作製したパネルAにICドライバを接続し、常温常圧下で駆動させたところ、駆動領域内において表示ムラは認められなかった。
<Example V>
In this example, an OLED was produced using the glass laminate produced in Example I-4.
More specifically, a molybdenum film was formed by sputtering on the second main surface of the glass substrate in the glass laminate, and a gate electrode was formed by etching using photolithography. Next, silicon nitride, intrinsic amorphous silicon, and n-type amorphous silicon are formed in this order on the second main surface side of the glass substrate provided with the gate electrode by plasma CVD, and then molybdenum is formed by sputtering. Then, a gate insulating film, a semiconductor element portion, and source / drain electrodes were formed by etching using a photolithography method. Next, after forming a passivation layer by further forming silicon nitride on the second main surface side of the glass substrate by plasma CVD, indium tin oxide is formed by sputtering and photolithography is used. A pixel electrode was formed by etching.
Subsequently, on the second main surface side of the glass substrate, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine as a hole injection layer and bis [ (N-naphthyl) -N-phenyl] benzidine, 8-quinolinol aluminum complex (Alq 3 ) as a light emitting layer, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer were formed in this order, and then formed on the second main surface side of the glass substrate by sputtering. Aluminum was deposited, and a counter electrode was formed by etching using a photolithography method.Next, ultraviolet light was formed on the second main surface of the glass substrate on which the counter electrode was formed. Another glass substrate was bonded and sealed through a chemical adhesive layer, and the glass laminate having the organic EL structure on the glass substrate obtained by the above procedure was laminated with an electronic device member. Applies to the body.
Subsequently, after the sealed body side of the obtained glass laminate is vacuum-adsorbed to a surface plate, a stainless steel knife having a thickness of 0.1 mm is formed at the interface between the inorganic layer at the corner of the glass laminate and the glass substrate. Was inserted and the support substrate with an inorganic layer was separated from the glass laminate to obtain an OLED panel (corresponding to an electronic device, hereinafter referred to as panel A). When an IC driver was connected to the manufactured panel A and driven under normal temperature and normal pressure, display unevenness was not observed in the driving region.
<例VI>
本例では、例I−4で製造された、ガラス積層体を用いてLCDを作製した。
ガラス積層体を2枚用意し、まず、片方のガラス積層体におけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成した。次に、プラズマCVD法により、ゲート電極を設けたガラス基板の第2主面側に、さらに窒化シリコン、真性アモルファスシリコン、n型アモルファスシリコンの順に成膜し、続いてスパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングにより、ゲート絶縁膜、半導体素子部およびソース/ドレイン電極を形成した。次に、プラズマCVD法により、ガラス基板の第2主面側に、さらに窒化シリコンを成膜してパッシベーション層を形成した後に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより、画素電極を形成した。次に、画素電極を形成したガラス基板の第2主面上に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングを行った。得られたガラス積層体を、ガラス積層体X1と呼ぶ。
次に、もう片方のガラス積層体におけるガラス基板の第2主面上に、スパッタリング法によりクロムを成膜し、フォトリソグラフィ法を用いたエッチングにより遮光層を形成した。次に、遮光層を設けたガラス基板の第2主面側に、さらにダイコート法によりカラーレジストを塗布し、フォトリソグラフィ法および熱硬化によりカラーフィルタ層を形成した。次に、ガラス基板の第2主面側に、さらにスパッタリング法により酸化インジウム錫を成膜し、対向電極を形成した。次に、対向電極を設けたガラス基板の第2主面上に、ダイコート法により紫外線硬化樹脂液を塗布し、フォトリソグラフィ法および熱硬化により柱状スペーサを形成した。次に、柱状スペーサを形成したガラス基板の第2主面上に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングを行った。次に、ガラス基板の第2主面側に、ディスペンサ法によりシール用樹脂液を枠状に描画し、枠内にディスペンサ法により液晶を滴下した後に、上述したガラス積層体X1を用いて、2枚のガラス積層体のガラス基板の第2主面側同士を貼り合わせ、紫外線硬化および熱硬化によりLCDパネルを有する積層体を得た。ここでのLCDパネルを有する積層体を以下、パネル付き積層体X2という。
次に、パネル付き積層体X2から両面の無機層付き支持基板を剥離し、TFTアレイを形成した基板およびカラーフィルタを形成した基板からなるLCDパネルB(電子デバイスに該当)を得た。
作製したLCDパネルBにICドライバを接続し、常温常圧下で駆動させたところ、駆動領域内において表示ムラは認められなかった。
<Example VI>
In this example, an LCD was produced using the glass laminate produced in Example I-4.
