JP2015085219A - Flocculation method - Google Patents

Flocculation method Download PDF

Info

Publication number
JP2015085219A
JP2015085219A JP2013223568A JP2013223568A JP2015085219A JP 2015085219 A JP2015085219 A JP 2015085219A JP 2013223568 A JP2013223568 A JP 2013223568A JP 2013223568 A JP2013223568 A JP 2013223568A JP 2015085219 A JP2015085219 A JP 2015085219A
Authority
JP
Japan
Prior art keywords
polysaccharide
water
added
blue
cyanobacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013223568A
Other languages
Japanese (ja)
Other versions
JP6132351B2 (en
Inventor
ブーン ケン リン
Boon Ken Lin
ブーン ケン リン
中村 華子
Hanako Nakamura
華子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013223568A priority Critical patent/JP6132351B2/en
Publication of JP2015085219A publication Critical patent/JP2015085219A/en
Application granted granted Critical
Publication of JP6132351B2 publication Critical patent/JP6132351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide means of water treatment or water purification by sedimentation, having high flocculation effect with reduced cost.SOLUTION: The flocculation method includes a procedure of separately adding an iron salt and polysaccharide containing components derived from blue-green algae and water-soluble neutral polysaccharide. In Figure 2, a test section 8 shows the results of adding 50% of the components derived from blue-green algae and 50% of tapioca starch as polysaccharide, and a test section 9 shows the results of adding 50% of the components derived from blue-green algae and 50% of glucomannan as polysaccharide, respectively. It is shown that the addition of components derived from blue-green algae and a water-soluble neutral polysaccharide with a reduced amount of the components derived from blue-green algae added achieves high flocculation effect approximately equal to the case of addition of the components derived from blue-green algae alone as polysaccharide (test section 1). Various kinds of water-soluble neutral polysaccharide can be mass-produced at relatively low cost in general. Consequently, the flocculation cost can be reduced corresponding to the reduction in the amount of components derived from blue-green algae added.

Description

本発明は、排水、泥水、濁水、その他各種懸濁水の凝集処理による水処理・水浄化技術などに関連する。より詳細には、鉄塩と2種類以上の多糖類とを個別に添加する手順を含む凝集処理方法などに関連する。   The present invention relates to water treatment / water purification technology by agglomeration treatment of waste water, muddy water, muddy water, and other various types of suspended water. More specifically, the present invention relates to an aggregation treatment method including a procedure of individually adding an iron salt and two or more kinds of polysaccharides.

浄水場などで飲用に適する水を供給するためには、安全性などの観点から、有機物・無機物・有害物質などを除去し、水を浄化する必要がある。産業排水、生活排水、畜産排水などについても、環境負荷低減などの観点から、汚濁物質・有害物質を極力除去してから放流する必要がある。   In order to supply water suitable for drinking at a water purification plant or the like, it is necessary to purify the water by removing organic substances, inorganic substances and harmful substances from the viewpoint of safety. Industrial wastewater, domestic wastewater, livestock wastewater, etc. must be discharged after removing pollutants and harmful substances as much as possible from the viewpoint of reducing environmental impact.

河川、運河、港湾、内湾、湖沼などの水域で土木工事を行う場合には、泥水、濁水の発生を抑制するための対策を講じる必要がある。また、港湾、湖沼、干潟、運河、堀など閉鎖性・半閉鎖性水域では、アオコや微細藻類(植物プランクトン)などが大量発生する場合があり、それらを有効に除去する必要がある。   When performing civil engineering work in water areas such as rivers, canals, harbors, inner bays, and lakes, it is necessary to take measures to suppress the generation of muddy water and muddy water. In closed and semi-enclosed waters such as harbors, lakes, tidal flats, canals, and moats, there are cases where large amounts of sea lions and microalgae (phytoplankton) are generated, and it is necessary to effectively remove them.

排水、泥水、濁水、その他各種懸濁水を処理する方法として、沈降分離法が知られている。泥、汚濁物などの懸濁物に凝集剤などを添加して凝集・沈降させ、それらの物質を水から分離し、除去する。   A sedimentation separation method is known as a method for treating waste water, muddy water, muddy water, and other various types of suspended water. A flocculant is added to the suspension of mud, pollutants, etc. to agglomerate and settle, and these substances are separated from the water and removed.

凝集剤として、ポリ塩化アルミニウムなどの無機性凝集剤が汎用されている。しかし、これらの凝集剤を用いても充分に大きなフロックを形成することが困難である。また、ポリ塩化アルミニウムは生分解性が悪いため、水域などで大量に用いた場合の自然環境への影響が懸念される。   As the flocculant, inorganic flocculants such as polyaluminum chloride are widely used. However, it is difficult to form a sufficiently large floc even when these flocculants are used. Moreover, since polyaluminum chloride has poor biodegradability, there is a concern about the influence on the natural environment when used in large quantities in water.

また、凝集剤として多糖類を用いる方法も提案されている。例えば、特許文献1には、酸性の第2鉄水溶液中に中性の植物生産水溶性多糖類であるグアーガムを溶存した水処理用凝集剤が、特許文献2には、予め鉄塩を加えてpHを調整した後、多糖類(キサンタンガム又はアルギン酸ソーダ)を添加するフロック生成方法が、それぞれ記載されている。   A method using a polysaccharide as a flocculant has also been proposed. For example, Patent Document 1 discloses a water treatment flocculant in which guar gum, which is a neutral plant-produced water-soluble polysaccharide, is dissolved in an acidic ferric aqueous solution, and Patent Document 2 includes an iron salt added in advance. Each method for generating floc is described in which a polysaccharide (xanthan gum or sodium alginate) is added after adjusting the pH.

スイゼンジノリ(学名「Aphanothece sacrum」)は、日本国九州地方に自生する淡水産ラン藻類の光合成微生物で、細胞外マトリックスに、この種に特有な分子量約1,600万の多糖類を含有する。本発明者らは、先般、例えば、鉄塩と、スイゼンジノリなどのラン藻類由来成分とを個別に添加することで、高い凝集効果が得られることを報告している(特許文献3)。
特開2001-219005号公報 特開平10-216737号公報 特開2012-217972号公報
Suizenjinori (scientific name "Aphanothece sacrum") is a photosynthetic microorganism of freshwater cyanobacterium that grows naturally in the Kyushu region of Japan. The present inventors have recently reported, for example, that a high aggregating effect can be obtained by individually adding an iron salt and a cyanobacterium-derived component such as suizendinori (Patent Document 3).
Japanese Patent Laid-Open No. 2001-219005 Japanese Patent Laid-Open No. 10-216737 JP 2012-217972 A

天然のスイゼンジノリは、主には特定地域の湧水にのみ生息し、希少である。また、野養殖も行われているが、その生産量は年々減少している。その他、室内における人工量産培養技術も試みられているが、開発途上であり、大量生産には至っていない。一方、スイゼンジノリ由来の多糖類は、食材、化粧品材料、レアアース回収材料、保水材などとしての利用が研究されており、今後、需要が高まる可能性がある。   Natural suizenginori inhabits only in the springs of specific areas and is rare. Field farming is also carried out, but the production volume is decreasing year by year. In addition, indoor mass production culture techniques have been tried, but they are still under development and have not yet been mass-produced. On the other hand, polysaccharides derived from suizendinori have been studied for use as food materials, cosmetic materials, rare earth recovery materials, water retention materials, etc., and there is a possibility that demand will increase in the future.

