JP2015088268A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2015088268A
JP2015088268A JP2013224297A JP2013224297A JP2015088268A JP 2015088268 A JP2015088268 A JP 2015088268A JP 2013224297 A JP2013224297 A JP 2013224297A JP 2013224297 A JP2013224297 A JP 2013224297A JP 2015088268 A JP2015088268 A JP 2015088268A
Authority
JP
Japan
Prior art keywords
positive electrode
storage device
power storage
inorganic oxide
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013224297A
Other languages
Japanese (ja)
Other versions
JP6201642B2 (en
Inventor
直人 安田
Naoto Yasuda
直人 安田
智之 河合
Tomoyuki Kawai
智之 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013224297A priority Critical patent/JP6201642B2/en
Publication of JP2015088268A publication Critical patent/JP2015088268A/en
Application granted granted Critical
Publication of JP6201642B2 publication Critical patent/JP6201642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device which is superior in safety when being overcharged.SOLUTION: A power storage device comprises: a housing body having an internal space; a positive electrode, a negative electrode, and an electrolyte which are housed in the internal space of the housing body; and a current interrupt device mechanism for cutting off a current path according to the rise in internal pressure in the internal space. The positive electrode includes an inorganic oxide which reacts at a potential higher than an end-of-charge potential of the positive electrode at an end of a normal charging operation to generate an oxygen gas, and has a transition metal.

Description

本発明は、過充電時の安全性に優れた蓄電装置に関する。   The present invention relates to a power storage device excellent in safety during overcharge.

電池の大型化に伴い、安全性が重要な課題となっている。安全機構に電流遮断機構(CID:Current Interrupt Device)がある。電流遮断機構は、過充電時などに電池内部で発生したガスを利用して内圧を上げ、圧力によって回路を遮断する機構である。このCIDを作動させるためには、過充電時にガスを発生させる必要があるため、適切な電圧で適量なガスを発生させるガス発生剤の選定が重要である。   Safety has become an important issue as the size of batteries increases. There is a current interrupt device (CID) as a safety mechanism. The current interrupting mechanism is a mechanism that increases the internal pressure using gas generated in the battery during overcharge or the like and interrupts the circuit by the pressure. In order to operate this CID, it is necessary to generate gas at the time of overcharge, and therefore it is important to select a gas generating agent that generates an appropriate amount of gas at an appropriate voltage.

従来、過充電添加剤を、電解液や電極に添加されていることが行われている。しかし、これら過充電添加剤は、経時劣化などを起こす。このため、電池寿命の全期間にわたって過剰充電時に規定通りの量のガスを発生させることは困難である。   Conventionally, an overcharge additive has been added to an electrolyte or an electrode. However, these overcharge additives cause deterioration over time. For this reason, it is difficult to generate a prescribed amount of gas at the time of overcharging over the entire battery life.

例えば、特許文献1には、正極に、POを有する無機化合物を含めることが開示され、特許文献2、3には、炭酸無機化合物、蓚酸無機化合物、又は硝酸無機化合物を、正極合材に含めることが提案されている。特許文献4には、正極にガス発生樹脂を含めることが提案されている。特許文献5には、液体電解質に、最大動作充電電圧以上の電池電圧で重合し得るモノマー添加剤を添加することが提案されている。特許文献6には、極端子に形成された中空部にジカルボン酸を収容することが提案されている。 For example, Patent Document 1 discloses that the positive electrode includes an inorganic compound having PO 4 , and Patent Documents 2 and 3 include a carbonate inorganic compound, an oxalic acid inorganic compound, or a nitrate inorganic compound as a positive electrode mixture. Proposed to include. Patent Document 4 proposes that a gas generating resin be included in the positive electrode. Patent Document 5 proposes adding a monomer additive that can be polymerized at a battery voltage equal to or higher than the maximum operating charging voltage to the liquid electrolyte. Patent Document 6 proposes that a dicarboxylic acid be accommodated in a hollow portion formed in an electrode terminal.

特開2008−243659号公報JP 2008-243659 A 特開2008−277106号公報JP 2008-277106 A 特開2009−217946号公報JP 2009-217946 A 特開2010−009942号公報JP 2010-009942 A 特開平09−171840号公報Japanese Patent Laid-Open No. 09-171840 特開平10−270011号公報JP-A-10-270011

本発明はかかる事情に鑑みてなされたものであり、過充電時の安全性に優れた蓄電装置を提供することを課題とする。   This invention is made | formed in view of this situation, and makes it a subject to provide the electrical storage apparatus excellent in the safety | security at the time of an overcharge.

本発明の蓄電装置は、内部空間を有する収容体と、前記収容体の前記内部空間に収容された正極、負極、及び電解質と、前記内部空間の内圧の上昇に応じて電流経路を遮断する電流遮断機構と、を有する蓄電装置であって、前記正極は、通常の充電終止時の正極の充電終止電位よりも高い電位で反応して気体を発生させるとともに遷移金属を有する無機酸化物を含むことを特徴とする。   A power storage device according to the present invention includes a housing body having an internal space, a positive electrode, a negative electrode, and an electrolyte housed in the internal space of the housing body, and a current that blocks a current path according to an increase in internal pressure of the internal space. The positive electrode includes an inorganic oxide having a transition metal and reacting at a potential higher than the charge end potential of the positive electrode at the end of normal charge and generating a gas. It is characterized by.

本発明の蓄電装置によれば、正極に、通常の充電終止時の正極の充電終止電位よりも高い電位で分解して気体を発生させる無機酸化物が含まれている。このため、過充電時に、正極が、充電終止電位よりも高い電位になったときに、正極に含まれている無機酸化物から気体が発生する。気体の発生により収容体の内圧が上昇して、電流遮断機構により電流経路が遮断され、蓄電装置の作動を停止させることができる。   According to the power storage device of the present invention, the positive electrode contains an inorganic oxide that decomposes at a potential higher than the charge end potential of the positive electrode at the end of normal charge to generate gas. For this reason, gas is generated from the inorganic oxide contained in the positive electrode when the positive electrode becomes higher than the end-of-charge potential during overcharge. The internal pressure of the container is increased by the generation of gas, the current path is interrupted by the current interrupt mechanism, and the operation of the power storage device can be stopped.

逆蛍石構造のリチウム遷移金属酸化物の充電曲線のモデル図である。It is a model figure of the charge curve of the lithium transition metal oxide of a reverse fluorite structure. 実施例1の電流遮断機構の断面説明図である。FIG. 3 is an explanatory cross-sectional view of a current interrupt mechanism of Example 1.

本発明の実施形態に係る蓄電装置について詳細に説明する。   A power storage device according to an embodiment of the present invention will be described in detail.

本発明の蓄電装置は、内部空間を有する収容体と、収容体の内部空間に収容された正極、負極、及び電解質と、内部空間の内圧の上昇に応じて電流経路を遮断する電流遮断機構と、を有する。   A power storage device according to the present invention includes a housing body having an internal space, a positive electrode, a negative electrode, and an electrolyte housed in the internal space of the housing body, and a current blocking mechanism that blocks a current path according to an increase in internal pressure of the internal space. Have.

