JP2015088265A - Fuel battery unit cell with separator, fuel battery stack, and method for manufacturing the same - Google Patents

Fuel battery unit cell with separator, fuel battery stack, and method for manufacturing the same Download PDF

Info

Publication number
JP2015088265A
JP2015088265A JP2013224097A JP2013224097A JP2015088265A JP 2015088265 A JP2015088265 A JP 2015088265A JP 2013224097 A JP2013224097 A JP 2013224097A JP 2013224097 A JP2013224097 A JP 2013224097A JP 2015088265 A JP2015088265 A JP 2015088265A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
main surface
cell
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013224097A
Other languages
Japanese (ja)
Other versions
JP6199697B2 (en
Inventor
誠 栗林
Makoto Kuribayashi
誠 栗林
悦也 池田
Etsuya Ikeda
悦也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013224097A priority Critical patent/JP6199697B2/en
Publication of JP2015088265A publication Critical patent/JP2015088265A/en
Application granted granted Critical
Publication of JP6199697B2 publication Critical patent/JP6199697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a fuel battery unit cell with a separator which is increased in the strength by reducing cavities in a bonding portion; a fuel battery stack; and method for manufacturing such a fuel battery unit cell.SOLUTION: A fuel battery unit cell with a separator comprises: a fuel battery unit cell having an air electrode, a fuel electrode and a solid electrolytic layer disposed therebetween; a plate-like metal separator having a first principal face, a second principal face, and through-holes extending between the first and second principal faces and piercing the separator; and a bonding portion serving to bond the fuel battery unit cell to the first principal face of the metal separator, and including a silver-containing brazing filler metal. The bonding portion is divided into: an inner peripheral side region disposed on a through-hole side of the metal separator; an outer peripheral side region disposed outside the inner peripheral side region; and a middle region disposed between the inner peripheral side region and the outer peripheral side region. The distance between the fuel battery unit cell and the first principal face in the middle region is smaller than the distances between the fuel battery unit cell and the first principal face in the outer peripheral side region and the inner peripheral side region.

Description

本発明は,セパレータ付燃料電池単セル,燃料電池スタック,およびその製造方法に関する。   The present invention relates to a single cell with a separator, a fuel cell stack, and a method for manufacturing the same.

電解質に固体酸化物を用いた固体酸化物形燃料電池(以下,「SOFC」又は単に「燃料電池」とも記す場合がある)が知られている。SOFCは,例えば,板状の固体電解質層の各面に燃料極と空気極とを備えた燃料電池単セルを多数積層したスタック(燃料電池スタック)を有する。燃料極および空気極それぞれに,燃料ガス(例えば,水素)および酸化剤ガス(例えば,空気中の酸素)を供給し,固体電解質層を介して化学反応させることで,電力を発生させる。   A solid oxide fuel cell using a solid oxide as an electrolyte (hereinafter also referred to as “SOFC” or simply “fuel cell”) is known. The SOFC has, for example, a stack (fuel cell stack) in which a large number of fuel cell single cells each having a fuel electrode and an air electrode are stacked on each surface of a plate-like solid electrolyte layer. Electric power is generated by supplying a fuel gas (for example, hydrogen) and an oxidant gas (for example, oxygen in the air) to the fuel electrode and the air electrode, respectively, and causing a chemical reaction through the solid electrolyte layer.

燃料電池単セルは,燃料ガスと酸化剤ガスとが存在する区画を区分するセパレータに,接合して,用いられる。この接合に,通例,Agロウ等のロウ材から構成される接合部が用いられる。   A single fuel cell is used by being joined to a separator that divides a section where fuel gas and oxidant gas are present. For this joining, a joining portion made of a brazing material such as Ag brazing is usually used.

燃料電池単セルに合金製の保持薄板枠をロウ付けしたり,ガラス系シール剤を用いて封止したりする技術が開示されている(特許文献1参照)。
また,非酸化雰囲気でロウ付けすると,空気極の特性が変化することから,セパレータと燃料電池単セルを大気中でロウ付けする技術(大気ロウ付け)が開示されている(特許文献2参照)。
A technique of brazing an alloy holding thin plate frame to a single fuel cell or sealing with a glass-based sealant is disclosed (see Patent Document 1).
In addition, since the characteristics of the air electrode change when brazed in a non-oxidizing atmosphere, a technique for brazing the separator and the fuel cell single cell in the atmosphere (atmospheric brazing) is disclosed (see Patent Document 2). .

特開2000−331692号公報JP 2000-331692 A 特開2010−21038号公報JP 2010-21038 A

しかしながら,燃料電池単セルと合金製の保持薄板枠(金属製セパレータ)をロウ付けによって接合する際に,気泡を巻き込む可能性がある。この場合,接合部に空孔が形成され,接合の強度が低下し,接合が剥がれてガスリークする畏れがある。
本発明は,接合部での空孔を低減し,その強度向上を図った,セパレータ付燃料電池単セル,燃料電池スタック,およびその製造方法を提供することを目的とする。
However, when the fuel cell single cell and the alloy holding thin plate frame (metal separator) are joined by brazing, bubbles may be involved. In this case, voids are formed in the joint, the strength of the joint is reduced, and the joint may be peeled off and gas leakage may occur.
It is an object of the present invention to provide a separator-equipped fuel cell unit cell, a fuel cell stack, and a method for manufacturing the same, in which pores in a joint portion are reduced and the strength is improved.

(1)本発明に係るセパレータ付燃料電池単セルは,
空気極,燃料極,およびこれらの間に配置される固体電解質層を有する,燃料電池単セルと,
第1主面,第2主面,およびこれら第1主面および第2主面間を貫通する貫通孔を有する,板状の金属製セパレータと,
前記燃料電池単セルと,前記金属製セパレータの第1主面と,を接合し,Agを含むロウ材から成る,接合部と,
を具備するセパレータ付燃料電池単セルであって,
前記接合部が,前記金属製セパレータの前記貫通孔側に配置される内周側領域,前記内周側領域よりも外側に配置される外周側領域,および前記内周側領域と前記外周側領域の間に配置される中間領域に区分され,
前記外周側領域および前記内周側領域での前記燃料電池単セルと前記第1主面間の距離より,前記中間領域での前記燃料電池単セルと前記第1主面間の距離が小さいことを特徴とする。
(1) A separator-equipped fuel cell unit cell according to the present invention includes:
A fuel cell single cell having an air electrode, a fuel electrode, and a solid electrolyte layer disposed between them;
A plate-shaped metal separator having a first main surface, a second main surface, and a through-hole penetrating between the first main surface and the second main surface;
A joining portion made of a brazing material containing Ag, joining the single fuel cell and the first main surface of the metal separator;
A separator-equipped fuel cell unit cell comprising:
An inner peripheral region disposed on the through-hole side of the metallic separator, an outer peripheral region disposed outside the inner peripheral region, and the inner peripheral region and the outer peripheral region. Is divided into intermediate areas arranged between
The distance between the single fuel cell and the first main surface in the intermediate region is smaller than the distance between the single fuel cell and the first main surface in the outer peripheral region and the inner peripheral region. It is characterized by.

接合部の中間領域での間隔(燃料電池単セルと金属製セパレータの第1主面(下面)間の距離)が,外周側領域および内周側領域での間隔より小さい。このため,ロウ付け時(製造時)にAgロウ中に巻き込まれた気泡が,内周側領域または外周側領域を経由して,外部に抜け出し易くなる。この結果,接合部(Agロウ)中での空孔(気泡)の割合が低減することで,接合部の接合強度が確保される。   The distance in the intermediate area of the joint (the distance between the single fuel cell and the first main surface (lower surface) of the metal separator) is smaller than the distance between the outer peripheral area and the inner peripheral area. For this reason, bubbles entrained in the Ag brazing during brazing (manufacturing) can easily escape to the outside via the inner peripheral region or the outer peripheral region. As a result, the bonding strength of the bonded portion is ensured by reducing the ratio of pores (bubbles) in the bonded portion (Ag wax).

(2)前記中間領域に対応する箇所において,前記金属製セパレータの前記第2主面側に凹みを有しても良い。
例えば,金属製セパレータの板厚が均一な場合,中間領域での間隔が小さいことに対応して,金属製セパレータの第2主面側に凹みを有することとなる。即ち,板厚が均一な金属製セパレータを用いて,接合部(Agロウ)中の空孔(気泡)を低減できる。
(2) You may have a dent in the said 2nd main surface side of the said metal separator in the location corresponding to the said intermediate | middle area | region.
For example, when the plate thickness of the metal separator is uniform, the metal separator has a dent on the second main surface side corresponding to the small interval in the intermediate region. That is, the use of a metal separator having a uniform plate thickness can reduce pores (bubbles) in the joint (Ag brazing).

(3)前記中間領域が,前記貫通孔に沿って全周にわたって存在することが好ましい。
貫通孔の全周にわたって,接合部(Agロウ)中の空孔が低減され,接合強度が向上する。
(3) It is preferable that the said intermediate | middle area | region exists over the perimeter along the said through-hole.
Over the entire circumference of the through hole, holes in the joint (Ag brazing) are reduced, and the joint strength is improved.

(4)前記接合部よりも前記貫通孔側の,前記燃料電池単セルと前記第1主面との間に,前記貫通孔に沿って全周にわたって配置され,ガラスを含む封止材を有する,封止部をさらに具備することが好ましい。 (4) Between the fuel cell single cell and the first main surface on the side of the through hole with respect to the joint, the seal member is disposed over the entire circumference along the through hole and includes glass. It is preferable to further include a sealing part.

封止部が無い場合,接合部(Agロウ)は酸化剤ガスと燃料ガスの双方に曝される。この場合,Agロウ中で酸素と水素が拡散し,反応することで,事後的にボイドが発生し,ガスリークする畏れがある。貫通孔側の燃料電池単セルと第1主面との間に,貫通孔に沿って全周にわたって封止部を配置することで,接合部(Agロウ)が曝されるのを酸化剤ガス又は燃料ガスの一方のみにできる。その結果,接合部(Agロウ)中での酸素と水素の反応を抑制し,Agロウ中でのボイドの発生を低減できる。   In the absence of a seal, the joint (Ag wax) is exposed to both oxidant gas and fuel gas. In this case, oxygen and hydrogen diffuse and react in the Ag wax, so that voids are generated afterward and gas leakage may occur. Between the through-hole side fuel cell unit cell and the first main surface, the sealing portion is disposed over the entire circumference along the through-hole so that the joining portion (Ag wax) is exposed to the oxidant gas. Or only one of the fuel gases can be used. As a result, the reaction between oxygen and hydrogen in the joint (Ag wax) can be suppressed, and the generation of voids in the Ag wax can be reduced.

また,既述のように,接合部(Agロウ)中での空孔(気泡)の割合が低減することで,金属製セパレータと接合部(Agロウ)の接合強度が大きくなっている。このため,セパレータ付燃料電池単セルに応力が印加されても,接合部が封止部に印加される応力を緩和し,封止部(ガラスを含む)の割れを防止できる。そのため,接合部でのガスリークをより確実に防止できる。   Further, as described above, the bonding strength between the metal separator and the bonding portion (Ag brazing) is increased by reducing the ratio of the voids (bubbles) in the bonding portion (Ag brazing). For this reason, even if stress is applied to the separator-equipped fuel cell unit cell, the stress applied to the sealing portion by the bonding portion can be relaxed, and cracking of the sealing portion (including glass) can be prevented. Therefore, it is possible to prevent gas leakage at the joint more reliably.

(5)本発明に係る燃料電池スタックは,(1)〜(4)記載のセパレータ付燃料電池単セル,を複数個具備することを特徴とする。
接合部でのガスリークが防止された燃料電池スタックを提供できる。
(5) A fuel cell stack according to the present invention comprises a plurality of separator-attached fuel cell single cells according to (1) to (4).
It is possible to provide a fuel cell stack in which gas leakage at the joint is prevented.

(6)本発明に係るセパレータ付燃料電池単セルの製造方法は,
空気極,燃料極,およびこれらの間に配置される固体電解質層を有する,燃料電池単セルと,第1主面,第2主面,およびこれら第1主面および第2主面間を貫通する貫通孔を有する,板状の金属製セパレータと,を準備する工程と,
前記燃料電池単セルおよび前記金属製セパレータの一方または双方にAgを含むロウ材を配置する工程と,
前記燃料電池単セルと,前記第1主面とを対向して配置する工程と,
荷重を印加しながら,前記ロウ材を溶融することで,前記燃料電池単セルと前記第1主面とを接合する工程と,を具備し,
前記ロウ材を配置する工程において,前記燃料電池単セルと前記第1主面とで互いに対向する領域の少なくとも一部である,ロウ付け領域に前記ロウ材を配置し,
前記接合する工程において,前記金属製セパレータの第2主面上から,前記ロウ付け領域の幅よりも狭い幅で,前記荷重を印加する,ことを特徴とする。
(6) A method for producing a separator-equipped fuel cell unit cell according to the present invention includes:
A fuel cell single cell having an air electrode, a fuel electrode, and a solid electrolyte layer disposed between them, and the first main surface, the second main surface, and between the first main surface and the second main surface Preparing a plate-like metal separator having a through-hole,
Disposing a brazing material containing Ag on one or both of the single fuel cell and the metal separator;
Arranging the single fuel cell and the first main surface to face each other;
Joining the fuel cell single cell and the first main surface by melting the brazing material while applying a load,
In the step of disposing the brazing material, the brazing material is disposed in a brazing region, which is at least a part of a region facing the fuel cell single cell and the first main surface,
In the joining step, the load is applied from the second main surface of the metallic separator with a width narrower than the width of the brazing region.

接合する工程において,金属製セパレータの第2主面(上面)上から,ロウ付け領域の幅よりも狭い幅で,前記荷重を印加することで,金属製セパレータが凹む。その結果,Agロウが流動し,Agロウ中に巻き込まれた気泡を外に追い出し易くなる。また,金属製セパレータが凹むことで,金属製セパレータにスロープができることで,気泡を外に追い出し易くなる。   In the joining step, the metal separator is recessed by applying the load from the second main surface (upper surface) of the metal separator to a width narrower than the width of the brazing region. As a result, the Ag wax flows and it becomes easy to drive out the bubbles entrained in the Ag wax. In addition, since the metal separator is recessed, a slope is formed in the metal separator, so that the bubbles can be easily driven out.

このように,ロウ付け領域の幅よりも狭い幅で荷重を印加することで,金属製セパレータが凹み,Agロウ中の気泡が追い出されることで,接合強度を向上できる。   Thus, by applying a load with a width narrower than the width of the brazing region, the metallic separator is recessed, and the bubbles in the Ag braze are driven out, so that the bonding strength can be improved.

(7)前記荷重を印加する領域が,前記金属製セパレータの前記貫通孔に沿って全周にわたって存在することが好ましい。
貫通孔の全周にわたって,Agロウ中の気泡が低減され,接合強度が向上する。
(7) It is preferable that the area | region which applies the said load exists over the perimeter along the said through-hole of the said metal separator.
Bubbles in the Ag solder are reduced over the entire circumference of the through hole, and the bonding strength is improved.

(8)前記接合する工程において,前記ロウ材が大気下で溶融されることが好ましい。
ロウ材を大気下で溶融することで,空気極の特性の変化を防止できる。
(8) In the bonding step, the brazing material is preferably melted in the atmosphere.
By melting the brazing material in the atmosphere, changes in the characteristics of the air electrode can be prevented.

本発明によれば,接合部での空孔を低減し,その強度向上を図った,セパレータ付燃料電池単セル,燃料電池スタック,およびその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell single cell with a separator, the fuel cell stack, and its manufacturing method which reduced the void | hole in a junction part and aimed at the strength improvement can be provided.

固体酸化物形燃料電池10を表す斜視図である。1 is a perspective view showing a solid oxide fuel cell 10. FIG. 固体酸化物形燃料電池10の模式断面図である。1 is a schematic cross-sectional view of a solid oxide fuel cell 10. FIG. 燃料電池セル40の断面図である。3 is a cross-sectional view of a fuel cell 40. FIG. 燃料電池単セル44と金属製セパレータ53(セパレータ付燃料電池単セル50)の上面図である。It is a top view of the fuel cell single cell 44 and the metal separator 53 (fuel cell single cell 50 with a separator). セパレータ付燃料電池単セル50の枠A内の拡大断面図である。It is an expanded sectional view in the frame A of the fuel cell single cell 50 with a separator. 比較例に係るセパレータ付燃料電池単セル50xの拡大断面図である。It is an expanded sectional view of fuel cell single cell 50x with a separator concerning a comparative example. 実施例に係るセパレータ付燃料電池単セル50の断面写真である。It is a cross-sectional photograph of the fuel cell single cell 50 with a separator which concerns on an Example. 比較例に係るセパレータ付燃料電池単セル50xの断面写真である。It is a cross-sectional photograph of the separator-equipped fuel cell unit cell 50x according to the comparative example. 燃料電池セル40aの断面図である。It is sectional drawing of the fuel cell 40a. セパレータ付燃料電池単セル50aの枠A内の拡大断面図である。It is an expanded sectional view in frame A of fuel cell single cell 50a with a separator. 製法1に係るセパレータ付燃料電池単セル50,50aの製造工程(荷重の印加)を表す図である。It is a figure showing the manufacturing process (application of a load) of the fuel cell single cell 50, 50a with a separator which concerns on the manufacturing method 1. FIG. 製法1に係るセパレータ付燃料電池単セル50,50aの製造工程(接合工程中の気泡の動き)を表す図である。It is a figure showing the manufacturing process (movement of the bubble in a joining process) of the fuel cell single cell 50, 50a with a separator which concerns on the manufacturing method 1. FIG. 製法1に係るセパレータ付燃料電池単セル50aの製造工程(封止工程)を表す図である。It is a figure showing the manufacturing process (sealing process) of the fuel cell single cell 50a with a separator which concerns on the manufacturing method 1. FIG. 接合治具Tpを表す断面図である。It is sectional drawing showing joining jig | tool Tp. 製法2に係るセパレータ付燃料電池単セル50,50aの製造工程を表す図である。It is a figure showing the manufacturing process of the fuel cell single cell 50, 50a with a separator which concerns on the manufacturing method 2. FIG. 比較例に係るセパレータ付燃料電池単セル50xの製法を表す図である。It is a figure showing the manufacturing method of the fuel cell single cell 50x with a separator which concerns on a comparative example. 実施例と比較例に係るセパレータ付燃料電池単セル50,50aのピール試験結果を比較して表すグラフである。It is a graph which compares and represents the peel test result of the fuel cell single cell with separators 50 and 50a which concerns on an Example and a comparative example. ピール試験を説明するための図である。It is a figure for demonstrating a peel test.

以下,本発明に係る固体酸化物形燃料電池について図面を用いて説明する。   Hereinafter, a solid oxide fuel cell according to the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は,本発明の第1実施形態に係る固体酸化物形燃料電池(燃料電池スタック)10を表す斜視図である。固体酸化物形燃料電池10は,燃料ガス(例えば,水素)と酸化剤ガス(例えば,空気(詳しくは空気中の酸素))との供給を受けて発電する。
(First embodiment)
FIG. 1 is a perspective view showing a solid oxide fuel cell (fuel cell stack) 10 according to a first embodiment of the present invention. The solid oxide fuel cell 10 generates power by receiving supply of a fuel gas (for example, hydrogen) and an oxidant gas (for example, air (specifically, oxygen in the air)).