従って、例えば、スイゼンジノリなどのラン藻類由来成分を凝集剤として用いる場合、高い凝集効果を得られる一方、コスト高になるという課題がある。そこで、本発明では、沈降分離による水処理・水浄化において、高い凝集効果を保持しつつ、コストを低減できる手段を提供することなどを目的とする。   Therefore, for example, when using a cyanobacterium-derived component such as a scorpion dinosaur as a flocculant, there is a problem that a high flocculation effect can be obtained while the cost is increased. Therefore, an object of the present invention is to provide means for reducing costs while maintaining a high coagulation effect in water treatment and water purification by sedimentation separation.

本発明者らは、沈降分離による凝集処理によって水処理・水浄化を行う場合などにおいて、鉄塩と多糖類とを個別に添加する際に、多糖類として、ラン藻類由来成分に加えて一又は複数の水溶性中性多糖類を添加することにより、ラン藻類由来成分の添加量を減らしつつ、高い凝集効果を保持できることを新規に見出した。   In the case of performing water treatment / water purification by agglomeration treatment by sedimentation separation, the present inventors, when adding iron salt and polysaccharide separately, as a polysaccharide, in addition to the cyanobacterium-derived component, It has been newly found that by adding a plurality of water-soluble neutral polysaccharides, it is possible to maintain a high aggregation effect while reducing the amount of cyanobacterium-derived components added.

そこで、本発明では、鉄塩と多糖類とを個別に添加する手順を含む凝集処理方法であって、前記多糖類として、ラン藻類由来成分及び水溶性中性多糖類を添加する凝集処理方法を提供する。   Therefore, in the present invention, an aggregating treatment method including a procedure for individually adding an iron salt and a polysaccharide, wherein the aggregating treatment method is performed by adding a cyanobacteria-derived component and a water-soluble neutral polysaccharide as the polysaccharide. provide.

この方法では、ラン藻類由来成分と水溶性中性多糖類を合わせて添加することにより、ラン藻類由来成分の添加量を減らすことができる。水溶性中性多糖類は大量生産が可能なものが多く一般的に比較的低価格であるため、ラン藻類由来成分の添加量を減らした分、凝集処理の際の費用を削減できる。   In this method, the amount of the cyanobacterium-derived component added can be reduced by adding the cyanobacterium-derived component and the water-soluble neutral polysaccharide together. Since many water-soluble neutral polysaccharides can be mass-produced and are generally relatively inexpensive, the cost for the coagulation treatment can be reduced by reducing the amount of the cyanobacterium-derived component added.

一方、この方法では、ラン藻類由来成分の添加量を減らしても、鉄塩とラン藻類由来成分を個別に添加した場合とほぼ同等に大きなフロックを形成させることができ、ラン藻類由来成分とほぼ同等の高い凝集効果を保持できる。また、泥、汚濁物、有害物質など、広範な種類の懸濁物を凝集させることができる。   On the other hand, in this method, even if the addition amount of the cyanobacterium-derived component is reduced, a large floc can be formed almost the same as the case where the iron salt and the cyanobacterium-derived component are individually added. The same high agglomeration effect can be maintained. In addition, a wide variety of suspensions such as mud, pollutants and harmful substances can be aggregated.

従って、本発明は、例えば、浄水場における有機物・無機物・有害物質などの除去、排水処理場における汚濁物質・有害物質の除去、その他、水中などに含有した有害物質などの回収・除去、水域での土木工事における泥水、濁水の発生抑制と汚濁物・泥の除去、水域での土木工事の際に水底などから巻き上げられた有害物質などの回収・除去、水域におけるアオコや微細藻類(植物プランクトン)などの有機性懸濁物の除去などに有効である。   Therefore, the present invention can be applied to, for example, removal of organic substances / inorganic substances / hazardous substances in water treatment plants, removal of pollutants / hazardous substances in wastewater treatment plants, and recovery / removal of harmful substances contained in water, etc. Of mud and muddy water in civil engineering works and removal of pollutants and mud, collection and removal of harmful substances rolled up from the bottom of the water during civil engineering work in the water area, blue seaweed and microalgae (phytoplankton) in the water area It is effective for the removal of organic suspensions.

その他、この方法で用いる物質は、いずれも自然界由来の成分であり、水域などに比較的大量に添加しても環境負荷が少ない。加えて、この凝集処理方法は凝集効果が高いため、凝集・沈降後の上澄みへの両凝集剤の残留はほとんどない。従って、これらの凝集剤を水域などに添加しても環境への影響が小さいという有利性がある。   In addition, all the substances used in this method are components derived from nature, and even if they are added in a relatively large amount to a water area, the environmental load is small. In addition, since this coagulation treatment method has a high coagulation effect, there is almost no residual coagulant in the supernatant after coagulation / sedimentation. Therefore, even if these flocculants are added to water or the like, there is an advantage that the influence on the environment is small.

本発明により、沈降分離による水処理・水浄化において、高い凝集効果を保持しつつ、コストを低減できる。   According to the present invention, costs can be reduced while maintaining a high coagulation effect in water treatment and water purification by sedimentation separation.

本発明は、鉄塩と多糖類とを個別に添加する手順を含む凝集処理方法であって、前記多糖類として、ラン藻類由来成分及び水溶性中性多糖類を添加する凝集処理方法をすべて包含する。   The present invention is an aggregating treatment method including a procedure of individually adding an iron salt and a polysaccharide, and includes all aggregating treatment methods of adding a cyanobacteria-derived component and a water-soluble neutral polysaccharide as the polysaccharide. To do.

例えば、懸濁水を集約した後、鉄塩と多糖類のいずれかを添加し、撹拌・混合する。次に、もう一方を添加し、撹拌・混合した後、懸濁水を静置し、懸濁物を沈降させる。そして、上澄み液の透明度が基準値に達した場合は、懸濁物を沈降分離し、基準値に達しなかった場合は同様の水処理を繰り返す。これにより、各種懸濁物を有効に凝集・沈降・分離・除去できる。   For example, after collecting suspended water, either iron salt or polysaccharide is added and stirred and mixed. Next, after adding the other, stirring and mixing, the suspended water is allowed to stand and the suspension is allowed to settle. Then, when the transparency of the supernatant liquid reaches the reference value, the suspension is settled and separated, and when it does not reach the reference value, the same water treatment is repeated. Thereby, various suspensions can be effectively aggregated, settled, separated and removed.

鉄塩と多糖類は、それぞれ個別に懸濁水に添加すればよく、添加する順序は特に限定されない。鉄塩と多糖類のどちらを先に添加した場合でも、ほぼ同様の凝集効果を得ることができる。   The iron salt and polysaccharide may be added individually to the suspension water, and the order of addition is not particularly limited. When either iron salt or polysaccharide is added first, almost the same agglomeration effect can be obtained.

この方法で用いる鉄塩は、特に限定されないが、例えば、塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄などの第二鉄塩を好適に用いることができる。これらの物質は、例えば、第二鉄塩を少なくとも含有する固形剤、若しくは水溶液などの形態で、懸濁水に添加してもよい。   Although the iron salt used by this method is not specifically limited, For example, ferric salts, such as ferric chloride, ferric sulfate, and polyferric sulfate, can be used conveniently. These substances may be added to the suspension water in the form of, for example, a solid agent containing at least a ferric salt or an aqueous solution.

第二鉄塩の添加量は、例えば、塩化第二鉄の場合、懸濁水1L当たり、0.5〜1,000mgが好適であり、1〜500mgがより好適であり、5〜100mgが最も好適である。   For example, in the case of ferric chloride, the addition amount of the ferric salt is preferably 0.5 to 1,000 mg, more preferably 1 to 500 mg, and most preferably 5 to 100 mg per liter of suspended water.

この方法では、多糖類として、ラン藻類由来成分及び水溶性中性多糖類を添加する。ラン藻類由来成分と水溶性中性多糖類を合わせて添加することにより、鉄塩とラン藻類由来成分を個別に添加した場合とほぼ同等の高い凝集効果を保持しつつ、ラン藻類由来成分の添加量を減らすことができる。そのため、沈降分離による水処理・水浄化において、高い凝集効果を保持しつつ、コストを低減できる。   In this method, cyanobacteria-derived components and water-soluble neutral polysaccharides are added as polysaccharides. Addition of cyanobacteria-derived components while maintaining the same high agglomeration effect as when iron salt and cyanobacteria-derived components are added separately by adding the cyanobacteria-derived component and water-soluble neutral polysaccharide together The amount can be reduced. Therefore, costs can be reduced while maintaining a high coagulation effect in water treatment and water purification by sedimentation separation.

多糖類の添加量は、ラン藻類由来成分及び1又は複数の水溶性中性多糖類を合わせて、例えば、懸濁水1L当たり、0.5〜2,000mgが好適であり、1〜1,000mgがより好適であり、3〜500mgが最も好適である。   The amount of polysaccharide added is preferably 0.5 to 2,000 mg, more preferably 1 to 1,000 mg per liter of suspended water, including the cyanobacterium-derived component and one or more water-soluble neutral polysaccharides. From 3 to 500 mg is most preferred.

凝集効果及び凝集剤のコストを勘案し、ラン藻類由来成分と水溶性中性多糖類の添加量の比率は15:85〜90:10であることが好適であり、18:82〜75:25であることがより好適であり、20:80〜60:40であることが最も好適である。   Considering the coagulation effect and the cost of the coagulant, the ratio of the amount of the cyanobacterium-derived component and the water-soluble neutral polysaccharide is preferably 15:85 to 90:10, and 18:82 to 75:25 It is more preferable that the ratio is 20:80 to 60:40.

本発明で採用するラン藻類由来成分は、その成分中に多糖類を有効成分として含有していればよく、その形態などは特に限定されない。多糖類を有効成分とするラン藻類由来成分として、例えば、ラン藻類の藻体をペースト状に調製したものを用いてもよいし、ラン藻類から抽出された多糖類などの成分を直接又は調製して用いてもよい。   The cyanobacterium-derived component employed in the present invention is not particularly limited as long as it contains a polysaccharide as an active ingredient. As a cyanobacteria-derived component containing a polysaccharide as an active ingredient, for example, a paste prepared from algae bodies of cyanobacteria may be used, or a component such as a polysaccharide extracted from cyanobacteria may be directly or prepared. May be used.

ラン藻類としては、淡水産のものが好適であり、クロオコッカス科(学名「Chroococcaceae」)の微生物、例えば、Chroococcus limneticus(学名)、Chroococcus disperses(学名)、Merismopedia elegans(学名)、スイゼンジノリ(学名「Aphanothece sacrum」)、Aphanothece clathrata(学名)などがより好適であり、スイゼンジノリ(学名「Aphanothece sacrum」)又はその近縁種が最も好適である。例えば、これらのラン藻類を水耕栽培又は野養殖し、ラン藻類由来成分の原材料として用いてもよい。   Cyanobacteria (scientific name "Chroococcaceae") microorganisms, for example, Chroococcus limneticus (scientific name), Chroococcus disperses (scientific name), Merismopedia elegans (scientific name), suizenjinori (scientific name " Aphanothece sacrum "), Aphanothece clathrata (scientific name), and the like are more preferable, and a swallowtail (scientific name" Aphanothece sacrum ") or its related species is most preferable. For example, these cyanobacteria may be hydroponically cultivated or field-cultivated and used as a raw material for cyanobacteria-derived components.

ラン藻類の藻体をペースト状に調製する方法としては、公知のものを採用でき、特に限定されない。例えば、低濃度の水酸化ナトリウム水溶液にラン藻類の藻体を入れ、ミキサーなどでペースト状になるまで混合・粉砕し、そのペースト状物含有溶液を数時間、沸騰処理した後、冷却放置する。以上の手順などにより、ラン藻類由来ペースト状物を調製できる。   As a method of preparing the algal body of cyanobacteria in a paste form, a known method can be adopted and is not particularly limited. For example, algal bodies of cyanobacteria are placed in a low-concentration sodium hydroxide aqueous solution, mixed and pulverized with a mixer or the like until a paste is formed, the paste-like material-containing solution is boiled for several hours, and then allowed to cool. A cyanobacteria-derived paste can be prepared by the above procedure.

ラン藻類から多糖類などの成分を抽出する方法としては、公知のものを採用でき、特に限定されない。例えば、ラン藻類を直接又は乾燥粉砕物を調製後、溶媒に一定時間浸漬し、水溶性・脂溶性色素などを除去する。溶媒には、例えば、エタノールなどの有機溶媒を用いることができる。次に、水酸化ナトリウム、炭酸ナトリウムなどの水溶液に移し、一定時間加熱処理して加水分解する。以上の手順などにより、ラン藻類から多糖類などの有効成分を抽出できる。   As a method for extracting a component such as a polysaccharide from cyanobacteria, a known method can be adopted, and the method is not particularly limited. For example, cyanobacterium is directly or after preparing a dry pulverized product, it is immersed in a solvent for a certain period of time to remove water-soluble and fat-soluble pigments. As the solvent, for example, an organic solvent such as ethanol can be used. Next, it transfers to aqueous solution, such as sodium hydroxide and sodium carbonate, and hydrolyzes by heat-processing for a fixed time. By the above procedures, active ingredients such as polysaccharides can be extracted from cyanobacteria.

また、ラン藻類から抽出した成分を中和し、その溶液をラン藻類由来成分の水溶液として用いてもよい。その他、例えば、脱水処理後、低温乾燥し、粉末化したもの、その粉末を固形化したもの、その粉末を溶液に溶解したものなどをラン藻由来成分として用いてもよい。   Moreover, the component extracted from the cyanobacterium may be neutralized, and the solution may be used as an aqueous solution of the cyanobacterium-derived component. In addition, for example, what was dried at low temperature after dehydration and pulverized, what the powder was solidified, and what the powder was dissolved in a solution may be used as the cyanobacteria-derived component.

ラン藻類由来成分は、その抽出成分中に、好適には重量平均分子量500万〜4,000万の多糖類を、より好適には重量平均分子量800万〜3,000万の多糖類を、さらに好適には重量平均分子量1,000万〜2,000万の多糖類を、有効成分として含有する。なお、重量平均分子量の測定は、例えば、ゲルろ過クロマトグラフィーにより、公知の方法で行うことができる。   The cyanobacteria-derived component is preferably a polysaccharide having a weight average molecular weight of 5 million to 40 million, more preferably a polysaccharide having a weight average molecular weight of 8 million to 30 million, and more preferably a weight. A polysaccharide having an average molecular weight of 10 to 20 million is contained as an active ingredient. The weight average molecular weight can be measured by a known method, for example, by gel filtration chromatography.

ラン藻類由来成分に含有する多糖類は、好適には5〜30種類の、より好適には8〜30種類の、さらに好適には11〜30種類の構成単糖を含む。この多糖類は、少しずつ構造の異なる多様な糖鎖分子を分子構造中に包含し、また、多くの硫酸基、カルボン酸基、アミノ基などを含有し、両性電解質である。そのため、イオン交換能発現に幅を有しており、pHの変化などに対して、物質特性の安定性を備えている。従って、本発明に係る凝集処理方法は、pH調整などの前処理を行う手順を省略又は簡略化でき、より簡易かつ有効に懸濁物を凝集・沈降させることができるという有利性を備える。   The polysaccharide contained in the cyanobacteria-derived component preferably includes 5 to 30 types, more preferably 8 to 30 types, and even more preferably 11 to 30 types of constituent monosaccharides. This polysaccharide includes various sugar chain molecules having slightly different structures in the molecular structure, and also contains many sulfate groups, carboxylic acid groups, amino groups, and the like, and is an ampholyte. Therefore, it has a wide range of expression of ion exchange capacity, and has stability of material properties against changes in pH and the like. Therefore, the coagulation treatment method according to the present invention has the advantage that the procedure for performing pretreatment such as pH adjustment can be omitted or simplified, and the suspension can be coagulated and settled more easily and effectively.

ラン藻類由来成分に含有する多糖類の構成単糖として、例えば、中性糖であるグルコース、ガラクトース、マンノース、ラムノース、フコース、キシロース、アラビノースなど、酸性糖であるウロン酸類(グルクロン酸、ガラクツロン酸)、硫酸化ムラミン酸など、並びにアミノ糖であるガラクトサミンなどが挙げられる。   Examples of the constituent monosaccharides of polysaccharides contained in cyanobacteria-derived components include neutral sugars such as glucose, galactose, mannose, rhamnose, fucose, xylose, and arabinose, which are acidic sugars such as uronic acids (glucuronic acid and galacturonic acid) , Sulfated muramic acid and the like, as well as galactosamine which is an amino sugar.

ラン藻類由来成分に含有する多糖類は、構成単糖として少なくともウロン酸類を含有することが好ましい。ラン藻類由来成分に含有する多糖類における全構成単糖中のウロン酸類の割合は特に限定されないが、例えば、2〜20%が好適であり、4〜15%がより好適であり、5〜12%が最も好適である。   The polysaccharide contained in the cyanobacteria-derived component preferably contains at least uronic acids as constituent monosaccharides. The ratio of uronic acids in all the constituent monosaccharides in the polysaccharide contained in the cyanobacteria-derived component is not particularly limited, but for example, 2 to 20% is preferable, 4 to 15% is more preferable, and 5 to 12 % Is most preferred.

なお、構成単糖の定性・定量分析は、例えば、高速液体クロマトグラフィー、質量分析計による分析などにより、公知の方法で行うことができる。   In addition, the qualitative / quantitative analysis of the constituent monosaccharide can be performed by a known method, for example, by high performance liquid chromatography, analysis by a mass spectrometer, or the like.

ラン藻類由来成分に含有する多糖類は、硫酸基を含有する構成単糖を、好適には1〜20%、より好適には3〜15%、さらに好適には5〜10%有する。   The polysaccharide contained in the cyanobacteria-derived component preferably has 1 to 20%, more preferably 3 to 15%, and even more preferably 5 to 10% of a constituent monosaccharide containing a sulfate group.

なお、硫酸基の定量分析は、例えば、質量分析計による分析などにより、公知の方法で行うことができる。また、多糖類中における硫黄含量は、例えば、ICP発光分光法などによる公知の方法で行うことができる。   In addition, the quantitative analysis of a sulfate group can be performed by a well-known method, for example by analysis by a mass spectrometer. The sulfur content in the polysaccharide can be determined by a known method such as ICP emission spectroscopy.

本発明で採用する水溶性中性多糖類は、水溶性の中性多糖類、即ち、水溶性であり、かつ構成単糖中に、ウロン酸、エステル硫酸などをほとんど含有しないものを広く包含する。   The water-soluble neutral polysaccharide employed in the present invention broadly includes water-soluble neutral polysaccharides, that is, water-soluble neutral polysaccharides that contain almost no uronic acid, ester sulfate, etc. in the constituent monosaccharides. .

また、本発明で用いる水溶性中性多糖類は、水溶性を有し、若しくは獲得し、かつ構成単糖中に、ウロン酸、エステル硫酸などをほとんど含有しないものであれば、例えば、α化、アセチル化など、公知の修飾・加工などを施したものも広く包含する。   In addition, the water-soluble neutral polysaccharide used in the present invention is, for example, α-formated as long as it has water-solubility or is acquired, and the constituent monosaccharide does not substantially contain uronic acid or ester sulfate. , Acetylation and the like are also widely included.

水溶性中性多糖類として、例えば、デンプン、グルコマンナン、ガラクトマンナン、グアーガム、デキストラン、プルランなど、アルドヘキソースを構成単糖とする多糖類、特に、グルコース、マンノース、ガラクトースのいずれか又は複数を構成単糖とする多糖類を用いることが好適であり、水溶性中性多糖類がタピオカデンプン及び/又はグルコマンナンであることが最も好適である。   As water-soluble neutral polysaccharides, for example, starch, glucomannan, galactomannan, guar gum, dextran, pullulan, etc., polysaccharides having aldohexose as a constituent monosaccharide, especially glucose, mannose, or galactose It is preferable to use a polysaccharide as a monosaccharide, and it is most preferable that the water-soluble neutral polysaccharide is tapioca starch and / or glucomannan.

この水溶性中性多糖類の分子量は、1万〜400万程度が好適であり、2万〜300万がより好適であり、2万5,000〜250万が最も好適である。   The molecular weight of the water-soluble neutral polysaccharide is preferably about 10,000 to 4 million, more preferably 20,000 to 3 million, and most preferably 25,000 to 2.5 million.

なお、本発明では、1種類の水溶性中性多糖類を用いる場合と2種以上の水溶性中性多糖類を用いる場合の両方を広く包含する。   In the present invention, both the case where one type of water-soluble neutral polysaccharide is used and the case where two or more types of water-soluble neutral polysaccharide are used are widely included.

上述の通り、本発明は、広範な懸濁水の凝集処理に適用できる。例えば、浄水場における有機物・無機物などの除去、排水処理場における汚濁物質などの除去、水域での土木工事における泥水・濁水の発生抑制と汚濁物・泥などの除去、水域におけるアオコや微細藻類(植物プランクトン)などの有機性懸濁物の除去などに有効である。   As described above, the present invention can be applied to a wide range of suspended water coagulation treatments. For example, removal of organic and inorganic substances in water treatment plants, removal of pollutants in wastewater treatment plants, suppression of mud and muddy water generation in civil engineering works and removal of pollutants and mud, aquatic and microalgae in water areas ( It is effective for removing organic suspensions such as phytoplankton).

加えて、本発明は、例えば、浄水場・排水処理場などにおける有害物質の除去、その他、水中に含有した有害物質などの回収・除去、水域での土木工事の際に水底などから巻き上げられた有害物質などの回収・除去などにも有効であるという有利性を持つ。   In addition, the present invention, for example, was removed from the bottom of the water at the time of removal of harmful substances in water purification plants, wastewater treatment plants, etc., recovery / removal of harmful substances contained in water, and civil engineering work in water areas. It has the advantage of being effective for collecting and removing harmful substances.

除去可能な有害物質として、例えば、鉛、銅、クロム、カドミウム、水銀、亜鉛、ヒ素、マンガン、コバルト、ニッケル、モリブデン、タングステン、スズ、ビスマスなどの重金属、ウラン、プルトニウム、セシウム、ストロンチウム、亜鉛、マンガンなどの放射性同位元素などが挙げられる。   Hazardous substances that can be removed include, for example, heavy metals such as lead, copper, chromium, cadmium, mercury, zinc, arsenic, manganese, cobalt, nickel, molybdenum, tungsten, tin, bismuth, uranium, plutonium, cesium, strontium, zinc, Examples include radioactive isotopes such as manganese.

その他、本発明は、淡水、汽水、海水のいずれの懸濁水に対しても有効である。   In addition, the present invention is effective for any suspension water of fresh water, brackish water, and seawater.

実施例1では、多糖類を用いた凝集処理において、ラン藻類由来成分以外の多糖類がその代替えとなりうるか、検討した。   In Example 1, it was examined whether polysaccharides other than cyanobacteria-derived components could be substituted for the aggregation treatment using polysaccharides.

供試する多糖類として、多糖類含有ラン藻類由来成分、ダイユータンガム(商品名「KELCO-CRETE DG/DG-F」、以下同じ)、キサンタンガム(商品名「KELTROL F」、以下同じ)、α化アセチル化タピオカデンプン(商品名「アルファタピオカスターチAC」、以下同じ)、グルコマンナン(商品名「プロポールA」、以下同じ)を準備した。   The polysaccharides to be tested include polysaccharide-containing cyanobacteria-derived components, Dieutan gum (trade name “KELCO-CRETE DG / DG-F”, the same applies hereinafter), xanthan gum (trade name “KELTROL F”, the same applies hereinafter), α Acetylated acetylated tapioca starch (trade name “Alpha Tapioca Starch AC”, hereinafter the same) and glucomannan (trade name “Propol A”, hereinafter the same) were prepared.

多糖類含有ラン藻類由来成分は、以下の手順で調製された。野養殖したスイゼンジノリをエタノールに一定時間浸し、水溶性色素、脂溶性色素などを除去した。次に、水酸化ナトリウム水溶液に移し、加熱処理を行い、ラン藻類から重量平均分子量200万〜2,000万の多糖類を主とする成分を抽出した。この抽出液に塩酸を滴下し、pH7付近に中和した。その一部を分取し、高速液体クロマトグラフィーを用いて定量した(以下の実施例において同じ)。   The polysaccharide-containing cyanobacterium-derived component was prepared by the following procedure. A field-cultivated suizendinori was soaked in ethanol for a certain period of time to remove water-soluble pigments and fat-soluble pigments. Next, it moved to the sodium hydroxide aqueous solution, heat-processed, and extracted the component which mainly has the polysaccharide of the weight average molecular weight 2 million-20 million from cyanobacteria. Hydrochloric acid was added dropwise to this extract to neutralize it to around pH 7. A part of the sample was collected and quantified using high performance liquid chromatography (the same applies to the following examples).

ダイユータンガムは、2個のグルコース、1個のグルクロン酸、及び、3個のラムノースを構成単位とする天然の水溶性酸性多糖類で、分子量10万〜1013である。キサンタンガムは、2個のグルコース、及び、1個のグルクロン酸を構成単位とする水溶性酸性多糖類で、分子量100万である。 Dieutan gum is a natural water-soluble acidic polysaccharide composed of 2 glucose, 1 glucuronic acid, and 3 rhamnose, and has a molecular weight of 100,000 to 10 13 . Xanthan gum is a water-soluble acidic polysaccharide having two glucose and one glucuronic acid as structural units, and has a molecular weight of 1 million.

供試したα化アセチル化タピオカデンプンは、キャッサバ由来デンプンを加工したもので、グルコースを構成単位とする水溶性中性多糖類であり、分子量4〜34万である。グルコマンナンは、D-グルコースとD-マンノースが約1:1.6のモル比でβ-1,4結合によって重合したコンニャクイモ由来の水溶性中性多糖類で、分子量200万以上である。   The tested α-acetylated tapioca starch is a processed cassava-derived starch, is a water-soluble neutral polysaccharide having glucose as a structural unit, and has a molecular weight of 40,000 to 340,000. Glucomannan is a water-soluble neutral polysaccharide derived from cornflower that is polymerized by β-1,4 bonds in a molar ratio of D-glucose and D-mannose of about 1: 1.6, and has a molecular weight of 2 million or more.

水道水にカオリン(和光純薬株式会社製のはくとう土)を添加し、濁度が約200NTUの濁水を調整した。   To the tap water was added kaolin (post soil made by Wako Pure Chemical Industries, Ltd.) to prepare muddy water with a turbidity of about 200 NTU.

試験区1〜5のそれぞれに濁水200mLを入れ、ポリ硫酸第二鉄水溶液800μL添加し(最終濃度7.1mg/L)、6分間撹拌した後、各試験区に表1に示す多糖類を最終濃度6mg/Lになるように添加し、4分間撹拌し、攪拌を停止して5分間静置した。

Figure 2015085219
Add 200 mL of turbid water to each of test groups 1 to 5, add 800 μL of polyferric sulfate aqueous solution (final concentration 7.1 mg / L), stir for 6 minutes, and then add the polysaccharides shown in Table 1 to the final concentration in each test group The mixture was added to 6 mg / L, stirred for 4 minutes, stopped stirring, and allowed to stand for 5 minutes.
Figure 2015085219

撹拌・静止後沈降した凝集粒子を10mL採取し、20mLガラス瓶に収容して、2分間150rpm左右振とう処理した後、水深30cmのシリンダーに滴下して沈降速度を計測した。   10 mL of the agglomerated particles that settled after stirring and resting were collected, placed in a 20 mL glass bottle, shake-treated left and right at 150 rpm for 2 minutes, and then dropped into a cylinder with a depth of 30 cm to measure the sedimentation rate.

結果を図1に示す。図1は凝集剤として各多糖類を用いた場合における粒子沈降速度を示すグラフである。同グラフ中の横軸は各試験区の結果であることを、縦軸は粒子沈降速度(単位:mm/分)を表す。   The results are shown in Figure 1. FIG. 1 is a graph showing the particle sedimentation rate when each polysaccharide is used as a flocculant. In the graph, the horizontal axis represents the results of each test group, and the vertical axis represents the particle sedimentation rate (unit: mm / min).

図1に示す通り、ラン藻類由来成分以外の多糖類を添加した場合(試験区2〜5)、いずれの多糖類でも、粒子沈降速度が400〜800mm/分の範囲であり、フロック粒子が形成され、凝集・沈降が見られたが、多糖類としてラン藻類由来成分を添加した場合(試験区1)の粒子沈降速度(1,000mm/分以上)よりは低く、ラン藻類由来成分と同等の凝集効果は得られなかった。   As shown in FIG. 1, when polysaccharides other than cyanobacteria-derived components are added (test groups 2 to 5), the particle sedimentation rate is in the range of 400 to 800 mm / min for any polysaccharide, and floc particles are formed. Aggregation / sedimentation was observed, but when the cyanobacteria-derived component was added as a polysaccharide (test area 1), the particle sedimentation rate (1,000 mm / min or more) was lower and the aggregation was equivalent to that of the cyanobacteria-derived component. The effect was not obtained.

実施例2では、多糖類を用いた凝集処理において、ラン藻類由来成分とそれ以外の多糖類を添加し、その凝集効果を検討した。   In Example 2, in the aggregating treatment using the polysaccharide, a cyanobacteria-derived component and other polysaccharides were added, and the aggregating effect was examined.

実施例1と同様、試験区6〜9のそれぞれに濁水200mLを入れ、ポリ硫酸第二鉄水溶液800μL添加し(最終濃度7.1mg/L)、6分間撹拌した後、各試験区に表2に示す2種の多糖類を合わせて最終濃度6mg/Lになるように添加し、4分間撹拌し、攪拌を停止して5分間静置した。そして、撹拌・静止後沈降した凝集粒子を10mL採取し、20mLガラス瓶に収容して、2分間150rpm左右振とう処理した後、水深30cmのシリンダーに滴下して沈降速度を計測した。

Figure 2015085219
As in Example 1, 200 mL of turbid water was added to each of test sections 6 to 9, 800 μL of aqueous ferric sulfate solution (final concentration 7.1 mg / L) was added, and the mixture was stirred for 6 minutes. The two polysaccharides shown were combined and added to a final concentration of 6 mg / L, stirred for 4 minutes, stopped and left for 5 minutes. Then, 10 mL of the agglomerated particles that settled after stirring and resting were collected, placed in a 20 mL glass bottle, shaken for 2 minutes at 150 rpm, and dropped into a cylinder with a depth of 30 cm to measure the sedimentation rate.
Figure 2015085219

結果を図2に示す。図2は凝集剤として2種類の多糖類を添加した場合における粒子沈降速度を示すグラフである。同グラフ中の横軸は各試験区の結果であることを、縦軸は粒子沈降速度(単位:mm/分)を表す。なお、同グラフ中、試験区1は実施例1での結果を表す。   The result is shown in figure 2. FIG. 2 is a graph showing the particle sedimentation rate when two kinds of polysaccharides are added as a flocculant. In the graph, the horizontal axis represents the results of each test group, and the vertical axis represents the particle sedimentation rate (unit: mm / min). In the graph, test group 1 represents the results in Example 1.

図2に示す通り、多糖類としてラン藻類由来成分とダイユータンガム又はキサンタンガムとを添加した場合の粒子沈降速度(試験区6、7)は、ラン藻類由来成分を単独で添加した場合(試験区1)よりも低かった。また、多糖類としてダイユータンガム又はキサンタンガムを単独で添加した場合(図1中、試験区2、試験区3)と比較しても、粒子沈降速度は少しの上昇にとどまり、若しくはほぼ同等の範囲内であった。   As shown in FIG. 2, the particle sedimentation rate (test sections 6 and 7) when adding a cyanobacteria-derived component and diutan gum or xanthan gum as a polysaccharide is the same as when the cyanobacteria-derived component was added alone (test group). It was lower than 1). In addition, the particle sedimentation rate is only slightly increased compared to the case where diuthanum gum or xanthan gum is added alone as a polysaccharide (in Fig. 1, Test Zone 2 and Test Zone 3), or almost the same range. It was in.

それに対し、多糖類としてラン藻類由来成分とα化アセチル化タピオカデンプン又はグルコマンナンとを添加した場合の粒子沈降速度(試験区8、9)は、ラン藻類由来成分を単独で添加した場合(試験区1)とほぼ同等であった。また、多糖類としてα化アセチル化タピオカデンプン又はグルコマンナンを単独で添加した場合(図1中、試験区4、試験区5)と比較して、粒子沈降速度は顕著に上昇した。   On the other hand, the particle sedimentation rate when the cyanobacterium-derived component and α-acetylated tapioca starch or glucomannan are added as polysaccharides (test sections 8, 9) is the case where the cyanobacterium-derived component is added alone (test It was almost the same as ward 1). In addition, the particle sedimentation rate was remarkably increased as compared with the case where α-acetylated tapioca starch or glucomannan was added alone as the polysaccharide (in FIG. 1, test group 4 and test group 5).

上述の通り、ダイユータンガム及びキサンタンガムは構成単糖にグルクロン酸を含む水溶性酸性多糖類であり、α化アセチル化タピオカデンプン及びグルコマンナンはアルドヘキソースを構成単糖とする水溶性中性多糖類である。従って、本実験結果は、鉄塩と多糖類とを個別に添加する凝集処理において、多糖類としてラン藻類由来成分及び水溶性中性多糖類を添加することにより、ラン藻類由来成分を単独で添加した場合とほぼ同等の凝集効果を保持しつつ、ラン藻類由来成分の添加量を低減できることを示す。   As described above, diyutan gum and xanthan gum are water-soluble acidic polysaccharides that contain glucuronic acid as a constituent monosaccharide, and pregelatinized tapioca starch and glucomannan are water-soluble neutral polysaccharides that contain aldohexose as a constituent monosaccharide. It is. Therefore, this experimental result shows that in the agglomeration treatment in which the iron salt and the polysaccharide are added separately, the cyanobacteria-derived component is added alone by adding the cyanobacteria-derived component and the water-soluble neutral polysaccharide as the polysaccharide. It shows that the addition amount of the cyanobacteria-derived component can be reduced while maintaining the coagulation effect almost the same as that of the case.

なお、ラン藻類由来成分に含有する多糖類の分子量は約1,600万であるのに対し、合わせて添加する水溶性中性多糖類の分子量は、ラン藻類由来成分に含有する多糖類の分子量よりも小さい方が好ましいと推測する。本実験で用いた多糖類の分子量を勘案すると、水溶性中性多糖類の分子量は、1万〜400万程度が好適であると推定する。   The molecular weight of polysaccharides contained in cyanobacteria-derived components is about 16 million, whereas the molecular weight of water-soluble neutral polysaccharides added together is higher than the molecular weight of polysaccharides contained in cyanobacteria-derived components. We presume that a smaller one is preferable. Considering the molecular weight of the polysaccharide used in this experiment, it is estimated that the molecular weight of the water-soluble neutral polysaccharide is preferably about 10,000 to 4,000,000.

実施例3では、ラン藻類由来成分及び水溶性中性多糖類を用いた凝集処理において、ラン藻類由来成分の添加の割合を検討した。   In Example 3, the ratio of addition of the cyanobacterium-derived component was examined in the aggregation treatment using the cyanobacterium-derived component and the water-soluble neutral polysaccharide.

実施例1などと同様、試験区10〜14のそれぞれに濁水200mLを入れ、ポリ硫酸第二鉄水溶液800μL添加し(最終濃度7.1mg/L)、6分間撹拌した後、各試験区に表3に示す2種以上の多糖類を合わせて最終濃度6mg/Lになるように添加し、4分間撹拌し、攪拌を停止して5分間静置した。そして、撹拌・静止後沈降した凝集粒子を10mL採取し、20mLガラス瓶に収容して、2分間150rpm左右振とう処理した後、水深30cmのシリンダーに滴下して沈降速度を計測した。

Figure 2015085219
As in Example 1 and the like, 200 mL of turbid water was added to each of test sections 10 to 14, 800 μL of polyferric sulfate aqueous solution was added (final concentration 7.1 mg / L), and the mixture was stirred for 6 minutes. Two or more kinds of polysaccharides shown in (2) above were combined and added to a final concentration of 6 mg / L, stirred for 4 minutes, stopped stirring, and allowed to stand for 5 minutes. Then, 10 mL of the agglomerated particles that settled after stirring and resting were collected, placed in a 20 mL glass bottle, shaken for 2 minutes at 150 rpm, and dropped into a cylinder with a depth of 30 cm to measure the sedimentation rate.
Figure 2015085219

結果を図3に示す。図3は凝集剤として2種類以上の多糖類を添加する場合において、ラン藻類由来成分と他の多糖類との添加の割合を変えた場合における粒子沈降速度を示すグラフである。同グラフ中の横軸は各試験区の結果であることを、縦軸は粒子沈降速度(単位:mm/分)を表す。なお、同グラフ中、試験区1は実施例1での結果を表す。   The results are shown in Figure 3. FIG. 3 is a graph showing the particle sedimentation rate when adding two or more kinds of polysaccharides as a flocculant and changing the ratio of addition of cyanobacteria-derived components and other polysaccharides. In the graph, the horizontal axis represents the results of each test group, and the vertical axis represents the particle sedimentation rate (unit: mm / min). In the graph, test group 1 represents the results in Example 1.

図3に示す通り、ラン藻類由来成分及び水溶性中性多糖類を用いた凝集処理において、添加する多糖類のうちのラン藻類由来成分の添加の割合を25%にした場合の粒子沈降速度(試験区10〜12)は、ラン藻類由来成分を単独で添加した場合(試験区1)とほぼ同等であった。一方、添加する多糖類のうちのラン藻類由来成分の添加の割合を10%にした場合の粒子沈降速度(試験区13、試験区14)は、ラン藻類由来成分を単独で添加した場合(試験区1)よりも低い値であった。   As shown in FIG. 3, in the agglomeration treatment using the cyanobacterium-derived component and the water-soluble neutral polysaccharide, the particle sedimentation rate when the cyanobacterium-derived component addition ratio of the added polysaccharide is 25% ( The test groups 10 to 12) were almost equivalent to the case where the cyanobacteria-derived component was added alone (test group 1). On the other hand, the particle sedimentation rate (test zone 13, test zone 14) when the rate of addition of cyanobacteria-derived components in the polysaccharide to be added is 10% is when the cyanobacteria-derived component is added alone (test The value was lower than in District 1).

本実験結果は、鉄塩と多糖類とを個別に添加する凝集処理において、多糖類としてラン藻類由来成分及び水溶性中性多糖類を添加する場合、添加する多糖類のうちのラン藻類由来成分の添加の割合を少なくとも15%以上にすることにより、ラン藻類由来成分を単独で添加する場合とほぼ同等の凝集効果が得られることを示す。   The result of this experiment is that, in the agglomeration treatment in which the iron salt and the polysaccharide are added individually, when the cyanobacterium-derived component and the water-soluble neutral polysaccharide are added as the polysaccharide, the cyanobacterium-derived component of the polysaccharide to be added It is shown that when the ratio of the addition of is at least 15% or more, an agglomeration effect substantially equivalent to the case of adding the cyanobacteria-derived component alone is obtained.

実施例1において、凝集剤として各多糖類を用いた場合における粒子沈降速度を示すグラフ。In Example 1, the graph which shows the particle sedimentation rate at the time of using each polysaccharide as a flocculant. 実施例2において、凝集剤として2種類の多糖類を添加した場合における粒子沈降速度を示すグラフ。In Example 2, the graph which shows the particle sedimentation rate at the time of adding two types of polysaccharides as a flocculant. 実施例3において、ラン藻類由来成分と他の多糖類との添加の割合を変えた場合における粒子沈降速度を示すグラフ。In Example 3, the graph which shows the particle sedimentation speed | velocity | rate at the time of changing the ratio of the addition of a cyanobacterium origin component and another polysaccharide.

Claims (4)

鉄塩と多糖類とを個別に添加する手順を含む凝集処理方法であって、
前記多糖類として、ラン藻類由来成分及び水溶性中性多糖類を添加する凝集処理方法。
A coagulation treatment method including a procedure of individually adding an iron salt and a polysaccharide,
A coagulation treatment method in which a cyanobacteria-derived component and a water-soluble neutral polysaccharide are added as the polysaccharide.
前記ラン藻類由来成分と前記水溶性中性多糖類の添加量の比率が15:85〜90:10である請求項1記載の凝集処理方法。   The aggregation treatment method according to claim 1, wherein the ratio of the amount of the cyanobacterium-derived component and the water-soluble neutral polysaccharide is 15:85 to 90:10. 前記水溶性中性多糖類として、アルドヘキソースを構成単糖とする多糖類を用いる請求項1又は請求項2記載の凝集処理方法。   The aggregation treatment method according to claim 1 or 2, wherein a polysaccharide having aldohexose as a constituent monosaccharide is used as the water-soluble neutral polysaccharide. 前記水溶性中性多糖類がタピオカデンプン及び/又はグルコマンナンである請求項1〜3のいずれか一項記載の凝集処理方法。
The aggregation treatment method according to any one of claims 1 to 3, wherein the water-soluble neutral polysaccharide is tapioca starch and / or glucomannan.
JP2013223568A 2013-10-28 2013-10-28 Aggregation method Expired - Fee Related JP6132351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013223568A JP6132351B2 (en) 2013-10-28 2013-10-28 Aggregation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223568A JP6132351B2 (en) 2013-10-28 2013-10-28 Aggregation method

Publications (2)

Publication Number Publication Date
JP2015085219A true JP2015085219A (en) 2015-05-07
JP6132351B2 JP6132351B2 (en) 2017-05-24

Family

ID=53048628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223568A Expired - Fee Related JP6132351B2 (en) 2013-10-28 2013-10-28 Aggregation method

Country Status (1)

Country Link
JP (1) JP6132351B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067284A1 (en) * 2018-09-27 2020-04-02 デクセリアルズ株式会社 Anionic flocculant, anionic flocculant production method, and treatment method
JP2020054992A (en) * 2018-09-27 2020-04-09 デクセリアルズ株式会社 Anionic flocculant, anionic flocculant production method, and treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219005A (en) * 2000-02-09 2001-08-14 Ebara Corp Flocculant and flocculating method in water treatment
JP2003164708A (en) * 2001-11-29 2003-06-10 Ben Gurion Univ Of The Negev Research & Development Authority Method for treating liquid containing contaminant
WO2009113435A1 (en) * 2008-03-14 2009-09-17 Kaneko Tatsuo Sugar derivative preparation
JP2012217972A (en) * 2011-04-13 2012-11-12 Kajima Corp Flocculation treatment method
JP2013217842A (en) * 2012-04-11 2013-10-24 Kajima Corp Submerged radioactive material processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219005A (en) * 2000-02-09 2001-08-14 Ebara Corp Flocculant and flocculating method in water treatment
JP2003164708A (en) * 2001-11-29 2003-06-10 Ben Gurion Univ Of The Negev Research & Development Authority Method for treating liquid containing contaminant
WO2009113435A1 (en) * 2008-03-14 2009-09-17 Kaneko Tatsuo Sugar derivative preparation
JP2012217972A (en) * 2011-04-13 2012-11-12 Kajima Corp Flocculation treatment method
JP2013217842A (en) * 2012-04-11 2013-10-24 Kajima Corp Submerged radioactive material processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067284A1 (en) * 2018-09-27 2020-04-02 デクセリアルズ株式会社 Anionic flocculant, anionic flocculant production method, and treatment method
JP2020054992A (en) * 2018-09-27 2020-04-09 デクセリアルズ株式会社 Anionic flocculant, anionic flocculant production method, and treatment method
JP7286502B2 (en) 2018-09-27 2023-06-05 デクセリアルズ株式会社 Anionic flocculant, method for producing anionic flocculant, and treatment method
US12122694B2 (en) 2018-09-27 2024-10-22 Suido Kiko Kaisha, Ltd. Anionic flocculant, anionic flocculant production method, and treatment method

Also Published As

Publication number Publication date
JP6132351B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
Kumar et al. Applications of natural coagulants to treat wastewater− a review
Ali et al. Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe (II) and Mn (II) from aqueous phases
Kurniawan et al. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery
Muyibi et al. Treatment of surface water with Moringa Oleifera seed extract and alum–a comparative study using a pilot scale water treatment plant
Shi et al. Removal of Microcystis aeruginosa using cationic starch modified soils
JP5754769B2 (en) Aggregation method
Singh et al. Removal of fluoride from aqueous solution: status and techniques
Asharuddin et al. Flocculation and antibacterial performance of dual coagulant system of modified cassava peel starch and alum
Chen et al. Harmful algal blooms mitigation using clay/soil/sand modified with xanthan and calcium hydroxide
Zhao et al. Effect of Enteromorpha polysaccharides on coagulation performance and kinetics for dye removal
Barrado-Moreno et al. Removal of Oocystis algae from freshwater by means of tannin-based coagulant
Belbahloul et al. Bioflocculants extraction from Cactaceae and their application in treatment of water and wastewater
CN103508536A (en) Sewage treatment flocculating agent in livestock farm
CN104478047A (en) Diatomite processing agent for blue-green algae and preparation method thereof
Diver et al. The potential and constraints of replacing conventional chemical coagulants with natural plant extracts in water and wastewater treatment
Oladoja et al. Modification of local soil/sand with Moringa oleifera extracts for effective removal of cyanobacterial blooms
Patchaiyappan et al. Application of plant-based natural coagulants in water treatment
Winters et al. The involvement of lectins and lectin-like humic substances in biofilm formation on RO membranes-is TEP important?
JP6132351B2 (en) Aggregation method
Shen et al. Composition of extracellular and intracellular polymeric substances produced by Scenedesmus and Microcystis
Shah et al. The effect of dose, settling time, shelf life, storage temperature and extractant on Moringa oleifera Lam. protein coagulation efficiency
Vijayaraghavan et al. Efficacy of alginate extracted from marine brown algae (Sargassum sp.) as a coagulant for removal of direct blue2 dye from aqueous solution
Gandhi Biodepollution of paint manufacturing industry waste water containing chromium by using coagulation process
Igwegbe et al. Bio-coagulation-flocculation of land-based saline aquaculture effluent using Parkia biglobosa seeds: turbidity, salinity, and colour reduction
JP2015226898A (en) Flocculation method for inorganic matter and method for producing purified water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170413

R150 Certificate of patent or registration of utility model

Ref document number: 6132351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees