JP2015090467A - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
JP2015090467A
JP2015090467A JP2013230963A JP2013230963A JP2015090467A JP 2015090467 A JP2015090467 A JP 2015090467A JP 2013230963 A JP2013230963 A JP 2013230963A JP 2013230963 A JP2013230963 A JP 2013230963A JP 2015090467 A JP2015090467 A JP 2015090467A
Authority
JP
Japan
Prior art keywords
meth
coat layer
hard coat
acrylic resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013230963A
Other languages
Japanese (ja)
Other versions
JP6238684B2 (en
Inventor
周作 柴田
Shusaku Shibata
周作 柴田
岸 敦史
Atsushi Kishi
敦史 岸
浩貴 倉本
Hirotaka Kuramoto
浩貴 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2013230963A priority Critical patent/JP6238684B2/en
Priority to KR1020217012619A priority patent/KR102366883B1/en
Priority to KR1020167011314A priority patent/KR102363489B1/en
Priority to CN201480061007.2A priority patent/CN105705968B/en
Priority to PCT/JP2014/075277 priority patent/WO2015068483A1/en
Priority to TW103134058A priority patent/TWI542468B/en
Publication of JP2015090467A publication Critical patent/JP2015090467A/en
Application granted granted Critical
Publication of JP6238684B2 publication Critical patent/JP6238684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical laminate which satisfies requirements on adhesion between a hard coat layer and a base material layer and hardness and which can be manufactured without heating to such a temperature that may cause deformation of the base material film.SOLUTION: The optical laminate of the present invention comprises; a base material layer comprising a (meth)acrylic resin film; a hard coat layer formed by coating the (meth)acrylic resin film with a hard coat layer-forming composition; and a permeated layer formed between the base material layer and hard coat layer by permeating the hard coat layer-forming composition into the (meth)acrylic resin film. The hard coat layer-forming composition contains; a curable compound (A) containing one or more radically polymerizable unsaturated groups and an aromatic ring; a curable compound (B) containing two or more radically polymerizable unsaturated groups but not containing an aromatic ring; and a mono-functional monomer (C) containing one radially polymerizable unsaturated group but not containing an aromatic ring.

Description

本発明は、光学積層体に関する。   The present invention relates to an optical laminate.

液晶ディスプレイ(LCD)、陰極線管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)等の画像表示装置は、外部からの接触によりその表面に傷がつくと、表示画像の視認性が低下する場合がある。このため、画像表示装置の表面保護を目的として、基材フィルムとハードコート層とを含む光学積層体が用いられている。光学積層体の基材フィルムとしては、代表的にはトリアセチルセルロース(TAC)が用いられている(特許文献1)。しかし、TACからなる基材フィルムは、透湿度が高い。そのため、このような基材フィルムを含む光学積層体をLCDに用いた場合、高温高湿下では水分が当該光学積層体を透過して、偏光子の光学特性が劣化するという問題が生じる。近年、屋内での使用に加え、カーナビゲーションシステム、携帯情報端末のような屋外で使用される機器にもLCDが用いられることも多くなっており、高温高湿等の過酷な条件下においても上記問題の生じない信頼性の高いLCDが求められている。   Image display devices such as liquid crystal display (LCD), cathode ray tube display device (CRT), plasma display (PDP), electroluminescence display (ELD), etc. are visible when the surface is damaged by external contact. May decrease. For this reason, an optical laminate including a base film and a hard coat layer is used for the purpose of protecting the surface of the image display device. As a base film of the optical laminate, triacetyl cellulose (TAC) is typically used (Patent Document 1). However, the base film made of TAC has high moisture permeability. Therefore, when an optical laminate including such a substrate film is used in an LCD, moisture is transmitted through the optical laminate under high temperature and high humidity, resulting in a problem that the optical characteristics of the polarizer are deteriorated. In recent years, in addition to indoor use, LCDs are also frequently used for outdoor use devices such as car navigation systems and personal digital assistants. Even under severe conditions such as high temperature and high humidity, There is a need for a reliable LCD that does not cause problems.

上記問題を解決するため、低透湿性のアクリル系基材フィルム上にハードコート層形成用組成物を塗布および加熱することによってハードコート層形成用組成物を基材フィルムに浸透させ、これにより、基材フィルムとハードコート層との密着性を向上させた光学積層体が提案されている(例えば、特許文献2および特許文献3)。しかしながら、特許文献2の光学積層体の製造においては、十分な密着性を得るために基材フィルムのTgに近い温度で加熱する必要があるので、基材フィルムが変形(例えば、収縮)するおそれがある。一方、特許文献3の光学積層体の製造においては、比較的低温の加熱によってハードコート層形成用組成物を基材フィルムに浸透させて密着性を向上させることができるが、硬度が不十分となる場合がある。   In order to solve the above problem, the hard coat layer-forming composition is allowed to penetrate into the base film by applying and heating the hard coat layer-forming composition on the low moisture-permeable acrylic base film. Optical laminated bodies with improved adhesion between the base film and the hard coat layer have been proposed (for example, Patent Document 2 and Patent Document 3). However, in the production of the optical laminate of Patent Document 2, since it is necessary to heat at a temperature close to the Tg of the base film in order to obtain sufficient adhesion, the base film may be deformed (for example, contracted). There is. On the other hand, in the production of the optical laminate of Patent Document 3, the adhesiveness can be improved by infiltrating the base film with the composition for forming a hard coat layer by heating at a relatively low temperature, but the hardness is insufficient. There is a case.

特開2008−165205号公報JP 2008-165205 A 特開2012−234163号公報JP 2012-234163 A 特開2013−50641号公報JP 2013-50641 A

本発明は、ハードコート層と基材層との密着性および硬度を両立することができ、かつ、基材フィルムの変形を惹起し得る温度の加熱を必要とせずに製造され得る光学積層体を提供する。   The present invention provides an optical laminate that can achieve both the adhesion and hardness of the hard coat layer and the base material layer, and can be produced without requiring heating at a temperature that can cause deformation of the base material film. provide.

本発明の光学積層体は、(メタ)アクリル系樹脂フィルムから形成される基材層と、該(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工して形成されたハードコート層と、該基材層と該ハードコート層との間に、該ハードコート層形成用組成物が該(メタ)アクリル系樹脂フィルムに浸透して形成された浸透層とを備える。該ハードコート層形成用組成物は、1個以上のラジカル重合性不飽和基および芳香環を含有する硬化性化合物(A)と、2個以上のラジカル重合性不飽和基を含有するが、芳香環を含有しない硬化性化合物(B)と、1個のラジカル重合性不飽和基を含有するが、芳香環を含有しない単官能モノマー(C)と、を含む。
1つの実施形態において、上記ハードコート層形成用組成物中の全硬化性化合物に対する硬化性化合物(A)の含有割合が、10重量%〜60重量%である。
1つの実施形態において、上記ハードコート層形成用組成物中の全硬化性化合物に対する硬化性化合物(A)と単官能モノマー(C)との合計含有割合が、20重量%〜70重量%である。
1つの実施形態において、上記ハードコート層形成用組成物が、硬化性化合物(B)として、9個以上のラジカル重合性不飽和基を含有する硬化性化合物(B1)を含む。
1つの実施形態において、上記単官能モノマー(C)の重量平均分子量が、500以下である。
1つの実施形態において、上記単官能モノマー(C)が、水酸基を有する。
1つの実施形態において、上記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有する。
1つの実施形態において、上記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂の重量平均分子量が、10000〜500000である。
1つの実施形態において、上記ハードコート層の浸透層とは反対側の表面が、凹凸構造を有する。
1つの実施形態において、上記ハードコート層の浸透層とは反対側に、反射防止層をさらに備える。
本発明の別の局面によれば、偏光フィルムが提供される。該偏光フィルムは、上記光学積層体を含む。
本発明のさらに別の局面によれば、画像表示装置が提供される。画像表示装置は、上記光学積層体を含む。
本発明のさらに別の局面によれば、光学積層体の製造方法が提供される。該製造方法は、(メタ)アクリル系樹脂フィルム上にハードコート層形成用組成物を塗布して塗布層を形成し、該塗布層を50℃以上100℃未満で加熱することを含む。該ハードコート層形成用組成物は、1個以上のラジカル重合性不飽和基および芳香環を含有する硬化性化合物(A)と、2個以上のラジカル重合性不飽和基を含有するが、芳香環を含有しない硬化性化合物(B)と、1個のラジカル重合性不飽和基を含有するが、芳香環を含有しない単官能モノマー(C)と、を含む。
The optical layered body of the present invention includes a base layer formed from a (meth) acrylic resin film, and a hard coat formed by coating the (meth) acrylic resin film with a composition for forming a hard coat layer And a permeation layer formed by permeating the (meth) acrylic resin film between the layer and the base material layer and the hard coat layer. The hard coat layer-forming composition contains a curable compound (A) containing one or more radically polymerizable unsaturated groups and an aromatic ring, and two or more radically polymerizable unsaturated groups. A curable compound (B) that does not contain a ring and a monofunctional monomer (C) that contains one radical polymerizable unsaturated group but does not contain an aromatic ring.
In one embodiment, the content rate of the sclerosing | hardenable compound (A) with respect to all the sclerosing | hardenable compounds in the said composition for hard-coat layer formation is 10 weight%-60 weight%.
In one embodiment, the total content of the curable compound (A) and the monofunctional monomer (C) with respect to the total curable compound in the hard coat layer forming composition is 20% by weight to 70% by weight. .
In one embodiment, the said composition for hard-coat layer formation contains the sclerosing | hardenable compound (B1) containing a 9 or more radically polymerizable unsaturated group as a sclerosing | hardenable compound (B).
In one embodiment, the weight average molecular weight of the said monofunctional monomer (C) is 500 or less.
In one embodiment, the monofunctional monomer (C) has a hydroxyl group.
In one embodiment, the (meth) acrylic resin forming the (meth) acrylic resin film has a structural unit that exhibits positive birefringence and a structural unit that exhibits negative birefringence.
In one embodiment, the weight average molecular weight of the (meth) acrylic resin that forms the (meth) acrylic resin film is 10,000 to 500,000.
In one embodiment, the surface of the hard coat layer opposite to the osmotic layer has a concavo-convex structure.
In one embodiment, an antireflection layer is further provided on the opposite side of the hard coat layer from the permeation layer.
According to another aspect of the present invention, a polarizing film is provided. This polarizing film contains the said optical laminated body.
According to still another aspect of the present invention, an image display device is provided. The image display device includes the optical laminate.
According to another situation of this invention, the manufacturing method of an optical laminated body is provided. The production method includes applying a hard coat layer forming composition on a (meth) acrylic resin film to form a coating layer, and heating the coating layer at 50 ° C. or more and less than 100 ° C. The hard coat layer-forming composition contains a curable compound (A) containing one or more radically polymerizable unsaturated groups and an aromatic ring, and two or more radically polymerizable unsaturated groups. A curable compound (B) that does not contain a ring and a monofunctional monomer (C) that contains one radical polymerizable unsaturated group but does not contain an aromatic ring.

本発明によれば、所定の3種類の硬化性化合物を含むハードコート層形成用組成物を用いることにより、基材層とハードコート層との密着性および硬度の両方に優れ、かつ、基材フィルムの変形を惹起し得る温度での加熱を必要とせずに製造され得る光学積層体が得られる。   According to the present invention, by using a composition for forming a hard coat layer containing predetermined three kinds of curable compounds, both the adhesion and hardness between the base layer and the hard coat layer are excellent, and the base material An optical laminate is obtained that can be manufactured without the need for heating at a temperature that can cause deformation of the film.

(a)は本発明の好ましい実施形態による光学積層体の概略断面図であり、(b)は浸透層を有さない光学積層体の概略断面図の一例である。(A) is a schematic sectional drawing of the optical laminated body by preferable embodiment of this invention, (b) is an example of the schematic sectional drawing of the optical laminated body which does not have a osmosis | permeation layer. 本発明の別の実施形態による光学積層体の概略断面図である。It is a schematic sectional drawing of the optical laminated body by another embodiment of this invention.

以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.光学積層体の全体構成
図1(a)は、本発明の好ましい実施形態による光学積層体の概略断面図であり、図1(b)は、浸透層を有さない光学積層体の概略断面図である。図1(a)に示す光学積層体100は、(メタ)アクリル系樹脂フィルムから形成される基材層10と、浸透層20と、ハードコート層30とをこの順に備える。ハードコート層30は、(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工して形成される。浸透層20は、ハードコート層形成用組成物が(メタ)アクリル系樹脂フィルムに浸透して形成される。基材層10は、このようにハードコート層形成用組成物が(メタ)アクリル系樹脂フィルムに浸透した際に、(メタ)アクリル系樹脂フィルムにおいてハードコート層形成用組成物が到達(浸透)しなかった部分である。一方、図1(b)に示す光学積層体200は、浸透層が形成されていない。図1(a)および(b)に示す境界Aは、(メタ)アクリル系樹脂フィルムのハードコート層形成用組成物塗工面により規定される境界である。したがって、境界Aは、光学積層体100においては浸透層20とハードコート層30との境界であり、浸透層が形成されていない光学積層体200においては基材層10’(すなわち、(メタ)アクリル系樹脂フィルム)とハードコート層30’との境界である。なお、本明細書において、「(メタ)アクリル」とはアクリルおよび/またはメタクリルを意味する。
Hereinafter, although preferable embodiment of this invention is described, this invention is not limited to these embodiment.
A. 1A is a schematic cross-sectional view of an optical laminate according to a preferred embodiment of the present invention, and FIG. 1B is a schematic cross-sectional view of an optical laminate having no osmotic layer. It is. The optical laminated body 100 shown to Fig.1 (a) is equipped with the base material layer 10 formed from a (meth) acrylic-type resin film, the osmosis | permeation layer 20, and the hard-coat layer 30 in this order. The hard coat layer 30 is formed by applying a composition for forming a hard coat layer to a (meth) acrylic resin film. The permeation layer 20 is formed by permeating the (meth) acrylic resin film with the hard coat layer forming composition. When the composition for forming a hard coat layer penetrates into the (meth) acrylic resin film in this way, the composition for forming the hard coat layer reaches (penetrates) in the (meth) acrylic resin film. This is the part that did not. On the other hand, in the optical laminated body 200 shown in FIG. Boundary A shown in FIGS. 1A and 1B is a boundary defined by the hard coat layer forming composition coating surface of the (meth) acrylic resin film. Therefore, the boundary A is the boundary between the osmotic layer 20 and the hard coat layer 30 in the optical laminate 100, and the base layer 10 ′ (ie, (meta)) in the optical laminate 200 in which the osmotic layer is not formed. This is the boundary between the acrylic resin film) and the hard coat layer 30 '. In the present specification, “(meth) acryl” means acryl and / or methacryl.

浸透層20は、上記のとおり、光学積層体100において、ハードコート層形成用組成物が(メタ)アクリル系樹脂フィルムに浸透して形成される。すなわち、浸透層20とは、(メタ)アクリル系樹脂フィルムにおいて、ハードコート層成分が存在している部分である。浸透層20の厚みは、例えば1.0μm以上である。なお、浸透層20の厚みとは、上記(メタ)アクリル系樹脂フィルムにおいてハードコート層成分が存在している部分の厚みであり、具体的には、(メタ)アクリル系樹脂フィルムにおいてハードコート層成分が存在している部分(浸透層)と存在していない部分(基材層)との境界Bと、境界Aとの距離である。   As described above, the penetration layer 20 is formed by penetrating the (meth) acrylic resin film in the optical laminate 100 with the hard coat layer forming composition. That is, the osmotic layer 20 is a portion where a hard coat layer component is present in the (meth) acrylic resin film. The thickness of the osmotic layer 20 is, for example, 1.0 μm or more. In addition, the thickness of the osmosis | permeation layer 20 is the thickness of the part in which the hard-coat layer component exists in the said (meth) acrylic-type resin film, Specifically, a hard-coat layer in a (meth) acrylic-type resin film. The distance between the boundary A and the boundary A between the portion where the component is present (penetrating layer) and the portion where the component is not present (base material layer).

本発明の光学積層体は、必要に応じて、ハードコート層30の外側に任意の適切なその他の層(図示せず)が配置されてもよい。その他の層は、代表的には、粘着剤層(図示せず)を介して配置される。   In the optical layered body of the present invention, any appropriate other layer (not shown) may be disposed outside the hard coat layer 30 as necessary. The other layers are typically disposed via an adhesive layer (not shown).

上記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、ハードコート層形成用組成物に溶出して、ハードコート層中に当該(メタ)アクリル系樹脂が存在していてもよい。   The (meth) acrylic resin forming the (meth) acrylic resin film may be eluted in the hard coat layer forming composition, and the (meth) acrylic resin may be present in the hard coat layer. .

図2は、本発明の別の実施形態による光学積層体の概略断面図である。光学積層体300は、ハードコート層30の浸透層20とは反対側に、ブロック層40をさらに備える。ブロック層40は上記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、ハードコート層形成用組成物に溶出し、ハードコート層形成用組成物が、当該(メタ)アクリル系樹脂と相分離を起こすことにより生じる。ブロック層40を備える光学積層体は、硬度に優れる。   FIG. 2 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention. The optical layered body 300 further includes a block layer 40 on the opposite side of the hard coat layer 30 from the osmotic layer 20. In the block layer 40, the (meth) acrylic resin forming the (meth) acrylic resin film elutes in the hardcoat layer forming composition, and the hardcoat layer forming composition is the (meth) acrylic resin. And by causing phase separation. The optical laminate including the block layer 40 is excellent in hardness.

本発明の光学積層体の500nm〜600nmの波長領域におけるハードコート層の反射スペクトルの振幅は、好ましくは0.5%以下であり、より好ましくは0.3%以下であり、さらに好ましくは0.1%以下である。本発明によれば、反射スペクトルの振幅の小さい、すなわち、干渉ムラの少ない光学積層体を得ることができる。   The amplitude of the reflection spectrum of the hard coat layer in the wavelength range of 500 nm to 600 nm of the optical layered body of the present invention is preferably 0.5% or less, more preferably 0.3% or less, and still more preferably 0.8. 1% or less. According to the present invention, it is possible to obtain an optical laminated body having a small reflection spectrum amplitude, that is, having little interference unevenness.

本発明の光学積層体のハードコート層表面の鉛筆硬度は、好ましくは2H以上、より好ましくは3H以上である。   The pencil hardness of the hard coat layer surface of the optical layered body of the present invention is preferably 2H or higher, more preferably 3H or higher.

本発明の光学積層体は、例えば、偏光フィルム(偏光板とも称される)に適用される。具体的には、本発明の光学積層体は、偏光フィルムにおいて、偏光子の片面または両面に設けられ、偏光子の保護材料として好適に用いられ得る。   The optical layered body of the present invention is applied to, for example, a polarizing film (also referred to as a polarizing plate). Specifically, the optical laminate of the present invention is provided on one or both sides of a polarizer in a polarizing film, and can be suitably used as a protective material for the polarizer.

B.基材層
上記基材層は、(メタ)アクリル系樹脂フィルムから形成される。より詳細には、上記のように、基材層は、(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工した際に、(メタ)アクリル系樹脂フィルムにおいて、当該ハードコート層形成用組成物が到達(浸透)しなかった部分である。
B. Base material layer The base material layer is formed of a (meth) acrylic resin film. More specifically, as described above, when the base layer is coated with the composition for forming a hard coat layer on the (meth) acrylic resin film, in the (meth) acrylic resin film, This is the part where the forming composition did not reach (penetrate).

上記(メタ)アクリル系樹脂フィルムは、(メタ)アクリル系樹脂を含む。(メタ)アクリル系樹脂フィルムは、例えば、(メタ)アクリル系樹脂を主成分として含む樹脂成分を含有する成形材料を、押出し成形して得られる。   The (meth) acrylic resin film includes a (meth) acrylic resin. The (meth) acrylic resin film is obtained, for example, by extruding a molding material containing a resin component containing a (meth) acrylic resin as a main component.

上記(メタ)アクリル系樹脂フィルムの透湿度は、好ましくは200g/m・24hr以下であり、より好ましくは80g/m・24hr以下である。本発明によれば、このように透湿度の高い(メタ)アクリル系樹脂フィルムを用いても、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。なお、透湿度は、例えば、JIS Z 0208に準じた方法により、40℃、相対湿度92%の試験条件で測定することができる。 The moisture permeability of the (meth) acrylic resin film is preferably 200 g / m 2 · 24 hr or less, and more preferably 80 g / m 2 · 24 hr or less. According to the present invention, even when a (meth) acrylic resin film having such a high moisture permeability is used, the adhesion between the (meth) acrylic resin film and the hard coat layer is excellent, and interference unevenness is suppressed. An optical laminate can be obtained. The moisture permeability can be measured under the test conditions of 40 ° C. and a relative humidity of 92%, for example, by a method according to JIS Z 0208.

上記(メタ)アクリル系樹脂フィルムの波長380nmにおける光の透過率は、好ましくは15%以下であり、より好ましくは12%以下であり、さらに好ましくは9%以下である。波長380nmの光の透過率がこのような範囲であれば、優れた紫外線吸収能が発現するので、光学積層体の外光等による紫外線劣化が防止され得る。   The light transmittance at a wavelength of 380 nm of the (meth) acrylic resin film is preferably 15% or less, more preferably 12% or less, and further preferably 9% or less. If the transmittance of light having a wavelength of 380 nm is in such a range, an excellent ultraviolet absorbing ability is exhibited, so that deterioration of ultraviolet rays due to external light or the like of the optical laminate can be prevented.

上記(メタ)アクリル系樹脂フィルムの面内位相差Reは、好ましくは10nm以下であり、より好ましくは7nm以下であり、さらに好ましくは5nm以下であり、特に好ましくは3nm以下であり、最も好ましくは1nm以下である。(メタ)アクリル系樹脂フィルムの厚み方向位相差Rthは、好ましくは15nm以下であり、より好ましくは10nm以下であり、さらに好ましくは5nm以下であり、特に好ましくは3nm以下であり、最も好ましくは1nm以下である。面内位相差および厚み方向位相差がこのような範囲であれば、位相差に起因する画像表示装置の表示特性への悪影響が顕著に抑制され得る。より具体的には、干渉ムラや3Dディスプレイ用液晶表示装置に用いる場合の3D像の歪みが顕著に抑制され得る。面内位相差および厚み方向位相差がこのような範囲の(メタ)アクリル系樹脂フィルムは、例えば、後述のグルタルイミド構造を有する(メタ)アクリル系樹脂を用いて得ることができる。なお、面内位相差Reおよび厚み方向位相差Rthは、それぞれ、以下の式で求められる:
Re=(nx−ny)×d
Rth=(nx−nz)×d
ここで、nxは(メタ)アクリル系樹脂フィルムの遅相軸方向の屈折率であり、nyは(メタ)アクリル系樹脂フィルムの進相軸方向の屈折率であり、nzは(メタ)アクリル系樹脂フィルムの厚み方向の屈折率であり、d(nm)は(メタ)アクリル系樹脂フィルムの厚みである。遅相軸は、フィルム面内の屈折率が最大になる方向をいい、進相軸は、面内で遅相軸に垂直な方向をいう。代表的には、ReおよびRthは、波長590nmの光を用いて測定される。
The in-plane retardation Re of the (meth) acrylic resin film is preferably 10 nm or less, more preferably 7 nm or less, still more preferably 5 nm or less, particularly preferably 3 nm or less, and most preferably 1 nm or less. The thickness direction retardation Rth of the (meth) acrylic resin film is preferably 15 nm or less, more preferably 10 nm or less, further preferably 5 nm or less, particularly preferably 3 nm or less, and most preferably 1 nm. It is as follows. If the in-plane retardation and the thickness direction retardation are within such ranges, the adverse effect on the display characteristics of the image display apparatus due to the phase difference can be remarkably suppressed. More specifically, interference unevenness and 3D image distortion when used in a liquid crystal display device for 3D display can be significantly suppressed. A (meth) acrylic resin film having in-plane retardation and thickness direction retardation in such a range can be obtained by using, for example, a (meth) acrylic resin having a glutarimide structure described later. The in-plane retardation Re and the thickness direction retardation Rth can be obtained by the following equations, respectively:
Re = (nx−ny) × d
Rth = (nx−nz) × d
Here, nx is the refractive index in the slow axis direction of the (meth) acrylic resin film, ny is the refractive index in the fast axis direction of the (meth) acrylic resin film, and nz is the (meth) acrylic system. It is the refractive index in the thickness direction of the resin film, and d (nm) is the thickness of the (meth) acrylic resin film. The slow axis refers to the direction in which the in-plane refractive index is maximized, and the fast axis refers to the direction perpendicular to the slow axis in the plane. Typically, Re and Rth are measured using light having a wavelength of 590 nm.

上記(メタ)アクリル系樹脂としては、任意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル−(メタ)アクリル酸共重合体、メタクリル酸メチル−(メタ)アクリル酸エステル共重合体、メタクリル酸メチル−アクリル酸エステル−(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル−スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル−メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル−(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1−6アルキルが挙げられる。より好ましくは、メタクリル酸メチルを主成分(50〜100重量%、好ましくは70〜100重量%)とするメタクリル酸メチル系樹脂が挙げられる。 Any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin. For example, poly (meth) acrylic acid ester such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having an alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer). Preferably, poly (meth) acrylic acid C 1-6 alkyl such as poly (meth) acrylate methyl is used. More preferably, a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight) is used.

上記(メタ)アクリル系樹脂の重量平均分子量は、好ましくは10000〜500000、より好ましくは30000〜300000、さらに好ましくは50000〜200000である。重量平均分子量が当該範囲内であれば、ハードコート層形成用組成物との相溶性に優れる。また、重量平均分子量が小さすぎると、フィルムにした場合の機械的強度が不足する傾向がある。重量平均分子量が大きすぎると、溶融押出時の粘度が高く、成形加工性が低下し、成形品の生産性が低下する傾向がある。   The weight average molecular weight of the (meth) acrylic resin is preferably 10,000 to 500,000, more preferably 30,000 to 300,000, and still more preferably 50,000 to 200,000. If a weight average molecular weight is in the said range, it is excellent in compatibility with the composition for hard-coat layer formation. On the other hand, if the weight average molecular weight is too small, the mechanical strength of the film tends to be insufficient. When the weight average molecular weight is too large, the viscosity at the time of melt extrusion is high, the molding processability is lowered, and the productivity of the molded product tends to be lowered.

上記(メタ)アクリル系樹脂のガラス転移温度は、好ましくは110℃以上であり、より好ましくは120℃以上である。ガラス転移温度がこのような範囲であれば、耐久性および耐熱性に優れた(メタ)アクリル系樹脂フィルムが得られ得る。ガラス転移温度の上限は特に限定されないが、成形性等の観点から、好ましくは170℃以下である。   The glass transition temperature of the (meth) acrylic resin is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. When the glass transition temperature is in such a range, a (meth) acrylic resin film excellent in durability and heat resistance can be obtained. The upper limit of the glass transition temperature is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.

上記(メタ)アクリル系樹脂は、好ましくは、正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有する。これらの構造単位を有していれば、その存在比を調整して、(メタ)アクリル系樹脂フィルムの位相差を制御することができ、低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。正の複屈折を発現する構造単位としては、例えば、ラクトン環、ポリカーボネート、ポリビニルアルコール、酢酸セルロース、ポリエステル、ポリアリレート、ポリイミド、ポリオレフィン等を構成する構造単位、後述の一般式(1)で示される構造単位が挙げられる。負の複屈折を発現する構造単位としては、例えば、スチレン系モノマー、マレイミド系モノマー等を由来とする構造単位、ポリメチルメタクリレートの構造単位、後述の一般式(3)で示される構造単位等が挙げられる。本明細書において、正の複屈折を発現する構造単位とは、当該構造単位のみを有する樹脂が正の複屈折特性を示す場合(すなわち、樹脂の延伸方向に遅相軸が発現する場合)の構造単位を意味する。また、負の複屈折を発現する構造単位とは、当該構造単位のみを有する樹脂が負の複屈折特性を示す場合(すなわち、樹脂の延伸方向と垂直な方向に遅相軸が発現する場合)の構造単位を意味する。   The (meth) acrylic resin preferably has a structural unit that exhibits positive birefringence and a structural unit that exhibits negative birefringence. If these structural units are included, the abundance ratio can be adjusted to control the retardation of the (meth) acrylic resin film, and a (meth) acrylic resin film having a low retardation can be obtained. it can. Examples of the structural unit exhibiting positive birefringence include a structural unit constituting a lactone ring, polycarbonate, polyvinyl alcohol, cellulose acetate, polyester, polyarylate, polyimide, polyolefin, etc., and a general formula (1) described later. Examples include structural units. Examples of the structural unit exhibiting negative birefringence include a structural unit derived from a styrene monomer, a maleimide monomer, a structural unit of polymethyl methacrylate, a structural unit represented by the general formula (3) described later, and the like. Can be mentioned. In the present specification, a structural unit that exhibits positive birefringence is a case where a resin having only the structural unit exhibits positive birefringence characteristics (that is, a slow axis appears in the stretching direction of the resin). Means a structural unit. In addition, a structural unit that develops negative birefringence is when a resin having only the structural unit exhibits negative birefringence characteristics (that is, when a slow axis appears in a direction perpendicular to the stretching direction of the resin). Means a structural unit of

上記(メタ)アクリル系樹脂として、ラクトン環構造またはグルタルイミド構造を有する(メタ)アクリル系樹脂が好ましく用いられる。ラクトン環構造またはグルタルイミド構造を有する(メタ)アクリル系樹脂は耐熱性に優れる。より好ましくは、グルタルイミド構造を有する(メタ)アクリル系樹脂である。グルタルイミド構造を有する(メタ)アクリル系樹脂を用いれば、上記のように、低透湿、かつ、位相差および紫外線透過率の小さい(メタ)アクリル系樹脂フィルムを得ることができる。グルタルイミド構造を有する(メタ)アクリル系樹脂(以下、グルタルイミド樹脂とも称する)は、例えば、特開2006−309033号公報、特開2006−317560号公報、特開2006−328329号公報、特開2006−328334号公報、特開2006−337491号公報、特開2006−337492号公報、特開2006−337493号公報、特開2006−337569号公報、特開2007−009182号公報、特開2009−161744号公報に記載されている。これらの記載は、本明細書に参考として援用される。   As the (meth) acrylic resin, a (meth) acrylic resin having a lactone ring structure or a glutarimide structure is preferably used. A (meth) acrylic resin having a lactone ring structure or a glutarimide structure is excellent in heat resistance. More preferred is a (meth) acrylic resin having a glutarimide structure. If a (meth) acrylic resin having a glutarimide structure is used, a (meth) acrylic resin film having low moisture permeability and a small retardation and ultraviolet transmittance can be obtained as described above. Examples of (meth) acrylic resins having a glutarimide structure (hereinafter also referred to as glutarimide resins) include, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, and JP-A-2006-328329. 2006-328334, JP-A 2006-337491, JP-A 2006-337492, JP-A 2006-337493, JP-A 2006-337469, JP-A 2007-009182, JP-A 2009- No. 161744. These descriptions are incorporated herein by reference.

好ましくは、上記グルタルイミド樹脂は、下記一般式(1)で表される構造単位(以下、グルタルイミド単位とも称する)と、下記一般式(2)で表される構造単位(以下、(メタ)アクリル酸エステル単位とも称する)とを含む。
式(1)において、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基である。式(2)において、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数5〜15の芳香環を含む置換基である。
Preferably, the glutarimide resin includes a structural unit represented by the following general formula (1) (hereinafter also referred to as a glutarimide unit) and a structural unit represented by the following general formula (2) (hereinafter referred to as (meta)). Also referred to as an acrylate unit).
In Formula (1), R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 is hydrogen, an alkyl group having 1 to 18 carbon atoms, or 3 to 3 carbon atoms. It is a substituent containing 12 cycloalkyl groups or an aromatic ring having 5 to 15 carbon atoms. In Formula (2), R 4 and R 5 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 6 is hydrogen, an alkyl group having 1 to 18 carbon atoms, or 3 to 3 carbon atoms. It is a substituent containing 12 cycloalkyl groups or an aromatic ring having 5 to 15 carbon atoms.

グルタルイミド樹脂は、必要に応じて、下記一般式(3)で表される構造単位(以下、芳香族ビニル単位とも称する)をさらに含んでいてもよい。
式(3)において、Rは、水素または炭素数1〜8のアルキル基であり、Rは、炭素数6〜10のアリール基である。
The glutarimide resin may further contain a structural unit represented by the following general formula (3) (hereinafter also referred to as an aromatic vinyl unit) as necessary.
In Formula (3), R 7 is hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 8 is an aryl group having 6 to 10 carbon atoms.

上記一般式(1)において、好ましくは、RおよびRは、それぞれ独立して、水素またはメチル基であり、Rは水素、メチル基、ブチル基、またはシクロヘキシル基であり、さらに好ましくは、Rはメチル基であり、Rは水素であり、Rはメチル基である。 In the general formula (1), preferably, R 1 and R 2 are each independently hydrogen or a methyl group, R 3 is hydrogen, a methyl group, a butyl group, or a cyclohexyl group, and more preferably , R 1 is a methyl group, R 2 is hydrogen, and R 3 is a methyl group.

上記グルタルイミド樹脂は、グルタルイミド単位として、単一の種類のみを含んでいてもよいし、上記一般式(1)におけるR、R、およびRが異なる複数の種類を含んでいてもよい。 The glutarimide resin may include only a single type as a glutarimide unit, or may include a plurality of types in which R 1 , R 2 , and R 3 in the general formula (1) are different. Good.

グルタルイミド単位は、上記一般式(2)で表される(メタ)アクリル酸エステル単位をイミド化することにより、形成することができる。また、グルタルイミド単位は、無水マレイン酸等の酸無水物、または、このような酸無水物と炭素数1〜20の直鎖または分岐のアルコールとのハーフエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、クロトン酸、フマル酸、シトラコン酸等のα,β−エチレン性不飽和カルボン酸等をイミド化することによっても、形成することができる。   The glutarimide unit can be formed by imidizing the (meth) acrylic acid ester unit represented by the general formula (2). The glutarimide unit is an acid anhydride such as maleic anhydride, or a half ester of such an acid anhydride and a linear or branched alcohol having 1 to 20 carbon atoms; acrylic acid, methacrylic acid, maleic acid. It can also be formed by imidizing an α, β-ethylenically unsaturated carboxylic acid such as maleic anhydride, itaconic acid, itaconic anhydride, crotonic acid, fumaric acid, citraconic acid and the like.

上記一般式(2)において、好ましくは、RおよびRは、それぞれ独立して、水素またはメチル基であり、Rは水素またはメチル基であり、さらに好ましくは、Rは水素であり、Rはメチル基であり、Rはメチル基である。 In the general formula (2), preferably, R 4 and R 5 are each independently hydrogen or a methyl group, R 6 is hydrogen or a methyl group, and more preferably, R 4 is hydrogen. , R 5 is a methyl group, and R 6 is a methyl group.

上記グルタルイミド樹脂は、(メタ)アクリル酸エステル単位として、単一の種類のみを含んでいてもよいし、上記一般式(2)におけるR、R、およびRが異なる複数の種類を含んでいてもよい。 The glutarimide resin may contain only a single type as a (meth) acrylic acid ester unit, or a plurality of types in which R 4 , R 5 and R 6 in the general formula (2) are different. May be included.

上記グルタルイミド樹脂は、上記一般式(3)で表される芳香族ビニル単位として、好ましくはスチレン、α−メチルスチレン等を含み、さらに好ましくはスチレンを含む。このような芳香族ビニル単位を有することにより、グルタルイミド構造の正の複屈折性を低減し、より低位相差の(メタ)アクリル系樹脂フィルムを得ることができる。   The glutarimide resin preferably contains styrene, α-methylstyrene, and more preferably styrene as the aromatic vinyl unit represented by the general formula (3). By having such an aromatic vinyl unit, the positive birefringence of the glutarimide structure can be reduced, and a (meth) acrylic resin film having a lower retardation can be obtained.

上記グルタルイミド樹脂は、芳香族ビニル単位として、単一の種類のみを含んでいてもよいし、RおよびRが異なる複数の種類を含んでいてもよい。 The glutarimide resin may contain only a single type as an aromatic vinyl unit, or may contain a plurality of types in which R 7 and R 8 are different.

上記グルタルイミド樹脂における上記グルタルイミド単位の含有量は、例えばRの構造等に依存して変化させることが好ましい。グルタルイミド単位の含有量は、グルタルイミド樹脂の総構造単位を基準として、好ましくは1重量%〜80重量%であり、より好ましくは1重量%〜70重量%であり、さらに好ましくは1重量%〜60重量%であり、特に好ましくは1重量%〜50重量%である。グルタルイミド単位の含有量がこのような範囲であれば、耐熱性に優れた低位相差の(メタ)アクリル系樹脂フィルムが得られ得る。 The content of the glutarimide unit in the glutarimide resin is preferably changed depending on, for example, the structure of R 3 . The content of the glutarimide unit is preferably 1% by weight to 80% by weight, more preferably 1% by weight to 70% by weight, even more preferably 1% by weight, based on the total structural unit of the glutarimide resin. -60% by weight, particularly preferably 1-50% by weight. When the content of the glutarimide unit is in such a range, a (meth) acrylic resin film having a low retardation excellent in heat resistance can be obtained.

上記グルタルイミド樹脂における上記芳香族ビニル単位の含有量は、目的や所望の特性に応じて適切に設定され得る。用途によっては、芳香族ビニル単位の含有量は0であってもよい。芳香族ビニル単位が含まれる場合、その含有量は、グルタルイミド樹脂のグルタルイミド単位を基準として、好ましくは10重量%〜80重量%であり、より好ましくは20重量%〜80重量%であり、さらに好ましくは20重量%〜60重量%であり、特に好ましくは20重量%〜50重量%である。芳香族ビニル単位の含有量がこのような範囲であれば、低位相差、かつ、耐熱性および機械的強度に優れた(メタ)アクリル系樹脂フィルムが得られ得る。   The content of the aromatic vinyl unit in the glutarimide resin can be appropriately set according to the purpose and desired characteristics. Depending on the application, the content of the aromatic vinyl unit may be zero. When the aromatic vinyl unit is contained, the content thereof is preferably 10% by weight to 80% by weight, more preferably 20% by weight to 80% by weight, based on the glutarimide unit of the glutarimide resin. More preferably, it is 20 to 60% by weight, and particularly preferably 20 to 50% by weight. When the content of the aromatic vinyl unit is within such a range, a (meth) acrylic resin film having a low retardation, excellent heat resistance and mechanical strength can be obtained.

上記グルタルイミド樹脂には、必要に応じて、グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位以外のその他の構造単位がさらに共重合されていてもよい。その他の構造単位としては、例えば、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド系単量体から構成される構造単位が挙げられる。これらのその他の構造単位は、上記グルタルイミド樹脂中に、直接共重合していてもよいし、グラフト共重合していてもよい。   The glutarimide resin may further be copolymerized with other structural units other than the glutarimide unit, the (meth) acrylic acid ester unit, and the aromatic vinyl unit, if necessary. Other structural units include, for example, nitrile monomers such as acrylonitrile and methacrylonitrile, and structures composed of maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. Units are listed. These other structural units may be directly copolymerized or graft copolymerized in the glutarimide resin.

上記(メタ)アクリル系樹脂フィルムは、紫外線吸収剤を含む。紫外線吸収剤としては、上記所望の特性が得られる限りにおいて、任意の適切な紫外線吸収剤が採用され得る。上記紫外線吸収剤の代表例としては、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤、およびオキサジアゾール系紫外線吸収剤が挙げられる。これらの紫外線吸収剤は、単独で用いてもよく、複数を組み合わせて用いてもよい。   The (meth) acrylic resin film contains an ultraviolet absorber. As the ultraviolet absorber, any appropriate ultraviolet absorber can be adopted as long as the desired characteristics are obtained. Representative examples of the above UV absorbers include triazine UV absorbers, benzotriazole UV absorbers, benzophenone UV absorbers, cyanoacrylate UV absorbers, benzoxazine UV absorbers, and oxadiazole UV absorbers. Agents. These ultraviolet absorbers may be used alone or in combination.

上記紫外線吸収剤の含有量は、(メタ)アクリル系樹脂100重量部に対して、好ましくは0.1重量部〜5重量部であり、より好ましくは0.2重量部〜3重量部である。紫外線吸収剤の含有量がこのような範囲であれば、紫外線を効果的に吸収することができ、かつ、フィルム成形時のフィルムの透明性が低下することがない。紫外線吸収剤の含有量が0.1重量部より少ない場合、紫外線の遮断効果が不十分となる傾向がある。紫外線吸収剤の含有量が5重量部より多い場合、着色が激しくなったり、成形後のフィルムのヘイズが高くなり、透明性が悪化したりする傾向がある。   The content of the ultraviolet absorber is preferably 0.1 parts by weight to 5 parts by weight, more preferably 0.2 parts by weight to 3 parts by weight with respect to 100 parts by weight of the (meth) acrylic resin. . When the content of the ultraviolet absorber is in such a range, ultraviolet rays can be absorbed effectively and the transparency of the film during film formation does not deteriorate. When the content of the ultraviolet absorber is less than 0.1 parts by weight, the ultraviolet blocking effect tends to be insufficient. When there is more content of a ultraviolet absorber than 5 weight part, there exists a tendency for coloring to become intense or the haze of the film after shaping | molding becomes high, and transparency deteriorates.

上記(メタ)アクリル系樹脂フィルムは、目的に応じて任意の適切な添加剤を含有し得る。添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;可塑剤;滑剤;位相差低減剤等が挙げられる。含有される添加剤の種類、組み合わせ、含有量等は、目的や所望の特性に応じて適切に設定され得る。   The said (meth) acrylic-type resin film can contain arbitrary appropriate additives according to the objective. Examples of additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat stabilizers and other stabilizers; reinforcing materials such as glass fibers and carbon fibers; Infrared absorbers; flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; antistatic agents such as anionic, cationic and nonionic surfactants; coloring of inorganic pigments, organic pigments, dyes, etc. Agents; organic fillers and inorganic fillers; resin modifiers; plasticizers; lubricants; retardation reducing agents. The kind, combination, content, and the like of the additive to be contained can be appropriately set according to the purpose and desired characteristics.

上記(メタ)アクリル系樹脂フィルムの製造方法としては、特に限定されるものではないが、例えば、(メタ)アクリル系樹脂と、紫外線吸収剤と、必要に応じてその他の重合体や添加剤等とを、任意の適切な混合方法で充分に混合し、予め熱可塑性樹脂組成物としてから、これをフィルム成形することができる。あるいは、(メタ)アクリル系樹脂と、紫外線吸収剤と、必要に応じてその他の重合体や添加剤等とを、それぞれ別々の溶液にしてから混合して均一な混合液とした後、フィルム成形してもよい。   Although it does not specifically limit as a manufacturing method of the said (meth) acrylic-type resin film, For example, (meth) acrylic-type resin, an ultraviolet absorber, and other polymers, additives, etc. as needed Are sufficiently mixed by any appropriate mixing method to obtain a thermoplastic resin composition in advance, and then this can be formed into a film. Alternatively, a (meth) acrylic resin, an ultraviolet absorber, and if necessary, other polymers and additives are mixed in separate solutions to form a uniform mixed solution, and then film forming May be.

上記熱可塑性樹脂組成物を製造するには、例えば、オムニミキサー等、任意の適切な混合機で上記のフィルム原料をプレブレンドした後、得られた混合物を押出混練する。この場合、押出混練に用いられる混合機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等、任意の適切な混合機を用いることができる。   In order to produce the thermoplastic resin composition, for example, the film raw material is pre-blended with any appropriate mixer such as an omni mixer, and then the obtained mixture is extrusion kneaded. In this case, the mixer used for extrusion kneading is not particularly limited, and for example, any suitable mixer such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader may be used. Can do.

上記フィルム成形の方法としては、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法等、任意の適切なフィルム成形法が挙げられる。溶融押出法が好ましい。溶融押出法は溶剤を使用しないので、製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。   Examples of the film forming method include any appropriate film forming method such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method. A melt extrusion method is preferred. Since the melt extrusion method does not use a solvent, it is possible to reduce the manufacturing cost and the burden on the global environment and work environment due to the solvent.

上記溶融押出法としては、例えば、Tダイ法、インフレーション法等が挙げられる。成形温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。   Examples of the melt extrusion method include a T-die method and an inflation method. The molding temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.

上記Tダイ法でフィルム成形する場合は、公知の単軸押出機や二軸押出機の先端部にTダイを取り付け、フィルム状に押出されたフィルムを巻取って、ロール状のフィルムを得ることができる。この際、巻取りロールの温度を適宜調整して、押出方向に延伸を加えることで、1軸延伸することも可能である。また、押出方向と垂直な方向にフィルムを延伸することにより、同時2軸延伸、逐次2軸延伸等を行うこともできる。   When film-forming by the above T-die method, a T-die is attached to the tip of a known single-screw extruder or twin-screw extruder, and the film extruded into a film is wound to obtain a roll-shaped film Can do. At this time, it is possible to perform uniaxial stretching by appropriately adjusting the temperature of the winding roll and adding stretching in the extrusion direction. Also, simultaneous biaxial stretching, sequential biaxial stretching, and the like can be performed by stretching the film in a direction perpendicular to the extrusion direction.

上記(メタ)アクリル系樹脂フィルムは、上記所望の位相差が得られる限りにおいて、未延伸フィルムまたは延伸フィルムのいずれでもよい。延伸フィルムである場合は、1軸延伸フィルムまたは2軸延伸フィルムのいずれでもよい。2軸延伸フィルムである場合は、同時2軸延伸フィルムまたは逐次2軸延伸フィルムのいずれでもよい。   The (meth) acrylic resin film may be either an unstretched film or a stretched film as long as the desired retardation is obtained. In the case of a stretched film, either a uniaxially stretched film or a biaxially stretched film may be used. In the case of a biaxially stretched film, either a simultaneous biaxially stretched film or a sequential biaxially stretched film may be used.

上記延伸温度は、フィルム原料である熱可塑性樹脂組成物のガラス転移温度近傍であることが好ましく、具体的には、好ましくは(ガラス転移温度−30℃)〜(ガラス転移温度+30℃)、より好ましくは(ガラス転移温度−20℃)〜(ガラス転移温度+20℃)の範囲内である。延伸温度が(ガラス転移温度−30℃)未満であると、得られるフィルムのヘイズが大きくなり、あるいは、フィルムが裂けたり、割れたりして所定の延伸倍率が得られないおそれがある。逆に、延伸温度が(ガラス転移温度+30℃)を超えると、得られるフィルムの厚みムラが大きくなったり、伸び率、引裂伝播強度、および耐揉疲労等の力学的性質が十分に改善できなかったりする傾向がある。さらに、フィルムがロールに粘着するといったトラブルが発生しやすくなる傾向がある。   The stretching temperature is preferably in the vicinity of the glass transition temperature of the thermoplastic resin composition that is the film raw material, and specifically, preferably (glass transition temperature-30 ° C.) to (glass transition temperature + 30 ° C.) Preferably, it is within the range of (glass transition temperature−20 ° C.) to (glass transition temperature + 20 ° C.). If the stretching temperature is lower than (glass transition temperature −30 ° C.), the haze of the resulting film may increase, or the film may be torn or cracked, resulting in failure to obtain a predetermined stretching ratio. On the other hand, when the stretching temperature exceeds (glass transition temperature + 30 ° C.), the thickness unevenness of the resulting film becomes large, and the mechanical properties such as elongation, tear propagation strength, and fatigue resistance cannot be sufficiently improved. There is a tendency to. Furthermore, there is a tendency that troubles such as the film sticking to the roll tend to occur.

上記延伸倍率は、好ましくは1.1〜3倍、より好ましくは1.3〜2.5倍である。延伸倍率がこのような範囲であれば、フィルムの伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を大幅に改善することができる。結果として、厚みムラが小さく、複屈折が実質的にゼロであり(したがって、位相差が小さく)、さらに、ヘイズが小さいフィルムを製造することができる。   The draw ratio is preferably 1.1 to 3 times, more preferably 1.3 to 2.5 times. When the draw ratio is in such a range, the mechanical properties such as the film elongation, tear propagation strength, and fatigue resistance can be greatly improved. As a result, it is possible to produce a film with small thickness unevenness, substantially zero birefringence (and therefore a small phase difference), and a small haze.

上記(メタ)アクリル系樹脂フィルムは、その光学的等方性や機械的特性を安定化させるために、延伸処理後に熱処理(アニーリング)等を行うことができる。熱処理の条件は、任意の適切な条件を採用し得る。   The (meth) acrylic resin film can be subjected to heat treatment (annealing) or the like after the stretching treatment in order to stabilize its optical isotropy and mechanical properties. Arbitrary appropriate conditions can be employ | adopted for the conditions of heat processing.

上記(メタ)アクリル系樹脂フィルムの厚みは、好ましくは10μm〜200μmであり、より好ましくは20μm〜100μmである。厚みが10μm未満であると、強度が低下するおそれがある。厚みが200μmを超えると、透明性が低下するおそれがある。   The thickness of the (meth) acrylic resin film is preferably 10 μm to 200 μm, more preferably 20 μm to 100 μm. There exists a possibility that intensity | strength may fall that thickness is less than 10 micrometers. If the thickness exceeds 200 μm, the transparency may decrease.

上記(メタ)アクリル系樹脂フィルムの表面の濡れ張力は、好ましくは40mN/m以上、より好ましくは50mN/m以上、さらに好ましくは55mN/m以上である。表面の濡れ張力が少なくとも40mN/m以上であると、(メタ)アクリル系樹脂フィルムとハードコート層との密着性がさらに向上する。表面の濡れ張力を調整するために、任意の適切な表面処理を施すことができる。表面処理としては、例えば、コロナ放電処理、プラズマ処理、オゾン吹き付け、紫外線照射、火炎処理、化学薬品処理が挙げられる。これらの中でも、好ましくは、コロナ放電処理、プラズマ処理である。   The surface tension of the (meth) acrylic resin film is preferably 40 mN / m or more, more preferably 50 mN / m or more, and still more preferably 55 mN / m or more. When the surface wetting tension is at least 40 mN / m or more, the adhesion between the (meth) acrylic resin film and the hard coat layer is further improved. Any suitable surface treatment can be applied to adjust the surface wetting tension. Examples of the surface treatment include corona discharge treatment, plasma treatment, ozone spraying, ultraviolet irradiation, flame treatment, and chemical treatment. Of these, corona discharge treatment and plasma treatment are preferable.

C.浸透層
上記浸透層は、上記のとおり、(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物が浸透することにより形成される。言い換えれば、浸透層は(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂とハードコート層を形成する成分との相溶化領域の一部に対応し得る。
C. Penetration layer The penetration layer is formed by the penetration of the composition for forming a hard coat layer into the (meth) acrylic resin film as described above. In other words, the osmotic layer can correspond to a part of the compatibilized region between the (meth) acrylic resin forming the (meth) acrylic resin film and the component forming the hard coat layer.

上記浸透層において、(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂の濃度が、ハードコート層側から基材層側にかけて連続的に高くなることが好ましい。(メタ)アクリル系樹脂の濃度が連続的に変化すること、すなわち(メタ)アクリル系樹脂の濃度変化に起因する界面が形成されていないことにより界面反射を抑制することができ、干渉ムラの少ない光学積層体を得ることができるからである。   In the permeation layer, it is preferable that the concentration of the (meth) acrylic resin forming the (meth) acrylic resin film is continuously increased from the hard coat layer side to the base material layer side. Since the concentration of the (meth) acrylic resin continuously changes, that is, the interface resulting from the concentration change of the (meth) acrylic resin is not formed, interface reflection can be suppressed, and interference unevenness is small. This is because an optical laminate can be obtained.

上記浸透層の厚みの下限は、例えば1.0μmであり、好ましくは1.2μmであり、より好ましくは1.5μmであり、さらに好ましくは2μmである。浸透層の厚みの上限は、好ましくは((メタ)アクリル系樹脂フィルムの厚み×70%)μmであり、より好ましくは((メタ)アクリル系樹脂フィルムの厚み×40%)μmであり、さらに好ましくは((メタ)アクリル系樹脂フィルムの厚み×30%)μmであり、特に好ましくは((メタ)アクリル系樹脂フィルム×20%)μmである。浸透層の厚みがこのような範囲であれば、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。なお、浸透層の厚みは、ハードコート層の反射スペクトル、またはSEM、TEM等の電子顕微鏡による観察により測定することができる。反射スペクトルによる浸透層の厚みの測定方法の詳細は、実施例における評価方法として後述する。   The minimum of the thickness of the said osmosis | permeation layer is 1.0 micrometer, for example, Preferably it is 1.2 micrometers, More preferably, it is 1.5 micrometers, More preferably, it is 2 micrometers. The upper limit of the thickness of the permeation layer is preferably ((meth) acrylic resin film thickness × 70%) μm, more preferably ((meth) acrylic resin film thickness × 40%) μm, The thickness is preferably ((meth) acrylic resin film thickness × 30%) μm, particularly preferably ((meth) acrylic resin film × 20%) μm. When the thickness of the permeation layer is in such a range, an optical laminate having excellent adhesion between the (meth) acrylic resin film and the hard coat layer and suppressing interference unevenness can be obtained. In addition, the thickness of the osmosis | permeation layer can be measured by observation with electron microscopes, such as a reflection spectrum of a hard-coat layer, or SEM and TEM. Details of the method for measuring the thickness of the osmotic layer based on the reflection spectrum will be described later as an evaluation method in Examples.

D.ハードコート層
ハードコート層は、上記のとおり、上記(メタ)アクリル系樹脂フィルム上にハードコート層形成用組成物を塗工して形成される。ハードコート層形成用組成物は、例えば、熱、光(紫外線等)または電子線等により硬化し得る硬化性化合物を含む。好ましくは、ハードコート層形成用組成物は、光硬化型の硬化性化合物を含む。硬化性化合物は、モノマー、オリゴマーおよびプレポリマーのいずれであってもよい。
D. Hard coat layer As described above, the hard coat layer is formed by coating the composition for forming a hard coat layer on the (meth) acrylic resin film. The composition for forming a hard coat layer includes, for example, a curable compound that can be cured by heat, light (such as ultraviolet rays), or an electron beam. Preferably, the composition for forming a hard coat layer contains a photocurable curable compound. The curable compound may be any of a monomer, an oligomer and a prepolymer.

上記ハードコート層形成用組成物は、必須の構成成分として、1個以上のラジカル重合性不飽和基および芳香環を含有する硬化性化合物(A)と、2個以上のラジカル重合性不飽和基を含有するが、芳香環を含有しない硬化性化合物(B)と、1個のラジカル重合性不飽和基を含有するが、芳香環を含有しない単官能モノマー(C)と、を含む。ラジカル重合性不飽和基としては、例えば、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基等が挙げられる。上記3種の硬化性化合物を含むハードコート層形成用組成物によれば、ハードコート層形成時における塗布層の加熱温度(後述)を低く設定しても、(メタ)アクリル系樹脂フィルムとハードコート層との密着性および硬度に優れる光学積層体を得ることができる。   The hard coat layer forming composition includes, as essential components, one or more radically polymerizable unsaturated groups and a curable compound containing an aromatic ring (A) and two or more radically polymerizable unsaturated groups. And a curable compound (B) that does not contain an aromatic ring, and a monofunctional monomer (C) that contains one radical polymerizable unsaturated group but does not contain an aromatic ring. Examples of the radical polymerizable unsaturated group include a (meth) acryloyl group and a (meth) acryloyloxy group. According to the composition for forming a hard coat layer containing the above three kinds of curable compounds, the (meth) acrylic resin film and the hard are used even when the heating temperature (described later) of the coating layer at the time of forming the hard coat layer is set low. An optical laminate having excellent adhesion to the coating layer and hardness can be obtained.

硬化性化合物(A)は、ラジカル重合性不飽和基と芳香環とを各々1個以上含有する。硬化性化合物(A)は、(メタ)アクリル系樹脂とハードコート層の形成成分との相溶化領域の凝集力を向上させ得、結果として、基材層とハードコート層との密着性を向上させ得る。また、硬化性化合物(A)は、ハードコート層を高屈折率化させ得るので、ハードコート層上に低屈折率の反射防止層を積層した場合に、より反射率の低い反射防止フィルムを得ることができる。   The curable compound (A) contains at least one radically polymerizable unsaturated group and one aromatic ring. The curable compound (A) can improve the cohesive strength of the compatibilized region between the (meth) acrylic resin and the hard coat layer forming component, and as a result, improves the adhesion between the base material layer and the hard coat layer. Can be. Further, since the curable compound (A) can increase the refractive index of the hard coat layer, an antireflection film having a lower reflectance is obtained when a low refractive index antireflection layer is laminated on the hard coat layer. be able to.

硬化性化合物(A)が含有するラジカル重合性不飽和基の数は、好ましくは1個〜4個である。また、硬化性化合物(A)が含有する芳香環の数は、好ましくは1個〜6個である。芳香環としては、ベンゼン環、複素環またはこれらの縮合環が例示できる。好ましくは、芳香環はベンゼン環である。芳香環は置換基を有していてもよく、有していなくてもよい。   The number of radically polymerizable unsaturated groups contained in the curable compound (A) is preferably 1 to 4. Moreover, the number of aromatic rings contained in the curable compound (A) is preferably 1 to 6. As an aromatic ring, a benzene ring, a heterocyclic ring, or these condensed rings can be illustrated. Preferably, the aromatic ring is a benzene ring. The aromatic ring may or may not have a substituent.

硬化性化合物(A)の具体例としては、エトキシ化o−フェニルフェノール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等のモノマー、ベンジル基、フェニル基等のアリール基またはフルオレン構造を含有する(メタ)アクリレートのオリゴマーまたはプレポリマーが挙げられる。硬化性化合物(A)は、単独で用いてもよく、複数を組み合わせて用いてもよい。   Specific examples of the curable compound (A) include ethoxylated o-phenylphenol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, benzyl (meth) acrylate, 2-hydroxy-3-phenoxy (meth) acrylate, and phenoxy. Examples include monomers such as ethyl (meth) acrylate, aryl groups such as benzyl group and phenyl group, and (meth) acrylate oligomers or prepolymers containing a fluorene structure. A curable compound (A) may be used independently and may be used in combination of multiple.

硬化性化合物(A)の分子量(オリゴマーまたはポリマーの場合は重量平均分子量)は、好ましくは250以上であり、より好ましくは450を超え、さらに好ましくは450〜10000である。分子量が当該範囲内であれば、相溶化領域の凝集力が十分に向上され得るので、基材層とハードコート層との密着性に優れた光学積層体が得られ得る。   The molecular weight (weight average molecular weight in the case of an oligomer or polymer) of the curable compound (A) is preferably 250 or more, more preferably more than 450, and still more preferably 450 to 10,000. If the molecular weight is within the above range, the cohesive force of the compatibilized region can be sufficiently improved, so that an optical laminate having excellent adhesion between the base material layer and the hard coat layer can be obtained.

ハードコート層形成用組成物中の全硬化性化合物に対する硬化性化合物(A)の含有割合は、10重量%〜60重量%であり、好ましくは15重量%〜55重量%であり、さらに好ましくは20重量%〜50重量%である。このような範囲であれば、ハードコート層形成時の加熱温度を低く、加熱時間を短く設定することができ、加熱による変形(例えば、(メタ)アクリル系樹脂フィルムの収縮)が抑制された光学積層体を効率よく生産することができる。   The content ratio of the curable compound (A) to the total curable compound in the hard coat layer forming composition is 10% to 60% by weight, preferably 15% to 55% by weight, and more preferably. 20% by weight to 50% by weight. If it is such a range, the heating temperature at the time of hard coat layer formation can be set low, the heating time can be set short, and the deformation (for example, shrinkage of the (meth) acrylic resin film) due to heating is suppressed. A laminated body can be produced efficiently.

硬化性化合物(B)は、2個以上のラジカル重合性不飽和基を含有する一方で、芳香環を含有しない。ハードコート層形成用組成物がラジカル重合性不飽和基を2個以上含有する多官能な硬化性化合物(B)を含むことにより、十分な硬度を有するハードコート層が形成され得る。   The curable compound (B) contains two or more radically polymerizable unsaturated groups, but does not contain an aromatic ring. When the composition for forming a hard coat layer contains a polyfunctional curable compound (B) containing two or more radically polymerizable unsaturated groups, a hard coat layer having sufficient hardness can be formed.

1つの実施形態において、ハードコート層形成用組成物は、硬化性化合物(B)として、9個以上のラジカル重合性不飽和基を含有する硬化性化合物(B1)を含む。硬化性化合物(B1)を含むハードコート層形成用組成物を塗工してハードコート層を形成すれば、ハードコート層形成用組成物に溶出した(メタ)アクリル系樹脂フィルム中の成分(代表的には、(メタ)アクリル系樹脂フィルム中の樹脂成分)が、ハードコート層形成時にハードコート層の空気界面にまで拡散することを防いで、硬度に優れる光学積層体を得ることができる。好ましくは、ハードコート層に硬化性化合物(B1)によるブロック層が形成される。ブロック層が形成されていれば、より硬度に優れる光学積層体を得ることができる。硬化性化合物(B1)が含有するラジカル重合性不飽和基の数は、好ましくは10個以上であり、より好ましくは15個以上であり、さらに好ましくは20個〜100個である。硬化性化合物(B1)が含有するラジカル重合性不飽和基の数が多いほど、ハードコート層自体の硬度を向上させることができる。   In one embodiment, the composition for forming a hard coat layer includes a curable compound (B1) containing 9 or more radically polymerizable unsaturated groups as the curable compound (B). When a hard coat layer-forming composition containing the curable compound (B1) is applied to form a hard coat layer, the components (representative) in the (meth) acrylic resin film eluted into the hard coat layer-forming composition Specifically, the resin component in the (meth) acrylic resin film) is prevented from diffusing to the air interface of the hard coat layer when the hard coat layer is formed, and an optical laminate having excellent hardness can be obtained. Preferably, a block layer made of the curable compound (B1) is formed on the hard coat layer. If the block layer is formed, an optical laminate having a higher hardness can be obtained. The number of radically polymerizable unsaturated groups contained in the curable compound (B1) is preferably 10 or more, more preferably 15 or more, and further preferably 20 to 100. The greater the number of radical polymerizable unsaturated groups contained in the curable compound (B1), the more the hardness of the hard coat layer itself can be improved.

硬化性化合物(B1)としては、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、トリアジン(メタ)アクリレート、シリコーン(メタ)アクリレート等のオリゴマーまたはプレポリマー;不飽和基を有するメタクリレートポリマー等が挙げられる。なかでも、反応性と透明性の点から、ウレタン(メタ)アクリレートのオリゴマーまたはプレポリマーが好ましい。硬化性化合物(B1)は、単独で用いてもよく、複数を組み合わせて用いてもよい。   Examples of the curable compound (B1) include oligomers such as urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, melamine (meth) acrylate, triazine (meth) acrylate, and silicone (meth) acrylate. Prepolymers: Methacrylate polymers having unsaturated groups and the like. Among these, urethane (meth) acrylate oligomers or prepolymers are preferable from the viewpoint of reactivity and transparency. A curable compound (B1) may be used independently and may be used in combination of multiple.

上記ウレタン(メタ)アクリレートは、例えば、(メタ)アクリル酸または(メタ)アクリル酸エステルとポリオールとから得られるヒドロキシ(メタ)アクリレートを、ジイソシアネートと反応させることにより得ることができる。   The urethane (meth) acrylate can be obtained, for example, by reacting hydroxy (meth) acrylate obtained from (meth) acrylic acid or (meth) acrylic acid ester and polyol with diisocyanate.

上記(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられる。   Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like.

上記ポリオールとしては、例えば、エチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、3−メチル−1,5−ペンタンジオール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、トリシクロデカンジメチロール、1,4−シクロヘキサンジオール、スピログリコール、水添ビスフェノールA、エチレンオキサイド付加ビスフェノールA、プロピレンオキサイド付加ビスフェノールA、トリメチロールエタン、トリメチロールプロパン、グリセリン、3−メチルペンタン−1,3,5−トリオール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グルコース類等が挙げられる。   Examples of the polyol include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1, 6-hexanediol, 1,9-nonanediol, 1,10-decanediol, 2,2,4-trimethyl-1,3-pentanediol, 3-methyl-1,5-pentanediol, neopentyl hydroxypivalate Glycol ester, tricyclodecane dimethylol, 1,4-cyclohexanediol, spiroglycol, hydrogenated bisphenol A, ethylene oxide-added bisphenol A, propylene oxide-added bisphenol A, trimethylol ethane, trimethylol Propane, glycerin, 3-methylpentane-1,3,5-triol, pentaerythritol, dipentaerythritol, tripentaerythritol, glucose, etc. can be mentioned.

上記ジイソシアネートとしては、例えば、芳香族、脂肪族または脂環族の各種のジイソシアネート類を使用することができる。上記ジイソシアネートの具体例としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、4,4−ジフェニルジイソシアネート、1,5−ナフタレンジイソシアネート、3,3−ジメチル−4,4−ジフェニルジイソシアネート、キシレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4−ジフェニルメタンジイソシアネート、およびこれらの水添物等が挙げられる。   As said diisocyanate, various aromatic, aliphatic, or alicyclic diisocyanates can be used, for example. Specific examples of the diisocyanate include tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 4,4-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 3,3-dimethyl-4,4. -Diphenyl diisocyanate, xylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-diphenylmethane diisocyanate, and hydrogenated products thereof.

硬化性化合物(B1)の重量平均分子量は、好ましくは1000以上であり、より好ましくは1500以上であり、さらに好ましくは2000〜50000である。硬化性化合物(B1)は9個以上のラジカル重合性不飽和基を有しているので、硬化性化合物(B1)が比較的小さい重量平均分子量であっても、(メタ)アクリル系樹脂フィルム中の成分がハードコート層の空気界面にまで拡散することを防ぎ、硬度に優れる光学積層体を得ることができる。もちろん、より硬度に優れる光学積層体を得ること等を目的として、より重量平均分子量の大きい硬化性化合物(B1)を用いてもよい。   The weight average molecular weight of the curable compound (B1) is preferably 1000 or more, more preferably 1500 or more, and further preferably 2000 to 50000. Since the curable compound (B1) has 9 or more radically polymerizable unsaturated groups, even if the curable compound (B1) has a relatively small weight average molecular weight, the (meth) acrylic resin film Can be prevented from diffusing to the air interface of the hard coat layer, and an optical laminate having excellent hardness can be obtained. Of course, a curable compound (B1) having a higher weight average molecular weight may be used for the purpose of obtaining an optical layered body having higher hardness.

別の実施形態において、ハードコート層形成用組成物は、硬化性化合物(B)として、2個〜8個のラジカル重合性不飽和基を有する硬化性化合物(B2)を含み得る。当該別の実施形態において、ハードコート層形成用組成物は、硬化性化合物(B)として、硬化性化合物(B2)のみを含んでいてもよいが、より硬度に優れた光学積層体を得る観点からは、上記硬化性化合物(B1)と硬化性化合物(B2)との両方を含むことが好ましい。   In another embodiment, the composition for forming a hard coat layer may include a curable compound (B2) having 2 to 8 radically polymerizable unsaturated groups as the curable compound (B). In the other embodiment, the composition for forming a hard coat layer may contain only the curable compound (B2) as the curable compound (B), but a viewpoint of obtaining an optical laminate having more excellent hardness. Is preferable to contain both the curable compound (B1) and the curable compound (B2).

硬化性化合物(B2)が含有するラジカル重合性不飽和基の数は、例えば2個〜6個であり得る。ハードコート層形成用組成物が2個〜6個のラジカル重合性不飽和基を含有する硬化性化合物(B2)を含んでいれば、ハードコート層形成時における塗布層の加熱温度を低く設定しても、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れる光学積層体を得ることができる。   The number of radically polymerizable unsaturated groups contained in the curable compound (B2) can be, for example, 2 to 6. If the composition for forming a hard coat layer contains a curable compound (B2) containing 2 to 6 radically polymerizable unsaturated groups, the heating temperature of the coating layer during the formation of the hard coat layer is set low. However, the optical laminated body which is excellent in the adhesiveness of a (meth) acrylic-type resin film and a hard-coat layer can be obtained.

硬化性化合物(B2)としては、例えば、ポリエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、1,10−デカンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,9−ノナンジオールジアクリレート、ジプロピレングリコールジアクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジメチロールプロパントテトラアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオール(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレートおよびこれらのオリゴマーまたはポリマー等の(メタ)アクリロイル基を有する化合物;ウレタン(メタ)アクリレート、およびこれらのオリゴマーまたはプレポリマー等が挙げられる。これらの化合物は、単独で用いてもよく、複数を組み合わせて用いてもよい。   Examples of the curable compound (B2) include polyethylene glycol di (meth) acrylate, tricyclodecane dimethanol diacrylate, 1,10-decanediol diacrylate, 1,6-hexanediol diacrylate, and 1,9-nonane. Diol diacrylate, dipropylene glycol diacrylate, polypropylene glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dimethylolpropanthate tetraacrylate, trimethylolpropane triacrylate, ditrimethylolpropane Tetraacrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanedio (Meth) acrylate, isocyanuric acid tri (meth) acrylate, ethoxylated glycerol triacrylate, ethoxylated pentaerythritol tetraacrylate and compounds having (meth) acryloyl groups such as oligomers or polymers thereof; urethane (meth) acrylate, and These oligomers or prepolymers may be mentioned. These compounds may be used alone or in combination of two or more.

硬化性化合物(B2)は、好ましくは水酸基を有する。ハードコート層形成用組成物が、このような硬化性化合物(B2)を含んでいれば、ハードコート層形成時の加熱温度をより低く、加熱時間をより短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。また(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れる光学積層体を得ることができる。水酸基を有する硬化性化合物(B2)としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。   The curable compound (B2) preferably has a hydroxyl group. If the composition for forming a hard coat layer contains such a curable compound (B2), the heating temperature at the time of forming the hard coat layer can be set lower, the heating time can be set shorter, and deformation due to heating can be achieved. It is possible to efficiently produce an optical laminate in which the above is suppressed. Moreover, the optical laminated body excellent in the adhesiveness of a (meth) acrylic-type resin film and a hard-coat layer can be obtained. Examples of the curable compound (B2) having a hydroxyl group include pentaerythritol tri (meth) acrylate and dipentaerythritol penta (meth) acrylate.

硬化性化合物(B2)の重量平均分子量は、好ましくは3000以下であり、より好ましくは2000以下であり、さらに好ましくは1500以下であり、特に好ましくは1000以下であり、特に好ましくは500以下である。比較的小さい重量平均分子量を有する硬化性化合物(B2)を用いることにより、浸透層の厚みを大きくすることができる。その結果、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ、干渉ムラの抑制された光学積層体を得ることができる。   The weight average molecular weight of the curable compound (B2) is preferably 3000 or less, more preferably 2000 or less, further preferably 1500 or less, particularly preferably 1000 or less, and particularly preferably 500 or less. . By using the curable compound (B2) having a relatively small weight average molecular weight, the thickness of the permeation layer can be increased. As a result, an optical laminate having excellent adhesion between the (meth) acrylic resin film and the hard coat layer and having suppressed interference unevenness can be obtained.

ハードコート層形成用組成物中の全硬化性化合物に対する硬化性化合物(B)の含有割合は、30重量%〜80重量%であり、好ましくは30重量%〜75重量%であり、さらに好ましくは35重量%〜70重量%、特に好ましくは40重量%〜60重量%である。このような範囲であれば、十分な硬度を有する光学積層体を得ることができる。   The content ratio of the curable compound (B) to the total curable compound in the hard coat layer forming composition is 30% by weight to 80% by weight, preferably 30% by weight to 75% by weight, and more preferably. It is 35 to 70% by weight, particularly preferably 40 to 60% by weight. If it is such a range, the optical laminated body which has sufficient hardness can be obtained.

ハードコート層形成用組成物が、硬化性化合物(B1)および硬化性化合物(B2)の両方を含む場合、これらの配合重量比(B1/B2)は、例えば30/70〜99/1、好ましくは40/60〜99/1、より好ましくは50/50〜99/1であり得る。   When the composition for forming a hard coat layer contains both the curable compound (B1) and the curable compound (B2), the blending weight ratio (B1 / B2) is, for example, 30/70 to 99/1, preferably May be 40/60 to 99/1, more preferably 50/50 to 99/1.

単官能モノマー(C)は、1個のラジカル重合性不飽和基を含有する一方で、芳香環を含有しない。単官能モノマー(C)は、(メタ)アクリル系樹脂フィルムに容易に浸透するので、浸透層が好適に形成され得る。また、ハードコート層形成用組成物が単官能モノマー(C)を含んでいれば、ハードコート層形成時の加熱温度を低く、加熱時間を短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。   The monofunctional monomer (C) contains one radical polymerizable unsaturated group, but does not contain an aromatic ring. Since the monofunctional monomer (C) easily penetrates into the (meth) acrylic resin film, the penetration layer can be suitably formed. Moreover, if the composition for forming the hard coat layer contains the monofunctional monomer (C), the heating temperature at the time of forming the hard coat layer can be set low, the heating time can be set short, and deformation due to heating is suppressed. An optical laminate can be produced efficiently.

単官能モノマー(C)の重量平均分子量は、好ましくは500以下、より好ましくは300以下、さらに好ましくは250未満、特に好ましくは200未満である。このような単官能モノマーであれば、(メタ)アクリル系樹脂フィルムに容易に浸透および拡散する。このような単官能モノマーとしては、例えば、メトキシポリエチレングリコール(メタ)アクリレート、2−エチルヘキシルアクリレート、ラウリルアクリレート、イソオクチルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、イソホロニルアクリレート、アクリロイルモルホリン、2−ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ジメチルアミノプロピルアクリルアミド、N−(2−ヒドロキシエチル)(メタ)アクリルアミド、アクリロイルモルホリン等が挙げられる。   The weight average molecular weight of the monofunctional monomer (C) is preferably 500 or less, more preferably 300 or less, still more preferably less than 250, and particularly preferably less than 200. With such a monofunctional monomer, it easily penetrates and diffuses into the (meth) acrylic resin film. Examples of such monofunctional monomers include methoxypolyethylene glycol (meth) acrylate, 2-ethylhexyl acrylate, lauryl acrylate, isooctyl acrylate, isostearyl acrylate, cyclohexyl acrylate, isophoronyl acrylate, acryloylmorpholine, 2-hydroxyethyl. (Meth) acrylate, 4-hydroxybutyl (meth) acrylate, dimethylaminopropylacrylamide, N- (2-hydroxyethyl) (meth) acrylamide, acryloylmorpholine and the like can be mentioned.

単官能モノマー(C)は、好ましくは水酸基、エーテル、アミン(モルホリン環を含む)等の極性基を有し、より好ましくは水酸基を有する。このような単官能モノマーであれば、(メタ)アクリル系樹脂フィルムに対する浸透性または溶解性に優れる。その結果、ハードコート層形成時の加熱温度をより低く、加熱時間をより短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。また、上記ハードコート層形成用組成物が、水酸基を有する単官能モノマーを含んでいれば、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れる光学積層体を得ることができる。このような単官能モノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、1,4−シクロヘキサンメタノールモノアクリレート等のヒドロキシアルキル(メタ)アクリレート;N−(2−ヒドロキシエチル)(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド等のN−(2−ヒドロキシアルキル)(メタ)アクリルアミド、シクロヘキサンジメタノールモノアクリレート等が挙げられる。なかでも好ましくは、4−ヒドロキシブチルアクリレート、N−(2−ヒドロキシエチル)アクリルアミドである。   The monofunctional monomer (C) preferably has a polar group such as a hydroxyl group, an ether, an amine (including a morpholine ring), and more preferably has a hydroxyl group. If it is such a monofunctional monomer, it is excellent in the permeability or solubility with respect to a (meth) acrylic-type resin film. As a result, the heating temperature at the time of forming the hard coat layer can be set lower, the heating time can be set shorter, and an optical layered body in which deformation due to heating is suppressed can be efficiently produced. Moreover, if the said composition for hard-coat layer formation contains the monofunctional monomer which has a hydroxyl group, the optical laminated body excellent in the adhesiveness of a (meth) acrylic-type resin film and a hard-coat layer can be obtained. Examples of such monofunctional monomers include hydroxyalkyl such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 1,4-cyclohexanemethanol monoacrylate. (Meth) acrylate; N- (2-hydroxyethyl) (meth) acrylamide, N- (2-hydroxyalkyl) (meth) acrylamide such as N-methylol (meth) acrylamide, cyclohexanedimethanol monoacrylate and the like. Of these, 4-hydroxybutyl acrylate and N- (2-hydroxyethyl) acrylamide are preferable.

単官能モノマー(C)の沸点は、ハードコート層形成時における塗布層の加熱温度(後述)より高いことが好ましい。上記単官能モノマーの沸点は、例えば、好ましくは150℃以上であり、より好ましくは180℃以上であり、特に好ましくは200℃以上である。このような範囲であれば、ハードコート層形成時における加熱により単官能モノマーが揮発することを防止でき、(メタ)アクリル系樹脂フィルムに単官能モノマーを十分に浸透させることができる。   The boiling point of the monofunctional monomer (C) is preferably higher than the heating temperature (described later) of the coating layer when forming the hard coat layer. The boiling point of the monofunctional monomer is, for example, preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher. If it is such a range, it can prevent that a monofunctional monomer volatilizes by the heating at the time of hard-coat layer formation, and a monofunctional monomer can fully osmose | permeate a (meth) acrylic-type resin film.

ハードコート層形成用組成物中の全硬化性化合物に対する単官能モノマー(C)の含有割合は、好ましくは10重量%〜40重量%であり、より好ましくは12重量%〜35重量%、さらに好ましくは15重量%〜30重量%である。単官能モノマー(C)の含有割合がこのような範囲内であれば、ハードコート層形成時の加熱温度を低く、加熱時間を短く設定することができ、加熱による変形が抑制された光学積層体を効率よく生産することができる。   The content ratio of the monofunctional monomer (C) to the total curable compound in the hard coat layer forming composition is preferably 10% by weight to 40% by weight, more preferably 12% by weight to 35% by weight, and still more preferably. Is from 15% to 30% by weight. If the content ratio of the monofunctional monomer (C) is within such a range, the heating temperature at the time of forming the hard coat layer can be set low, the heating time can be set short, and the optical laminate in which deformation due to heating is suppressed. Can be produced efficiently.

ハードコート層形成用組成物中の全硬化性化合物に対する前記硬化性化合物(A)と単官能モノマー(C)との合計含有割合は、好ましくは20重量%〜70重量%、より好ましくは30重量%〜65重量%、さらに好ましくは40重量%〜60重量%である   The total content of the curable compound (A) and the monofunctional monomer (C) with respect to the total curable compound in the hard coat layer forming composition is preferably 20% by weight to 70% by weight, more preferably 30% by weight. % To 65% by weight, more preferably 40% to 60% by weight

上記ハードコート層形成用組成物は、好ましくは、任意の適切な光重合開始剤を含む。光重合開始剤としては、例えば、2,2−ジメトキシ−2−フェニルアセトフェノン、アセトフェノン、ベンゾフェノン、キサントン、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、ベンゾインプロピルエーテル、ベンジルジメチルケタール、N,N,N’,N’−テトラメチル−4,4’−ジアミノベンゾフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、チオキサントン系化合物等が挙げられる。   The hard coat layer forming composition preferably contains any appropriate photopolymerization initiator. Examples of the photopolymerization initiator include 2,2-dimethoxy-2-phenylacetophenone, acetophenone, benzophenone, xanthone, 3-methylacetophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, benzoinpropyl ether, benzyldimethyl Ketals, N, N, N ′, N′-tetramethyl-4,4′-diaminobenzophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone compounds, etc. Can be mentioned.

1つの実施形態においては、ハードコート層の基材層とは反対側の表面は、凹凸構造を有する。ハードコート層の表面が凹凸構造であれば、光学積層体に防眩性を付与することができる。このような凹凸構造を形成する方法としては、例えば、ハードコート層形成用組成物に微粒子を含有させる方法が挙げられる。微粒子は無機微粒子であってもよく、有機微粒子であってもよい。無機微粒子としては、例えば、酸化ケイ素微粒子、酸化チタン微粒子、酸化アルミニウム微粒子、酸化亜鉛微粒子、酸化錫微粒子、炭酸カルシウム微粒子、硫酸バリウム微粒子、タルク微粒子、カオリン微粒子、硫酸カルシウム微粒子等が挙げられる。有機微粒子としては、例えば、ポリメタクリル酸メチル樹脂粉末(PMMA微粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末等が挙げられる。これらの微粒子は、単独で用いてもよく、複数を組み合わせて用いてもよい。   In one embodiment, the surface of the hard coat layer opposite to the base material layer has a concavo-convex structure. If the surface of the hard coat layer has a concavo-convex structure, antiglare properties can be imparted to the optical laminate. Examples of a method for forming such a concavo-convex structure include a method in which fine particles are contained in the hard coat layer forming composition. The fine particles may be inorganic fine particles or organic fine particles. Examples of the inorganic fine particles include silicon oxide fine particles, titanium oxide fine particles, aluminum oxide fine particles, zinc oxide fine particles, tin oxide fine particles, calcium carbonate fine particles, barium sulfate fine particles, talc fine particles, kaolin fine particles, and calcium sulfate fine particles. Examples of the organic fine particles include polymethyl methacrylate resin powder (PMMA fine particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, and polyester resin powder. , Polyamide resin powder, polyimide resin powder, polyfluorinated ethylene resin powder, and the like. These fine particles may be used alone or in combination.

上記微粒子の形状は、任意の適切な形状が採用され得る。好ましくは略球形であり、より好ましくはアスペクト比が1.5以下の略球形である。微粒子の重量平均粒径は、好ましくは1μm〜30μmであり、より好ましくは2μm〜20μmである。微粒子の重量平均粒径は、例えば、コールターカウント法により測定できる。   Any appropriate shape can be adopted as the shape of the fine particles. It is preferably a substantially spherical shape, more preferably a substantially spherical shape having an aspect ratio of 1.5 or less. The weight average particle diameter of the fine particles is preferably 1 μm to 30 μm, more preferably 2 μm to 20 μm. The weight average particle diameter of the fine particles can be measured by, for example, a Coulter count method.

上記ハードコート層形成用組成物が上記微粒子を含む場合、上記微粒子の含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは1重量%〜60重量%であり、より好ましくは2重量%〜50重量%である。   When the hard coat layer forming composition contains the fine particles, the content ratio of the fine particles is preferably 1% by weight to the total amount of the monomer, oligomer and prepolymer in the hard coat layer forming composition. 60% by weight, more preferably 2% by weight to 50% by weight.

上記ハードコート層形成用組成物は、任意の適切な添加剤をさらに含み得る。添加剤としては、例えば、レベリング剤、ブロッキング防止剤、分散安定剤、揺変剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、分散剤、界面活性剤、触媒、フィラー、滑剤、帯電防止剤等が挙げられる。   The composition for forming a hard coat layer may further contain any appropriate additive. Examples of additives include leveling agents, anti-blocking agents, dispersion stabilizers, thixotropic agents, antioxidants, UV absorbers, antifoaming agents, thickeners, dispersants, surfactants, catalysts, fillers, and lubricants. And antistatic agents.

上記レベリング剤としては、例えば、フッ素系またはシリコーン系のレベリング剤が挙げられ、好ましくは、シリコーン系レベリング剤である。上記シリコーン系レベリング剤としては、例えば、反応性シリコーン、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサン等が挙げられる。なかでも好ましくは、反応性シリコーンである。反応性シリコーンを添加すれば、ハードコート層表面に滑り性が付与され耐擦傷性が長期間にわたり持続するようになる。上記レベリング剤の含有割合は、ハードコート層形成用組成物中のモノマー、オリゴマーおよびプレポリマーの合計量に対して、好ましくは5重量%以下であり、より好ましくは0.01重量%〜5重量%である。   As said leveling agent, a fluorine type or silicone type leveling agent is mentioned, for example, Preferably, it is a silicone type leveling agent. Examples of the silicone leveling agent include reactive silicone, polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane. Of these, reactive silicone is preferable. If reactive silicone is added, the surface of the hard coat layer is provided with slipperiness and the scratch resistance is maintained for a long period of time. The content ratio of the leveling agent is preferably 5% by weight or less, more preferably 0.01% by weight to 5% by weight with respect to the total amount of the monomer, oligomer and prepolymer in the hard coat layer forming composition. %.

上記ハードコート層形成用組成物は、溶媒を含んでいてもよく、含んでいなくてもよい。溶媒としては、例えば、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4−ジオキサン、1,3−ジオキソラン、1,3,5−トリオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン(CPN)、シクロヘキサノン、メチルシクロヘキサノン、蟻酸エチル、蟻酸プロピル、蟻酸n−ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n−ペンチル、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、アセト酢酸エチル、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール、イソプロピルアルコール(IPA)、酢酸イソブチル、メチルイソブチルケトン(MIBK)、2−オクタノン、2−ペンタノン、2−ヘキサノン、2−ヘプタノン、3−ヘプタノン、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等が挙げられる。これらは、単独で用いてもよく、複数を組み合わせて用いてもよい。   The composition for forming a hard coat layer may or may not contain a solvent. Examples of the solvent include dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, acetone, methyl ethyl ketone (MEK). , Diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone (CPN), cyclohexanone, methylcyclohexanone, ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, ethyl acetate n -Pentyl, acetylacetone, diacetone alcohol, methyl acetoacetate, ethyl acetoacetate, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pen Nord, 2-methyl-2-butanol, cyclohexanol, isopropyl alcohol (IPA), isobutyl acetate, methyl isobutyl ketone (MIBK), 2-octanone, 2-pentanone, 2-hexanone, 2-heptanone, 3-heptanone, ethylene Examples include glycol monoethyl ether acetate, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether. These may be used alone or in combination.

本発明によれば、溶媒を含まないハードコート層形成用組成物、あるいは溶媒として(メタ)アクリル系樹脂フィルム形成材料の貧溶媒のみを含むハードコート層形成用組成物を用いても、ハードコート形成用組成物が(メタ)アクリル系樹脂フィルムに浸透して、所望の厚みを有する浸透層を形成することができる。   According to the present invention, a hard coat layer-forming composition containing no solvent, or a hard coat layer-forming composition containing only a poor solvent for the (meth) acrylic resin film-forming material as a solvent can be used. The forming composition can permeate the (meth) acrylic resin film to form a permeation layer having a desired thickness.

上記ハードコート層の厚みは、好ましくは1μm以上であり、より好ましくは3μm以上であり、さらに好ましくは4μm〜10μmである。このような範囲であれば、硬度に優れる光学積層体を得ることができる。また、本発明の光学積層体は、上記のように(メタ)アクリル系樹脂フィルム中の成分のハードコート層(ハードコート層形成用組成物)への拡散が抑制されるため、ハードコート層の厚みを薄くしても、硬度に優れる。   The thickness of the hard coat layer is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 4 μm to 10 μm. If it is such a range, the optical laminated body excellent in hardness can be obtained. Moreover, since the optical laminated body of this invention suppresses the spreading | diffusion to the hard-coat layer (composition for hard-coat layer formation) of the component in a (meth) acrylic-type resin film as mentioned above, Even if the thickness is reduced, the hardness is excellent.

上記のとおり、(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、ハードコート層形成用組成物に溶出して、ハードコート層中に当該(メタ)アクリル系樹脂が存在していてもよい。本発明においては、多官能の硬化性化合物(B)を含むハードコート層形成用組成物によりハードコート層を形成しているため、当該(メタ)アクリル系樹脂がハードコート層の表面側へ移動することを抑制し得る。1つの実施形態においては、当該(メタ)アクリル系樹脂の濃度が、浸透層の基材層側からハードコート層へ連続的に低くなる。このような実施形態においては、(メタ)アクリル系樹脂の濃度が連続的に変化すること、すなわち(メタ)アクリル系樹脂の濃度変化に起因する界面が形成されていないことにより界面反射を抑制することができ、干渉ムラの少ない光学積層体を得ることができる。別の実施形態においては、当該(メタ)アクリル系樹脂とハードコート層形成用組成物とが相分離し、ハードコート層の浸透層とは反対側にブロック層が形成される。このような実施形態においても、当該(メタ)アクリル系樹脂の濃度が、浸透層の基材層側からブロック層を除くハードコート層へ連続的に低くなることが好ましい。   As described above, the (meth) acrylic resin forming the (meth) acrylic resin film is eluted in the hard coat layer forming composition, and the (meth) acrylic resin is present in the hard coat layer. May be. In the present invention, since the hard coat layer is formed by the hard coat layer forming composition containing the polyfunctional curable compound (B), the (meth) acrylic resin moves to the surface side of the hard coat layer. It can be suppressed. In one embodiment, the density | concentration of the said (meth) acrylic-type resin becomes low continuously from the base material layer side of a osmosis | permeation layer to a hard-coat layer. In such an embodiment, the interface reflection is suppressed by the fact that the concentration of the (meth) acrylic resin continuously changes, that is, the interface resulting from the concentration change of the (meth) acrylic resin is not formed. And an optical laminated body with less interference unevenness can be obtained. In another embodiment, the (meth) acrylic resin and the composition for forming a hard coat layer are phase-separated, and a block layer is formed on the opposite side of the hard coat layer from the osmotic layer. Also in such embodiment, it is preferable that the density | concentration of the said (meth) acrylic-type resin becomes low continuously from the base material layer side of a osmosis | permeation layer to the hard-coat layer except a block layer.

ブロック層の厚みは、好ましくは1μm〜10μmであり、さらに好ましくは2μm〜5μmである。
なお、ブロック層の厚みは、ハードコート層の反射スペクトル、またはSEM、TEM等の電子顕微鏡による観察により測定することができる。
The thickness of the block layer is preferably 1 μm to 10 μm, more preferably 2 μm to 5 μm.
In addition, the thickness of a block layer can be measured by observation with electron microscopes, such as a reflection spectrum of a hard-coat layer, or SEM and TEM.

E.その他の層
本発明の光学積層体は、必要に応じて、ハードコート層の外側に任意の適切なその他の層が配置され得る。代表例としては、反射防止層およびアンチグレア層が挙げられる。反射防止層およびアンチグレア層としては、当業界で通常用いられている反射防止層およびアンチグレア層が採用され得る。
E. Other Layers In the optical layered body of the present invention, any appropriate other layer may be disposed outside the hard coat layer as necessary. Typical examples include an antireflection layer and an antiglare layer. As the antireflection layer and the antiglare layer, an antireflection layer and an antiglare layer usually used in the art can be adopted.

F.光学積層体の製造方法
本発明の光学積層体の製造方法は、(メタ)アクリル系樹脂フィルム上にハードコート層形成用組成物を塗布して塗布層を形成し、該塗布層を加熱することを含む。好ましくは、ハードコート層は、加熱後の塗布層を硬化処理して形成される。
F. Method for Producing Optical Laminate The method for producing an optical laminate of the present invention comprises applying a composition for forming a hard coat layer on a (meth) acrylic resin film to form a coating layer, and heating the coating layer. including. Preferably, the hard coat layer is formed by curing the coating layer after heating.

ハードコート層形成用組成物の塗布方法としては、任意の適切な方法を採用し得る。例えば、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法が挙げられる。   Arbitrary appropriate methods can be employ | adopted as a coating method of the composition for hard-coat layer formation. Examples thereof include a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, a fountain coating method, and a comma coating method.

上記塗布層の加熱温度は、ハードコート層形成用組成物の組成に応じて、適切な温度に設定され得、好ましくは、(メタ)アクリル系樹脂フィルムに含まれる樹脂のガラス転移温度以下に設定される。(メタ)アクリル系樹脂フィルムに含まれる樹脂のガラス転移温度以下の温度で加熱すれば、加熱による変形が抑制された光学積層体を得ることができる。上記塗布層の加熱温度は、例えば、50℃以上100℃未満、好ましくは50℃以上80℃未満、より好ましくは50℃〜75℃である。このような範囲の温度で加熱すれば、ハードコート層形成用組成物中のモノマー、オリゴマーおよび/またはプレポリマー(特に、単官能モノマー(C))が(メタ)アクリル系樹脂フィルム中に良好に浸透および拡散する。当該加熱、その後の硬化処理を経て、浸透したハードコート層形成用組成物および(メタ)アクリル系樹脂フィルムの形成材料により、上記C項で説明した浸透層が形成される。その結果、(メタ)アクリル系樹脂フィルムとハードコート層との密着性に優れ、かつ干渉ムラの抑制された光学積層体を得ることができる。なお、ハードコート層形成用組成物が溶媒を含む場合、当該加熱により、塗布したハードコート層形成用組成物を乾燥させることができる。   The heating temperature of the coating layer can be set to an appropriate temperature according to the composition of the hard coat layer forming composition, and preferably set to be equal to or lower than the glass transition temperature of the resin contained in the (meth) acrylic resin film. Is done. When heated at a temperature not higher than the glass transition temperature of the resin contained in the (meth) acrylic resin film, an optical layered body in which deformation due to heating is suppressed can be obtained. The heating temperature of the coating layer is, for example, 50 ° C. or more and less than 100 ° C., preferably 50 ° C. or more and less than 80 ° C., more preferably 50 ° C. to 75 ° C. By heating at a temperature in such a range, the monomer, oligomer and / or prepolymer (particularly, the monofunctional monomer (C)) in the composition for forming the hard coat layer is excellent in the (meth) acrylic resin film. Penetration and diffusion. The permeation layer described in the above section C is formed by the hard coat layer forming composition and the (meth) acrylic resin film forming material that has permeated through the heating and the subsequent curing treatment. As a result, an optical laminate having excellent adhesion between the (meth) acrylic resin film and the hard coat layer and having suppressed interference unevenness can be obtained. In addition, when the composition for hard-coat layer formation contains a solvent, the apply | coated composition for hard-coat layer formation can be dried by the said heating.

1つの実施形態においては、上記加熱温度は硬化性化合物(A)および単官能モノマー(C)の含有割合に応じて設定され得る。例えば、ハードコート層形成用組成物中の全硬化性化合物に対する前記硬化性化合物(A)と単官能モノマー(C)との合計含有割合が20重量%〜70重量%であれば、80℃未満の加熱温度で、密着性および硬度が優れ、かつ、干渉ムラおよび加熱による変形が抑制された光学積層体が得ることが可能であり、環境負荷が小さく効率のよい製造プロセスとすることができる。   In one embodiment, the said heating temperature may be set according to the content rate of a sclerosing | hardenable compound (A) and a monofunctional monomer (C). For example, if the total content of the curable compound (A) and the monofunctional monomer (C) with respect to all curable compounds in the hard coat layer forming composition is 20% by weight to 70% by weight, it is less than 80 ° C. With this heating temperature, it is possible to obtain an optical layered body that is excellent in adhesion and hardness and that is free from interference unevenness and deformation due to heating, and can be an efficient manufacturing process with low environmental load.

上記硬化処理としては、任意の適切な硬化処理が採用され得る。代表的には、硬化処理は紫外線照射により行われる。紫外線照射の積算光量は、好ましくは200mJ〜400mJである。   Any appropriate curing process can be adopted as the curing process. Typically, the curing process is performed by ultraviolet irradiation. The integrated light quantity of ultraviolet irradiation is preferably 200 mJ to 400 mJ.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は以下のとおりである。また、実施例において、特に明記しない限り、「部」および「%」は重量基準である。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. The evaluation methods in the examples are as follows. In Examples, unless otherwise specified, “parts” and “%” are based on weight.

(1)鉛筆硬度
実施例および比較例で得られた光学積層体のハードコート層側表面について、JIS K 5400に準じて(荷重500g)、鉛筆硬度を測定し、以下の基準で評価した。
○:鉛筆硬度が2H以上である
×:鉛筆硬度がH以下である
(2)ハードコート層の密着性
ハードコート層の基材フィルムに対する密着性を、JIS K−5400の碁盤目剥離試験(基板目数:100個)に準じて測定し、以下の基準で評価した。
○:剥離数が0である
×:剥離数が1以上である
(3)干渉ムラ
実施例および比較例で得られた光学積層体の基材フィルム側に、黒色アクリル板(三菱レイヨン社製、厚み2mm)をアクリル系粘着剤を介して貼着した後、3波長蛍光灯下で、干渉ムラを目視観察し、以下の基準で評価した。
○:干渉ムラの発生無し
×:干渉ムラの発生が認められる
(4)浸透層の厚み
実施例および比較例で得られた光学積層体の基材層側に、黒色アクリル板(三菱レイヨン社製、厚み2mm)を、厚み20μmのアクリル系粘着剤を介して貼着した。次いで、ハードコート層の反射スペクトルを、瞬間マルチ測光システム(大塚電子社製、商品名:MCPD3700)を用いて以下の条件で測定し、FFTスペクトルのピーク位置から、(ハードコート層+浸透層)の厚みを評価した。なお屈折率は、アタゴ社製のアッベ屈折率計(商品名:DR−M2/1550)を用い、中間液としてモノブロモナフタレンを選択して測定した。
・反射スペクトル測定条件
リファレンス:ミラー
アルゴリズム:FFT法
計算波長:450nm〜850nm
・検出条件
露光時間:20ms
ランプゲイン:ノーマル
積算回数:10回
・FFT法
膜厚値の範囲:2〜15μm
膜厚分解能:24nm
また、ハードコート層の厚みは、下記積層体(R)についての上記反射スペクトル測定により評価した。
・積層体(R):基材フィルムとしてPET基材(東レ社製、商品名:U48−3、屈折率:1.60)を用い、塗布層の加熱温度を60℃とした以外は、実施例1と同様にして得た。
なお、当該積層体に用いられるPET基材には、ハードコート層形成用組成物が浸透しないので、積層体(R)から得られるFFTスペクトルのピーク位置から、ハードコート層のみの厚みが測定される。当該評価の結果、ハードコート層の厚みは5.3μmであった。
((ハードコート層+浸透層)の厚み)−((ハードコート層)の厚み)から算出される正の値を浸透層の厚みとした。
(1) Pencil hardness About the hard coat layer side surface of the optical laminated body obtained by the Example and the comparative example, according to JISK5400 (load 500g), pencil hardness was measured and evaluated on the following references | standards.
○: Pencil hardness is 2H or more ×: Pencil hardness is H or less (2) Adhesion of hard coat layer Adhesion of the hard coat layer to the substrate film is determined by a cross-cut peel test (substrate) of JIS K-5400 (Number of eyes: 100) and evaluated according to the following criteria.
○: The number of peels is 0 ×: The number of peels is 1 or more (3) Interference unevenness On the base film side of the optical laminate obtained in Examples and Comparative Examples, a black acrylic plate (manufactured by Mitsubishi Rayon Co., Ltd., After attaching 2 mm thick) via an acrylic pressure-sensitive adhesive, interference unevenness was visually observed under a three-wavelength fluorescent lamp and evaluated according to the following criteria.
○: No occurrence of interference unevenness ×: Generation of interference unevenness is observed (4) Thickness of penetration layer A black acrylic plate (manufactured by Mitsubishi Rayon Co., Ltd.) is formed on the base layer side of the optical laminate obtained in Examples and Comparative Examples. , 2 mm thick) was pasted through an acrylic adhesive having a thickness of 20 μm. Next, the reflection spectrum of the hard coat layer was measured under the following conditions using an instantaneous multi-photometry system (trade name: MCPD3700, manufactured by Otsuka Electronics Co., Ltd.). From the peak position of the FFT spectrum, (hard coat layer + penetration layer) The thickness of was evaluated. The refractive index was measured using an Abbe refractometer (trade name: DR-M2 / 1550) manufactured by Atago Co., Ltd., selecting monobromonaphthalene as an intermediate solution.
Reflection spectrum measurement conditions Reference: Mirror Algorithm: FFT method Calculation wavelength: 450 nm to 850 nm
・ Detection conditions Exposure time: 20 ms
Lamp gain: Normal Integration count: 10 times / FFT method Film thickness range: 2 to 15 μm
Film thickness resolution: 24nm
Moreover, the thickness of the hard coat layer was evaluated by measuring the reflection spectrum of the laminate (R) below.
-Laminate (R): Implemented except that a PET base material (trade name: U48-3, refractive index: 1.60) manufactured by Toray Industries, Inc. was used as the base film, and the heating temperature of the coating layer was set to 60 ° C. Obtained in the same manner as in Example 1.
In addition, since the composition for forming a hard coat layer does not penetrate into the PET substrate used in the laminate, the thickness of only the hard coat layer is measured from the peak position of the FFT spectrum obtained from the laminate (R). The As a result of the evaluation, the thickness of the hard coat layer was 5.3 μm.
A positive value calculated from (thickness of (hard coat layer + penetration layer)) − (thickness of (hard coat layer)) was defined as the thickness of the permeation layer.

<製造例1>基材フィルムAの作製
特開2010−284840号公報の製造例1に記載のイミド化MS樹脂(重量平均分子量:105,000)100重量部およびトリアジン系紫外線吸収剤(アデカ社製、商品名:T−712)0.62重量部を、2軸混練機にて220℃にて混合し、樹脂ペレットを作製した。得られた樹脂ペレットを、100.5kPa、100℃で12時間乾燥させ、単軸の押出機にてダイス温度270℃でTダイから押出してフィルム状に成形した(厚み160μm)。さらに当該フィルムを、その搬送方向に150℃の雰囲気下に延伸し(厚み80μm)、次いでフィルム搬送方向と直交する方向に150℃の雰囲気下に延伸して、厚み40μmの基材フィルムA((メタ)アクリル系樹脂フィルム)を得た。得られた基材フィルムAの波長380nmの光の透過率は8.5%、面内位相差Reは0.4nm、厚み方向位相差Rthは0.78nmであった。また得られた基材フィルムAの透湿度は、61g/m・24hrであった。なお、光透過率は、日立ハイテク(株)社製の分光光度計(装置名称;U−4100)を用いて波長範囲200nm〜800nmで透過率スペクトルを測定し、波長380nmにおける透過率を読み取った。また、位相差値は、王子計測機器(株)製 商品名「KOBRA21−ADH」を用いて、波長590nm、23℃で測定した。透湿度は、JIS K 0208に準じた方法により、温度40℃、相対湿度92%の条件で測定した。
<Production Example 1> Production of Base Film A 100 parts by weight of imidized MS resin (weight average molecular weight: 105,000) described in Production Example 1 of JP 2010-284840 A and triazine-based ultraviolet absorber (ADEKA) (Product name: T-712) 0.62 parts by weight were mixed at 220 ° C. with a twin-screw kneader to prepare resin pellets. The obtained resin pellets were dried at 100.5 kPa and 100 ° C. for 12 hours, extruded from a T-die at a die temperature of 270 ° C. with a single screw extruder, and formed into a film (thickness: 160 μm). Further, the film is stretched in an atmosphere of 150 ° C. in the transport direction (thickness 80 μm), and then stretched in an atmosphere of 150 ° C. in a direction orthogonal to the film transport direction to form a base film A (( (Meth) acrylic resin film). The base film A thus obtained had a light transmittance of 8.5% at a wavelength of 380 nm, an in-plane retardation Re of 0.4 nm, and a thickness direction retardation Rth of 0.78 nm. In addition, the moisture permeability of the obtained base film A was 61 g / m 2 · 24 hr. The light transmittance was measured by measuring a transmittance spectrum in a wavelength range of 200 nm to 800 nm using a spectrophotometer (device name: U-4100) manufactured by Hitachi High-Tech Co., Ltd., and reading the transmittance at a wavelength of 380 nm. . The phase difference value was measured at a wavelength of 590 nm and 23 ° C. using a trade name “KOBRA21-ADH” manufactured by Oji Scientific Instruments. The moisture permeability was measured by a method according to JIS K 0208 under conditions of a temperature of 40 ° C. and a relative humidity of 92%.

<実施例1>
硬化性化合物(A)としてのフェノールノボラック系アクリレート(日立化成社製、製品名「ヒタロイドUV251」)30部と、硬化性化合物(B)としてのウレタンアクリレートのオリゴマー(Mw=2300、官能基数:15)とジペンタエリスリトールヘキサアクリレートとの混合物(新中村化学社製、製品名「UA53H」)70部と、単官能モノマー(C)としてのヒドロキシブチルアクリレート(大阪有機化学社製、製品名「4−HBA」)20部と、レベリング剤(DIC社製、商品名:PC4100)0.5部と、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部とを混合し、固形分濃度が50%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成用組成物を調製した。
<Example 1>
30 parts of phenol novolac acrylate (product name “Hitaroid UV251”, manufactured by Hitachi Chemical Co., Ltd.) as the curable compound (A), and urethane acrylate oligomer (Mw = 2300, number of functional groups: 15 as the curable compound (B)) ) And dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name “UA53H”), and hydroxybutyl acrylate as a monofunctional monomer (C) (manufactured by Osaka Organic Chemical Co., Ltd., product name “4- 20 parts of HBA ”, 0.5 part of a leveling agent (manufactured by DIC, trade name: PC4100) and 3 parts of a photopolymerization initiator (trade name: Irgacure 907, manufactured by Ciba Japan Co., Ltd.) A composition for forming a hard coat layer was prepared by diluting with methyl isobutyl ketone so that the partial concentration was 50%.

製造例1で得られた基材フィルムA上に、得られたハードコート層形成用組成物を塗布して塗布層を形成し、当該塗布層を75℃で1分間加熱した。加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させて、基材層、ハードコート層および浸透層を形成し、光学積層体を得た。 On the base film A obtained in Production Example 1, the obtained composition for forming a hard coat layer was applied to form a coating layer, and the coating layer was heated at 75 ° C. for 1 minute. The coated layer after heating was irradiated with ultraviolet light having an accumulated light amount of 300 mJ / cm 2 with a high-pressure mercury lamp to cure the coated layer to form a base layer, a hard coat layer, and a penetrating layer, thereby obtaining an optical laminate. .

<実施例2>
硬化性化合物(A)としてフルオレン含有アクリレートのオリゴマー(大阪ガスケミカルズ社製、製品名「EA−HR034」)を30部用いたこと以外は、実施例1と同様にして光学積層体を得た。
<Example 2>
An optical laminate was obtained in the same manner as in Example 1 except that 30 parts of a fluorene-containing acrylate oligomer (product name “EA-HR034” manufactured by Osaka Gas Chemicals Co., Ltd.) was used as the curable compound (A).

<実施例3>
硬化性化合物(A)としてフルオレン含有アクリレートのオリゴマー(共栄社化学社製、製品名「HIC−GL」)を30部用いたこと以外は、実施例1と同様にして光学積層体を得た。
<Example 3>
An optical laminate was obtained in the same manner as in Example 1 except that 30 parts of a fluorene-containing acrylate oligomer (product name “HIC-GL”, manufactured by Kyoeisha Chemical Co., Ltd.) was used as the curable compound (A).

<実施例4>
硬化性化合物(A)としてエトキシ化o−フェニルフェノール(メタ)アクリレート(新中村化学社製、製品名「A−LEN−10」)を30部用いたこと以外は、実施例1と同様にして光学積層体を得た。
<Example 4>
Except that 30 parts of ethoxylated o-phenylphenol (meth) acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name “A-LEN-10”) was used as the curable compound (A), the same procedure as in Example 1 was performed. An optical laminate was obtained.

<実施例5>
フェノールノボラック系アクリレート(日立化成社製、製品名「ヒタロイドUV251」)の配合量を50部としたこと、硬化性化合物(B)(新中村化学社製、製品名「UA53H」)の配合量を50部としたこと、および、加熱温度を65℃にしたこと以外は、実施例1と同様にして光学積層体を得た。
<Example 5>
The amount of phenol novolac acrylate (manufactured by Hitachi Chemical Co., Ltd., product name “Hitaroid UV251”) was 50 parts, and the amount of curable compound (B) (manufactured by Shin-Nakamura Chemical Co., Ltd., product name “UA53H”) An optical laminate was obtained in the same manner as in Example 1 except that the amount was 50 parts and the heating temperature was 65 ° C.

<実施例6>
硬化性化合物(A)としてフルオレン含有アクリレートのオリゴマー(大阪ガスケミカルズ社製、製品名「EA−HR034」)を50部用いたこと、硬化性化合物(B)(新中村化学社製、製品名「UA53H」)の配合量を50部としたこと、および、加熱温度を65℃にしたこと以外は、実施例1と同様にして光学積層体を得た。
<Example 6>
50 parts of an oligomer of fluorene-containing acrylate (product name “EA-HR034” manufactured by Osaka Gas Chemicals Co., Ltd.) was used as the curable compound (A), and curable compound (B) (product name “manufactured by Shin-Nakamura Chemical Co., Ltd., product name“ An optical laminate was obtained in the same manner as in Example 1 except that the amount of UA53H ") was 50 parts and the heating temperature was 65 ° C.

<実施例7>
単官能モノマー(C)としてアクリロイルモルホリン(興人社製、製品名「ACMO」)を30部用いたこと以外は、実施例1と同様にして光学積層体を得た。
<Example 7>
An optical laminate was obtained in the same manner as in Example 1 except that 30 parts of acryloylmorpholine (manufactured by Kojin Co., Ltd., product name “ACMO”) was used as the monofunctional monomer (C).

<実施例8>
単官能モノマー(C)としてシクロヘキサンジメタノールモノアクリレート(日本化成社製、製品名「CHDMMA」)を30部用いたこと以外は、実施例1と同様にして光学積層体を得た。
<Example 8>
An optical laminate was obtained in the same manner as in Example 1 except that 30 parts of cyclohexanedimethanol monoacrylate (manufactured by Nippon Kasei Co., Ltd., product name “CHDMMA”) was used as the monofunctional monomer (C).

<比較例1>
硬化性化合物(A)を添加しなかったこと、および、硬化性化合物(B)(新中村化学社製、製品名「UA53H」)の配合量を100部としたこと以外は、実施例1と同様にして光学積層体を得た。
<Comparative Example 1>
Example 1 except that the curable compound (A) was not added and that the amount of the curable compound (B) (product name “UA53H” manufactured by Shin-Nakamura Chemical Co., Ltd.) was 100 parts. Similarly, an optical laminate was obtained.

<比較例2>
硬化性化合物(A)を添加しなかったこと、硬化性化合物(B)(新中村化学社製、製品名「UA53H」)の配合量を100部としたこと、および、ヒドロキシブチルアクリレート(大阪有機化学社製、製品名「4−HBA」)の配合量を50部としたこと以外は、実施例1と同様にして光学積層体を得た。
<Comparative Example 2>
The curable compound (A) was not added, the amount of the curable compound (B) (manufactured by Shin-Nakamura Chemical Co., Ltd., product name “UA53H”) was 100 parts, and hydroxybutyl acrylate (Osaka Organic) An optical laminate was obtained in the same manner as in Example 1 except that the amount of the product of “Chemical Co., Ltd., product name“ 4-HBA ”” was 50 parts.

<比較例3>
単官能モノマー(C)を添加しなかったこと以外は、実施例1と同様にして光学積層体を得た。
<Comparative Example 3>
An optical laminate was obtained in the same manner as in Example 1 except that the monofunctional monomer (C) was not added.

<比較例4>
フェノールノボラック系アクリレート(日立化成社製、製品名「ヒタロイドUV251」)の配合量を50部としたこと、硬化性化合物(B)(新中村化学社製、製品名「UA53H」)の配合量を100部としたこと、および、単官能モノマー(C)を添加しなかったこと以外は、実施例1と同様にして光学積層体を得た。
<Comparative Example 4>
The amount of phenol novolac acrylate (manufactured by Hitachi Chemical Co., Ltd., product name “Hitaroid UV251”) was 50 parts, and the amount of curable compound (B) (manufactured by Shin-Nakamura Chemical Co., Ltd., product name “UA53H”) An optical laminate was obtained in the same manner as in Example 1 except that the amount was 100 parts and the monofunctional monomer (C) was not added.

<比較例5>
硬化性化合物(A)としてフルオレン含有アクリレートのオリゴマー(大阪ガスケミカルズ社製、製品名「EA−HR034」)を30部用いたこと、および、単官能モノマー(C)を添加しなかったこと以外は、実施例1と同様にして光学積層体を得た。
<Comparative Example 5>
Except that 30 parts of fluorene-containing acrylate oligomer (product name “EA-HR034” manufactured by Osaka Gas Chemicals Co., Ltd.) was used as the curable compound (A), and that no monofunctional monomer (C) was added. In the same manner as in Example 1, an optical laminate was obtained.

<比較例6>
フェノールノボラック系アクリレート(日立化成社製、製品名「ヒタロイドUV251」)の配合量を100部としたこと、および、硬化性化合物(B)を添加しなかったこと以外は、実施例1と同様にして光学積層体を得た。
<Comparative Example 6>
Except that the blending amount of phenol novolac acrylate (manufactured by Hitachi Chemical Co., Ltd., product name “Hitaroid UV251”) was 100 parts and that the curable compound (B) was not added, the same as in Example 1. Thus, an optical laminate was obtained.

上記実施例および比較例で得られた光学積層体の各種特性を評価した。評価結果をハードコート層形成用組成物の組成と共に表1に示す。
Various characteristics of the optical laminates obtained in the above examples and comparative examples were evaluated. The evaluation results are shown in Table 1 together with the composition of the hard coat layer forming composition.

表1からも明らかなように、実施例の光学積層体は、80℃未満の加熱温度で浸透層が好適に形成されており、干渉ムラが認められない。さらに、ハードコート層と基材層との密着性に優れ、かつ、硬度にも優れる。一方、芳香環含有硬化性化合物(A)を含まないハードコート層形成用組成物を用いて得られた比較例1および2の光学積層体では、浸透層が形成されており、干渉ムラは認められないものの、密着性が不十分である。また、単官能モノマー(C)を含まない比較例3〜5のハードコート層形成用組成物を用いて得られた光学積層体では、浸透層の形成が不十分であり、その結果、密着性と干渉ムラに問題がある。また、多官能硬化性化合物(B)を含まないハードコート層形成用組成物を用いて得られた比較例6の光学積層体では、鉛筆硬度がH以下である。   As is clear from Table 1, the optical layered body of the example has a penetrating layer suitably formed at a heating temperature of less than 80 ° C., and no interference unevenness is observed. Furthermore, it is excellent in the adhesion between the hard coat layer and the base material layer, and also in the hardness. On the other hand, in the optical laminates of Comparative Examples 1 and 2 obtained using the composition for forming a hard coat layer not containing the aromatic ring-containing curable compound (A), a permeation layer was formed, and interference unevenness was observed. Although not possible, the adhesion is insufficient. Moreover, in the optical laminated body obtained by using the composition for forming a hard coat layer of Comparative Examples 3 to 5 that does not contain a monofunctional monomer (C), the formation of the permeation layer is insufficient, and as a result, adhesion And there is a problem with uneven interference. Moreover, in the optical laminated body of the comparative example 6 obtained using the composition for hard-coat layer formation which does not contain a polyfunctional curable compound (B), pencil hardness is H or less.

本発明の光学積層体は、画像表示装置に好適に用いられ得る。本発明の光学積層体は、画像表示装置の前面板または偏光子の保護材料として好適に用いられ得、とりわけ、液晶表示装置(なかでも、3次元液晶表示装置)の前面板として好適に用いられ得る。   The optical layered body of the present invention can be suitably used for an image display device. The optical layered body of the present invention can be suitably used as a front plate of an image display device or a protective material for a polarizer, and particularly suitably used as a front plate of a liquid crystal display device (in particular, a three-dimensional liquid crystal display device). obtain.

10 基材層
20 浸透層
30 ハードコート層
40 ブロック層
100、200、300 光学積層体
DESCRIPTION OF SYMBOLS 10 Base material layer 20 Penetration layer 30 Hard-coat layer 40 Block layer 100, 200, 300 Optical laminated body

Claims (13)

(メタ)アクリル系樹脂フィルムから形成される基材層と、
該(メタ)アクリル系樹脂フィルムにハードコート層形成用組成物を塗工して形成されたハードコート層と、
該基材層と該ハードコート層との間に、該ハードコート層形成用組成物が該(メタ)アクリル系樹脂フィルムに浸透して形成された浸透層とを備え、
該ハードコート層形成用組成物が、1個以上のラジカル重合性不飽和基および芳香環を含有する硬化性化合物(A)と、2個以上のラジカル重合性不飽和基を含有するが、芳香環を含有しない硬化性化合物(B)と、1個のラジカル重合性不飽和基を含有するが、芳香環を含有しない単官能モノマー(C)と、を含む、
光学積層体。
A base material layer formed from a (meth) acrylic resin film;
A hard coat layer formed by coating the (meth) acrylic resin film with a composition for forming a hard coat layer;
Between the base material layer and the hard coat layer, the hard coat layer forming composition comprises a permeation layer formed by permeating the (meth) acrylic resin film,
The hard coat layer-forming composition contains one or more radically polymerizable unsaturated groups and an aromatic ring-containing curable compound (A) and two or more radically polymerizable unsaturated groups, A curable compound (B) that does not contain a ring, and a monofunctional monomer (C) that contains one radical polymerizable unsaturated group but does not contain an aromatic ring,
Optical laminate.
前記ハードコート層形成用組成物中の全硬化性化合物に対する前記硬化性化合物(A)の含有割合が、10重量%〜60重量%である、請求項1に記載の光学積層体。   The optical laminated body of Claim 1 whose content rate of the said sclerosing | hardenable compound (A) with respect to all the sclerosing | hardenable compounds in the said composition for hard-coat layer formation is 10 weight%-60 weight%. 前記ハードコート層形成用組成物中の全硬化性化合物に対する前記硬化性化合物(A)と単官能モノマー(C)との合計含有割合が、20重量%〜70重量%である、請求項1または2に記載の光学積層体。   The total content of the curable compound (A) and the monofunctional monomer (C) with respect to all curable compounds in the composition for forming a hard coat layer is 20% by weight to 70% by weight. 2. The optical laminate according to 2. 前記ハードコート層形成用組成物が、前記硬化性化合物(B)として、9個以上のラジカル重合性不飽和基を含有する硬化性化合物(B1)を含む、請求項1から3のいずれかに記載の光学積層体。   4. The hard coat layer forming composition according to claim 1, wherein the curable compound (B) includes a curable compound (B1) containing 9 or more radically polymerizable unsaturated groups. 5. The optical laminated body as described. 前記単官能モノマー(C)の重量平均分子量が、500以下である、請求項1から4のいずれかに記載の光学積層体。   The optical laminated body according to any one of claims 1 to 4, wherein the monofunctional monomer (C) has a weight average molecular weight of 500 or less. 前記単官能モノマー(C)が、水酸基を有する、請求項1から5のいずれかに記載の光学積層体。   The optical laminate according to claim 1, wherein the monofunctional monomer (C) has a hydroxyl group. 前記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂が、正の複屈折を発現する構造単位と負の複屈折を発現する構造単位とを有する、請求項1から6のいずれかに記載の光学積層体。   The (meth) acrylic resin forming the (meth) acrylic resin film has a structural unit that exhibits positive birefringence and a structural unit that exhibits negative birefringence. The optical laminated body as described in. 前記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂の重量平均分子量が、10000〜500000である、請求項1から7のいずれかに記載の光学積層体。   The optical laminate according to any one of claims 1 to 7, wherein the (meth) acrylic resin forming the (meth) acrylic resin film has a weight average molecular weight of 10,000 to 500,000. 前記ハードコート層の前記浸透層とは反対側の表面が、凹凸構造を有する、請求項1から8のいずれかに記載の光学積層体。   The optical laminate according to any one of claims 1 to 8, wherein a surface of the hard coat layer opposite to the penetration layer has an uneven structure. 前記ハードコート層の前記浸透層とは反対側に、反射防止層をさらに備える、請求項1から9のいずれかに記載の光学積層体。   The optical laminated body according to any one of claims 1 to 9, further comprising an antireflection layer on a side of the hard coat layer opposite to the penetration layer. 請求項1から10のいずれかに記載の光学積層体を含む、偏光フィルム。   The polarizing film containing the optical laminated body in any one of Claim 1 to 10. 請求項1から10のいずれかに記載の光学積層体を含む、画像表示装置。   The image display apparatus containing the optical laminated body in any one of Claim 1 to 10. (メタ)アクリル系樹脂フィルム上にハードコート層形成用組成物を塗布して塗布層を形成し、該塗布層を50℃以上100℃未満で加熱することを含み、
該ハードコート層形成用組成物が、1個以上のラジカル重合性不飽和基および芳香環を含有する硬化性化合物(A)と、2個以上のラジカル重合性不飽和基を含有するが、芳香環を含有しない硬化性化合物(B)と、1個のラジカル重合性不飽和基を含有するが、芳香環を含有しない単官能モノマー(C)と、を含む、請求項1から10のいずれかに記載の光学積層体の製造方法。
Applying a composition for forming a hard coat layer on a (meth) acrylic resin film to form a coating layer, and heating the coating layer at 50 ° C. or more and less than 100 ° C .;
The hard coat layer-forming composition contains one or more radically polymerizable unsaturated groups and an aromatic ring-containing curable compound (A) and two or more radically polymerizable unsaturated groups, The curable compound (B) containing no ring and the monofunctional monomer (C) containing one radical polymerizable unsaturated group but containing no aromatic ring, The manufacturing method of the optical laminated body of description.
JP2013230963A 2013-11-07 2013-11-07 Optical laminate Active JP6238684B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013230963A JP6238684B2 (en) 2013-11-07 2013-11-07 Optical laminate
KR1020217012619A KR102366883B1 (en) 2013-11-07 2014-09-24 Optical laminate
KR1020167011314A KR102363489B1 (en) 2013-11-07 2014-09-24 Optical laminate
CN201480061007.2A CN105705968B (en) 2013-11-07 2014-09-24 Optical laminate
PCT/JP2014/075277 WO2015068483A1 (en) 2013-11-07 2014-09-24 Optical laminate
TW103134058A TWI542468B (en) 2013-11-07 2014-09-30 Optical continuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230963A JP6238684B2 (en) 2013-11-07 2013-11-07 Optical laminate

Publications (2)

Publication Number Publication Date
JP2015090467A true JP2015090467A (en) 2015-05-11
JP6238684B2 JP6238684B2 (en) 2017-11-29

Family

ID=53041266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230963A Active JP6238684B2 (en) 2013-11-07 2013-11-07 Optical laminate

Country Status (5)

Country Link
JP (1) JP6238684B2 (en)
KR (2) KR102366883B1 (en)
CN (1) CN105705968B (en)
TW (1) TWI542468B (en)
WO (1) WO2015068483A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082115A (en) * 2015-10-29 2017-05-18 日本合成化学工業株式会社 Photocurable composition, and laminate and light guide plate prepared therewith
WO2018190175A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical laminate, polarizing plate, and image display device
WO2018190174A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical laminate, polarizing plate, and image display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6486859B2 (en) * 2016-03-29 2019-03-20 日東電工株式会社 Polarizing film and image display device
JP6352575B1 (en) 2016-10-07 2018-07-04 日本ペイント・オートモーティブコーティングス株式会社 Optical laminated member
JP2018084652A (en) * 2016-11-22 2018-05-31 日東電工株式会社 Method for manufacturing polarizing plate with coating layer
JP6937115B2 (en) * 2016-12-13 2021-09-22 日東電工株式会社 Optical laminate
WO2018235630A1 (en) * 2017-06-22 2018-12-27 日東電工株式会社 Laminate, and method for producing laminate
JP6936206B2 (en) * 2017-12-08 2021-09-15 住友化学株式会社 Optical laminate
JP7199185B2 (en) * 2018-09-12 2023-01-05 アイカ工業株式会社 Antireflection hard coat film for molding
JP7355585B2 (en) * 2018-10-15 2023-10-03 日東電工株式会社 Polarizing plate with retardation layer and image display device using the same
JP7315122B1 (en) * 2021-10-20 2023-07-26 東洋インキScホールディングス株式会社 Hard coat film and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111633A (en) * 1997-06-12 1999-01-06 Toray Ind Inc Thin optical film containing fluorine compound, method for forming the same and antireflection article
JP2007084616A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Radiation curable composition
JP2012234163A (en) * 2011-04-22 2012-11-29 Nitto Denko Corp Optical laminate
JP2013037057A (en) * 2011-08-04 2013-02-21 Nitto Denko Corp Optical laminate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133880A (en) * 2006-03-10 2009-06-18 Toyo Ink Mfg Co Ltd Resin composition
WO2007105627A1 (en) * 2006-03-10 2007-09-20 Toyo Ink Mfg. Co., Ltd. Hard coating resin composition for optical member
JP2008165205A (en) 2006-12-05 2008-07-17 Fujifilm Corp Optical film, antireflection film, and polarizing plate and display device using same
JP5098060B2 (en) * 2008-10-27 2012-12-12 フジコピアン株式会社 Photocurable adhesive composition and polarizing plate using the same
JP5659494B2 (en) * 2009-02-17 2015-01-28 凸版印刷株式会社 Antireflection film and manufacturing method thereof, polarizing plate, transmissive liquid crystal display
CN102905898A (en) * 2010-05-29 2013-01-30 三菱树脂株式会社 Layered polyester film
JP6128629B2 (en) * 2011-04-22 2017-05-17 日東電工株式会社 Optical laminate
JP5701698B2 (en) * 2011-06-22 2015-04-15 フジコピアン株式会社 Hard coat film
JP5961947B2 (en) 2011-08-31 2016-08-03 大日本印刷株式会社 Hard coat film, polarizing plate, front plate and image display device
JP2013209482A (en) * 2012-03-30 2013-10-10 Nippon Bee Chemical Co Ltd Hard coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111633A (en) * 1997-06-12 1999-01-06 Toray Ind Inc Thin optical film containing fluorine compound, method for forming the same and antireflection article
JP2007084616A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Radiation curable composition
JP2012234163A (en) * 2011-04-22 2012-11-29 Nitto Denko Corp Optical laminate
JP2013037057A (en) * 2011-08-04 2013-02-21 Nitto Denko Corp Optical laminate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082115A (en) * 2015-10-29 2017-05-18 日本合成化学工業株式会社 Photocurable composition, and laminate and light guide plate prepared therewith
WO2018190175A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical laminate, polarizing plate, and image display device
WO2018190174A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical laminate, polarizing plate, and image display device
KR20190137805A (en) * 2017-04-10 2019-12-11 닛토덴코 가부시키가이샤 Optical laminated body, polarizing plate, and image display device
JPWO2018190174A1 (en) * 2017-04-10 2020-02-20 日東電工株式会社 Optical laminate, polarizing plate, and image display device
JPWO2018190175A1 (en) * 2017-04-10 2020-02-20 日東電工株式会社 Optical laminate, polarizing plate, and image display device
KR102510766B1 (en) 2017-04-10 2023-03-17 닛토덴코 가부시키가이샤 Optical laminate, polarizer, and image display device

Also Published As

Publication number Publication date
JP6238684B2 (en) 2017-11-29
TW201520048A (en) 2015-06-01
KR102363489B1 (en) 2022-02-15
KR20160083866A (en) 2016-07-12
KR20210049969A (en) 2021-05-06
KR102366883B1 (en) 2022-02-23
TWI542468B (en) 2016-07-21
CN105705968B (en) 2019-01-08
CN105705968A (en) 2016-06-22
WO2015068483A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP6128629B2 (en) Optical laminate
JP6128576B2 (en) Optical laminate
JP6238684B2 (en) Optical laminate
WO2012144509A1 (en) Optical laminate
JP6235287B2 (en) Optical laminate
JP6235288B2 (en) Optical laminate
JP6054019B2 (en) Optical laminate
WO2018110447A1 (en) Optical laminate
JP2017058693A (en) Optical laminate
JP2017072846A (en) Optical laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250