固体酸化物形燃料電池10では,エンドプレート11,12,燃料電池セル40(1)〜40(4)が積層され,ボルト21,22(22a,22b),23(23a,23b)およびナット35で固定される。   In the solid oxide fuel cell 10, end plates 11 and 12 and fuel cells 40 (1) to 40 (4) are stacked, and bolts 21, 22 (22 a, 22 b), 23 (23 a, 23 b) and nuts 35 are stacked. It is fixed with.

ボルト22(22a,22b),23(23a,23b)は,燃料ガスまたは酸化剤ガス(供給ガス)の流路として機能する空洞をその内部または外部に有する。ここでは,ボルト22,23の内部に供給ガスの流路として機能する空洞が配置されている。これに対して,ボルト22,23の外周と貫通孔32,33の間を供給ガスの流路としても良い。   The bolts 22 (22a, 22b) and 23 (23a, 23b) have a cavity functioning as a flow path for fuel gas or oxidant gas (supply gas) inside or outside. Here, cavities functioning as flow paths for the supply gas are arranged inside the bolts 22 and 23. On the other hand, it is good also as a flow path of supply gas between the outer periphery of the volt | bolts 22 and 23 and the through-holes 32 and 33. FIG.

ボルト22a,22bがそれぞれ,酸化剤ガスを燃料電池セル40に供給,排出する。また,ボルト23a,23bがそれぞれ,燃料ガスを燃料電池セル40に供給,排出する。   Bolts 22a and 22b supply and discharge oxidant gas to and from the fuel cell 40, respectively. The bolts 23a and 23b supply and discharge the fuel gas to and from the fuel cell 40, respectively.

図2は,固体酸化物形燃料電池10の模式断面図である。
固体酸化物形燃料電池10は,燃料電池セル40(1)〜40(4)を積層して構成される燃料電池スタックである。ここでは,判り易さのために,4つの燃料電池セル40(1)〜40(4)を積層しているが,一般には,20〜60個程度の燃料電池セル40を積層することが多い。
FIG. 2 is a schematic cross-sectional view of the solid oxide fuel cell 10.
The solid oxide fuel cell 10 is a fuel cell stack configured by stacking fuel cells 40 (1) to 40 (4). Here, for the sake of clarity, four fuel cells 40 (1) to 40 (4) are stacked, but in general, about 20 to 60 fuel cells 40 are often stacked. .

エンドプレート11,12,燃料電池セル40(1)〜40(4)は,ボルト21,22(22a,22b),23(23a,23b)に対応する貫通孔31,32(32a,32b),33(33a,33b)を有する。
エンドプレート11,12は,積層される燃料電池セル40(1)〜40(4)を押圧,保持する保持板であり,かつ燃料電池セル40(1)〜40(4)からの電流の出力端子でもある。
The end plates 11 and 12 and the fuel cells 40 (1) to 40 (4) have through holes 31 and 32 (32a and 32b) corresponding to the bolts 21 and 22 (22a and 22b) and 23 (23a and 23b), 33 (33a, 33b).
The end plates 11 and 12 are holding plates that press and hold the stacked fuel battery cells 40 (1) to 40 (4), and output current from the fuel battery cells 40 (1) to 40 (4). It is also a terminal.

図3は,燃料電池セル40の断面図である。図4は,燃料電池単セル44と金属製セパレータ53(セパレータ付燃料電池単セル)の上面図である。図5は,セパレータ付燃料電池単セル50の枠A内の拡大断面図である。   FIG. 3 is a cross-sectional view of the fuel battery cell 40. FIG. 4 is a top view of the single fuel cell 44 and the metal separator 53 (single fuel cell with separator). FIG. 5 is an enlarged cross-sectional view in the frame A of the separator-equipped fuel cell single cell 50.

図3に示すように,燃料電池セル40は,いわゆる燃料極支持膜形タイプの燃料電池単セル44,インターコネクタ41,45,集電体42a,42b,枠部43を備える。   As shown in FIG. 3, the fuel cell 40 includes a so-called fuel electrode supporting membrane type fuel cell single cell 44, interconnectors 41 and 45, current collectors 42 a and 42 b, and a frame portion 43.

燃料電池単セル44は,固体電解質層56を空気極(カソード,空気極層ともいう)55,および,燃料極(アノード,燃料極層ともいう)57で挟んで構成される。固体電解質層56の酸化剤ガス流路47側に空気極55,燃料ガス流路48側に燃料極57が配置される。   The fuel cell single cell 44 is configured by sandwiching a solid electrolyte layer 56 between an air electrode (also referred to as a cathode or an air electrode layer) 55 and a fuel electrode (also referred to as an anode or a fuel electrode layer) 57. An air electrode 55 is disposed on the oxidant gas flow path 47 side of the solid electrolyte layer 56, and a fuel electrode 57 is disposed on the fuel gas flow path 48 side.

燃料ガスは,ボルト23aの燃料ガス流路(ボルト23aの内部または外部に配置される空洞)を通って,燃料ガス流路48に流入し,ボルト23bの燃料ガス流路に流出する。   The fuel gas flows into the fuel gas channel 48 through the fuel gas channel of the bolt 23a (a cavity disposed inside or outside the bolt 23a) and flows out into the fuel gas channel of the bolt 23b.

酸化剤ガスは,ボルト22aの酸化剤ガス流路(ボルト22aの内部または外部に配置される空洞)を通って,酸化剤ガス流路47に流入し,ボルト22bの酸化剤ガス流路に流出する。   The oxidant gas flows into the oxidant gas flow path 47 through the oxidant gas flow path of the bolt 22a (a cavity disposed inside or outside the bolt 22a), and flows out into the oxidant gas flow path of the bolt 22b. To do.

空気極55としては,ペロブスカイト系酸化物(例えば,LSCF(ランタンストロンチウムコバルト鉄酸化物),LSM(ランタンストロンチウムマンガン酸化物)が使用できる。   As the air electrode 55, a perovskite oxide (for example, LSCF (lanthanum strontium cobalt iron oxide), LSM (lanthanum strontium manganese oxide) can be used.

固体電解質層56としては,YSZ(イットリア安定化ジルコニア),ScSZ(スカンジア安定化ジルコニア),SDC(サマリウムドープセリア),GDC(ガドリニウムドープセリア),ペロブスカイト系酸化物等の材料が使用できる。   For the solid electrolyte layer 56, materials such as YSZ (yttria stabilized zirconia), ScSZ (scandia stabilized zirconia), SDC (samarium doped ceria), GDC (gadolinium doped ceria), and perovskite oxide can be used.

燃料極57としては,金属が好ましく,Ni及びNiとセラミックとのサーメットやNi基合金が使用できる。   The fuel electrode 57 is preferably a metal, and Ni, Ni-ceramic cermets or Ni-based alloys can be used.

インターコネクタ41,45は,燃料電池単セル44間の導通を確保し,かつ燃料電池単セル44間でのガスの混合を防止し得る,導電性(例えば,ステンレス鋼等の金属)を有する板状の部材である。   The interconnectors 41 and 45 are plates having conductivity (for example, a metal such as stainless steel) that can secure conduction between the fuel cell single cells 44 and prevent gas mixing between the fuel cell single cells 44. Shaped member.

なお,燃料電池単セル44間には,1個のインターコネクタ(41若しくは45)が配置される(直列に接続される二つの燃料電池単セル44の間に一つのインターコネクタを共有しているため)。また,最上層および最下層の燃料電池単セル44それぞれでは,インターコネクタ41,45に替えて,導電性を有するエンドプレート11,12が配置される。   One interconnector (41 or 45) is arranged between the fuel cell single cells 44 (one interconnector is shared between two fuel cell single cells 44 connected in series). For). Further, in each of the uppermost and lowermost fuel cell single cells 44, conductive end plates 11 and 12 are arranged in place of the interconnectors 41 and 45, respectively.

集電体42aは,燃料電池単セル44の空気極55とインターコネクタ41との間の導通を確保するためのものであり,例えば,インターコネクタ41に形成された凸部である。集電体42bは,燃料電池単セル44の燃料極57とインターコネクタ41との間の導通を確保するためのものであり,例えば,通気性を有するニッケルフェルトやニッケルメッシュ等を用いることができる。   The current collector 42 a is for ensuring electrical connection between the air electrode 55 of the fuel cell single cell 44 and the interconnector 41, and is, for example, a convex portion formed in the interconnector 41. The current collector 42b is for ensuring electrical continuity between the fuel electrode 57 of the fuel cell single cell 44 and the interconnector 41. For example, air-permeable nickel felt or nickel mesh can be used. .

枠部43は,酸化剤ガス,燃料ガスが流れる開口46を有する。この開口46内は,気密に保持され,かつ酸化剤ガスが流れる酸化剤ガス流路47,燃料ガスが流れる燃料ガス流路48に区分される。また,本実施形態の枠部43は,空気極フレーム51,絶縁フレーム52,金属製セパレータ53,燃料極フレーム54で構成される。   The frame portion 43 has an opening 46 through which an oxidant gas and a fuel gas flow. The inside of the opening 46 is divided into an oxidant gas flow path 47 through which oxidant gas flows and a fuel gas flow path 48 through which fuel gas flows. Further, the frame portion 43 of this embodiment includes an air electrode frame 51, an insulating frame 52, a metal separator 53, and a fuel electrode frame 54.

空気極フレーム51は,空気極55側に配置される金属製の枠体で,中央部には開口46を有する。該開口46によって,酸化剤ガス流路47を区画する。   The air electrode frame 51 is a metal frame disposed on the air electrode 55 side, and has an opening 46 at the center. An oxidant gas flow path 47 is defined by the opening 46.

絶縁フレーム52は,インターコネクタ41,45間を電気的に絶縁する枠体で,例えば,Alなどのセラミックスやマイカ,バーミキュライトなどが使用でき,中央部には開口46を有する。該開口46によって,酸化剤ガス流路47を区画する。具体的には,絶縁フレーム52は,インターコネクタ41,45の間において,一方の面が空気極フレーム51に,他方の面が金属製セパレータ53に接触して配置されている。この結果,絶縁フレーム52により,インターコネクタ41,45間が電気的に絶縁されている。 The insulating frame 52 is a frame that electrically insulates between the interconnectors 41 and 45. For example, ceramics such as Al 2 O 3 , mica, vermiculite, and the like can be used, and an opening 46 is provided at the center. An oxidant gas flow path 47 is defined by the opening 46. Specifically, the insulating frame 52 is disposed between the interconnectors 41 and 45 such that one surface contacts the air electrode frame 51 and the other surface contacts the metal separator 53. As a result, the interconnectors 41 and 45 are electrically insulated by the insulating frame 52.

金属製セパレータ53は,貫通孔58を有する枠状の金属製の薄板(例えば,厚さ:0.1mm)であり,燃料電池単セル44の固体電解質層56に取り付けられ,かつ酸化剤ガスと燃料ガスとの混合を防止する金属製の枠体である。金属製セパレータ53によって,枠部43の開口46内の間隙が,酸化剤ガス流路47と燃料ガス流路48に区切られ,酸化剤ガスと燃料ガスとの混合が防止される。   The metal separator 53 is a frame-shaped metal thin plate (for example, thickness: 0.1 mm) having a through hole 58, is attached to the solid electrolyte layer 56 of the fuel cell single cell 44, and is formed of an oxidant gas. It is a metal frame that prevents mixing with fuel gas. The metal separator 53 divides the gap in the opening 46 of the frame portion 43 into an oxidant gas flow path 47 and a fuel gas flow path 48, thereby preventing mixing of the oxidant gas and the fuel gas.

金属製セパレータ53には,金属製セパレータ53の上面(第2主面)と下面(第1主面)の間を貫通する貫通孔によって貫通孔58が形成される。この貫通孔58内に,燃料電池単セル44の空気極55が配置される。また,この貫通孔58の周囲に燃料電池単セル44が接合,封止される。金属製セパレータ53が接合された燃料電池単セル44を「セパレータ付燃料電池単セル」という。なお,この詳細は後述する。   A through-hole 58 is formed in the metal separator 53 by a through-hole penetrating between the upper surface (second main surface) and the lower surface (first main surface) of the metal separator 53. The air electrode 55 of the fuel cell single cell 44 is disposed in the through hole 58. In addition, the fuel cell single cell 44 is joined and sealed around the through hole 58. The fuel cell single cell 44 to which the metal separator 53 is joined is referred to as a “fuel cell with separator”. Details of this will be described later.

燃料極フレーム54は,絶縁フレーム52と同様に,燃料極57側に配置される絶縁フレームであり,中央部には開口46を有する。該開口46によって,燃料ガス流路48を区画する。   Like the insulating frame 52, the fuel electrode frame 54 is an insulating frame disposed on the fuel electrode 57 side, and has an opening 46 in the center. A fuel gas flow path 48 is defined by the opening 46.

空気極フレーム51,絶縁フレーム52,金属製セパレータ53,燃料極フレーム54は,ボルト21,22(22a,22b),23(23a,23b)が挿入されるか,もしくは酸化剤ガスか燃料ガスが流通する貫通孔31,32(32a,32b),33(33a,33b)をそれぞれの周辺部に有する。   Bolts 21, 22 (22a, 22b), 23 (23a, 23b) are inserted into the air electrode frame 51, the insulating frame 52, the metal separator 53, and the fuel electrode frame 54, or an oxidant gas or a fuel gas is inserted. The through holes 31, 32 (32a, 32b), 33 (33a, 33b) that circulate are provided in the respective peripheral portions.

(セパレータ付燃料電池単セル50の詳細)
本実施形態に係るセパレータ付燃料電池単セル50は,接合部61を有する。燃料電池単セル44と金属製セパレータ53の間に接合部61が配置される。貫通孔58に沿って,金属製セパレータ53の下面(第1面)と固体電解質層56の上面が接合部61で接合される。
(Details of single cell 50 with separator)
The separator-equipped fuel cell unit cell 50 according to the present embodiment has a joint 61. A junction 61 is disposed between the single fuel cell 44 and the metal separator 53. Along the through hole 58, the lower surface (first surface) of the metallic separator 53 and the upper surface of the solid electrolyte layer 56 are joined at the joining portion 61.

接合部61は,Agを含むロウ材から成り,貫通孔58に沿って,全周にわたって,燃料電池単セル44と金属製セパレータ53の下面(第1主面)とを接合する。   The joining portion 61 is made of a brazing material containing Ag, and joins the fuel cell single cell 44 and the lower surface (first main surface) of the metal separator 53 along the through hole 58 over the entire circumference.

接合部61の材質として,Agを主成分とする各種のロウ材を採用できる。例えば,ロウ材として,Agと酸化物の混合体,例えば,Ag−Al(AgとAl(アルミナ)の混合体)を利用できる。Agと酸化物の混合体としては,Ag−CuO,Ag−TiO,Ag−Cr,Ag−SiOも挙げることができる。また,ロウ材として,Agと他の金属の合金(例えば,Ag−Ge−Cr,Ag−Ti,Ag−Alのいずれか)も利用できる。 As the material of the joining portion 61, various brazing materials mainly composed of Ag can be employed. For example, as a brazing material, a mixture of Ag and an oxide, for example, Ag-Al 2 O 3 (a mixture of Ag and Al 2 O 3 (alumina)) can be used. Examples of the mixture of Ag and oxide include Ag—CuO, Ag—TiO 2 , Ag—Cr 2 O 3 , and Ag—SiO 2 . Further, an alloy of Ag and another metal (for example, any one of Ag—Ge—Cr, Ag—Ti, and Ag—Al) can be used as the brazing material.

Agを含むロウ材(Agロウ)は,大気雰囲気でもロウ付け温度で酸化し難い。このため,Agロウを用いて,燃料電池単セル44と金属製セパレータ53とを大気雰囲気で接合でき,工程の効率上,好ましい。非酸化雰囲気でロウ付けすると,空気極55の特性が変化する可能性がある。   The brazing material containing Ag (Ag brazing) is not easily oxidized at the brazing temperature even in an air atmosphere. For this reason, the fuel cell single cell 44 and the metal separator 53 can be joined in an air atmosphere using Ag wax, which is preferable in terms of process efficiency. If brazing is performed in a non-oxidizing atmosphere, the characteristics of the air electrode 55 may change.

図4,図5に示すように,この接合部61は,内周側領域A1,外周側領域A2,および中間領域A3に区分される。内周側領域A1は,金属製セパレータ53の貫通孔58側に配置される領域である。外周側領域A2は,内周側領域A1よりも外側に配置される領域である。中間領域A3は,内周側領域A1と外周側領域A2の間に配置される領域である。   As shown in FIGS. 4 and 5, the joint 61 is divided into an inner peripheral area A1, an outer peripheral area A2, and an intermediate area A3. The inner peripheral region A1 is a region disposed on the through hole 58 side of the metallic separator 53. The outer peripheral side region A2 is a region disposed outside the inner peripheral side region A1. The intermediate area A3 is an area arranged between the inner peripheral area A1 and the outer peripheral area A2.

内周側領域A1,外周側領域A2,中間領域A3それぞれでの燃料電池単セル44と金属製セパレータ53の下面(第1主面間)の距離(間隔)を間隔G1,G2,G3とする。   The distances (intervals) between the fuel cell single cell 44 and the lower surface (between the first main surfaces) of the inner peripheral region A1, the outer peripheral region A2, and the intermediate region A3 are defined as intervals G1, G2, G3. .

図5に示すように,中間領域A3での間隔G3は,内周側領域A1,外周側領域A2,での間隔G1,G2より小さい。このため,後述の製造時(ロウ付け時)にAgロウ中に巻き込まれた気泡が,内周側領域A1または外周側領域A2を経由して,外部に抜け出し易くなる。この結果,接合部61(Agロウ)中での空孔(気泡)Haの割合が低減することで,接合部61の接合強度が確保される。   As shown in FIG. 5, the gap G3 in the intermediate area A3 is smaller than the gaps G1 and G2 in the inner peripheral area A1 and the outer peripheral area A2. For this reason, bubbles entrained in Ag brazing at the time of manufacturing described later (at the time of brazing) can easily escape to the outside via the inner peripheral area A1 or the outer peripheral area A2. As a result, the bonding strength of the bonding portion 61 is ensured by reducing the ratio of pores (bubbles) Ha in the bonding portion 61 (Ag brazing).

接合部61(ロウ付け領域)の幅D0は,例えば,1.5〜6mmであり,内周側領域A1,外周側領域A2それぞれの幅D1,D2は,例えば,0.5mm以上である。即ち,中間領域A3の幅D3は例えば,0.5〜5mmである。   The width D0 of the joining portion 61 (brazing region) is, for example, 1.5 to 6 mm, and the widths D1, D2 of the inner peripheral side region A1 and the outer peripheral side region A2 are, for example, 0.5 mm or more. That is, the width D3 of the intermediate area A3 is, for example, 0.5 to 5 mm.

ここでは,中間領域A3に対応する箇所において,金属製セパレータ53の上面(第2主面)側に凹みを有する。即ち,金属製セパレータ53の板厚が略均一なため,中間領域A3での間隔G3が小さいことに対応して,金属製セパレータ53の上面(第2主面)側に凹みを有する。   Here, the metal separator 53 has a recess on the upper surface (second main surface) side at a location corresponding to the intermediate region A3. That is, since the thickness of the metal separator 53 is substantially uniform, the upper surface (second main surface) of the metal separator 53 has a dent corresponding to the small gap G3 in the intermediate region A3.

これに対して,中間領域A3での板厚が内周側領域A1,外周側領域A2,での板厚より大きい金属製セパレータ53を用いた場合,金属製セパレータ53の上面(第2主面)側に凹みを有しないこともあり得る。   On the other hand, when the metal separator 53 having a plate thickness in the intermediate region A3 larger than the plate thickness in the inner peripheral region A1 and the outer peripheral region A2, the upper surface (second main surface) of the metal separator 53 is used. ) Side may not have a dent.

図4に示すように,中間領域A3が,貫通孔58に沿って全周にわたって存在する。このため,貫通孔58の全周にわたって,接合部(Agロウ)61中の空孔Haが低減され,接合強度が向上する。   As shown in FIG. 4, the intermediate region A <b> 3 exists along the entire circumference along the through hole 58. For this reason, the void | hole Ha in the junction part (Ag brazing) 61 is reduced over the perimeter of the through-hole 58, and joining strength improves.

(比較例)
図6は,図5に対応し,比較例に係るセパレータ付燃料電池単セル50xの拡大断面図である。
セパレータ付燃料電池単セル50xでは,接合部61での間隔Gが均一である。即ち,セパレータ付燃料電池単セル50と異なり,内周側領域A1,外周側領域A2,および中間領域A3での間隔G1,G2,G3に差が無い。この結果,製造時(ロウ付け時)にAgロウ中に巻き込まれた気泡が,外部に抜け出し難くなる。この結果,接合部61(Agロウ)中の空孔(気泡)Haが保持されることで,接合部61の接合強度が低下する。
(Comparative example)
FIG. 6 corresponds to FIG. 5 and is an enlarged cross-sectional view of a separator-equipped fuel cell single cell 50x according to a comparative example.
In the separator-equipped fuel cell single cell 50x, the gap G at the junction 61 is uniform. That is, unlike the separator-equipped fuel cell unit cell 50, there is no difference in the gaps G1, G2, G3 in the inner peripheral area A1, the outer peripheral area A2, and the intermediate area A3. As a result, the bubbles entrained in the Ag solder at the time of manufacturing (at the time of brazing) are difficult to escape to the outside. As a result, the bonding strength of the bonding portion 61 is lowered by maintaining the holes (bubbles) Ha in the bonding portion 61 (Ag brazing).

図7,図8はそれぞれ,実施例,比較例に係るセパレータ付燃料電池単セル50の断面写真である。実施例に比べて,比較例では,接合部61(Agロウ)中に空孔(気泡)Haが占める割合が多いことが判る。これにより,接合強度が低下する。なお,図7,図8は,見易さのため,縦方向を横方向より2倍に拡大している。   7 and 8 are cross-sectional photographs of the separator-equipped fuel cell unit cell 50 according to the example and the comparative example, respectively. It can be seen that in the comparative example, the proportion of the voids (bubbles) Ha in the joint portion 61 (Ag brazing) is larger in the comparative example than in the example. As a result, the bonding strength decreases. In FIGS. 7 and 8, the vertical direction is doubled from the horizontal direction for ease of viewing.

(第2の実施形態)
第2の実施形態を説明する。図9は,第2の実施形態に係る燃料電池セル40aの断面図である。図10は,セパレータ付燃料電池単セル50aの枠A内の拡大断面図である。
(Second Embodiment)
A second embodiment will be described. FIG. 9 is a cross-sectional view of a fuel battery cell 40a according to the second embodiment. FIG. 10 is an enlarged sectional view in the frame A of the separator-equipped fuel cell single cell 50a.

セパレータ付燃料電池単セル50aは,接合部61に加えて,封止部62を有する。
封止部62は,貫通孔58に沿って,その全周にわたって,接合部61よりも貫通孔58側(内周側)に配置され,燃料電池単セル44と金属製セパレータ53の下面(第1主面)間を封止する。封止部62が接合部61よりも貫通孔58側に配置されることから,接合部61が酸化剤ガスに接触することが無くなり,酸化剤ガス流路47側から接合部61への酸素の移動が阻止される。この結果,水素と酸素の反応によって接合部61にボイドが発生してガスリークすることを防止できるため,接合部61の信頼性をより高めることができる。
The separator-attached fuel cell single cell 50 a has a sealing portion 62 in addition to the joint portion 61.
The sealing portion 62 is disposed along the through hole 58 over the entire circumference on the side of the through hole 58 (inner peripheral side) from the joint portion 61, and the lower surfaces of the fuel cell single cell 44 and the metal separator 53 (the first side). 1 main surface) is sealed. Since the sealing portion 62 is disposed closer to the through hole 58 than the joint portion 61, the joint portion 61 is not in contact with the oxidant gas, and oxygen from the oxidant gas flow path 47 side to the joint portion 61 is eliminated. Movement is prevented. As a result, it is possible to prevent the occurrence of voids in the junction 61 due to the reaction between hydrogen and oxygen and gas leakage, and thus the reliability of the junction 61 can be further improved.

封止部62が無い場合,接合部61(Agロウ)は酸化剤ガスと燃料ガスの双方に曝される。この場合,接合部61中で酸素と水素が拡散し,反応することで,事後的にボイドが発生し,ガスリークする畏れがある。貫通孔58側の燃料電池単セル44と第1主面との間に,貫通孔58に沿って全周にわたって封止部62を配置することで,接合部61(Agロウ)が曝されるのを酸化剤ガス又は燃料ガスの一方のみにできる。その結果,接合部61(Agロウ)中での酸素と水素の反応を抑制し,Agロウ中でのボイドの発生を低減できる。また,封止部62は,金属製セパレータ53の上面(第2主面)の一部を覆う形で接合部61を封止していても良い。   When there is no sealing part 62, the junction part 61 (Ag wax) is exposed to both oxidant gas and fuel gas. In this case, oxygen and hydrogen diffuse in the junction 61 and react with each other, so that voids are generated later and gas leakage may occur. Between the fuel cell single cell 44 on the through hole 58 side and the first main surface, the sealing portion 62 is disposed over the entire circumference along the through hole 58, so that the joining portion 61 (Ag row) is exposed. It is possible to use only oxidant gas or fuel gas. As a result, the reaction between oxygen and hydrogen in the junction 61 (Ag solder) can be suppressed, and the generation of voids in the Ag solder can be reduced. Further, the sealing portion 62 may seal the joint portion 61 so as to cover a part of the upper surface (second main surface) of the metal separator 53.

封止部62は,例えば,0.2〜4mmの幅,10〜80μmの厚さを有する。
封止部62は,具体的には,ガラス,ガラスセラミックス(結晶化ガラス),ガラスとセラミックスの複合物等の封止材料から構成できる。
The sealing part 62 has a width of 0.2 to 4 mm and a thickness of 10 to 80 μm, for example.
Specifically, the sealing part 62 can be comprised from sealing materials, such as glass, glass ceramics (crystallized glass), and the composite of glass and ceramics.

また,既述のように,接合部61(Agロウ)中での空孔(気泡)の割合が低減することで,金属製セパレータ53と接合部(Agロウ)61の接合強度が大きくなっている。このため,セパレータ付燃料電池単セル50に応力が印加されても,接合部61が封止部62に印加される応力を緩和し,封止部(ガラスを含む)62の割れを防止できる。そのため,接合部61が酸化剤ガス又は燃料ガス
に曝されるのを防止でき,ガスリークをより確実に防止できる。
Further, as described above, the bonding strength between the metallic separator 53 and the bonding portion (Ag brazing) 61 is increased by reducing the ratio of pores (bubbles) in the bonding portion 61 (Ag brazing). Yes. For this reason, even if stress is applied to the separator-attached fuel cell single cell 50, the joint 61 can relieve the stress applied to the sealing portion 62 and prevent the sealing portion (including glass) 62 from cracking. Therefore, it can prevent that the junction part 61 is exposed to oxidizing gas or fuel gas, and can prevent a gas leak more reliably.

また,燃料電池単セル44と金属製セパレータ53の熱膨張係数の差や燃料電池スタック内の熱応力等に起因して,図10の位置Pにおいて,金属製セパレータ53と封止部62(ガラス)の界面に引っ張り応力が印加されるが,接合部61の接合強度が向上することで,引っ張り応力が吸収されるため,封止部62(ガラス)が割れにくくなる   Further, due to the difference in the thermal expansion coefficient between the single fuel cell 44 and the metal separator 53, the thermal stress in the fuel cell stack, etc., the metal separator 53 and the sealing portion 62 (glass) at position P in FIG. ) Is applied to the interface, but since the tensile stress is absorbed by improving the bonding strength of the bonding portion 61, the sealing portion 62 (glass) is difficult to break.

(実施形態に係るセパレータ付燃料電池単セル50,50aの製造方法)
セパレータ付燃料電池単セル50aは,次の製法1,2によって製造できる。
A.製法1
図11〜図13は,製法1に係るセパレータ付燃料電池単セル50,50aの製造工程を表す図である。
(Manufacturing method of separator-equipped fuel cell unit cell 50, 50a according to the embodiment)
The separator-equipped fuel cell unit cell 50a can be manufactured by the following manufacturing methods 1 and 2.
A. Manufacturing method 1
11-13 is a figure showing the manufacturing process of the fuel cell single cell 50, 50a with a separator which concerns on the manufacturing method 1. FIG.

(1)燃料電池単セル44,金属製セパレータ53の準備
燃料電池単セル44,金属製セパレータ53を準備する。既述のように,燃料電池単セル44は,固体電解質層56を空気極55,および,燃料極57で挟んで構成される。ここでは,製法2と異なり,当初の金属製セパレータ53は凹みを有しない。
(1) Preparation of single fuel cell 44 and metallic separator 53 The single fuel cell 44 and metallic separator 53 are prepared. As described above, the fuel cell single cell 44 is configured by sandwiching the solid electrolyte layer 56 between the air electrode 55 and the fuel electrode 57. Here, unlike the manufacturing method 2, the original metal separator 53 does not have a dent.

(2)ロウ材の配置(図11参照)
燃料電池単セル44および金属製セパレータ53の一方または双方にAgを含むロウ材を配置する。ここでは,燃料電池単セル44および金属製セパレータ53の双方にロウ材611を配置するが,いずれか一方のみへの配置も可能である。
(2) Arrangement of brazing material (see FIG. 11)
A brazing material containing Ag is disposed on one or both of the single fuel cell 44 and the metal separator 53. Here, the brazing material 611 is disposed on both the fuel cell single cell 44 and the metal separator 53, but it is also possible to dispose only one of them.

ここで,燃料電池単セル44と金属製セパレータ53の下面(第1主面)とで互いに対向する領域の少なくとも一部である,ロウ付け領域(幅D0の領域)にロウ材611を配置する。   Here, the brazing material 611 is disposed in a brazing region (region of width D0), which is at least part of a region where the fuel cell single cell 44 and the lower surface (first main surface) of the metal separator 53 face each other. .

(3)荷重の印加(図11参照)
燃料電池単セル44と,金属製セパレータ53の第1主面とを対向して配置し荷重を印加する。ここでは,ロウ材611の溶融(加熱)に先立って,荷重を印加しているが,加熱後,ロウ材が硬化する前に,荷重を印加しても良い。
(3) Load application (see Fig. 11)
The fuel cell single cell 44 and the first main surface of the metal separator 53 are arranged to face each other and a load is applied. Here, the load is applied prior to the melting (heating) of the brazing material 611, but the load may be applied after the heating and before the brazing material is cured.

図14は,荷重を印加するための接合治具(重石)TpのXY平面内での断面形状を表す断面図である。接合治具Tpは,筒形状を有し,中間領域A3に荷重を印加する。即ち,金属製セパレータ53の上面(第2主面)上から,ロウ付け領域の幅D0よりも狭い幅D3で,荷重を印加する。なお,幅D0,D1〜D3は,金属製セパレータ53の貫通孔58から金属製セパレータ53の外周Cに向かう方向での長さを意味する。即ち,図3,図5に示されるX方向の長さである。
ここでは,接合治具Tpが,筒形状を有することから,金属製セパレータ53の貫通孔58に沿って全周にわたって荷重が印加される。
FIG. 14 is a cross-sectional view showing a cross-sectional shape in the XY plane of a joining jig (heavy stone) Tp for applying a load. The joining jig Tp has a cylindrical shape and applies a load to the intermediate region A3. That is, a load is applied from the upper surface (second main surface) of the metal separator 53 with a width D3 narrower than the width D0 of the brazing region. The widths D0 and D1 to D3 mean lengths in the direction from the through hole 58 of the metal separator 53 toward the outer periphery C of the metal separator 53. That is, it is the length in the X direction shown in FIGS.
Here, since the joining jig Tp has a cylindrical shape, a load is applied over the entire circumference along the through hole 58 of the metallic separator 53.

(4)接合(図12参照)
荷重を印加しながら,ロウ材611を溶融することで,接合部61が形成され,燃料電池単セル44と金属製セパレータ53の第1主面とを接合される。
(4) Joining (see Fig. 12)
The joining portion 61 is formed by melting the brazing material 611 while applying a load, and the fuel cell single cell 44 and the first main surface of the metallic separator 53 are joined.

ここでは,ロウ材が大気下で溶融される(大気ロウ付け)。空気極55の特性の変化を防止するためである。大気ロウ付けでは,ロウ付けの界面に酸化被膜が形成されるため,真空や還元雰囲気下でのロウ付けと比べて,ロウ付け部の接触角が大きくなる。このため,ロウ付け部が気泡を巻き込み易くなり,空孔Ha(気泡)によって,接合部61(ロウ付け)の強度が低下し,接合が剥がれてガスリークする畏れがある。   Here, the brazing material is melted in the atmosphere (atmospheric brazing). This is to prevent a change in the characteristics of the air electrode 55. In air brazing, an oxide film is formed at the brazing interface, so that the contact angle of the brazing portion is larger than in brazing in a vacuum or reducing atmosphere. For this reason, it becomes easy for the brazing part to entrap bubbles, and the strength of the joining part 61 (brazing) decreases due to the holes Ha (bubbles), and the joining may peel off and gas leaks.

ロウ付け領域の幅D0よりも狭い幅D3で荷重を印加することで,接合部61内に巻き込まれた空孔Haが留まることを防止する。即ち,金属製セパレータ53の上面(第2主面)上から,ロウ付け領域の幅D3よりも狭い幅で,荷重を印加することで,金属製セパレータ53が凹む。このため,Agロウが流動し,Agロウ中に巻き込まれた空孔Haを外に追い出し易くなる。即ち,Agロウの流動に合わせて,気泡Haが中央から端部に移動し,外に押し出される(図12参照)。
また,金属製セパレータ53が凹むことで,金属製セパレータ53にスロープができることで,気泡Haを端部から外に追い出し易くなる(図12参照)。
By applying a load with a width D3 that is narrower than the width D0 of the brazing region, it is possible to prevent the holes Ha caught in the joint 61 from staying. That is, the metal separator 53 is recessed by applying a load from the upper surface (second main surface) of the metal separator 53 with a width narrower than the width D3 of the brazing region. For this reason, the Ag wax flows and it becomes easy to expel the air holes Ha caught in the Ag wax to the outside. That is, in accordance with the flow of Ag wax, the bubbles Ha move from the center to the end and are pushed out (see FIG. 12).
Further, since the metal separator 53 is recessed, a slope is formed in the metal separator 53, so that the bubbles Ha can be easily driven out from the end (see FIG. 12).

ロウ付け領域の幅D0は,例えば,1.5〜6mmであり,荷重を印加する領域の幅D3は,ロウ付け領域の幅より,幅D1,D2(0.5mm以上)の分だけ狭い,0.5〜5mmである。   The width D0 of the brazing region is, for example, 1.5 to 6 mm, and the width D3 of the region to which the load is applied is narrower by the widths D1 and D2 (0.5 mm or more) than the width of the brazing region. 0.5-5 mm.

既述のように,荷重を印加する領域が,金属製セパレータ53の貫通孔58に沿って全周にわたって存在する。このため,貫通孔58の全周にわたって,接合部61(Agロウ)中の空孔Haが低減され,接合強度が向上する。   As described above, a region to which a load is applied exists along the entire circumference along the through hole 58 of the metal separator 53. For this reason, the void | hole Ha in the junction part 61 (Ag brazing | wax) is reduced over the perimeter of the through-hole 58, and joining strength improves.

(5)封止(図13参照)
ガラスを含む封止材を用いて,封止部62を形成し,燃料電池単セル44と金属製セパレータ53の第1主面間を封止する。貫通孔58に沿って,その全周にわたって,接合部61よりも貫通孔58側(内周側)に配置され,燃料電池単セル44と金属製セパレータ53の下面(第1主面)間を封止する。
なお,セパレータ付燃料電池単セル50の場合は,この封止工程は省略される。
(5) Sealing (see FIG. 13)
The sealing part 62 is formed using the sealing material containing glass, and the 1st main surface of the fuel cell single cell 44 and the metal separator 53 is sealed. Along the through hole 58, the entire circumference is disposed on the through hole 58 side (inner peripheral side) with respect to the joint portion 61, and the space between the fuel cell single cell 44 and the lower surface (first main surface) of the metal separator 53 is between. Seal.
In the case of the separator-equipped fuel cell unit cell 50, this sealing step is omitted.

以上のようにして,図4,図5,図7,図10等に示すセパレータ付燃料電池単セル50,50aが作成される。これらセパレータ付燃料電池単セル50等は,ロウ付け領域の幅D0よりも狭い幅D3で荷重を印加することで,接合部61が内周側領域A1,外周側領域A2,および中間領域A3に区分される。即ち,基本的には,荷重が印加される領域が,中間領域A3に対応する。   As described above, the separator-attached fuel cell single cells 50 and 50a shown in FIGS. 4, 5, 7 and 10 are produced. In the separator-equipped fuel cell unit cell 50 or the like, by applying a load with a width D3 narrower than the width D0 of the brazing region, the joint portion 61 is formed in the inner peripheral region A1, the outer peripheral region A2, and the intermediate region A3. It is divided. That is, basically, the region where the load is applied corresponds to the intermediate region A3.

但し,この対応関係は,必ずしも,荷重が印加される領域と中間領域A3それぞれの境界が完全に一致することまで意味するものではない。印加する荷重の大きさ,金属製セパレータ53の材質(剛性等)により,金属製セパレータ53のスロープの形状が異なるためである。即ち,対応関係の判り易さのために,荷重が印加される領域と中間領域A3の幅に同一の記号G3等を用いているが,その値自体は必ずしも一致しない。   However, this correspondence does not necessarily mean that the boundary between the region to which the load is applied and the intermediate region A3 completely coincide. This is because the slope shape of the metallic separator 53 differs depending on the magnitude of the applied load and the material (rigidity, etc.) of the metallic separator 53. That is, for the sake of easy understanding of the correspondence, the same symbol G3 or the like is used for the width of the area to which the load is applied and the width of the intermediate area A3.

以上では,大気ロウ付けする場合を例に説明している。大気ロウ付けでは,ロウ付けの界面に酸化被膜が形成されるため,真空や還元雰囲気下でのロウ付けと比べて,ロウ付け部の接触角が大きく,気泡を巻き込み易い。即ち,大気ロウ付けでは,ロウ付け領域の幅D0よりも狭い幅D3で荷重を印加する等により,空孔Haの発生を防止する意義が大きい。
一方,真空や還元雰囲気下等でのロウ付けであっても,空孔Haが発生する可能性は少なからずある。雰囲気ガス(あるいはセパレータ付燃料電池単セル50の構成材料から発生したガス)が接合部61(ロウ付け)内に巻き込まれることがあり得る。即ち,真空や還元雰囲気下でのロウ付け等でも,ロウ付け領域の幅D0よりも狭い幅D3で荷重を印加する等により,接合部61内での空孔Haの発生を防止する意義がある。
In the above description, the case of air brazing is described as an example. In air brazing, an oxide film is formed at the brazing interface. Therefore, compared to brazing in a vacuum or reducing atmosphere, the contact angle of the brazing part is large, and bubbles are easily involved. That is, in atmospheric brazing, it is significant to prevent the generation of holes Ha by applying a load with a width D3 narrower than the width D0 of the brazing region.
On the other hand, even when brazing is performed in a vacuum or a reducing atmosphere, there is a considerable possibility that holes Ha are generated. Atmospheric gas (or gas generated from the constituent material of the separator-equipped fuel cell unit cell 50) may be caught in the joint 61 (brazing). That is, even in brazing in a vacuum or a reducing atmosphere, it is meaningful to prevent the generation of voids Ha in the joint 61 by applying a load with a width D3 narrower than the width D0 of the brazing region. .

B.製法2
図15は,製法2に係るセパレータ付燃料電池単セル50aの製造工程を表す図である。
B. Manufacturing method 2
FIG. 15 is a diagram showing a manufacturing process of the separator-equipped fuel cell unit cell 50 a according to the manufacturing method 2.

(1)燃料電池単セル44,金属製セパレータ53の準備(図15参照)
燃料電池単セル44,金属製セパレータ53を準備する。ここでは,製法1と異なり,凹みRを有する金属製セパレータ53を用いる。
(1) Preparation of single fuel cell 44 and metal separator 53 (see FIG. 15)
A single fuel cell 44 and a metal separator 53 are prepared. Here, unlike the manufacturing method 1, a metal separator 53 having a recess R is used.

(2)ロウ材の配置(図15参照)
(3)荷重の印加(図15参照)
(4)接合
その後,製法1と同様の工程で,ロウ材の配置,荷重の印加,接合を行う。凹みRに対応する,金属製セパレータ53のスロープにより,気泡を外に追い出し易くなり,接合部61内での空孔Haの発生が防止され,接合強度が向上する。
なお,この場合でも,ロウ付け領域の幅D0よりも狭い幅D3で荷重を印加することが好ましい。また,凹みRの形状と荷重を印加する領域が対応することが好ましい。
(2) Arrangement of brazing material (see FIG. 15)
(3) Load application (see Fig. 15)
(4) Joining Thereafter, the brazing material is arranged, a load is applied, and joining is performed in the same process as in manufacturing method 1. The slope of the metal separator 53 corresponding to the dent R facilitates the expulsion of bubbles to the outside, prevents the occurrence of holes Ha in the joint 61, and improves the joint strength.
Even in this case, it is preferable to apply the load with a width D3 narrower than the width D0 of the brazing region. Moreover, it is preferable that the shape of the dent R corresponds to the area to which the load is applied.

以上のようにして,製法1の場合と同様,図4,図5,図7,図10等に示すセパレータ付燃料電池単セル50,50aを作成できる。   As described above, the separator-attached fuel cell single cells 50 and 50a shown in FIGS. 4, 5, 7, 10 and the like can be produced as in the case of the production method 1.

(比較例に係るセパレータ付燃料電池単セル50xの製造方法)
図16は,図11に対応し,比較例に係るセパレータ付燃料電池単セル50xの製造工程を表す図である。ここでは,接合治具(重石)Tpxを用いて,金属製セパレータ53の上面(第2主面)上から,ロウ付け領域の幅よりも広い幅D3xで,荷重を印加する。
(Manufacturing method of separator-equipped fuel cell unit cell 50x according to a comparative example)
FIG. 16 corresponds to FIG. 11 and is a diagram illustrating a manufacturing process of the separator-equipped fuel cell unit cell 50x according to the comparative example. Here, a load is applied from the upper surface (second main surface) of the metal separator 53 with a width D3x wider than the width of the brazing region, using a joining jig (heavy stone) Tpx.

この場合,図6に示すように,セパレータ付燃料電池単セル50xの金属製セパレータ53は凹みを有しない。即ち,接合部61の間隔Gが均一となる。この結果,製造時(ロウ付け時)にAgロウ中に巻き込まれた気泡が,外部に抜け出し難くなり,接合部61(Agロウ)中の気泡が保持されることで,接合部61の接合強度が低下する。   In this case, as shown in FIG. 6, the metal separator 53 of the separator-equipped fuel cell single cell 50x does not have a recess. That is, the gap G between the joint portions 61 is uniform. As a result, the bubbles entrained in the Ag solder at the time of manufacturing (at the time of brazing) are difficult to escape to the outside, and the bubbles in the joint 61 (Ag braze) are held, so that the joint strength of the joint 61 is maintained. Decreases.

図17は,実施例と比較例に係るセパレータ付燃料電池単セル50のピール試験結果を比較して表すグラフである。
図18は,ピール試験を説明するための図である。金属製セパレータ53に切り込みLcを入れ,そこから金属製セパレータ53を引っ張ることで,接合部61において,燃料電池単セル44から引き剥がす。
FIG. 17 is a graph comparing the peel test results of the separator-equipped fuel cell unit cell 50 according to the example and the comparative example.
FIG. 18 is a diagram for explaining the peel test. A cut Lc is made in the metal separator 53, and the metal separator 53 is pulled therefrom to be peeled off from the single fuel cell 44 at the joint 61.

図17に示すように,実施例と比較例はそれぞれ,変位量Ms(=4.5mm)において,応力F1(=49N),F0(=29N)で,接合部61での引きはがしが開始された。このように,実施例の方が比較例よりも接合部61での接合強度が大きいことが判る。   As shown in FIG. 17, in the example and the comparative example, at the displacement amount Ms (= 4.5 mm), the stresses F1 (= 49 N) and F0 (= 29 N) are started, and the peeling at the joint portion 61 is started. It was. Thus, it can be seen that the bonding strength at the bonding portion 61 is higher in the example than in the comparative example.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

10 固体酸化物形燃料電池
11,12 エンドプレート
21,22(22a,22b),23(23a,23b) ボルト
31,32,33 貫通孔
35 ナット
40 燃料電池セル
41,45 インターコネクタ
42a,42b, 集電体
43 枠部
44 燃料電池単セル
46 開口
47 酸化剤ガス流路
48 燃料ガス流路
50 セパレータ付燃料電池単セル
51 空気極フレーム
52 絶縁フレーム
53 金属製セパレータ
54 燃料極フレーム
55 空気極
56 固体電解質層
57 燃料極
58 貫通孔
61 接合部
62 封止部
611 ロウ材
A1 内周側領域
A2 外周側領域
A3 中間領域
Ha 空孔(気泡)
Tp 接合治具
10 Solid oxide fuel cells 11, 12 End plates 21, 22 (22a, 22b), 23 (23a, 23b) Bolts 31, 32, 33 Through hole 35 Nut 40 Fuel cell 41, 45 Interconnector 42a, 42b, Current collector 43 Frame portion 44 Fuel cell single cell 46 Opening 47 Oxidant gas flow path 48 Fuel gas flow path 50 Fuel cell single cell with separator 51 Air electrode frame 52 Insulating frame 53 Metal separator 54 Fuel electrode frame 55 Air electrode 56 Solid electrolyte layer 57 Fuel electrode 58 Through hole 61 Joining portion 62 Sealing portion 611 Brazing material A1 Inner peripheral region A2 Outer peripheral region A3 Intermediate region Ha Hole (bubble)
Tp joining jig

Claims (8)

空気極,燃料極,およびこれらの間に配置される固体電解質層を有する,燃料電池単セルと,
第1主面,第2主面,およびこれら第1主面および第2主面間を貫通する貫通孔を有する,板状の金属製セパレータと,
前記燃料電池単セルと,前記金属製セパレータの第1主面と,を接合し,Agを含むロウ材から成る,接合部と,
を具備するセパレータ付燃料電池単セルであって,
前記接合部が,前記金属製セパレータの前記貫通孔側に配置される内周側領域,前記内周側領域よりも外側に配置される外周側領域,および前記内周側領域と前記外周側領域の間に配置される中間領域に区分され,
前記外周側領域および前記内周側領域での前記燃料電池単セルと前記第1主面間の距離より,前記中間領域での前記燃料電池単セルと前記第1主面間の距離が小さい
ことを特徴とするセパレータ付燃料電池単セル。
A fuel cell single cell having an air electrode, a fuel electrode, and a solid electrolyte layer disposed between them;
A plate-shaped metal separator having a first main surface, a second main surface, and a through-hole penetrating between the first main surface and the second main surface;
A joining portion made of a brazing material containing Ag, joining the single fuel cell and the first main surface of the metal separator;
A separator-equipped fuel cell unit cell comprising:
An inner peripheral region disposed on the through-hole side of the metallic separator, an outer peripheral region disposed outside the inner peripheral region, and the inner peripheral region and the outer peripheral region. Is divided into intermediate areas arranged between
The distance between the single fuel cell and the first main surface in the intermediate region is smaller than the distance between the single fuel cell and the first main surface in the outer peripheral region and the inner peripheral region. A separator-equipped fuel cell single cell.
前記中間領域に対応する箇所において,前記金属製セパレータの前記第2主面側に凹みを有する
ことを特徴とする請求項1記載のセパレータ付燃料電池単セル。
The separator-equipped fuel cell unit cell according to claim 1, wherein a recess corresponding to the second main surface side of the metallic separator is provided at a location corresponding to the intermediate region.
前記中間領域が,前記貫通孔に沿って全周にわたって存在する
ことを特徴とする請求項1または2に記載のセパレータ付燃料電池単セル。
The separator-equipped fuel cell unit cell according to claim 1, wherein the intermediate region exists along the entire circumference along the through hole.
前記接合部よりも前記貫通孔側の,前記燃料電池単セルと前記第1主面との間に,前記貫通孔に沿って全周にわたって配置され,ガラスを含む封止材を有する,封止部をさらに具備する
ことを特徴とする請求項1乃至3のいずれか1項に記載のセパレータ付燃料電池単セル。
A sealing member that is disposed over the entire circumference along the through hole between the single unit cell of the fuel cell and the first main surface on the side of the through hole with respect to the joint, and has a sealing material including glass The fuel cell single cell with a separator according to any one of claims 1 to 3, further comprising a section.
請求項1乃至4のいずれか1項に記載のセパレータ付燃料電池単セル,
を複数個具備することを特徴とする燃料電池スタック。
A fuel cell single cell with a separator according to any one of claims 1 to 4,
A fuel cell stack comprising a plurality of the fuel cell stacks.
セパレータ付燃料電池単セルの製造方法であって,
空気極,燃料極,およびこれらの間に配置される固体電解質層を有する,燃料電池単セルと,第1主面,第2主面,およびこれら第1主面および第2主面間を貫通する貫通孔を有する,板状の金属製セパレータと,を準備する工程と,
前記燃料電池単セルおよび前記金属製セパレータの一方または双方にAgを含むロウ材を配置する工程と,
前記燃料電池単セルと,前記第1主面とを対向して配置する工程と,
荷重を印加しながら,前記ロウ材を溶融することで,前記燃料電池単セルと前記第1主面とを接合する工程と,を具備し,
前記ロウ材を配置する工程において,前記燃料電池単セルと前記第1主面とで互いに対向する領域の少なくとも一部である,ロウ付け領域に前記ロウ材を配置し,
前記接合する工程において,前記金属製セパレータの第2主面上から,前記ロウ付け領域の幅よりも狭い幅で,前記荷重を印加する,
ことを特徴とするセパレータ付燃料電池単セルの製造方法。
A method of manufacturing a separator-equipped fuel cell unit cell,
A fuel cell single cell having an air electrode, a fuel electrode, and a solid electrolyte layer disposed between them, and the first main surface, the second main surface, and between the first main surface and the second main surface Preparing a plate-like metal separator having a through-hole,
Disposing a brazing material containing Ag on one or both of the single fuel cell and the metal separator;
Arranging the single fuel cell and the first main surface to face each other;
Joining the fuel cell single cell and the first main surface by melting the brazing material while applying a load,
In the step of disposing the brazing material, the brazing material is disposed in a brazing region, which is at least a part of a region facing the fuel cell single cell and the first main surface,
In the bonding step, the load is applied with a width narrower than the width of the brazing region from the second main surface of the metallic separator.
A method for producing a separator-equipped fuel cell unit cell.
前記荷重を印加する領域が,前記金属製セパレータの前記貫通孔に沿って全周にわたって存在する,
ことを特徴とする請求項6に記載のセパレータ付燃料電池単セルの製造方法。
The region to which the load is applied exists over the entire circumference along the through hole of the metal separator.
The manufacturing method of the fuel cell single cell with a separator of Claim 6 characterized by the above-mentioned.
前記接合する工程において,前記ロウ材が大気下で溶融される,
ことを特徴とする請求項6または7に記載のセパレータ付燃料電池単セルの製造方法。
In the joining step, the brazing material is melted in the atmosphere.
A method for producing a separator-equipped fuel cell unit cell according to claim 6 or 7.
JP2013224097A 2013-10-29 2013-10-29 Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof Active JP6199697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224097A JP6199697B2 (en) 2013-10-29 2013-10-29 Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224097A JP6199697B2 (en) 2013-10-29 2013-10-29 Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015088265A true JP2015088265A (en) 2015-05-07
JP6199697B2 JP6199697B2 (en) 2017-09-20

Family

ID=53050861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224097A Active JP6199697B2 (en) 2013-10-29 2013-10-29 Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6199697B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225617A1 (en) * 2017-06-06 2018-12-13 日本特殊陶業株式会社 Electrochemical reaction cell stack, interconnector-electrochemical reaction unit cell composite, and method for manufacturing electrochemical reaction cell stack
JP2020113428A (en) * 2019-01-10 2020-07-27 日本碍子株式会社 Fuel battery cell
JP2020123428A (en) * 2019-01-29 2020-08-13 日本碍子株式会社 Fuel battery cell
JP2020202170A (en) * 2019-06-10 2020-12-17 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP2021064502A (en) * 2019-10-11 2021-04-22 日本碍子株式会社 Fuel battery cell
JP2021064504A (en) * 2019-10-11 2021-04-22 日本碍子株式会社 Cell stack device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119161A (en) * 2002-09-25 2004-04-15 Ngk Spark Plug Co Ltd Unit cell for solid electrolyte fuel battery, fuel battery therewith and manufacturing method thereof
JP2005050692A (en) * 2003-07-29 2005-02-24 Nissan Motor Co Ltd Solid electrolyte fuel cell
JP2005174658A (en) * 2003-12-09 2005-06-30 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2005174716A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Solid electrolyte fuel cell
JP2005174714A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Solid electrolyte fuel cell
US20060083978A1 (en) * 2004-09-30 2006-04-20 Elringklinger Ag Sealing assembly for a fuel cell stack and method for manufacturing a fuel cell stack
JP2006202727A (en) * 2004-12-24 2006-08-03 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2013033621A (en) * 2011-08-02 2013-02-14 Ngk Spark Plug Co Ltd Fuel battery unit and fuel battery stack

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119161A (en) * 2002-09-25 2004-04-15 Ngk Spark Plug Co Ltd Unit cell for solid electrolyte fuel battery, fuel battery therewith and manufacturing method thereof
JP2005050692A (en) * 2003-07-29 2005-02-24 Nissan Motor Co Ltd Solid electrolyte fuel cell
JP2005174658A (en) * 2003-12-09 2005-06-30 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2005174716A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Solid electrolyte fuel cell
JP2005174714A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Solid electrolyte fuel cell
US20060083978A1 (en) * 2004-09-30 2006-04-20 Elringklinger Ag Sealing assembly for a fuel cell stack and method for manufacturing a fuel cell stack
JP2006202727A (en) * 2004-12-24 2006-08-03 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2013033621A (en) * 2011-08-02 2013-02-14 Ngk Spark Plug Co Ltd Fuel battery unit and fuel battery stack

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225617A1 (en) * 2017-06-06 2018-12-13 日本特殊陶業株式会社 Electrochemical reaction cell stack, interconnector-electrochemical reaction unit cell composite, and method for manufacturing electrochemical reaction cell stack
JPWO2018225617A1 (en) * 2017-06-06 2019-06-27 日本特殊陶業株式会社 Electrochemical reaction cell stack, interconnector-electrochemical reaction single cell complex and method of manufacturing electrochemical reaction cell stack
CN110710038A (en) * 2017-06-06 2020-01-17 日本特殊陶业株式会社 Electrochemical reaction battery, interconnector-electrochemical reaction single cell composite body, and method for producing electrochemical reaction battery
US11271221B2 (en) * 2017-06-06 2022-03-08 Morimura Sofc Technology Co.. Ltd. Electrochemical reaction cell stack, interconnector-electrochemical reaction unit cell composite, and method for manufacturing electrochemical reaction cell stack
JP2020113428A (en) * 2019-01-10 2020-07-27 日本碍子株式会社 Fuel battery cell
JP2020123428A (en) * 2019-01-29 2020-08-13 日本碍子株式会社 Fuel battery cell
JP2020202170A (en) * 2019-06-10 2020-12-17 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP7042783B2 (en) 2019-06-10 2022-03-28 森村Sofcテクノロジー株式会社 Electrochemical reaction cell stack
JP2021064502A (en) * 2019-10-11 2021-04-22 日本碍子株式会社 Fuel battery cell
JP2021064504A (en) * 2019-10-11 2021-04-22 日本碍子株式会社 Cell stack device

Also Published As

Publication number Publication date
JP6199697B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6199697B2 (en) Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof
JP6013304B2 (en) Fuel cell single cell with separator and fuel cell stack
KR101669376B1 (en) Fuel cell with separator, method for manufacturing same, and fuel cell stack
US8652709B2 (en) Method of sealing a bipolar plate supported solid oxide fuel cell with a sealed anode compartment
JP5727428B2 (en) Fuel cell with separator and fuel cell
JP6185316B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
JP4666279B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell
JP5727431B2 (en) Fuel cell with separator and fuel cell
JP2019200877A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2016062655A (en) Separator-fitted single fuel cell
JP6118230B2 (en) Fuel cell stack
JP6835768B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7070017B2 (en) How to reinforce the cell unit and metal support cell
JP5727432B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
JP2022112590A (en) Electrochemical reaction single cell and electrochemical reaction cell stack
CN110710038B (en) Electrochemical reaction battery, interconnector-electrochemical reaction single cell composite body, and method for producing electrochemical reaction battery
JP2021009835A (en) Solid oxide fuel cell
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP2021044178A (en) Electrochemical reaction cell stack
JP7023898B2 (en) Electrochemical reaction cell stack
JP7104129B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
KR101116241B1 (en) Support and solid oxide fuel cell and manufacturing method thereof
KR20220104863A (en) Separator module for solid oxide fuel cell with concave-convex pattern and stack comprising the same
JP2021182524A (en) Solid oxide fuel battery
JP2014049323A (en) Fuel battery cell with separator, and fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170824

R150 Certificate of patent or registration of utility model

Ref document number: 6199697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250