Two glass laminates were prepared. First, a molybdenum film was formed by sputtering on the second main surface of the glass substrate in one glass laminate, and a gate electrode was formed by etching using photolithography. Next, silicon nitride, intrinsic amorphous silicon, and n-type amorphous silicon are formed in this order on the second main surface side of the glass substrate provided with the gate electrode by plasma CVD, and then molybdenum is formed by sputtering. Then, a gate insulating film, a semiconductor element portion, and source / drain electrodes were formed by etching using a photolithography method. Next, after forming a passivation layer by further forming silicon nitride on the second main surface side of the glass substrate by plasma CVD, indium tin oxide was formed by sputtering and photolithography was used. A pixel electrode was formed by etching. Next, a polyimide resin liquid was applied on the second main surface of the glass substrate on which the pixel electrode was formed by a roll coating method, an alignment layer was formed by thermosetting, and rubbing was performed. The obtained glass laminate is referred to as a glass laminate X1.
Next, a chromium film was formed on the second main surface of the glass substrate in the other glass laminate by a sputtering method, and a light-shielding layer was formed by etching using a photolithography method. Next, a color resist was further applied by a die coating method to the second main surface side of the glass substrate provided with the light shielding layer, and a color filter layer was formed by a photolithography method and thermal curing. Next, an indium tin oxide film was further formed on the second main surface side of the glass substrate by a sputtering method to form a counter electrode. Next, an ultraviolet curable resin liquid was applied to the second main surface of the glass substrate provided with the counter electrode by a die coating method, and columnar spacers were formed by a photolithography method and heat curing. Next, a polyimide resin solution was applied on the second main surface of the glass substrate on which the columnar spacers were formed by a roll coating method, an alignment layer was formed by thermosetting, and rubbing was performed. Next, after the sealing resin liquid is drawn in a frame shape on the second main surface side of the glass substrate by the dispenser method, and the liquid crystal is dropped in the frame by the dispenser method, the above-described glass laminate X1 is used. The 2nd main surface side of the glass substrate of a sheet of glass laminated body was bonded together, and the laminated body which has an LCD panel by ultraviolet curing and thermosetting was obtained. Hereinafter, the laminate having the LCD panel is referred to as a laminate X2 with a panel.
Next, the support substrate with an inorganic layer on both sides was peeled from the laminated body X2 with a panel to obtain an LCD panel B (corresponding to an electronic device) comprising a substrate on which a TFT array was formed and a substrate on which a color filter was formed.
When an IC driver was connected to the manufactured LCD panel B and driven under normal temperature and normal pressure, no display unevenness was observed in the driving region.
10 ガラス積層体
12 支持基板
14 無機層
14a 無機層表面(無機層における支持基板側とは反対側の表面)
16 無機層付き支持基板
18 ガラス基板
18a ガラス基板の第1主面
18b ガラス基板の第2主面
20 電子デバイス用部材
22 電子デバイス用部材付き積層体
24 電子デバイス
31 固定台
32 L字型治具
DESCRIPTION OF SYMBOLS 10 Glass laminated body 12 Support substrate 14 Inorganic layer 14a Inorganic layer surface (surface on the opposite side to the support substrate side in an inorganic layer)
16 Support substrate 18 with inorganic layer Glass substrate 18a First main surface 18b of glass substrate Second main surface 20 of glass substrate 20 Electronic device member 22 Laminated body 24 with electronic device member Electronic device 31 Fixing base 32 L-shaped jig
Claims (8)
前記無機層における前記支持基板側とは反対側の表面である無機層表面上に剥離可能に積層されたガラス基板と、を備え、
前記無機層が、前記無機層表面の組成として、SiC1-xOx(x=0.10〜0.90)および/またはSiN1-yOy(y=0.10〜0.90)を含み、
前記無機層表面の表面粗さ(Ra)が、0.20〜1.00nmである、ガラス積層体。 A support substrate with an inorganic layer having a support substrate and an inorganic layer disposed on the support substrate;
A glass substrate laminated in a peelable manner on the surface of the inorganic layer which is the surface opposite to the support substrate side in the inorganic layer,
The inorganic layer has a composition of SiC 1-x O x (x = 0.10 to 0.90) and / or SiN 1-y O y (y = 0.10 to 0.90) as the composition of the inorganic layer surface. Including
The glass laminated body whose surface roughness (Ra) of the said inorganic layer surface is 0.20-1.00 nm.
前記電子デバイス用部材付き積層体から前記無機層付き支持基板を剥離し、前記ガラス基板および前記電子デバイス用部材を有する電子デバイスを得る分離工程と、を備える電子デバイスの製造方法。 The member formation process which forms the member for electronic devices on the surface of the glass substrate in the glass laminated body of any one of Claims 1-7, and obtains the laminated body with the member for electronic devices,
A separation step of peeling the support substrate with an inorganic layer from the laminate with the member for electronic devices to obtain an electronic device having the glass substrate and the member for electronic devices.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013233109A JP6176067B2 (en) | 2013-11-11 | 2013-11-11 | GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD |
CN201410643730.3A CN104626684B (en) | 2013-11-11 | 2014-11-11 | The manufacturing method of glass laminate and electronic device |
KR1020140155996A KR20150054693A (en) | 2013-11-11 | 2014-11-11 | Glass laminated body and manufacturing method of electronic device |
TW103139115A TWI645979B (en) | 2013-11-11 | 2014-11-11 | Glass laminate and method of manufacturing electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013233109A JP6176067B2 (en) | 2013-11-11 | 2013-11-11 | GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015093405A true JP2015093405A (en) | 2015-05-18 |
JP6176067B2 JP6176067B2 (en) | 2017-08-09 |
Family
ID=53196156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013233109A Active JP6176067B2 (en) | 2013-11-11 | 2013-11-11 | GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6176067B2 (en) |
KR (1) | KR20150054693A (en) |
CN (1) | CN104626684B (en) |
TW (1) | TWI645979B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015163134A1 (en) * | 2014-04-25 | 2015-10-29 | 旭硝子株式会社 | Glass laminate body, and method for manufacturing electronic device |
WO2016017650A1 (en) * | 2014-08-01 | 2016-02-04 | 旭硝子株式会社 | Glass laminate and support substrate equipped with inorganic film, method for manufacturing said glass laminate and said support substrate, and method for manufacturing electronic device |
CN106275568A (en) * | 2015-06-25 | 2017-01-04 | 旭硝子株式会社 | The packing method of the substrate with adsorption layer and the packing device of the substrate of band adsorption layer |
US9889635B2 (en) | 2012-12-13 | 2018-02-13 | Corning Incorporated | Facilitated processing for controlling bonding between sheet and carrier |
US10014177B2 (en) | 2012-12-13 | 2018-07-03 | Corning Incorporated | Methods for processing electronic devices |
US10046542B2 (en) | 2014-01-27 | 2018-08-14 | Corning Incorporated | Articles and methods for controlled bonding of thin sheets with carriers |
US10086584B2 (en) | 2012-12-13 | 2018-10-02 | Corning Incorporated | Glass articles and methods for controlled bonding of glass sheets with carriers |
WO2019059319A1 (en) * | 2017-09-22 | 2019-03-28 | ジオマテック株式会社 | Resin substrate laminate and manufacturing method for electronic device |
US10510576B2 (en) | 2013-10-14 | 2019-12-17 | Corning Incorporated | Carrier-bonding methods and articles for semiconductor and interposer processing |
US10538452B2 (en) | 2012-12-13 | 2020-01-21 | Corning Incorporated | Bulk annealing of glass sheets |
US10543662B2 (en) | 2012-02-08 | 2020-01-28 | Corning Incorporated | Device modified substrate article and methods for making |
US11097509B2 (en) | 2016-08-30 | 2021-08-24 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
US11167532B2 (en) | 2015-05-19 | 2021-11-09 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
US11192340B2 (en) | 2014-04-09 | 2021-12-07 | Corning Incorporated | Device modified substrate article and methods for making |
US11331692B2 (en) | 2017-12-15 | 2022-05-17 | Corning Incorporated | Methods for treating a substrate and method for making articles comprising bonded sheets |
US11535553B2 (en) | 2016-08-31 | 2022-12-27 | Corning Incorporated | Articles of controllably bonded sheets and methods for making same |
US11905201B2 (en) | 2015-06-26 | 2024-02-20 | Corning Incorporated | Methods and articles including a sheet and a carrier |
US11999135B2 (en) | 2017-08-18 | 2024-06-04 | Corning Incorporated | Temporary bonding using polycationic polymers |
US12122138B2 (en) | 2021-08-03 | 2024-10-22 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184284A (en) * | 2009-09-18 | 2011-09-22 | Nippon Electric Glass Co Ltd | Method for producing glass film, method for treating glass film and glass film laminate |
JP2011201725A (en) * | 2010-03-25 | 2011-10-13 | Nippon Electric Glass Co Ltd | Method for producing glass substrate |
JP2013184346A (en) * | 2012-03-07 | 2013-09-19 | Asahi Glass Co Ltd | Glass laminate, and method for producing electronic device |
WO2013179881A1 (en) * | 2012-05-29 | 2013-12-05 | 旭硝子株式会社 | Glass laminate and method for manufacturing electronic device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4583062B2 (en) * | 2004-03-31 | 2010-11-17 | 大日本印刷株式会社 | Transparent gas barrier film and method for producing the same |
JPWO2012144499A1 (en) * | 2011-04-22 | 2014-07-28 | 旭硝子株式会社 | Laminate, production method and use thereof |
-
2013
- 2013-11-11 JP JP2013233109A patent/JP6176067B2/en active Active
-
2014
- 2014-11-11 CN CN201410643730.3A patent/CN104626684B/en active Active
- 2014-11-11 TW TW103139115A patent/TWI645979B/en active
- 2014-11-11 KR KR1020140155996A patent/KR20150054693A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011184284A (en) * | 2009-09-18 | 2011-09-22 | Nippon Electric Glass Co Ltd | Method for producing glass film, method for treating glass film and glass film laminate |
JP2011201725A (en) * | 2010-03-25 | 2011-10-13 | Nippon Electric Glass Co Ltd | Method for producing glass substrate |
JP2013184346A (en) * | 2012-03-07 | 2013-09-19 | Asahi Glass Co Ltd | Glass laminate, and method for producing electronic device |
WO2013179881A1 (en) * | 2012-05-29 | 2013-12-05 | 旭硝子株式会社 | Glass laminate and method for manufacturing electronic device |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10543662B2 (en) | 2012-02-08 | 2020-01-28 | Corning Incorporated | Device modified substrate article and methods for making |
US10086584B2 (en) | 2012-12-13 | 2018-10-02 | Corning Incorporated | Glass articles and methods for controlled bonding of glass sheets with carriers |
US10538452B2 (en) | 2012-12-13 | 2020-01-21 | Corning Incorporated | Bulk annealing of glass sheets |
US9889635B2 (en) | 2012-12-13 | 2018-02-13 | Corning Incorporated | Facilitated processing for controlling bonding between sheet and carrier |
US10014177B2 (en) | 2012-12-13 | 2018-07-03 | Corning Incorporated | Methods for processing electronic devices |
US10510576B2 (en) | 2013-10-14 | 2019-12-17 | Corning Incorporated | Carrier-bonding methods and articles for semiconductor and interposer processing |
US10046542B2 (en) | 2014-01-27 | 2018-08-14 | Corning Incorporated | Articles and methods for controlled bonding of thin sheets with carriers |
US11123954B2 (en) | 2014-01-27 | 2021-09-21 | Corning Incorporated | Articles and methods for controlled bonding of thin sheets with carriers |
US11192340B2 (en) | 2014-04-09 | 2021-12-07 | Corning Incorporated | Device modified substrate article and methods for making |
WO2015163134A1 (en) * | 2014-04-25 | 2015-10-29 | 旭硝子株式会社 | Glass laminate body, and method for manufacturing electronic device |
WO2016017650A1 (en) * | 2014-08-01 | 2016-02-04 | 旭硝子株式会社 | Glass laminate and support substrate equipped with inorganic film, method for manufacturing said glass laminate and said support substrate, and method for manufacturing electronic device |
US11660841B2 (en) | 2015-05-19 | 2023-05-30 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
US11167532B2 (en) | 2015-05-19 | 2021-11-09 | Corning Incorporated | Articles and methods for bonding sheets with carriers |
JP2017007718A (en) * | 2015-06-25 | 2017-01-12 | 旭硝子株式会社 | Packaging method of substrate with absorption layer, packaging device of the substrate with the absorption layer |
CN106275568A (en) * | 2015-06-25 | 2017-01-04 | 旭硝子株式会社 | The packing method of the substrate with adsorption layer and the packing device of the substrate of band adsorption layer |
US11905201B2 (en) | 2015-06-26 | 2024-02-20 | Corning Incorporated | Methods and articles including a sheet and a carrier |
US11097509B2 (en) | 2016-08-30 | 2021-08-24 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
US11535553B2 (en) | 2016-08-31 | 2022-12-27 | Corning Incorporated | Articles of controllably bonded sheets and methods for making same |
US11999135B2 (en) | 2017-08-18 | 2024-06-04 | Corning Incorporated | Temporary bonding using polycationic polymers |
CN110326086B (en) * | 2017-09-22 | 2021-02-12 | 吉奥马科技有限公司 | Resin substrate laminate and method for manufacturing electronic device |
KR102065901B1 (en) | 2017-09-22 | 2020-01-13 | 지오마텍 가부시키가이샤 | Resin substrate laminate and manufacturing method for electronic device |
CN110326086A (en) * | 2017-09-22 | 2019-10-11 | 吉奥马科技有限公司 | The manufacturing method of resin substrate laminated body and electronic equipment |
KR20190101496A (en) * | 2017-09-22 | 2019-08-30 | 지오마텍 가부시키가이샤 | Resin substrate laminate and manufacturing method for electronic device |
JP2019061975A (en) * | 2017-09-22 | 2019-04-18 | ジオマテック株式会社 | Resin substrate laminate and method of manufacturing electronic device |
WO2019059319A1 (en) * | 2017-09-22 | 2019-03-28 | ジオマテック株式会社 | Resin substrate laminate and manufacturing method for electronic device |
US11331692B2 (en) | 2017-12-15 | 2022-05-17 | Corning Incorporated | Methods for treating a substrate and method for making articles comprising bonded sheets |
US12122138B2 (en) | 2021-08-03 | 2024-10-22 | Corning Incorporated | Siloxane plasma polymers for sheet bonding |
Also Published As
Publication number | Publication date |
---|---|
JP6176067B2 (en) | 2017-08-09 |
TWI645979B (en) | 2019-01-01 |
CN104626684B (en) | 2018-06-05 |
KR20150054693A (en) | 2015-05-20 |
CN104626684A (en) | 2015-05-20 |
TW201522076A (en) | 2015-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6176067B2 (en) | GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD | |
JP6172362B2 (en) | GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD | |
JP6119567B2 (en) | Method for manufacturing glass laminate and method for manufacturing electronic device | |
JP2013184346A (en) | Glass laminate, and method for producing electronic device | |
JP6136909B2 (en) | Manufacturing method of support substrate with resin layer, manufacturing method of glass laminate, manufacturing method of electronic device | |
WO2015163134A1 (en) | Glass laminate body, and method for manufacturing electronic device | |
JP7136275B2 (en) | LAMINATED BODY, ELECTRONIC DEVICE MANUFACTURING METHOD, LAMINATED PRODUCTION METHOD | |
JP6673354B2 (en) | Method for manufacturing carrier substrate, laminate, and electronic device | |
WO2018092688A1 (en) | Laminated substrate and method for manufacturing electronic device | |
JP2015108735A (en) | Manufacturing method of electronic device | |
WO2016017649A1 (en) | Glass laminate, supporting substrate with inorganic layer, method for manufacturing electronic device, and method for producing supporting substrate with inorganic layer | |
JP2017164903A (en) | Glass laminate, support substrate with inorganic layer, method for producing electronic device, and method for producing support substrate with inorganic layer | |
JP2016210157A (en) | Glass laminate and method for producing electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170626 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6176067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |