JP2015091571A - Substrate treatment method and device - Google Patents

Substrate treatment method and device Download PDF

Info

Publication number
JP2015091571A
JP2015091571A JP2014161024A JP2014161024A JP2015091571A JP 2015091571 A JP2015091571 A JP 2015091571A JP 2014161024 A JP2014161024 A JP 2014161024A JP 2014161024 A JP2014161024 A JP 2014161024A JP 2015091571 A JP2015091571 A JP 2015091571A
Authority
JP
Japan
Prior art keywords
nitrogen gas
substrate
dissolved water
temperature
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014161024A
Other languages
Japanese (ja)
Other versions
JP6045041B2 (en
Inventor
圭悟 大森
Keigo Omori
圭悟 大森
磯 明典
Akinori Iso
明典 磯
裕一 今岡
Yuichi Imaoka
裕一 今岡
手島 理恵
Rie Tejima
理恵 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Priority to JP2014161024A priority Critical patent/JP6045041B2/en
Priority to TW103127599A priority patent/TWI525364B/en
Priority to CN201410490569.0A priority patent/CN104517806B/en
Priority to KR1020140126670A priority patent/KR101640669B1/en
Publication of JP2015091571A publication Critical patent/JP2015091571A/en
Application granted granted Critical
Publication of JP6045041B2 publication Critical patent/JP6045041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a substrate treatment method and a substrate treatment device capable of efficiently removing a contamination component generated by the influence of a fluorine ion which may be generated in rubbing treatment.SOLUTION: Provided is the substrate treatment method for treatment of a substrate which has been subjected to rubbing treatment and used for a liquid crystal display panel. The method includes a first step (11) for cleaning the substrate by nitrogen gas solution formed by dissolving gas including the nitrogen gas to water, and temperature of the nitrogen gas solution is in a range of 40-80°C.

Description

本発明は、液晶表示パネルに用いられる基板を処理する基板処理方法及び基板処理装置、特に、ラビング処理済みの前記基板を処理する基板処理方法及び基板処理装置に関する。   The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate used in a liquid crystal display panel, and more particularly to a substrate processing method and a substrate processing apparatus for processing the substrate that has been rubbed.

液晶表示パネルの製造工程では、一般に、表面に配向膜(例えば、ポリイミド膜)の形成された液晶の基板に対してラビング処理が行われる。このラビング処理では、前記基板の配向膜の表面に例えばナイロン製のラビング布を巻いたローラが押し付けられ、そのローラを回転させて前記ラビング布が前記配向膜の表面を擦る。このようにラビング布を基板の配向膜に擦り付けることにより、配向膜(例えば、ポリイミド膜)表面の高分子鎖が一定方向に潰れ、そのために配向膜(高分子膜)に異方性が生じ、その配向膜の異方性により液晶分子の配向方向が規定される。   In the manufacturing process of a liquid crystal display panel, a rubbing process is generally performed on a liquid crystal substrate having an alignment film (for example, a polyimide film) formed on the surface thereof. In this rubbing treatment, a roller wrapped with, for example, a nylon rubbing cloth is pressed against the surface of the alignment film of the substrate, and the rubbing cloth rubs the surface of the alignment film by rotating the roller. By rubbing the rubbing cloth against the alignment film of the substrate in this way, the polymer chains on the surface of the alignment film (for example, polyimide film) are crushed in a certain direction, and therefore anisotropy occurs in the alignment film (polymer film), The alignment direction of the liquid crystal molecules is defined by the anisotropy of the alignment film.

このようなラビング処理により、配向膜(ポリイミド膜)の削れたカスや、ナイロン製のラビング布からのフッ素イオンの影響を受けた、配向膜成分(ポリイミド)により基板表面が汚染される。さらに、ポリイミド自体に含まれるフッ素イオンが他の部室と結合して、汚染物質(フッ素化合物)となることもある。このため、ラビング処理済みの基板を洗浄する必要がある。このラビング処理済みの基板を洗浄する従来の方法(例えば、特許文献1参照)では、基板における配向膜の表面に純水の遮蔽層が形成された状態で、当該基板表面に薬液がかけられる。これにより、薬液の表面に浮いて移動する塵芥は、純水の遮蔽層により被覆された配向膜表面に静電気的に付着することなく、前記薬液によって洗い流される。   By such rubbing treatment, the substrate surface is contaminated by the alignment film component (polyimide) affected by the residue of the alignment film (polyimide film) and the fluorine ions from the rubbing cloth made of nylon. Further, fluorine ions contained in the polyimide itself may be combined with other chambers to become a contaminant (fluorine compound). For this reason, it is necessary to clean the rubbing-treated substrate. In a conventional method for cleaning a rubbing-treated substrate (see, for example, Patent Document 1), a chemical solution is applied to the surface of the substrate with a pure water shielding layer formed on the surface of the alignment film on the substrate. Thereby, the dust which floats and moves on the surface of the chemical solution is washed away by the chemical solution without electrostatically adhering to the alignment film surface covered with the pure water shielding layer.

特開2008−299234号公報JP 2008-299234 A

前記ラビング処理済みの基板の洗浄では、配向膜の削れたカスだけでなく、前記ラビング処理にて生じ得るフッ素イオンの影響を受けて生じた汚染成分(フッ素化合物)を効果的に除去できることも重要である。しかしながら、前述した従来の基板の洗浄方法(処理方法)では、フッ素イオンの影響を受けて生じた汚染成分については特に考慮がなされていない。   In cleaning the rubbing-treated substrate, it is also important to be able to effectively remove not only debris from the alignment film but also contaminating components (fluorine compounds) generated by the influence of fluorine ions that can be generated by the rubbing treatment. It is. However, in the conventional substrate cleaning method (processing method) described above, no particular consideration has been given to the contaminating components produced under the influence of fluorine ions.

本発明は、このような事情に鑑みてなされたもので、ラビング処理にて生じ得るフッ素イオンの影響を受けて生じた汚染成分を効果的に除去できる基板処理方法及び基板処理装置を提供するものである。   The present invention has been made in view of such circumstances, and provides a substrate processing method and a substrate processing apparatus capable of effectively removing contaminating components generated under the influence of fluorine ions that can be generated in a rubbing process. It is.

本発明に係る基板処理方法は、液晶表示パネルに用いられるラビング処理済みの基板を処理する基板処理方法であって、水に少なくとも窒素ガスを含むガスを溶解させてなる窒素ガス溶解水により前記基板を洗浄する第1工程を含み、前記窒素ガス溶解水の温度は、40℃以上80℃以下の範囲内に調整される構成となる。   A substrate processing method according to the present invention is a substrate processing method for processing a rubbing-treated substrate used in a liquid crystal display panel, wherein the substrate is made of nitrogen gas-dissolved water obtained by dissolving a gas containing at least nitrogen gas in water. The temperature of the nitrogen gas-dissolved water is adjusted within a range of 40 ° C. or higher and 80 ° C. or lower.

このような構成により、40℃以上80℃以下の範囲内のある温度に調整された窒素ガス溶解水によりラビング処理済みの基板が洗浄される。その洗浄過程において、窒素ガス溶解水の少なくとも窒素成分及び水成分が、ラビング処理にて生じ得るフッ素イオンの影響を受けて生じた汚染成分と、40℃以上80℃以下の範囲内のある温度のもとで、化学的に反応し得る。   With such a configuration, the rubbing-treated substrate is cleaned with nitrogen gas-dissolved water adjusted to a certain temperature within the range of 40 ° C. or higher and 80 ° C. or lower. In the cleaning process, at least the nitrogen component and the water component of the nitrogen gas-dissolved water are contaminated by the influence of fluorine ions that can be generated in the rubbing treatment, and a certain temperature within the range of 40 ° C. to 80 ° C. It can react chemically.

本発明に係る基板処理方法において、前記第1工程により洗浄された前記基板を所定の薬液により洗浄する第2工程を含む構成とすることができる。   The substrate processing method according to the present invention may include a second step of cleaning the substrate cleaned in the first step with a predetermined chemical solution.

このような構成により、前記窒素ガス溶解水により洗浄されたラビング済みの基板が、更に、所定の薬液により洗浄される。   With such a configuration, the rubbed substrate cleaned with the nitrogen gas-dissolved water is further cleaned with a predetermined chemical solution.

前記窒素ガス溶解水の温度は、より好ましくは、45℃以上80℃以下の範囲内に調整することができ、更に好ましくは、60℃以上80℃以下の範囲内に調整することができる。   More preferably, the temperature of the nitrogen gas-dissolved water can be adjusted within a range of 45 ° C. or higher and 80 ° C. or lower, and more preferably within a range of 60 ° C. or higher and 80 ° C. or lower.

また、本発明に係る基板処理装置は、液晶表示パネルに用いられるラビング処理済みの基板を処理する基板処理装置であって、水に少なくとも窒素ガスを含むガスを溶解させて窒素ガス溶解水を生成する窒素ガス溶解水生成部と、該窒素ガス溶解水生成部にて生成される窒素ガス溶解水を40℃以上80℃以下の範囲内の温度に維持する温度維持機構と、前記温度範囲内の温度に維持された前記窒素ガス溶解水により前記基板を洗浄する第1洗浄部とを有する構成となる。   The substrate processing apparatus according to the present invention is a substrate processing apparatus for processing a rubbing-treated substrate used in a liquid crystal display panel, and generates nitrogen gas-dissolved water by dissolving a gas containing at least nitrogen gas in water. A nitrogen gas-dissolved water generating unit, a temperature maintaining mechanism for maintaining the nitrogen gas-dissolved water generated in the nitrogen gas-dissolved water generating unit at a temperature within a range of 40 ° C. or higher and 80 ° C. or lower, And a first cleaning unit that cleans the substrate with the nitrogen gas-dissolved water maintained at a temperature.

このような構成により、第1洗浄部では、40℃以上80℃以下の範囲内のある温度に維持された窒素ガス溶解水によりラビング処理済みの基板が洗浄される。その洗浄過程において、窒素ガス溶解水の少なくとも窒素成分及び水成分が、ラビング処理にて生じ得るフッ素イオンの影響を受けて生じた汚染成分と、40℃以上80℃以下の範囲内のある温度のもとで、化学的に反応し得る。   With such a configuration, in the first cleaning section, the rubbing-treated substrate is cleaned with nitrogen gas-dissolved water maintained at a certain temperature within a range of 40 ° C. or higher and 80 ° C. or lower. In the cleaning process, at least the nitrogen component and the water component of the nitrogen gas-dissolved water are contaminated by the influence of fluorine ions that can be generated in the rubbing treatment, and a certain temperature within the range of 40 ° C. to 80 ° C. It can react chemically.

本発明に係る基板処理方法及び基板処理装置によれば、窒素ガス溶解水の少なくとも窒素成分及び水成分が、ラビング処理にて生じ得るフッ素イオンの影響を受けて生じた汚染成分と、40℃以上80℃以下の範囲内のある温度のもとで、化学的に反応し得るので、前記ラビング処理にて生じ得るフッ素イオンの影響を受けて生じた汚染成分を効果的に除去することができる。   According to the substrate processing method and the substrate processing apparatus of the present invention, at least the nitrogen component and the water component of the nitrogen gas-dissolved water are contaminated by the influence of fluorine ions that can be generated in the rubbing treatment, and 40 ° C. or higher. Since it can react chemically at a certain temperature within the range of 80 ° C. or less, it is possible to effectively remove contaminating components generated under the influence of fluorine ions that can be generated by the rubbing treatment.

本発明に係る基板処理装置の基本的な構成を示す図である。It is a figure which shows the basic composition of the substrate processing apparatus which concerns on this invention. 窒素ガス溶解水を用いて洗浄した場合のその窒素ガス溶解水の温度と基板表面のパーティクル(汚染成分)の除去率との関係Q1と、純水を用いて洗浄した場合のその純水の温度と基板表面のパーティクル(汚染成分)の除去率との関係Q2とを示す図である。Relationship Q1 between the temperature of the nitrogen gas-dissolved water when cleaned with nitrogen gas-dissolved water and the removal rate of particles (contaminating components) on the substrate surface, and the temperature of the pure water when cleaned with pure water FIG. 6 is a diagram illustrating a relationship Q2 between the particle surface and the removal rate of particles (contamination components) on the substrate surface.

本発明の実施の形態について図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の実施の一形態に係る基板処理装置は、図1に示すように構成される。   A substrate processing apparatus according to an embodiment of the present invention is configured as shown in FIG.

図1において、この基板処理装置10は、第1洗浄室11(第1洗浄部)、第2洗浄室12(第2洗浄部)、リンス室13及びエアー乾燥室14を有している。洗浄対象となるラビング処理済みの液晶の基板Sは、搬送機構(図示略)によって、直列配置された第1洗浄室11、第2洗浄室12、リンス室13及びエアー乾燥室14を順次通って搬送される。この基板処理装置10に投入される基板Sは、表面に配向膜となるポリイミド膜が形成されており、その表面がラビング処理された状態になっている。   In FIG. 1, the substrate processing apparatus 10 includes a first cleaning chamber 11 (first cleaning unit), a second cleaning chamber 12 (second cleaning unit), a rinse chamber 13 and an air drying chamber 14. The rubbing-treated liquid crystal substrate S to be cleaned is sequentially passed through the first cleaning chamber 11, the second cleaning chamber 12, the rinse chamber 13, and the air drying chamber 14 arranged in series by a transport mechanism (not shown). Be transported. The substrate S put into the substrate processing apparatus 10 has a polyimide film serving as an alignment film formed on the surface, and the surface is in a state of being rubbed.

基板処理装置10は、また、タンク20を有し、タンク20内には、純水(HO)が貯められるとともに、窒素ガス(Nガス)が供給される。タンク20(窒素ガス溶解水生成部)内において、純水中で窒素ガスがバブリングされて窒素ガス溶解水が生成される。タンク20にはヒータ装置21が付設されており、タンク20内に設けられた温度検出器(図示略)からの検出信号に基づいた図示外の制御装置によるヒータ装置21に対する通電制御により、タンク20内にて生成される窒素ガス溶解水の温度が所定の温度に調整される。 The substrate processing apparatus 10 also has a tank 20 in which pure water (H 2 O) is stored and nitrogen gas (N 2 gas) is supplied. In the tank 20 (nitrogen gas dissolved water generating section), nitrogen gas is bubbled in pure water to generate nitrogen gas dissolved water. A heater device 21 is attached to the tank 20, and energization control is performed on the heater device 21 by a control device (not shown) based on a detection signal from a temperature detector (not shown) provided in the tank 20. The temperature of the dissolved nitrogen gas water is adjusted to a predetermined temperature.

第1洗浄室11には、複数のノズルを有するノズル機構111が設けられている。前記複数のノズルは、洗浄対象物である基板Sの搬送路の上側及び下側のそれぞれに所定数ずつ配置されている。タンク20に溜められた窒素ガス溶解水は、ポンプ22によってノズル機構111に供給され、当該窒素ガス溶解水がノズル機構111の各ノズルから搬送路に向けて噴出する。第1洗浄室11のノズル機構111から噴出された窒素ガス溶解水は、タンク20に回収され、ポンプ22によってタンク20から、再び、第1洗浄室11のノズル機構111に供給される。このように、第1洗浄室11とタンク20との間に循環経路が形成されており、タンク20に溜められた窒素ガス溶解水が繰り返し、第1洗浄室11での基板Sの洗浄に用いられる。   The first cleaning chamber 11 is provided with a nozzle mechanism 111 having a plurality of nozzles. The plurality of nozzles are arranged in a predetermined number on each of the upper side and the lower side of the transport path of the substrate S that is an object to be cleaned. The nitrogen gas dissolved water stored in the tank 20 is supplied to the nozzle mechanism 111 by the pump 22, and the nitrogen gas dissolved water is ejected from each nozzle of the nozzle mechanism 111 toward the conveyance path. The nitrogen gas dissolved water ejected from the nozzle mechanism 111 of the first cleaning chamber 11 is collected in the tank 20, and is supplied again from the tank 20 to the nozzle mechanism 111 of the first cleaning chamber 11 by the pump 22. In this way, a circulation path is formed between the first cleaning chamber 11 and the tank 20, and the nitrogen gas dissolved water stored in the tank 20 is repeatedly used for cleaning the substrate S in the first cleaning chamber 11. It is done.

第2洗浄室12にも、基板Sの搬送路の上側及び下側に配置された複数のノズルを有するノズル機構121が設けられている。第2洗浄室12のノズル機構121には、所定の薬液が供給され、ノズル機構121の各ノズルから薬液が搬送路に向けて噴出する。前記薬液は、ラビング処理済みの基板Sの洗浄に通常用いられる薬液であって、例えば、1,2-ヘキサンジオールまたはアルコール類、所定の添加物、及び純水を所定の割合で調合することにより作られる。   The second cleaning chamber 12 is also provided with a nozzle mechanism 121 having a plurality of nozzles arranged above and below the transport path of the substrate S. A predetermined chemical solution is supplied to the nozzle mechanism 121 of the second cleaning chamber 12, and the chemical solution is ejected from each nozzle of the nozzle mechanism 121 toward the conveyance path. The chemical solution is a chemical solution that is usually used for cleaning the substrate S that has been subjected to the rubbing treatment. For example, 1,2-hexanediol or alcohols, a predetermined additive, and pure water are prepared at a predetermined ratio. Made.

リンス室13にも、基板Sの搬送路の上側及び下側に配置された複数のノズルを有するノズル機構131が設けられている。リンス室13のノズル機構131には、純水が供給され、ノズル機構131の各ノズルから純水が搬送路に向けて噴出する。また、エアー乾燥室14には複数のエアーナイフが設けられ、その複数のエアーナイフから高圧エアーが搬送路に向けて噴出される。   The rinse chamber 13 is also provided with a nozzle mechanism 131 having a plurality of nozzles arranged on the upper and lower sides of the transport path of the substrate S. Pure water is supplied to the nozzle mechanism 131 of the rinse chamber 13, and pure water is ejected from each nozzle of the nozzle mechanism 131 toward the conveyance path. The air drying chamber 14 is provided with a plurality of air knives, and high-pressure air is ejected from the plurality of air knives toward the conveyance path.

上述したような基板処理装置10では、図示外の制御装置によって、次のように動作制御がなされる。搬送機構により搬送される基板Sが第1洗浄室11を通過する際に、ノズル機構111の各ノズルから噴出する窒素ガス溶解水が基板Sの両面に吹きかけられる。窒素ガス溶解水は、タンク20内で所定の温度に調整されており、第1洗浄室11において、基板Sは、その所定の温度に調整された窒素ガス溶解水により洗浄される(第1工程)。   In the substrate processing apparatus 10 as described above, operation control is performed as follows by a control device (not shown). When the substrate S transported by the transport mechanism passes through the first cleaning chamber 11, nitrogen gas-dissolved water ejected from each nozzle of the nozzle mechanism 111 is sprayed on both surfaces of the substrate S. The nitrogen gas dissolved water is adjusted to a predetermined temperature in the tank 20, and the substrate S is cleaned with the nitrogen gas dissolved water adjusted to the predetermined temperature in the first cleaning chamber 11 (first step). ).

第1洗浄室11での窒素ガス溶解水による処理(洗浄)が終了し、搬送機構により搬送される基板Sが第2洗浄室12を通過する際に、ノズル機構121の各ノズルから噴出する薬液(1,2-ヘキサンジオールまたはアルコール類を含有する)が基板Sの両面に吹きかけられる。基板Sは、第2洗浄室12において、前記薬液により洗浄される(第2工程)。   The chemical liquid ejected from each nozzle of the nozzle mechanism 121 when the treatment (cleaning) with the nitrogen gas-dissolved water in the first cleaning chamber 11 is completed and the substrate S transported by the transport mechanism passes through the second cleaning chamber 12. (Containing 1,2-hexanediol or alcohol) is sprayed on both sides of the substrate S. The substrate S is cleaned with the chemical solution in the second cleaning chamber 12 (second step).

第2洗浄室12での薬液による処理(洗浄)が終了し、搬送機構により搬送される基板Sがリンス室13を通過する際に、ノズル機構131の各ノズルから噴出する純水が基板Sの両面に吹きかけられる。これにより、基板Sの両面に残った窒素ガス溶解水、薬液、及び窒素ガス溶解水及び薬液により除去された除去物が、純水により洗い流される。   When the treatment (cleaning) with the chemical solution in the second cleaning chamber 12 is finished and the substrate S transported by the transport mechanism passes through the rinse chamber 13, the pure water ejected from each nozzle of the nozzle mechanism 131 becomes the substrate S. Sprayed on both sides. As a result, the nitrogen gas-dissolved water and the chemical solution remaining on both surfaces of the substrate S and the removed material removed by the nitrogen gas-dissolved water and the chemical solution are washed away with pure water.

リンス室13での純水による処理(洗い流し)が終了し、搬送機構により搬送される基板Sがエアー乾燥室14を通過する際に、各エアーナイフから噴出する高圧エアーによって基板Sに付着した純水が飛ばされて、基板Sの表面が乾燥させられる。その後、基板Sは、搬送機構により次の工程(液晶パネルの組立工程等)に搬送される。   When the treatment (washing) with pure water in the rinsing chamber 13 is completed and the substrate S transported by the transport mechanism passes through the air drying chamber 14, the pure adhering to the substrate S by high-pressure air ejected from each air knife Water is blown off, and the surface of the substrate S is dried. Thereafter, the substrate S is transported to the next process (liquid crystal panel assembly process or the like) by the transport mechanism.

上述したような基板処理装置10によれば、ラビング処理でのラビング布での機械的な擦りによって生じたゴミやフッ素イオンの影響を受けて生じた汚染成分(フッ素化合物)がポリイミド膜(配向膜)の表面に付着した基板Sであっても、第1洗浄室11において所定温度に調整された窒素ガス溶解水にて洗浄され、その後、第2洗浄室12において1,2-ヘキサンジオールまたはアルコール類を含有する薬液により洗浄されるので、それらゴミや汚染成分(フッ素化合物)を効果的に除去することができる。
特に、第1洗浄室11における窒素ガス溶解水での洗浄によって、フッ素化合物等の汚染成分を効果的に除去することができる。これは、窒素ガス溶解水中に含まれるH(HO)、N、及び汚染成分に含まれるフッ素イオンFが結合して、フッ化アンモニウムイオンNH が生成されるからであると推察される。
According to the substrate processing apparatus 10 as described above, a contamination component (fluorine compound) generated under the influence of dust and fluorine ions generated by mechanical rubbing with a rubbing cloth in a rubbing process is caused to occur in a polyimide film (alignment film). Is washed with nitrogen gas-dissolved water adjusted to a predetermined temperature in the first cleaning chamber 11 and then 1,2-hexanediol or alcohol in the second cleaning chamber 12. Since it is washed with a chemical solution containing a kind, it is possible to effectively remove such dust and contaminating components (fluorine compounds).
In particular, contamination components such as fluorine compounds can be effectively removed by cleaning with nitrogen gas dissolved water in the first cleaning chamber 11. This is because H 2 (H 2 O), N 2 contained in the nitrogen gas-dissolved water, and fluorine ions F contained in the contaminating components are combined to produce ammonium fluoride ions NH 4 + F −. It is guessed that.

なお、上記の実施の形態において、窒素ガス溶解水を生成する方法として、タンク20内の純水に窒素ガスをバブリングさせて溶解させる例を挙げて説明したが、これに限らず、中空糸膜を用いる方法など、窒素ガスを純水に溶解させて窒素ガス溶解水を生成することができる方法であればよい。   In the above embodiment, the method for generating the nitrogen gas-dissolved water has been described with reference to an example in which nitrogen gas is bubbled and dissolved in the pure water in the tank 20, but the present invention is not limited thereto. Any method that can generate nitrogen gas-dissolved water by dissolving nitrogen gas in pure water may be used.

また、上記の実施の形態において、溶解水として、窒素ガス溶解水を例に挙げて説明したが、純水に溶解させるガスは、窒素ガスだけに限らず、窒素ガスを含むガスであって、基板S上のフッ素化合物等の汚染成分と化学反応を起こすガスであればよい。   Further, in the above embodiment, as the dissolved water, nitrogen gas dissolved water has been described as an example, but the gas dissolved in pure water is not limited to nitrogen gas, and is a gas containing nitrogen gas, Any gas that causes a chemical reaction with a contaminating component such as a fluorine compound on the substrate S may be used.

なお、上記の実施の形態において、処理対象物である基板Sは両面を処理する例を説明したが、これに限らず、一方の面のみ処理を行うなど、工程によって必要な面を処理すればよい。   In the above-described embodiment, the substrate S that is the processing target has been described as being processed on both sides. However, the present invention is not limited to this, and if only one side is processed, a necessary surface is processed according to the process. Good.

以下に、図1に示す基板処理装置10において行なった実験例を示す。
・条件
窒素(N)ガスを1NL(ナノリットル)/分でタンク20に供給
窒素ガス溶解水の窒素(N)ガス濃度:8ppm
・測定方法
基板Sのパーティクル(汚染成分)の大きさと個数を光によって測定する装置を用い、基板処理装置10での処理前の測定値とその処理後の測定値との割合を除去率(%)とした。
・結果
図2の特性Q1に示すように、第1洗浄室11で用いられる窒素ガス溶解水の温度が40℃以上になると、急激に除去率が上昇し、その温度が約80℃で除去率が90%とになって、それを越える温度で大きな変化がなかった。窒素ガス溶解水の温度が45℃で特に除去率が大きく変化し、更に、窒素ガス溶解水の温度が60℃を越えると、除去率は飽和状態に近づいた。このことから、第1洗浄室11で用いられる窒素ガス溶解水の温度は、40℃以上80℃以下の範囲内の温度に調整されることが好ましいことが判った。その調整範囲のうち、特に好ましくは、45℃以上80℃以下の範囲であり、更に好ましくは、60℃以上80℃以下の範囲であった。
なお、第1洗浄室11において窒素ガス溶解水に代えて純水を用いた場合、その純水の温度と、除去率との関係は、図2の特性Q2のようになった。純水では、窒素ガス溶解水を用いた場合(Q1参照)のように、温度によって、除去率が大きく変動することはなかった。
上記の実験例では、窒素ガス溶解水の窒素(N)ガス濃度値は、8ppmであったが、本発明はこれに限定されない。窒素ガス溶解水が低温領域である場合においては、基板上のフッ素化合物等のパーティクルの分解の進捗が遅いためにパーティクル除去率は低いと考えられる。一方、窒素ガス溶解水が一定温度以上の高温領域である場合においては、液温に対して溶け込むガスの量が飽和状態となるため、パーティクル除去率も飽和状態となり、パーティクル除去率が頭打ちとなると考えられる。したがって、図2に示した特性Q1は、上述の通り、窒素ガス溶解水の窒素ガス濃度値が8ppmの場合の結果であるが、窒素ガス濃度値が8ppm以外であっても、この特性Q1と同様の傾向の特性が現れると考えられる。
窒素ガス溶解水の窒素(N)ガス濃度は、フッ素化合物等の汚染成分との化学反応が十分起こってその汚染成分の除去率が向上するという観点では、ある程度高いことが好ましい。しかし、高すぎても、化学反応に寄与しない量が増加してしまい窒素ガスが無駄になってしまう。実際には、窒素ガス溶解水の窒素(N)ガス濃度は、5〜25ppmの範囲で調整される。
なお、窒素ガスバブリングの際に、ナノバブル等の微細気泡として窒素ガスを純水に混入させるようにすれば、特に濃度設定を考慮する必要はない。ナノバブルは極めて小さい気泡であるため、液中に長時間留まり続けることが従来から知られている。この性質を利用すると、純水中の窒素ガスは長時間飽和状態であり続けるため、フッ素化合物等の汚染成分の除去効率も飽和状態が維持されるからである。
Below, the example of experiment conducted in the substrate processing apparatus 10 shown in FIG. 1 is shown.
-Conditions Nitrogen (N 2 ) gas is supplied to tank 20 at 1 NL (nanoliter) / min. Nitrogen (N 2 ) gas concentration of nitrogen gas dissolved water: 8 ppm
Measurement Method Using a device that measures the size and number of particles (contaminating components) on the substrate S with light, the ratio between the measured value before processing and the measured value after processing in the substrate processing apparatus 10 is the removal rate (% ).
Results As shown in the characteristic Q1 of FIG. 2, when the temperature of the nitrogen gas dissolved water used in the first cleaning chamber 11 is 40 ° C. or higher, the removal rate rapidly increases, and the removal rate is about 80 ° C. Was 90%, and there was no significant change at temperatures exceeding that. When the temperature of the nitrogen gas-dissolved water was 45 ° C., the removal rate changed greatly, and when the temperature of the nitrogen gas-dissolved water exceeded 60 ° C., the removal rate approached a saturated state. From this, it was found that the temperature of the nitrogen gas dissolved water used in the first cleaning chamber 11 is preferably adjusted to a temperature within the range of 40 ° C. or higher and 80 ° C. or lower. Among the adjustment range, the range of 45 ° C. or more and 80 ° C. or less is particularly preferable, and the range of 60 ° C. or more and 80 ° C. or less is more preferable.
When pure water was used in the first cleaning chamber 11 instead of nitrogen gas dissolved water, the relationship between the temperature of the pure water and the removal rate was as indicated by characteristic Q2 in FIG. In the case of pure water, the removal rate did not vary greatly depending on the temperature as in the case of using nitrogen gas-dissolved water (see Q1).
In the above experimental example, the nitrogen (N 2 ) gas concentration value of the nitrogen gas-dissolved water was 8 ppm, but the present invention is not limited to this. When the nitrogen gas-dissolved water is in a low temperature region, it is considered that the particle removal rate is low because the progress of decomposition of particles such as fluorine compounds on the substrate is slow. On the other hand, when the nitrogen gas-dissolved water is in a high temperature region above a certain temperature, the amount of gas dissolved with respect to the liquid temperature is saturated, so the particle removal rate is also saturated and the particle removal rate reaches its peak. Conceivable. Therefore, the characteristic Q1 shown in FIG. 2 is the result when the nitrogen gas concentration value of the nitrogen gas dissolved water is 8 ppm as described above, but even if the nitrogen gas concentration value is other than 8 ppm, this characteristic Q1 It is considered that a similar tendency appears.
The nitrogen (N 2 ) gas concentration of the nitrogen gas-dissolved water is preferably high to some extent from the viewpoint that a chemical reaction with a contaminating component such as a fluorine compound occurs sufficiently and the removal rate of the contaminating component is improved. However, if it is too high, the amount that does not contribute to the chemical reaction increases, and the nitrogen gas is wasted. Actually, the nitrogen (N 2 ) gas concentration of the nitrogen gas-dissolved water is adjusted in the range of 5 to 25 ppm.
If nitrogen gas is mixed in pure water as fine bubbles such as nanobubbles during nitrogen gas bubbling, it is not necessary to consider the concentration setting. Since nanobubbles are extremely small bubbles, it is conventionally known that they remain in the liquid for a long time. This is because if this property is utilized, nitrogen gas in pure water remains saturated for a long time, so that the removal efficiency of contaminants such as fluorine compounds is also maintained saturated.

10 基板処理装置
11 第1洗浄室(第1洗浄部)
12 第2洗浄室(第2洗浄部)
13 リンス室
14 エアー乾燥室
20 タンク
21 ヒータ装置
22 ポンプ
111、121、131 ノズル機構
10 substrate processing apparatus 11 first cleaning chamber (first cleaning section)
12 Second cleaning chamber (second cleaning section)
13 Rinsing chamber 14 Air drying chamber 20 Tank 21 Heater device 22 Pump 111, 121, 131 Nozzle mechanism

Claims (6)

液晶表示パネルに用いられるラビング処理済みの基板を処理する基板処理方法であって、
水に少なくとも窒素ガスを含むガスを溶解させてなる窒素ガス溶解水により前記基板を洗浄する第1工程を含み、
前記窒素ガス溶解水の温度は、40℃以上80℃以下の範囲内に調整される基板処理方法。
A substrate processing method for processing a rubbing-treated substrate used in a liquid crystal display panel,
Including a first step of cleaning the substrate with nitrogen gas-dissolved water obtained by dissolving a gas containing at least nitrogen gas in water;
The substrate processing method in which the temperature of the nitrogen gas-dissolved water is adjusted within a range of 40 ° C. or higher and 80 ° C. or lower.
液晶表示パネルに用いられるラビング処理済みの基板を処理する基板処理方法であって、
水に少なくとも窒素ガスを含むガスを溶解させてなる窒素ガス溶解水により前記基板を洗浄する第1工程と、
前記第1工程より洗浄された前記基板を薬液により洗浄する第2工程と、
前記第2工程によって洗浄された前記基板を乾燥させる乾燥工程とを含み、
前記窒素ガス溶解水の温度は、40℃以上80℃以下の範囲内に調整される基板処理方法。
A substrate processing method for processing a rubbing-treated substrate used in a liquid crystal display panel,
A first step of cleaning the substrate with nitrogen gas-dissolved water obtained by dissolving a gas containing at least nitrogen gas in water;
A second step of cleaning the substrate cleaned in the first step with a chemical solution;
A drying step of drying the substrate cleaned in the second step,
The substrate processing method in which the temperature of the nitrogen gas-dissolved water is adjusted within a range of 40 ° C. or higher and 80 ° C. or lower.
前記窒素ガス溶解水の温度は、45℃以上80℃以下の範囲内に調整される請求項1または2記載の基板処理方法。   The substrate processing method according to claim 1, wherein the temperature of the nitrogen gas-dissolved water is adjusted within a range of 45 ° C. or more and 80 ° C. or less. 前記窒素ガス溶解水の温度は、60℃以上80℃以下の範囲内に調整される請求項3記載の基板処理方法。   The substrate processing method according to claim 3, wherein the temperature of the nitrogen gas-dissolved water is adjusted within a range of 60 ° C. or more and 80 ° C. or less. 液晶表示パネルに用いられるラビング処理済みの基板を処理する基板処理装置であって、
水に少なくとも窒素ガスを含むガスを溶解させて窒素ガス溶解水を生成する窒素ガス溶解水生成部と、
該窒素ガス溶解水生成部にて生成される窒素ガス溶解水を40℃以上80℃以下の範囲内の温度に維持する温度維持機構と、
前記温度範囲内の温度に維持された前記窒素ガス溶解水により前記基板を洗浄する第1洗浄部とを有する基板処理装置。
A substrate processing apparatus for processing a rubbing-treated substrate used in a liquid crystal display panel,
A nitrogen gas-dissolved water generating unit that dissolves a gas containing at least nitrogen gas in water to generate nitrogen gas-dissolved water;
A temperature maintaining mechanism for maintaining the nitrogen gas-dissolved water produced in the nitrogen gas-dissolved water generating section at a temperature within a range of 40 ° C. or more and 80 ° C. or less;
A substrate processing apparatus comprising: a first cleaning unit that cleans the substrate with the nitrogen gas-dissolved water maintained at a temperature within the temperature range.
液晶パネルに用いられるラビング処理済みの基板を処理する基板処理装置であって、
水に少なくとも窒素ガスを含むガスを溶解させて窒素ガス溶解水を生成する窒素ガス溶解水生成部と、
前記窒素ガス溶解水生成部にて生成される窒素ガス溶解水を40℃以上80℃以下の範囲内の温度に維持する温度維持機構と、
前記温度範囲内の温度に維持された前記窒素ガス溶解水により前記基板を洗浄する第1洗浄部と、
前記第1洗浄部により洗浄された基板を、所定の薬液にて洗浄する第2洗浄部と、
前記第2洗浄部により洗浄された前記基板を、乾燥させる乾燥室とを有する基板処理装置。
A substrate processing apparatus for processing a rubbing-treated substrate used in a liquid crystal panel,
A nitrogen gas-dissolved water generating unit that dissolves a gas containing at least nitrogen gas in water to generate nitrogen gas-dissolved water;
A temperature maintaining mechanism for maintaining the nitrogen gas dissolved water generated in the nitrogen gas dissolved water generating section at a temperature within a range of 40 ° C. or higher and 80 ° C. or lower;
A first cleaning section for cleaning the substrate with the nitrogen gas-dissolved water maintained at a temperature within the temperature range;
A second cleaning unit for cleaning the substrate cleaned by the first cleaning unit with a predetermined chemical solution;
A substrate processing apparatus comprising: a drying chamber for drying the substrate cleaned by the second cleaning unit.
JP2014161024A 2013-09-30 2014-08-07 Substrate processing method and substrate processing apparatus Active JP6045041B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014161024A JP6045041B2 (en) 2013-09-30 2014-08-07 Substrate processing method and substrate processing apparatus
TW103127599A TWI525364B (en) 2013-09-30 2014-08-12 Substrate processing method and substrate processing device
CN201410490569.0A CN104517806B (en) 2013-09-30 2014-09-23 Substrate processing method using same and substrate board treatment
KR1020140126670A KR101640669B1 (en) 2013-09-30 2014-09-23 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013203426 2013-09-30
JP2013203426 2013-09-30
JP2014161024A JP6045041B2 (en) 2013-09-30 2014-08-07 Substrate processing method and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2015091571A true JP2015091571A (en) 2015-05-14
JP6045041B2 JP6045041B2 (en) 2016-12-14

Family

ID=53195108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161024A Active JP6045041B2 (en) 2013-09-30 2014-08-07 Substrate processing method and substrate processing apparatus

Country Status (2)

Country Link
JP (1) JP6045041B2 (en)
TW (1) TWI525364B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206478A (en) * 1999-01-12 2000-07-28 Toshiba Corp Production of liquid crystal display device
JP2003029268A (en) * 2001-07-13 2003-01-29 Minolta Co Ltd Reflection type liquid crystal display element and manufacturing method therefor
JP2004125881A (en) * 2002-09-30 2004-04-22 Seiko Epson Corp Method for washing substrate
JP2008118109A (en) * 2006-10-13 2008-05-22 Dainippon Screen Mfg Co Ltd Nozzle, and substrate treatment device provided with the same
JP2012146690A (en) * 2009-03-31 2012-08-02 Kurita Water Ind Ltd Cleaning method for electronic material and cleaning apparatus for electronic material
JP2012143708A (en) * 2011-01-12 2012-08-02 Kurita Water Ind Ltd Washing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206478A (en) * 1999-01-12 2000-07-28 Toshiba Corp Production of liquid crystal display device
JP2003029268A (en) * 2001-07-13 2003-01-29 Minolta Co Ltd Reflection type liquid crystal display element and manufacturing method therefor
JP2004125881A (en) * 2002-09-30 2004-04-22 Seiko Epson Corp Method for washing substrate
JP2008118109A (en) * 2006-10-13 2008-05-22 Dainippon Screen Mfg Co Ltd Nozzle, and substrate treatment device provided with the same
JP2012146690A (en) * 2009-03-31 2012-08-02 Kurita Water Ind Ltd Cleaning method for electronic material and cleaning apparatus for electronic material
JP2012143708A (en) * 2011-01-12 2012-08-02 Kurita Water Ind Ltd Washing method

Also Published As

Publication number Publication date
TWI525364B (en) 2016-03-11
JP6045041B2 (en) 2016-12-14
TW201523076A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5286290B2 (en) Cleaning composition, electronic device substrate cleaning method, and electronic device substrate
EP1950792A1 (en) Cleaning liquid and cleaning method for electronic material
KR20140058439A (en) Method for cleaning semiconductor wafer
US20160067749A1 (en) Ultrasonic cleaning apparatus and method for cleaning
JP3380021B2 (en) Cleaning method
JP6045041B2 (en) Substrate processing method and substrate processing apparatus
US9659796B2 (en) Rinsing wafers using composition-tunable rinse water in chemical mechanical polish
JP6969750B2 (en) Hydrogen carbonate water and cleaning method using it
KR101640669B1 (en) Substrate processing method and substrate processing apparatus
KR20090030204A (en) Process for cleaning a semiconductor wafer
JP2006154752A (en) Recycling method of glass substrate for color filter
JP2010225995A (en) Cleaning device and cleaning method, of semiconductor substrate
KR100586582B1 (en) Hf-processing apparatus for glass
TW201733694A (en) Cleaning apparatus
JP2005019999A (en) Wet chemical surface treatment method of semiconductor wafer
CN109201581B (en) Method for cleaning semiconductor machine table parts
TWI441692B (en) Method of cleaning a substrate using the ultrasonic vibration of a medium
JP2002131889A (en) Cleaning method and cleaning device of quartz substrate for photomask
JP6020626B2 (en) Device Ge substrate cleaning method, cleaning water supply device and cleaning device
JP2007075390A (en) Dish washer
KR102566723B1 (en) Spin cleaning method of semiconductor lithography photo mask using ozone water
JP2003033730A (en) Circulation cleaning method and cleaning unit
WO2013171973A1 (en) Method for cleaning semiconductor wafer
KR20070068886A (en) Impurities remover of liquid crystal display panel
KR20230096991A (en) Epitaxial wafer cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161110

R150 Certificate of patent or registration of utility model

Ref document number: 6045041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150