蓄電装置の正極は、通常の充電終止時の正極の充電終止電位よりも高い電位で反応して気体を発生させる無機酸化物を含む。無機酸化物は、遷移金属を有する。無機酸化物に含まれる遷移金属は、充電時に酸化されて、価数を増加させる。これに伴い、無機酸化物から気体が放出される。気体が放出されると、収容体の内部空間の内圧が上昇する。無機酸化物は、正極に添加されることによって、一定の電圧で気体を発生させるガス発生剤となる。電流遮断機構は、内部空間の内圧の上昇に応じて作動して、電流経路を遮断する。   The positive electrode of the power storage device includes an inorganic oxide that reacts at a potential higher than the charge end potential of the positive electrode at the end of normal charge to generate gas. The inorganic oxide has a transition metal. The transition metal contained in the inorganic oxide is oxidized during charging to increase the valence. Along with this, gas is released from the inorganic oxide. When the gas is released, the internal pressure of the internal space of the container increases. When added to the positive electrode, the inorganic oxide becomes a gas generating agent that generates gas at a constant voltage. The current interruption mechanism operates in response to an increase in internal pressure in the internal space, and interrupts the current path.

無機酸化物から発生し得る気体は、酸素ガスであるとよい。   The gas that can be generated from the inorganic oxide is preferably oxygen gas.

酸素や酸素ガスが電解液と反応して生成する炭酸ガスは、水素よりも分子が大きい。電流遮断機構に用いられることがあるダイヤフラムなどの金属薄膜を通過しにくく、無機酸化物を無駄に消耗させることなく、過剰充電時に電流遮断機構を確実に作動させることができる。無機酸化物から発生する気体が水素ガスの場合には、水素ガスが金属薄膜を通過してしまい、過剰充電時に無機酸化物が消耗して内圧を上昇させることができず、電流遮断機構を作動させることができないおそれがある。   Carbon dioxide gas generated by reaction of oxygen or oxygen gas with the electrolyte has a larger molecule than hydrogen. It is difficult to pass through a metal thin film such as a diaphragm that may be used for a current interruption mechanism, and the current interruption mechanism can be reliably operated at the time of overcharging without wasting inorganic oxides unnecessarily. When the gas generated from the inorganic oxide is hydrogen gas, the hydrogen gas passes through the metal thin film, the inorganic oxide is consumed at the time of overcharge, and the internal pressure cannot be increased, and the current interrupting mechanism is activated. There is a possibility that it cannot be made.

ここで「通常の充電終止時の正極の充電終止電位」とは、蓄電装置の通常使用時に充電を終止させるときの正極の終止電位(Li/Li+を基準電位)をいう。以下、単に「充電終止電位」というときもある。蓄電装置は、正極が可逆的に充放電反応を行える程度の高電位まで充電するように設計されている。蓄電装置は、満充電まで充電する場合に限らず、それよりも低い電位で充電を終止させるように設計されている場合もある。いずれの場合も、充電を終止させるときの正極の電位(Li/Li+を基準電位)を、「正極の終止電位」という。 Here, “the charge end potential of the positive electrode at the end of normal charge” refers to the end potential of the positive electrode (Li / Li + is a reference potential) when the charge is stopped during normal use of the power storage device. Hereinafter, it is sometimes simply referred to as “charging end potential”. The power storage device is designed to be charged to such a high potential that the positive electrode can reversibly charge and discharge. The power storage device is not limited to being charged to full charge, but may be designed to terminate charging at a lower potential. In either case, the positive electrode potential (Li / Li + is a reference potential) when charging is terminated is referred to as “positive electrode termination potential”.

無機酸化物は、通常の充電終止時の正極の充電終止電位よりも高い電位で反応して酸素を発生させる。例えば、正極の充電終止電位が4.3V(Li/Li+を基準電位)であるときには、無機酸化物は4.3V以上(Li/Li+を基準電位)で反応して酸素を発生させ得る。 The inorganic oxide reacts at a potential higher than the charge end potential of the positive electrode at the end of normal charge to generate oxygen. For example, when the charge end potential of the positive electrode is 4.3 V (Li / Li + is a reference potential), the inorganic oxide can react at 4.3 V or more (Li / Li + is a reference potential) to generate oxygen. .

無機酸化物は、遷移金属と酸素とを有する。無機酸化物は、MxOy(M:少なくとも遷移金属を有する1種又は2種以上の元素、x、y:1以上の整数)(式1)で表わされる。無機酸化物は、例えば、LizMxOy(M:少なくとも遷移金属を有する1種又は2種以上の元素、x、y、zは以上の整数)(式2)で表わされる無機酸化物からなることがよい。式2において、xは1以上3以下であることがよく、yは、1以上10以下であることがよく、更には、3以上8以下であることが好ましい。zは、1以上8以下であるとよく、更には、3以上8以下、4以上6以下であることがよい。   The inorganic oxide has a transition metal and oxygen. The inorganic oxide is represented by MxOy (M: one or more elements having at least a transition metal, x, y: an integer of 1 or more) (formula 1). The inorganic oxide may be an inorganic oxide represented by, for example, LizMxOy (M: one or more elements having at least a transition metal, x, y, and z are integers above) (formula 2). . In Formula 2, x is preferably 1 or more and 3 or less, y is preferably 1 or more and 10 or less, and more preferably 3 or more and 8 or less. z is preferably 1 or more and 8 or less, and more preferably 3 or more and 8 or less, and 4 or more and 6 or less.

無機酸化物は、リチウムと遷移金属と酸素とを有し、且つ、逆蛍石構造を有するリチウム遷移金属酸化物からなることが好ましい。かかるリチウム遷移金属酸化物は、分解により放出する酸素ガス量が多い。前記無機酸化物は、LiMnO、LiCoO、及びLiFeOの群から選ばれた1種以上からなることが好ましい。これらは、酸素の発生量が多い。 The inorganic oxide is preferably made of a lithium transition metal oxide having lithium, a transition metal, and oxygen and having an inverted fluorite structure. Such a lithium transition metal oxide has a large amount of oxygen gas released by decomposition. The inorganic oxide is preferably composed of one or more selected from the group consisting of Li 6 MnO 4 , Li 6 CoO 4 , and Li 5 FeO 4 . These generate a large amount of oxygen.

例えば、逆蛍石構造を有するLiMnOは、4.5V(Li/Li+基準電位)で酸素ガスを放出し、そのときの酸素量はLiMnO1モル当たり1.5モルと非常に多い。また、リチウム遷移金属酸化物は、酸化物であるため、経時劣化にも強く、分解電圧も一定であり、ねらいの電位で電流遮断機構を確実に作動させることができ、内圧過剰増加を適切に防止できる。 For example, Li 6 MnO 4 having a reverse fluorite structure releases oxygen gas at 4.5 V (Li / Li + reference potential), and the amount of oxygen at that time is 1.5 mol per mol of Li 6 MnO 4. Very many. In addition, since the lithium transition metal oxide is an oxide, it is resistant to deterioration over time, the decomposition voltage is constant, the current interrupting mechanism can be reliably operated at the target potential, and an excessive increase in internal pressure is appropriately achieved. Can be prevented.

逆蛍石構造を有するリチウム遷移金属酸化物は1モル当りの最大リチウム量が6モルと多く、過剰充電時のガス発生剤として用いるだけでなく、プリドープ剤としても併用できる。たとえば、逆蛍石構造を有するリチウム遷移金属酸化物を、正極活物質とともに正極に組み入れ、これに充電を行い、負極活物質にリチウムをプリドープさせる。プリドープ用の充電時には、リチウム遷移金属酸化物の充電容量に対応した量の酸素とリチウムがリチウム遷移金属酸化物から放出される。   A lithium transition metal oxide having a reverse fluorite structure has a maximum lithium amount of 6 mol per mole, and can be used not only as a gas generating agent during overcharging but also as a pre-doping agent. For example, a lithium transition metal oxide having a reverse fluorite structure is incorporated into the positive electrode together with the positive electrode active material, and this is charged, and the negative electrode active material is predoped with lithium. At the time of pre-doping charging, an amount of oxygen and lithium corresponding to the charging capacity of the lithium transition metal oxide is released from the lithium transition metal oxide.

図1は、逆蛍石構造のリチウム遷移金属酸化物の充電曲線のモデル図である。図1に示すように、逆蛍石構造のリチウム遷移金属酸化物に初回充電を行うと、初期には電位上昇に応じて放出する酸素も増加する。電位が一定になると、放出する酸素の量はほぼ一定値となる。プリドープ時の充電終止は、逆蛍石構造のリチウム遷移金属酸化物が満充電となるよりも前であればいつでもよく、例えば、電位上昇の途中又は電位上昇が緩やかになったときのいずれでもよい。   FIG. 1 is a model diagram of a charging curve of a lithium transition metal oxide having a reverse fluorite structure. As shown in FIG. 1, when a lithium transition metal oxide having a reverse fluorite structure is charged for the first time, the amount of oxygen released in the initial stage increases as the potential increases. When the potential becomes constant, the amount of released oxygen becomes almost constant. The end of charging at the time of pre-doping may be any time before the lithium transition metal oxide having a reverse fluorite structure is fully charged, for example, during the potential increase or when the potential increase becomes moderate .

充電時は、逆蛍石構造のリチウム遷移金属酸化物に含まれる酸素の一部が残る程度に充電を停止させる。逆蛍石構造のリチウム遷移金属酸化物は充電時に酸素を放出する。ドープ終了後の正極を含む電池内には酸素や酸素ガスと電解液が反応して生成した炭酸ガスが充満している。このため、密閉された電池の一部を開放し、ガス抜きを行い、再度封する。プリドープを行った正極を組み入れた蓄電装置は、プリドープ時の充電の終止電位よりも低い電位を、充電終止電位とすることがよい。これにより、新たな蓄電装置では、設定された充電終止電位以下の電位では、逆蛍石構造のリチウム遷移金属酸化物から酸素が放出されない。過充電のように、設定された充電終止電位よりも高い電位になったときに、逆蛍石構造のリチウム遷移金属酸化物から酸素が放出される。やがて蓄電装置の収容体の内部空間が所定の内圧以上になったときに電流遮断機構の作動により電流経路が遮断される。   At the time of charging, the charging is stopped to the extent that a part of oxygen contained in the lithium transition metal oxide having a reverse fluorite structure remains. The lithium transition metal oxide having a reverse fluorite structure releases oxygen during charging. The battery including the positive electrode after completion of the dope is filled with carbon dioxide gas generated by reaction of oxygen or oxygen gas with the electrolyte. Therefore, a part of the sealed battery is opened, degassed, and sealed again. In a power storage device incorporating a pre-doped positive electrode, a potential lower than the charge end potential during pre-doping is preferably the charge end potential. Accordingly, in the new power storage device, oxygen is not released from the lithium transition metal oxide having a reverse fluorite structure at a potential equal to or lower than the set end-of-charge potential. Oxygen is released from the lithium transition metal oxide having an inverted fluorite structure when the potential becomes higher than the set end-of-charge potential, such as overcharge. Eventually, when the internal space of the container of the power storage device becomes equal to or higher than a predetermined internal pressure, the current path is interrupted by the operation of the current interrupt mechanism.

無機酸化物は、電位が所定値以上となると、酸化分解反応により酸素等の気体成分を発生させる。酸素の発生を開始する電位(Li/Li+基準電位)を、気体発生開始電位という。無機酸化物は、遷移金属を有する。遷移金属の酸化電位は、その種類によって異なる。無機酸化物は、遷移金属の種類によって、酸化分解電位が変わり、気体発生開始電位が変わる。つまり、無機酸化物に含まれる遷移金属の種類を変えることにより、電流遮断機構の作動電位を細かく設定することができる。 An inorganic oxide generates a gas component such as oxygen by an oxidative decomposition reaction when the potential becomes a predetermined value or more. The potential at which oxygen generation starts (Li / Li + reference potential) is referred to as gas generation start potential. The inorganic oxide has a transition metal. The oxidation potential of the transition metal varies depending on the type. Inorganic oxides have different oxidative decomposition potentials and gas generation start potentials depending on the type of transition metal. That is, the operating potential of the current interrupt mechanism can be set finely by changing the type of transition metal contained in the inorganic oxide.

無機酸化物の種類によっては、正極が充電終止電位よりも低い電位でも、酸素を僅かに発生させ得るものもある。このような無機酸化物の気体発生開始電位は、収容体の内部空間の内圧を上昇させ得る程度に積極的に酸素を発生させるときの開始電位をいう。   Depending on the type of inorganic oxide, there are some which can generate oxygen slightly even when the positive electrode has a potential lower than the end-of-charge potential. Such a gas generation start potential of the inorganic oxide refers to a start potential when oxygen is actively generated to such an extent that the internal pressure of the internal space of the container can be increased.

気体発生開始電位が4.0V以上4.5V未満(Li/Li+基準電位)の無機酸化物は、例えば、LiFeO(4.0V)、LiCoO(4.3V)が挙げられる。 Examples of the inorganic oxide having a gas generation start potential of 4.0 V or more and less than 4.5 V (Li / Li + reference potential) include Li 5 FeO 4 (4.0 V) and Li 6 CoO 4 (4.3 V). It is done.

気体発生開始電位が4.5V以上(Li/Li+基準電位)の無機酸化物は、例えば、LiMnO(4.5V)、LiMnO(4.6V)が挙げられる。上記の物質名の後の括弧書きの中の電位は、当該物質の気体発生開始電位(Li/Li+基準電位)を示す。 Examples of the inorganic oxide having a gas generation start potential of 4.5 V or more (Li / Li + reference potential) include Li 6 MnO 4 (4.5 V) and Li 2 MnO 3 (4.6 V). The potential in parentheses after the above substance name indicates the gas generation start potential (Li / Li + reference potential) of the substance.

無機酸化物は、気体発生開始電位以上の電位であれば、酸素を発生させ得る。例えば、気体発生開始電位が4.3VのLiCoOは、4.3V以上になれば、ガスを発生させ得る。 The inorganic oxide can generate oxygen as long as the potential is equal to or higher than the gas generation start potential. For example, Li 6 CoO 4 having a gas generation start potential of 4.3 V can generate gas when the voltage is 4.3 V or higher.

無機酸化物の気体発生開始電位は、充電終止電位よりも高いことがよい。無機酸化物の気体発生開始電位は、充電終止電位よりも0.1V以上高いことがよく、更には0.2V以上、さらには0.5V以上高いことが好ましい。この場合には、高温時において、無機酸化物の活性が高くなることにより充電終止電位近傍でガスを発生させてしまうという不具合を抑えることができる。   The gas generation start potential of the inorganic oxide is preferably higher than the charge end potential. The gas generation start potential of the inorganic oxide is preferably higher than the end-of-charge potential by 0.1 V or more, more preferably 0.2 V or more, and further preferably 0.5 V or more. In this case, it is possible to suppress a problem that gas is generated in the vicinity of the end-of-charge potential due to the increased activity of the inorganic oxide at high temperatures.

電流遮断機構は、過剰充電により、電池内圧が上昇した場合に、充電電流を遮断してそれ以上の電気量が電池に流入しないように構成されている。電流遮断機構の作動電圧は、気体発生開始電位よりも高いことがよい。電流遮断機構の作動電圧は、気体発生開始電位よりも低い場合には、無機酸化物から気体が発生する前の通常の内圧のときに電流遮断機構が作動するか、更には通常使用時にも電流遮断機構が作動してしまうおそれがある。   The current interruption mechanism is configured such that when the battery internal pressure rises due to overcharging, the charging current is interrupted and no more electric quantity flows into the battery. The operating voltage of the current interrupt mechanism is preferably higher than the gas generation start potential. If the operating voltage of the current interrupting mechanism is lower than the gas generation start potential, the current interrupting mechanism operates at the normal internal pressure before the gas is generated from the inorganic oxide, or even during normal use. There is a risk that the shut-off mechanism will be activated.

本発明の蓄電装置としては、二次電池及びキャパシタが挙げられる。特に本発明の蓄電装置は、リチウムイオン二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタであることが好ましい。特に本発明の蓄電装置はリチウムイオン二次電池であることが好ましい。本発明の蓄電装置は、電解液とセパレータとに特徴があり、蓄電装置を構成する他の構成要素は、それぞれの蓄電装置に適した公知のものであればよい。   Examples of the power storage device of the present invention include a secondary battery and a capacitor. In particular, the power storage device of the present invention is preferably a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor. In particular, the power storage device of the present invention is preferably a lithium ion secondary battery. The power storage device of the present invention is characterized by the electrolytic solution and the separator, and the other constituent elements constituting the power storage device may be known ones suitable for each power storage device.

(二次電池)
二次電池の正極は、正極の通常使用可能な最大動作電位よりも高い電位で反応して気体を発生させる無機酸化物と、カチオンを吸蔵及び放出し得る正極活物質を有する。正極は、正極活物質と、正極活物質で被覆された集電体とからなることがよい。
(Secondary battery)
The positive electrode of the secondary battery has an inorganic oxide that reacts at a potential higher than the normally usable maximum operating potential of the positive electrode to generate gas, and a positive electrode active material that can occlude and release cations. The positive electrode is preferably composed of a positive electrode active material and a current collector coated with the positive electrode active material.

ここで、正極は、カチオンを吸蔵及び放出し得る正極活物質と、上記無機酸化物とを有する。   Here, the positive electrode includes a positive electrode active material that can occlude and release cations and the inorganic oxide.

正極活物質としては、層状化合物のLiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnOを挙げることができる。また、正極活物質として、LiMn、LiMn等のスピネル、及びスピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、充放電に寄与するリチウムイオンを含まない正極活物質材料、たとえば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウムを含まない正極活物質材料を用いる場合には、正極および/または負極に、公知の方法により、予めイオンを添加させておく必要がある。ここで、当該イオンを添加するためには、金属または当該イオンを含む化合物を用いればよい。 As the positive electrode active material, the layered compound Li a Ni b Co c Mn d De O f (0.2 ≦ a ≦ 1.2, b + c + d + e = 1, 0 ≦ e <1, D is Li, Fe, Cr, At least one element selected from Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La, 1.7 ≦ f ≦ 2.1) and Li 2 MnO 3 . Further, as a positive electrode active material, a solid solution composed of a spinel such as LiMn 2 O 4 and Li 2 Mn 2 O 4 and a mixture of a spinel and a layered compound, LiMPO 4 , LiMVO 4, or Li 2 MSiO 4 (M in the formula) Are selected from at least one of Co, Ni, Mn, and Fe). Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element contained in the basic composition may be substituted with another metal element. Further, as the positive electrode active material, a positive electrode active material that does not contain lithium ions contributing to charge / discharge, for example, sulfur alone (S), a compound in which sulfur and carbon are combined, a metal sulfide such as TiS 2 , V 2 O, etc. 5 , oxides such as MnO 2 , polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetic acid organic materials, and other known materials can also be used. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material. When using a positive electrode active material that does not contain lithium, it is necessary to add ions to the positive electrode and / or the negative electrode in advance by a known method. Here, in order to add the ion, a metal or a compound containing the ion may be used.

上記無機酸化物は、正極の通常の充電終止電位よりも高い電位で反応して気体を放出し得る。正極の通常使用可能な最大動作電位は、正極活物質の通常使用可能な最大動作電位であることが多い。このため、無機酸化物は、正極活物質の通常使用可能な最大動作電位より高い電位で分解することがよい。   The inorganic oxide can react at a potential higher than the normal charge end potential of the positive electrode to release a gas. The normally usable maximum operating potential of the positive electrode is often the normally usable maximum operating potential of the positive electrode active material. For this reason, the inorganic oxide is preferably decomposed at a potential higher than the maximum usable operating potential of the positive electrode active material.

正極活物質の最大動作電位は、正極活物質の種類により異なる。   The maximum operating potential of the positive electrode active material varies depending on the type of the positive electrode active material.

最大動作電位が3.5V以上4.0V未満(Li/Li+基準電位)の正極活物質としては、例えば、LiFePOが挙げられる。 Examples of the positive electrode active material having a maximum operating potential of 3.5 V or more and less than 4.0 V (Li / Li + reference potential) include LiFePO 4 .

最大動作電位が4.0V以上4.5V未満(Li/Li+基準電位)の正極活物質としては、例えばLiCoOやLiNi1/3Co1/3Mn1/3、LiNi1/2Mn1/2などが挙げられる。 Examples of the positive electrode active material having a maximum operating potential of 4.0 V or more and less than 4.5 V (Li / Li + reference potential) include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and LiNi 1/2. Mn 1/2 O 2 and the like can be mentioned.

最大動作電位が4.5V以上(Li/Li+基準電位)の正極活物質としては、例えば、LiNi1/2Mn3/2,LiCoPOが挙げられる。 Examples of the positive electrode active material having a maximum operating potential of 4.5 V or more (Li / Li + reference potential) include LiNi 1/2 Mn 3/2 O 4 and LiCoPO 4 .

正極に含まれる正極活物質と無機酸化物との組み合わせの例としては、表1に示すものが挙げられるが、これらに限定されない。   Examples of the combination of the positive electrode active material and the inorganic oxide contained in the positive electrode include those shown in Table 1, but are not limited thereto.

Figure 2015088268
Figure 2015088268

正極活物質はLiMeO(Me:遷移金属から選ばれる1種以上であって、少なくともNiを含む。)を有し、無機酸化物はLiMnOを有することが好ましい。正極活物質はLiCoOを有し、無機酸化物はLiCoOを有することが好ましい。正極活物質はLiFePOを有し、無機酸化物はLiFeOを有することが好ましい。 The positive electrode active material preferably includes LiMeO 2 (Me: one or more selected from transition metals and includes at least Ni), and the inorganic oxide preferably includes Li 6 MnO 4 . The positive electrode active material preferably includes LiCoO 2 and the inorganic oxide preferably includes Li 6 CoO 4 . The positive electrode active material preferably has LiFePO 4 , and the inorganic oxide preferably has Li 5 FeO 4 .

前記正極合材を100質量%としたときに、前記正極合材の中の前記無機酸化物の含有量は1質量%以上30質量%以下であることがよく、さらには2質量%以上20質量%以下であることが好ましい。この場合には、電池容量を高く維持しつつ、過剰充電の際に電池の内圧を上昇させ得る程度の酸素を発生させることができる。   When the positive electrode mixture is 100% by mass, the content of the inorganic oxide in the positive electrode mixture is preferably 1% by mass to 30% by mass, and more preferably 2% by mass to 20% by mass. % Or less is preferable. In this case, it is possible to generate oxygen that can increase the internal pressure of the battery during excessive charging while maintaining the battery capacity high.

正極は、正極活物質と前記無機酸化物とを有する正極合材と、前記正極合材で表面が被覆された集電体とを有することがよい。正極合材は正極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。正極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。   The positive electrode preferably includes a positive electrode mixture having a positive electrode active material and the inorganic oxide, and a current collector having a surface coated with the positive electrode mixture. The positive electrode mixture includes a positive electrode active material and, if necessary, a binder and / or a conductive aid. The positive electrode current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used. For example, silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin , Indium, titanium, ruthenium, tantalum, chromium, molybdenum, and metal materials such as stainless steel. The current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.

集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。   The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.

正極合材は導電助剤を含んでもよい。導電助剤は、電極の導電性を高めるために添加される。導電助剤としては、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)が例示される。これらの導電助剤を単独または二種以上組み合わせて正極合材に添加することができる。導電助剤の使用量については特に制限はないが、例えば、正極活物質100質量部に対して1〜30質量部とすることができる。   The positive electrode mixture may contain a conductive additive. The conductive assistant is added to increase the conductivity of the electrode. Examples of the conductive aid include carbon black, graphite, acetylene black (AB), ketjen black (KB), and vapor grown carbon fiber (VGCF), which are carbonaceous fine particles. . These conductive assistants can be added to the positive electrode mixture alone or in combination of two or more. Although there is no restriction | limiting in particular about the usage-amount of a conductive support agent, For example, it can be set as 1-30 mass parts with respect to 100 mass parts of positive electrode active materials.

正極合材は結着剤を含んでもよい。結着剤は活物質及び導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂を例示することができる。正極合材中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.005〜1:0.3であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The positive electrode mixture may contain a binder. The binder serves to bind the active material and the conductive additive to the surface of the current collector. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, and alkoxysilyl group-containing resins. be able to. The blending ratio of the binder in the positive electrode mixture is preferably a mass ratio of active material: binder = 1: 0.005 to 1: 0.3. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

集電体の表面に正極合材からなる層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。溶剤としては、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮してもよい。   In order to form a layer made of a positive electrode mixture on the surface of the current collector, a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used. The active material may be applied to the surface of the current collector. Specifically, an active material layer-forming composition containing an active material and, if necessary, a binder and a conductive aid is prepared, and an appropriate solvent is added to the composition to make a paste, and then the collection is performed. After applying to the surface of the electric body, it is dried. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. In order to increase the electrode density, the dried product may be compressed.

負極は、集電体と、集電体の表面に結着させた負極合材を有する。負極合材は、負極活物質を有する。負極合材は、負極活物質のほかに、導電助剤又は/及び結着剤を含むことがよい。負極合剤に含まれることがある導電助剤又は/及び結着剤は、正極合剤に含まれることがある導電助剤又は/及び結着剤と同様のものを用いることができる。   The negative electrode has a current collector and a negative electrode mixture bonded to the surface of the current collector. The negative electrode mixture has a negative electrode active material. The negative electrode mixture preferably contains a conductive additive or / and a binder in addition to the negative electrode active material. The conductive auxiliary agent and / or binder that may be contained in the negative electrode mixture may be the same as the conductive auxiliary agent and / or binder that may be contained in the positive electrode mixture.

負極活物質としては、リチウムイオンなどの金属イオンを吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンなどの金属イオンを吸蔵及び放出可能である単体、合金または化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。ケイ素などを負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵及び放出に伴う体積の膨張及び収縮が顕著となるとの問題が生じる恐れがあるため、当該恐れの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせた合金又は化合物を負極活物質として採用するのも好適である。合金又は化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiOx(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。 As the negative electrode active material, a material that can occlude and release metal ions such as lithium ions can be used. Therefore, there is no particular limitation as long as it is a simple substance, alloy, or compound that can occlude and release metal ions such as lithium ions. For example, as a negative electrode active material, Li, group 14 elements such as carbon, silicon, germanium and tin, group 13 elements such as aluminum and indium, group 12 elements such as zinc and cadmium, group 15 elements such as antimony and bismuth, magnesium , Alkaline earth metals such as calcium, and group 11 elements such as silver and gold may be employed alone. When silicon or the like is used for the negative electrode active material, a silicon atom reacts with a plurality of lithiums, so that it becomes a high-capacity active material. However, there is a problem that volume expansion and contraction due to insertion and extraction of lithium becomes significant. In order to reduce the fear, it is also preferable to employ an alloy or compound in which another element such as a transition metal is combined with a simple substance such as silicon as the negative electrode active material. Specific examples of the alloy or compound include tin-based materials such as Ag-Sn alloy, Cu-Sn alloy, Co-Sn alloy, carbon-based materials such as various graphites, SiOx (0 which disproportionates to silicon simple substance and silicon dioxide). .3 ≦ x ≦ 1.6), silicon simple substance, or a composite of a silicon-based material and a carbon-based material. Further, the anode active material, Nb 2 O 5, TiO 2 , Li 4 Ti 5 O 12, WO 2, MoO 2, Fe oxides, such as 2 O 3, or, Li 3-x M x N (M = A nitride represented by (Co, Ni, Cu) may be employed. One or more of these materials can be used as the negative electrode active material.

負極は、集電体と、集電体の表面に結着させた負極合材を有する。負極の集電体は、例えば、正極の集電体で説明したものを採用できる。   The negative electrode has a current collector and a negative electrode mixture bonded to the surface of the current collector. As the negative electrode current collector, for example, the one described for the positive electrode current collector can be adopted.

負極合材は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。負極の集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、正極の集電体で説明したものを採用できる。負極の結着剤および導電助剤は正極で説明したものを採用できる。   The negative electrode mixture contains a negative electrode active material and, if necessary, a binder and / or a conductive aid. The negative electrode current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used, and for example, the one described for the positive electrode current collector can be adopted. As the negative electrode binder and the conductive additive, those described for the positive electrode can be adopted.

非水系二次電池には必要に応じてセパレータが用いられる。セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンなどの金属イオンを通過させるものである。   A separator is used in the non-aqueous secondary battery as necessary. The separator separates the positive electrode and the negative electrode and allows metal ions such as lithium ions to pass while preventing a short circuit of current due to contact between the two electrodes.

正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えて蓄電装置とするとよい。また、本発明の蓄電装置は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。   A separator is sandwiched between the positive electrode and the negative electrode as necessary to form an electrode body. The electrode body may be either a stacked type in which the positive electrode, the separator and the negative electrode are stacked, or a wound type in which the positive electrode, the separator and the negative electrode are sandwiched. After connecting between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that communicate with the outside using a current collecting lead or the like, an electrolytic solution may be added to the electrode body to form a power storage device. . In addition, the power storage device of the present invention only needs to be charged and discharged within a voltage range suitable for the type of active material included in the electrode.

(電気二重層キャパシタ)
電気二重層キャパシタは、正極と負極とをセパレータを挟んで向かい合わせて配置して、容器に入れ、その容器内に電解液を充填する構造をとる。電気二重層キャパシタは、電極間に電圧をかけることによって電極の間に電荷を蓄えることができる。電気二重層とは、電極と電解液の界面で正の電荷及び負の電荷が非常に短い間隔を隔てて対向し、配列する現象をいう。
(Electric double layer capacitor)
An electric double layer capacitor has a structure in which a positive electrode and a negative electrode are arranged facing each other with a separator interposed between them, placed in a container, and filled with an electrolytic solution. An electric double layer capacitor can store electric charge between electrodes by applying a voltage between the electrodes. The electric double layer is a phenomenon in which positive charges and negative charges face each other at very short intervals at the interface between the electrode and the electrolyte.

電気二重層キャパシタの正極及び負極は、集電体上に表面積の大きな導体を配置したものである。表面積の大きな導体は、例えば活性炭、ポリアセン系化合物が挙げられる。正極には、上記リチウムイオン二次電池のように無機酸化物が含まれている。各電極には、このような表面積の大きな導体を結着させるために結着剤が含まれてもよいし、さらに導電助剤が含まれてもよい。その他の構成要素はリチウムイオン二次電池で説明したものと同様のものが使用できる。   The positive electrode and the negative electrode of the electric double layer capacitor are obtained by arranging a conductor having a large surface area on a current collector. Examples of the conductor having a large surface area include activated carbon and polyacene compounds. The positive electrode contains an inorganic oxide as in the lithium ion secondary battery. Each electrode may contain a binder in order to bind such a conductor having a large surface area, and may further contain a conductive additive. Other components can be the same as those described for the lithium ion secondary battery.

(リチウムイオンキャパシタ)
リチウムイオンキャパシタは、リチウムイオン二次電池の負極と電気二重層キャパシタの正極を組み合わせたものである。リチウムイオンキャパシタの正極では電気二重層を形成して充放電し、負極ではリチウムの化学反応によって充放電する。
(Lithium ion capacitor)
The lithium ion capacitor is a combination of a negative electrode of a lithium ion secondary battery and a positive electrode of an electric double layer capacitor. The positive electrode of the lithium ion capacitor is charged and discharged by forming an electric double layer, and the negative electrode is charged and discharged by a lithium chemical reaction.

正極の説明は電気二重層キャパシタの説明と同様であり、負極の説明はリチウムイオン二次電池の説明と同様である。   The description of the positive electrode is the same as the description of the electric double layer capacitor, and the description of the negative electrode is the same as the description of the lithium ion secondary battery.

本発明の蓄電装置の収容体は、正極、負極、セパレータ及び電解液を収容している。収容体は、例えば、袋状となったラミネートフィルム、剛体のケース、剛体の筒などが挙げられる。   The container of the power storage device of the present invention contains a positive electrode, a negative electrode, a separator, and an electrolytic solution. Examples of the container include a bag-like laminate film, a rigid case, and a rigid cylinder.

本発明の蓄電装置の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the power storage device of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be employed.

本発明の蓄電装置は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部に蓄電装置による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。蓄電装置を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明の蓄電装置は、風量発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。   The power storage device of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy from the power storage device for all or part of its power source, and may be, for example, an electric vehicle, a hybrid vehicle, or the like. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. Examples of devices equipped with the power storage device include various home appliances driven by batteries such as personal computers and portable communication devices, office devices, and industrial devices in addition to vehicles. Furthermore, the power storage device of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power for power sources such as ships and / or power supply sources for auxiliary equipment, aircraft, spacecrafts, etc. Power source for power and / or auxiliary equipment, auxiliary power source for vehicles not using electricity as a power source, power source for mobile home robots, power source for system backup, power source for uninterruptible power supply, for electric vehicles You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in a charging station.

(実施例1)
図1に示すように、本例の蓄電装置は、リチウムイオン二次電池である。蓄電装置は、収容体と、正極と、負極と、電解液と、セパレータと、電流遮断機構とを備えている。
Example 1
As shown in FIG. 1, the power storage device of this example is a lithium ion secondary battery. The power storage device includes a container, a positive electrode, a negative electrode, an electrolytic solution, a separator, and a current interruption mechanism.

正極、負極、セパレータ及び電解液は、収容体の内部に形成された内部空間に収容されている。正極と負極はセパレータを介して積層されている。   The positive electrode, the negative electrode, the separator, and the electrolytic solution are accommodated in an internal space formed inside the container. The positive electrode and the negative electrode are laminated via a separator.

正極は、正極合材と、正極合材で被覆された集電体とからなる。正極合材は、正極活物質と、無機酸化物とを有する。正極活物質は、層状構造を有するLiNi1/5Mn1/3Co1/3からなる。無機酸化物はLiMnOからなる。正極は、初回充電を行っていないものを用いた。 The positive electrode is composed of a positive electrode mixture and a current collector coated with the positive electrode mixture. The positive electrode mixture includes a positive electrode active material and an inorganic oxide. The positive electrode active material is made of LiNi 1/5 Mn 1/3 Co 1/3 O 2 having a layered structure. The inorganic oxide is made of Li 6 MnO 4 . The positive electrode used was not charged for the first time.

正極合材全体を100質量%としたときに、LiMnOの含有量は5質量%、LiNi1/3Mn1/3Co1/3の含有量は90質量%である。集電体は、厚み20μmのアルミニウム箔からなる。LiMnOの気体発生開始電位は、4.5V(Li/Li+基準電位)である。 The content of Li 6 MnO 4 is 5% by mass, and the content of LiNi 1/3 Mn 1/3 Co 1/3 O 2 is 90% by mass when the entire positive electrode mixture is 100% by mass. The current collector is made of an aluminum foil having a thickness of 20 μm. The gas generation start potential of Li 6 MnO 4 is 4.5 V (Li / Li + reference potential).

負極は、負極合材と、負極合材で被覆された集電体とからなる。負極合材は、負極活物質としての黒鉛を有する。集電体は、厚み20μmの銅箔からなる。   The negative electrode is composed of a negative electrode mixture and a current collector coated with the negative electrode mixture. The negative electrode mixture has graphite as a negative electrode active material. The current collector is made of a copper foil having a thickness of 20 μm.

電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とからなる混合溶媒と、リチウム塩としてのLiPFとからなる。電解液の中のLiPF濃度は、1mol/Lである。 The electrolytic solution is composed of a mixed solvent composed of ethylene carbonate (EC) and diethyl carbonate (DEC) and LiPF 6 as a lithium salt. The concentration of LiPF 6 in the electrolytic solution is 1 mol / L.

セパレータは、ポリプロピレン膜からなる。収容体は、アルミニウム製のラミネートフィルムからなる。   The separator is made of a polypropylene film. The container is made of an aluminum laminate film.

正極と負極は、それぞれ接続部材を介して外部端子に接続されている。   The positive electrode and the negative electrode are each connected to an external terminal via a connection member.

図2に示すように、電流遮断機構1は、正極21と外部端子22との間を接続する接続部材23に設けられている。接続部材23は、収容体3の内面に保持されている絶縁性のガスケット4に固定されている。電流遮断機構1は、支持部材11a、11bと、金属製のダイアフラム12と、介在部材13とからなる。接続部材23の途中は分断されており、その分断された切断端部23a、23bにはそれぞれ支持部材11a、11bが固定されている。支持部材11a、11bの間には、ダイアフラム12と介在部材13とが互いに近接ないし接した位置に平行に配置されている。ダイアフラム12と介在部材13の周縁は、支持部材11,11bに固定されている。   As shown in FIG. 2, the current interrupt mechanism 1 is provided on a connection member 23 that connects between the positive electrode 21 and the external terminal 22. The connection member 23 is fixed to the insulating gasket 4 held on the inner surface of the container 3. The current interruption mechanism 1 includes support members 11 a and 11 b, a metal diaphragm 12, and an interposition member 13. The connecting member 23 is divided in the middle, and support members 11a and 11b are fixed to the cut end portions 23a and 23b, respectively. Between the support members 11a and 11b, the diaphragm 12 and the interposition member 13 are arranged in parallel at positions close to or in contact with each other. The peripheral edges of the diaphragm 12 and the interposition member 13 are fixed to the support members 11 and 11b.

介在部材13には、ダイアフラム12と対向する側に切れ込み13aが設けられていて、介在部材13の厚みは切れ込み13aの部分で薄くなっている。無機酸化物の酸化分解により酸素が発生して内圧が所定値以上に上昇すると、ダイアフラム12が膨張する。膨張したダイアフラム12は、介在部材13を押圧して、切れ込み13aで介在部材13が破断する。電流経路である接続部材23が断線される。   The interposition member 13 is provided with a notch 13a on the side facing the diaphragm 12, and the thickness of the interposition member 13 is thin at the notch 13a. When oxygen is generated by oxidative decomposition of the inorganic oxide and the internal pressure rises to a predetermined value or more, the diaphragm 12 expands. The expanded diaphragm 12 presses the interposition member 13, and the interposition member 13 is broken at the notch 13a. The connection member 23 that is a current path is disconnected.

本例の蓄電装置の充電終止電位は、4.3V(Li/Li+基準電位)である。 The end-of-charge potential of the power storage device of this example is 4.3 V (Li / Li + reference potential).

本例の蓄電装置は、過剰充電により充電電位が所定値以上に上昇すると、LiMnOが酸化分解して酸素ガスを発生させる。蓄電装置の内圧が上昇して、所定値以上になると、電流遮断機構1のダイアフラム12が介在部材13を押圧して介在部材13を破断させ、接続部材23を断線させる。これにより、充電が停止される。 In the power storage device of this example, when the charging potential rises to a predetermined value or more due to overcharging, Li 6 MnO 4 is oxidized and decomposed to generate oxygen gas. When the internal pressure of the power storage device rises to a predetermined value or more, the diaphragm 12 of the current interrupt mechanism 1 presses the interposition member 13 to break the interposition member 13 and disconnect the connection member 23. Thereby, charging is stopped.

実施例1の蓄電装置において、充電後の電池内部のガス量をアルキメデス法により測定した。具体的には、測定に供する実施例1の蓄電装置は、電流遮断装置を取り外した。この蓄電装置について、4.6V(Li/Li+基準電位)の充電条件で蓄電装置に初回充電を行った。充電電位の上昇に伴って、収容体であるラミネートフィルムが膨張した。蓄電装置全体の体積増加量を測定した。体積増加量は充電時に発生した酸素ガスや酸素ガスが電解液と反応して生成する炭酸ガスの発生によるものである。体積増加量はガス発生量に等しい。充電時のガス発生量は、52mlであった。また発生したガスの組成を分析したところ、酸素ガスが62%、炭酸ガスが36%含有される事が分かった。このことから、充電時の電位が、気体発生開始電位(4.5V(Li/Li+基準電位))以上の過剰電位まで上昇すると、LiMnOは酸化分解し、ガスを発生させた事が分かった。 In the power storage device of Example 1, the amount of gas inside the battery after charging was measured by the Archimedes method. Specifically, the current interrupting device was removed from the power storage device of Example 1 used for measurement. For this power storage device, the power storage device was initially charged under a charge condition of 4.6 V (Li / Li + reference potential). As the charging potential increased, the laminate film as the container expanded. The volume increase of the entire power storage device was measured. The increase in volume is due to the generation of oxygen gas generated during charging or carbon dioxide gas generated by the reaction of oxygen gas with the electrolyte. Volume increase is equal to gas generation. The amount of gas generated during charging was 52 ml. Further, when the composition of the generated gas was analyzed, it was found that 62% oxygen gas and 36% carbon dioxide gas were contained. From this, when the potential at the time of charging rises to an excess potential equal to or higher than the gas generation start potential (4.5 V (Li / Li + reference potential)), Li 6 MnO 4 was oxidized and decomposed to generate gas. I understood.

(実施例2)
実施例2の蓄電装置では、正極に含める無機酸化物(LiMnO)の含有量が10質量%である点で、実施例1と相違する。その他は、実施例1と同様である。
(Example 2)
The power storage device of Example 2 differs from Example 1 in that the content of the inorganic oxide (Li 6 MnO 4 ) included in the positive electrode is 10% by mass. Others are the same as in the first embodiment.

実施例2の蓄電装置についても、実施例1と同様に、4.6V(Li/Li+基準電位)まで初回充電したときのガス発生量を測定した。ガス発生量は108mlであった。 For the power storage device of Example 2, as in Example 1, the amount of gas generated when initially charged to 4.6 V (Li / Li + reference potential) was measured. The amount of gas generated was 108 ml.

(実施例3)
実施例3の蓄電装置では、正極に含める無機酸化物がLiCoOからなる。正極合材全体を100質量%としたときに、LiCoOの含有量は5質量%である。LiCoOの気体発生開始電位は、4.3V(Li/Li+基準電位)である。
(Example 3)
In the power storage device of Example 3, the inorganic oxide included in the positive electrode is made of Li 6 CoO 4 . The content of Li 6 CoO 4 is 5% by mass when the total amount of the positive electrode mixture is 100% by mass. The gas generation start potential of Li 6 CoO 4 is 4.3 V (Li / Li + reference potential).

本例の蓄電装置の充電終止電位は、4.2V(Li/Li+基準電位)である。 The end-of-charge potential of the power storage device of this example is 4.2 V (Li / Li + reference potential).

実施例3の蓄電装置についても、実施例1と同様に、初回充電したときのガス発生量を測定した。ガス発生量は59mlであった。   For the power storage device of Example 3, as in Example 1, the amount of gas generated when initially charged was measured. The amount of gas generated was 59 ml.

(比較例1)
比較例1の蓄電装置は、正極に無機酸化物が含まれていない。その他は、実施例1と同様である。
(Comparative Example 1)
In the power storage device of Comparative Example 1, the positive electrode contains no inorganic oxide. Others are the same as in the first embodiment.

比較例1の蓄電装置についても、実施例1と同様に、初回充電したときのガス発生量を測定した。ガス発生量は3mlであった。ガスはほとんど発生しなかった。   For the power storage device of Comparative Example 1, as with Example 1, the amount of gas generated when initially charged was measured. The amount of gas generated was 3 ml. Little gas was generated.

Claims (9)

内部空間を有する収容体と、前記収容体の前記内部空間に収容された正極、負極、及び電解質と、前記内部空間の内圧の上昇に応じて電流経路を遮断する電流遮断機構と、を有する蓄電装置であって、
前記正極は、通常の充電終止時の正極の充電終止電位よりも高い電位で反応して気体を発生させるとともに遷移金属を有する無機酸化物を含むことを特徴とする蓄電装置。
An electricity storage comprising: a housing body having an internal space; a positive electrode, a negative electrode, and an electrolyte housed in the internal space of the housing body; and a current interrupting mechanism that interrupts a current path according to an increase in internal pressure of the internal space. A device,
The positive electrode includes an inorganic oxide having a transition metal while reacting at a potential higher than a charge end potential of the positive electrode at the end of normal charge to generate gas.
前記無機酸化物から発生し得る前記気体は、酸素ガスである請求項1記載の蓄電装置。   The power storage device according to claim 1, wherein the gas that can be generated from the inorganic oxide is oxygen gas. 前記無機酸化物は、LiMnO、LiCoO、及びLiFeOの群から選ばれた1種以上からなる請求項1又は2に記載の蓄電装置。 The inorganic oxides, Li 6 MnO 4, Li 6 CoO 4, and the power storage device according to claim 1 or 2 comprising one or more selected from the group consisting of Li 5 FeO 4. 前記正極は、正極活物質と前記無機酸化物とを有する正極合材と、前記正極合材で表面が被覆された集電体とを有する請求項1〜3のいずれか1項に記載の蓄電装置。   The electrical storage according to any one of claims 1 to 3, wherein the positive electrode includes a positive electrode mixture having a positive electrode active material and the inorganic oxide, and a current collector having a surface coated with the positive electrode mixture. apparatus. 前記正極合材を100質量%としたときに、前記正極合材の中の前記無機酸化物の含有量は1質量%以上30質量%以下である請求項4記載の蓄電装置。   The power storage device according to claim 4, wherein the content of the inorganic oxide in the positive electrode mixture is 1% by mass or more and 30% by mass or less when the positive electrode mixture is 100% by mass. 前記正極活物質はLiMeO(Me:遷移金属から選ばれる1種以上であって、少なくともNiを含む。)を有し、前記無機酸化物はLiMnOを有する請求項4又は5に記載の蓄電装置。 The positive active material is LiMeO 2 (Me:. Be one or more selected from transition metals, including at least Ni) have the inorganic oxide according to claim 4 or 5 having a Li 6 MnO 4 Power storage device. 前記正極活物質はLiCoOを有し、前記無機酸化物はLiCoOを有する請求項4〜6のいずれか1項に記載の蓄電装置。 The power storage device according to claim 4 , wherein the positive electrode active material includes LiCoO 2 and the inorganic oxide includes Li 6 CoO 4 . 前記正極活物質はLiFePOを有し、前記無機酸化物はLiFeOを有する請求項4〜7のいずれか1項に記載の蓄電装置。 The power storage device according to claim 4 , wherein the positive electrode active material includes LiFePO 4 , and the inorganic oxide includes Li 5 FeO 4 . 前記蓄電装置は、リチウムイオン二次電池である請求項1〜8のいずれか1項に記載の蓄電装置。   The power storage device according to claim 1, wherein the power storage device is a lithium ion secondary battery.
JP2013224297A 2013-10-29 2013-10-29 Power storage device Expired - Fee Related JP6201642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224297A JP6201642B2 (en) 2013-10-29 2013-10-29 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224297A JP6201642B2 (en) 2013-10-29 2013-10-29 Power storage device

Publications (2)

Publication Number Publication Date
JP2015088268A true JP2015088268A (en) 2015-05-07
JP6201642B2 JP6201642B2 (en) 2017-09-27

Family

ID=53050863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224297A Expired - Fee Related JP6201642B2 (en) 2013-10-29 2013-10-29 Power storage device

Country Status (1)

Country Link
JP (1) JP6201642B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168255A (en) * 2016-03-15 2017-09-21 株式会社東芝 Nonaqueous electrolyte secondary battery, battery pack, and vehicle
EP3396741A1 (en) 2017-04-24 2018-10-31 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the same
JP2018185906A (en) * 2017-04-24 2018-11-22 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2019029406A (en) * 2017-07-26 2019-02-21 旭化成株式会社 Method for manufacturing sealed type power storage element
JP2019029393A (en) * 2017-07-26 2019-02-21 旭化成株式会社 Alkali metal ion-doping method
US10403929B2 (en) 2017-11-30 2019-09-03 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same
WO2019198351A1 (en) * 2018-04-10 2019-10-17 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
US11276857B2 (en) 2018-02-20 2022-03-15 Gs Yuasa International Ltd. Positive active material, positive electrode, nonaqueous electrolyte energy storage device, method of producing positive active material, and method of producing nonaqueous electrolyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149953A (en) * 1989-04-26 2000-05-30 Sony Corp Nonaqueous electrolyte secondary battery
WO2012147507A1 (en) * 2011-04-27 2012-11-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149953A (en) * 1989-04-26 2000-05-30 Sony Corp Nonaqueous electrolyte secondary battery
WO2012147507A1 (en) * 2011-04-27 2012-11-01 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168255A (en) * 2016-03-15 2017-09-21 株式会社東芝 Nonaqueous electrolyte secondary battery, battery pack, and vehicle
EP3396741A1 (en) 2017-04-24 2018-10-31 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the same
KR20180119130A (en) * 2017-04-24 2018-11-01 도요타 지도샤(주) Lithium ion secondary battery and method of producing the same
JP2018185905A (en) * 2017-04-24 2018-11-22 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
JP2018185906A (en) * 2017-04-24 2018-11-22 トヨタ自動車株式会社 Method for manufacturing secondary battery
KR102050208B1 (en) * 2017-04-24 2019-11-29 도요타 지도샤(주) Lithium ion secondary battery and method of producing the same
US10804568B2 (en) 2017-04-24 2020-10-13 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the same
JP2019029406A (en) * 2017-07-26 2019-02-21 旭化成株式会社 Method for manufacturing sealed type power storage element
JP2019029393A (en) * 2017-07-26 2019-02-21 旭化成株式会社 Alkali metal ion-doping method
US10403929B2 (en) 2017-11-30 2019-09-03 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same
US11276857B2 (en) 2018-02-20 2022-03-15 Gs Yuasa International Ltd. Positive active material, positive electrode, nonaqueous electrolyte energy storage device, method of producing positive active material, and method of producing nonaqueous electrolyte
WO2019198351A1 (en) * 2018-04-10 2019-10-17 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6201642B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6201642B2 (en) Power storage device
JP4245532B2 (en) Nonaqueous electrolyte secondary battery
JP5099168B2 (en) Lithium ion secondary battery
JP2014505321A (en) Rechargeable electrochemical energy storage device
JP2016012620A (en) Pre-doping agent, positive electrode for lithium ion capacitor, and lithium ion capacitor and manufacturing method of the same
JP5999457B2 (en) Lithium secondary battery and manufacturing method thereof
JP7014169B2 (en) Lithium secondary battery
JP6271706B2 (en) Nonaqueous electrolyte secondary battery, battery pack and vehicle
JP2013077421A (en) Nonaqueous electrolyte secondary battery
JP7281776B2 (en) lithium secondary battery
JP2013235653A (en) Sealed nonaqueous electrolyte secondary battery
JP2016085843A (en) Solid type secondary battery
JP2022050694A (en) Positive electrode active material, positive electrode, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
TW201721941A (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
JP6362440B2 (en) Secondary battery
JP2014216299A (en) Sodium ion secondary battery
CN109155435B (en) Solid electrolyte, all-solid-state battery
JP2014154279A (en) Nonaqueous electrolyte secondary battery
JP2013239374A (en) Lithium ion secondary battery and method for manufacturing the same
JP2013239375A (en) Lithium ion secondary battery and method for manufacturing the same
JP2008171589A (en) Negative electrode and battery
JP5557385B2 (en) Energy storage device with proton as insertion species
JP2019212449A (en) Power storage device including stainless steel current collector
US11289745B2 (en) Elimination of gaseous reactants in lithium ion batteries
Loupe et al. Electrochemical energy storage: Current and emerging technologies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees