JP2012217972A - Flocculation treatment method - Google Patents

Flocculation treatment method Download PDF

Info

Publication number
JP2012217972A
JP2012217972A JP2011089492A JP2011089492A JP2012217972A JP 2012217972 A JP2012217972 A JP 2012217972A JP 2011089492 A JP2011089492 A JP 2011089492A JP 2011089492 A JP2011089492 A JP 2011089492A JP 2012217972 A JP2012217972 A JP 2012217972A
Authority
JP
Japan
Prior art keywords
water
added
cyanobacteria
iron salt
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011089492A
Other languages
Japanese (ja)
Other versions
JP5754769B2 (en
JP2012217972A5 (en
Inventor
Boon Ken Lin
ブーン ケン リン
Yoji Kitajima
洋二 北島
Hanako Nakamura
華子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2011089492A priority Critical patent/JP5754769B2/en
Publication of JP2012217972A publication Critical patent/JP2012217972A/en
Publication of JP2012217972A5 publication Critical patent/JP2012217972A5/ja
Application granted granted Critical
Publication of JP5754769B2 publication Critical patent/JP5754769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new flocculation method whose flocculation effect is high and which is applicable to various applications in a water treatment and a water purification by sedimentation.SOLUTION: The flocculation treatment method includes procedures where iron salts and ingredients derived from blue-green algae are added individually. Since this flocculation treatment method is of a high flocculation effect, larger flocs can be formed and can be precipitated faster, and moreover broader kinds of suspended matter such as sludge, contaminants, hazardous substances can be flocculated. Therefore, for example, it is effective for the removals of organic substances, inorganic substances and hazardous substances in a water purification plant, contaminants and hazardous substances in a wastewater plant, in addition, for recovery and removal of contaminants and sludge contained in the water, etc., suppression of generation of muddy water and turbid water in civil engineering works in a water area and removal of contaminants and sludge, recovery and removal of hazardous substances collected from water bottoms, etc. when civil engineering works are performed in a water area, and removal of algal bloom and microalgae (phytoplankton), etc.

Description

本発明は、排水、泥水、濁水、その他各種懸濁水の凝集処理による水処理・水浄化技術などに関連する。より詳細には、鉄塩とラン藻類由来成分とを個別に添加する手順を含む凝集処理方法などに関連する。   The present invention relates to water treatment / water purification technology by agglomeration treatment of waste water, muddy water, muddy water, and other various types of suspended water. More specifically, the present invention relates to a coagulation treatment method including a procedure of individually adding an iron salt and a cyanobacteria-derived component.

浄水場などで飲用に適する水を供給するためには、安全性などの観点から、有機物・無機物・有害物質などを除去し、水を浄化する必要がある。産業排水、生活排水、畜産排水などについても、環境負荷低減などの観点から、汚濁物質・有害物質を極力除去してから放流する必要がある。   In order to supply water suitable for drinking at a water purification plant or the like, it is necessary to purify the water by removing organic substances, inorganic substances and harmful substances from the viewpoint of safety. Industrial wastewater, domestic wastewater, livestock wastewater, etc. must be discharged after removing pollutants and harmful substances as much as possible from the viewpoint of reducing environmental impact.

河川、運河、港湾、内湾、湖沼などの水域で土木工事を行う場合には、泥水、濁水の発生を抑制するための対策を講じる必要がある。また、港湾、湖沼、干潟、運河、堀など閉鎖性・半閉鎖性水域では、アオコや微細藻類(植物プランクトン)などが大量発生する場合があり、それらを有効に除去する必要がある。   When performing civil engineering work in water areas such as rivers, canals, harbors, inner bays, and lakes, it is necessary to take measures to suppress the generation of muddy water and muddy water. In closed and semi-enclosed waters such as harbors, lakes, tidal flats, canals, and moats, there are cases where large amounts of sea lions and microalgae (phytoplankton) are generated, and it is necessary to effectively remove them.

排水、泥水、濁水、その他各種懸濁水を処理する方法として、沈降分離法が知られている。泥、汚濁物などの懸濁物に凝集剤などを添加して凝集・沈降させ、それらの物質を水から分離し、除去する。   A sedimentation separation method is known as a method for treating waste water, muddy water, muddy water, and other various types of suspended water. A flocculant is added to the suspension of mud, pollutants, etc. to agglomerate and settle, and these substances are separated from the water and removed.

凝集剤として、ポリ塩化アルミニウムなどの無機性凝集剤が汎用されている。しかし、これらの凝集剤を用いても充分に大きなフロックを形成することが困難である。また、ポリ塩化アルミニウムは生分解性が悪いため、水域などで大量に用いた場合の自然環境への影響が懸念される。   As the flocculant, inorganic flocculants such as polyaluminum chloride are widely used. However, it is difficult to form a sufficiently large floc even when these flocculants are used. Moreover, since polyaluminum chloride has poor biodegradability, there is a concern about the influence on the natural environment when used in large quantities in water.

それに対し、例えば、特許文献1には、酸性の第2鉄水溶液中に中性の植物生産水溶性多糖類であるグアガムを溶存した水処理用凝集剤が、特許文献2には、予め鉄塩を加えてpHを調整した後、多糖類(キサンタンガム又はアルギン酸ソーダ)を添加するフロック生成方法が、特許文献3には、泥水に海藻ペーストを添加・混合し、次に、カルシウム化合物の水溶液を添加・混合する泥水処理方法が、それぞれ記載されている。   On the other hand, for example, Patent Document 1 discloses a water treatment flocculant in which guar gum, which is a neutral plant-produced water-soluble polysaccharide, is dissolved in an acidic ferric aqueous solution. The floc generation method of adding polysaccharide (xanthan gum or sodium alginate) after adjusting the pH by adding water is added to and mixed with seaweed paste in muddy water, and then an aqueous solution of calcium compound is added.・ Muddy water treatment methods to be mixed are described respectively.

スイゼンジノリ(学名「Aphanothece sacrum」)は、日本国九州地方に自生する淡水産ラン藻類の光合成微生物で、単細胞の個体が寒天質の基質の中で群体を形成する。   Suizenjinori (scientific name "Aphanothece sacrum") is a photosynthetic microorganism of freshwater cyanobacterium that grows naturally in the Kyushu region of Japan. Single-cell individuals form colonies in agar substrates.

スイゼンジノリの細胞外マトリックスには、この種に特有な、分子量約1,600万の多糖類が含有することが知られている。この多糖類は、この糖で独自に見出された硫酸化ムラミン酸をはじめ、グルクロン酸、ガラクツロン酸、ガラクトサミンなど11種類以上の構成単糖を含む。また、硫酸基を含有する構成単糖を多く有する。   It is known that the extracellular matrix of Suizenjinori contains a polysaccharide having a molecular weight of about 16 million, which is unique to this species. This polysaccharide contains 11 or more kinds of constituent monosaccharides such as glucuronic acid, galacturonic acid, galactosamine, as well as sulfated muramic acid uniquely found in this sugar. Moreover, it has many constituent monosaccharides containing a sulfate group.

なお、特許文献4には、スイゼンジノリ由来の糖誘導体が、特許文献5には、スイゼンジノリから抽出される高分子を用いた金属回収方法が、それぞれ開示されている。
特開2001−219005号公報 特開平10−216737号公報 特開2007−136296号公報 国際公開WO2008−62574号パンフレット 特開2011−1596号公報
Patent Document 4 discloses a sugar derivative derived from Suizendinori, and Patent Document 5 discloses a metal recovery method using a polymer extracted from Suizendinori.
JP 2001-219005 A Japanese Patent Laid-Open No. 10-216737 JP 2007-136296 A International Publication WO2008-62574 Pamphlet JP 2011-1596 A

本発明は、沈降分離による水処理・水浄化において、凝集効果が高く、各種用途に適用可能な新規凝集処理手段を提供することなどを目的とする。   An object of the present invention is to provide a novel coagulation treatment means that has a high coagulation effect and can be applied to various uses in water treatment and water purification by sedimentation separation.

本発明では、鉄塩とラン藻類由来成分とを個別に添加する手順を含む凝集処理方法を提供する。   In the present invention, an aggregation treatment method including a procedure of individually adding an iron salt and a cyanobacteria-derived component is provided.

この凝集処理方法は凝集効果が高いため、大きなフロックを形成させることができ、より速く沈降させることができる。また、泥、汚濁物、有害物質など、広範な種類の懸濁物を凝集させることができる。   Since this agglomeration treatment method has a high agglomeration effect, a large floc can be formed and sedimentation can be performed more quickly. In addition, a wide variety of suspensions such as mud, pollutants and harmful substances can be aggregated.

従って、例えば、浄水場における有機物・無機物・有害物質などの除去、排水処理場における汚濁物質・有害物質の除去、その他、水中などに含有した有害物質などの回収・除去、水域での土木工事における泥水、濁水の発生抑制と汚濁物・泥の除去、水域での土木工事の際に水底などから巻き上げられた有害物質などの回収・除去、水域におけるアオコや微細藻類(植物プランクトン)などの有機性懸濁物の除去などに有効である。   Therefore, for example, removal of organic substances / inorganic substances / hazardous substances at water treatment plants, removal of pollutants / hazardous substances at wastewater treatment plants, recovery / removal of harmful substances contained in water, etc., and civil engineering work in water areas Suppression of muddy water and turbid water generation and removal of pollutants and mud, recovery and removal of harmful substances rolled up from the bottom of the water during civil engineering work in water, organicity such as blue seaweed and microalgae (phytoplankton) in water It is effective for removing suspended matters.

また、この方法は、懸濁水のpHが少なくとも4〜11の範囲であれば適用できるので、pHの調整など、懸濁水の前処理を行う手順を省略又は簡略化できる。従って、より簡易かつ有効に懸濁物を凝集・沈降させることができる。   Moreover, since this method can be applied if the pH of the suspension water is at least in the range of 4 to 11, the procedure for pretreatment of the suspension water such as pH adjustment can be omitted or simplified. Therefore, the suspension can be aggregated and settled more easily and effectively.

この方法で用いる鉄塩とラン藻類由来成分は、いずれも自然界由来の成分であり、水域などに比較的大量に添加しても環境負荷が少ない。加えて、この凝集処理方法は凝集効果が高いため、凝集・沈降後の上澄みへの両凝集剤の残留はほとんどない。従って、これらの凝集剤を水域などに添加しても環境への影響が小さいという有利性がある。   Both the iron salt and cyanobacteria-derived component used in this method are components derived from the natural world, and even if they are added in a relatively large amount to a water area, the environmental load is small. In addition, since this coagulation treatment method has a high coagulation effect, there is almost no residual coagulant in the supernatant after coagulation / sedimentation. Therefore, even if these flocculants are added to water or the like, there is an advantage that the influence on the environment is small.

本発明により、沈降分離による水処理・水浄化において、凝集効果を向上できる。また、本発明は、飲料などに用いるための水、排水、泥水、濁水など、広範な懸濁水の凝集処理に適用できる。   According to the present invention, the coagulation effect can be improved in water treatment and water purification by sedimentation separation. In addition, the present invention can be applied to a wide range of suspended water aggregation processes such as water for use in beverages, drainage, muddy water, turbid water, and the like.

本発明は、鉄塩とラン藻類由来成分とを個別に添加する手順を少なくとも含む凝集処理方法をすべて包含する。   The present invention includes all aggregating treatment methods including at least a procedure of individually adding an iron salt and a cyanobacteria-derived component.

例えば、懸濁水を集約した後、鉄塩とラン藻類由来成分のいずれかを添加し、撹拌・混合する。次に、もう一方を添加し、撹拌・混合した後、懸濁水を静置し、懸濁物を沈降させる。そして、上澄み液の透明度が基準値に達した場合は、懸濁物を沈降分離し、基準値に達しなかった場合は同様の水処理を繰り返す。これにより、各種懸濁物を有効に凝集・沈降・分離・除去できる。   For example, after collecting suspended water, either iron salt or a cyanobacteria-derived component is added and stirred and mixed. Next, after adding the other, stirring and mixing, the suspended water is allowed to stand and the suspension is allowed to settle. Then, when the transparency of the supernatant liquid reaches the reference value, the suspension is settled and separated, and when it does not reach the reference value, the same water treatment is repeated. Thereby, various suspensions can be effectively aggregated, settled, separated and removed.

鉄塩とラン藻類由来成分は、それぞれ個別に懸濁水に添加すればよく、添加する順序は特に限定されない。   The iron salt and the cyanobacterium-derived component may be added individually to the suspension water, and the order of addition is not particularly limited.

例えば、鉄塩を添加した後にラン藻類由来成分を添加する場合、まず、懸濁水に添加した鉄塩が懸濁物の粒子を凝集し、ある程度の大きさのフロックを形成する。鉄塩はプラスイオンであるのに対し、ラン藻類由来成分は多糖類を有効成分として含有し、マイナスイオンを有する。そのため、ラン藻類由来成分を添加することにより、鉄塩及びその凝集粒子と多糖類が結合し、より大きなフロックを形成し、沈降性を高める。   For example, when a cyanobacteria-derived component is added after the iron salt is added, the iron salt added to the suspension water first aggregates the particles of the suspension to form a floc having a certain size. Iron salts are positive ions, whereas cyanobacteria-derived components contain polysaccharides as active ingredients and have negative ions. Therefore, by adding a cyanobacteria-derived component, the iron salt and the aggregated particles thereof and the polysaccharide are combined to form a larger floc and enhance sedimentation.

また、例えば、ラン藻類由来成分を添加した後に鉄塩を添加する場合、まず、ラン藻類由来成分中の多糖類がポリマーの架橋構造を形成してその中に懸濁物をある程度捕捉する。次に、鉄塩を添加することにより、鉄塩自体が懸濁物を凝集させるとともに、鉄塩と多糖類とが結合し、より大きなフロックを形成し、沈降性を高める。   In addition, for example, when an iron salt is added after adding a cyanobacteria-derived component, first, the polysaccharide in the cyanobacteria-derived component forms a crosslinked structure of the polymer and traps the suspension therein to some extent. Next, by adding the iron salt, the iron salt itself aggregates the suspension, and the iron salt and the polysaccharide are combined to form a larger floc and enhance the sedimentation property.

従って、鉄塩とラン藻類由来成分のどちらを先に添加した場合でも、ほぼ同様の凝集効果を得ることができる。   Therefore, even when either the iron salt or the cyanobacteria-derived component is added first, almost the same aggregation effect can be obtained.

この方法で用いる鉄塩は、特に限定されないが、例えば、塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄などの第二鉄塩を好適に用いることができる。これらの物質は、例えば、第二鉄塩を少なくとも含有する固形剤、若しくは水溶液などの形態で、懸濁水に添加してもよい。   Although the iron salt used by this method is not specifically limited, For example, ferric salts, such as ferric chloride, ferric sulfate, and polyferric sulfate, can be used conveniently. These substances may be added to the suspension water in the form of, for example, a solid agent containing at least a ferric salt or an aqueous solution.

第二鉄塩の添加量は、例えば、塩化第二鉄の場合、懸濁水1L当たり、0.5〜1,000mgが好適であり、1〜500mgがより好適であり、5〜100mgが最も好適である。   For example, in the case of ferric chloride, the amount of ferric salt added is preferably 0.5 to 1,000 mg, more preferably 1 to 500 mg, and most preferably 5 to 100 mg per liter of suspended water. It is.

この方法で用いるラン藻類由来成分は、その成分中に多糖類を有効成分として含有していればよく、その形態などは特に限定されない。多糖類を有効成分とするラン藻類由来成分として、例えば、ラン藻類の藻体をペースト状に調製したものを用いてもよいし、ラン藻類から抽出された多糖類などの成分を直接又は調製して用いてもよい。   The cyanobacterium-derived component used in this method is not particularly limited as long as it contains a polysaccharide as an active ingredient. As a cyanobacteria-derived component containing a polysaccharide as an active ingredient, for example, a paste prepared from algae bodies of cyanobacteria may be used, or a component such as a polysaccharide extracted from cyanobacteria may be directly or prepared. May be used.

ラン藻類としては、淡水産のものが好適であり、クロオコッカス科(学名「Chroococcaceae」)の微生物、例えば、Chroococcus limneticus(学名)、Chroococcus disperses(学名)、Merismopedia elegans(学名)、スイゼンジノリ(学名「Aphanothece sacrum」)、Aphanothece clathrata(学名)などがより好適であり、スイゼンジノリ(学名「Aphanothece sacrum」)又はその近縁種が最も好適である。例えば、これらのラン藻類を水耕栽培又は野養殖し、ラン藻類由来成分の原材料として用いてもよい。   Cyanobacteria (scientific name "Chroococcaceae") microorganisms, for example, Chroococcus limneticus (scientific name), Chroococcus disperses (scientific name), Merismopedia elegans (scientific name), suizenjinori (scientific name " Aphanothece sacrum "), Aphanothece clathrata (scientific name), and the like are more preferable, and a swallowtail (scientific name" Aphanothece sacrum ") or its related species is most preferable. For example, these cyanobacteria may be hydroponically cultivated or field-cultivated and used as a raw material for cyanobacteria-derived components.

ラン藻類の藻体をペースト状に調製する方法としては、公知のものを採用でき、特に限定されない。例えば、低濃度の水酸化ナトリウム水溶液にラン藻類の藻体を入れ、ミキサーなどでペースト状になるまで混合・粉砕し、そのペースト状物含有溶液を数時間、沸騰処理した後、冷却放置する。以上の手順などにより、ラン藻類由来ペースト状物を調製できる。   As a method of preparing the algal body of cyanobacteria in a paste form, a known method can be adopted and is not particularly limited. For example, algal bodies of cyanobacteria are placed in a low-concentration sodium hydroxide aqueous solution, mixed and pulverized with a mixer or the like until a paste is formed, the paste-like material-containing solution is boiled for several hours, and then allowed to cool. A cyanobacteria-derived paste can be prepared by the above procedure.

ラン藻類から多糖類などの成分を抽出する方法としては、公知のものを採用でき、特に限定されない。例えば、ラン藻類を直接又は乾燥粉砕物を調製後、溶媒に一定時間浸漬し、水溶性・脂溶性色素などを除去する。溶媒には、例えば、エタノールなどの有機溶媒を用いることができる。次に、水酸化ナトリウム、炭酸ナトリウムなどの水溶液に移し、一定時間加熱処理して加水分解する。以上の手順などにより、ラン藻類から多糖類などの有効成分を抽出できる。   As a method for extracting a component such as a polysaccharide from cyanobacteria, a known method can be adopted, and the method is not particularly limited. For example, cyanobacterium is directly or after preparing a dry pulverized product, it is immersed in a solvent for a certain period of time to remove water-soluble and fat-soluble pigments. As the solvent, for example, an organic solvent such as ethanol can be used. Next, it transfers to aqueous solution, such as sodium hydroxide and sodium carbonate, and hydrolyzes by heat-processing for a fixed time. By the above procedures, active ingredients such as polysaccharides can be extracted from cyanobacteria.

また、ラン藻類から抽出した成分を中和し、その溶液をラン藻類由来成分の水溶液として用いてもよい。その他、例えば、脱水処理後、低温乾燥し、粉末化したもの、その粉末を固形化したもの、その粉末を溶液に溶解したものなどをラン藻由来成分として用いてもよい。   Moreover, the component extracted from the cyanobacterium may be neutralized, and the solution may be used as an aqueous solution of the cyanobacterium-derived component. In addition, for example, what was dried at low temperature after dehydration and pulverized, what the powder was solidified, and what the powder was dissolved in a solution may be used as the cyanobacteria-derived component.

ラン藻類由来成分の添加量は、例えば、例えば、懸濁水1L当たり、0.5〜2,000mgが好適であり、1〜1,000mgがより好適であり、5〜500mgが最も好適である。   The amount of the cyanobacterium-derived component added is, for example, preferably 0.5 to 2,000 mg, more preferably 1 to 1,000 mg, and most preferably 5 to 500 mg per liter of suspended water.

ラン藻類由来成分は、その抽出成分中に、好適には重量平均分子量200万〜4,000万の多糖類を、より好適には重量平均分子量800万〜3,000万の多糖類を、さらに好適には重量平均分子量1,000万〜2,000万の多糖類を、有効成分として含有する。なお、重量平均分子量の測定は、例えば、ゲルろ過クロマトグラフィーにより、公知の方法で行うことができる。   The cyanobacteria-derived component is preferably a polysaccharide having a weight average molecular weight of 2 million to 40 million, more preferably a polysaccharide having a weight average molecular weight of 8 million to 30 million, Preferably, a polysaccharide having a weight average molecular weight of 10 million to 20 million is contained as an active ingredient. The weight average molecular weight can be measured by a known method, for example, by gel filtration chromatography.

本発明の有効成分として含有する多糖類は、好適には5〜30種類の、より好適には8〜30種類の、さらに好適には11〜30種類の構成単糖を含む。この多糖類は、少しずつ構造の異なる多様な糖鎖分子を分子構造中に包含し、また、多くの硫酸基、カルボン酸基、アミノ基などを含有し、両性電解質である。そのため、イオン交換能発現に幅を有しており、pHの変化などに対して、物質特性の安定性を備えている。従って、本発明に係る凝集処理方法は、pH調整などの前処理を行う手順を省略又は簡略化でき、より簡易かつ有効に懸濁物を凝集・沈降させることができるという有利性を備える。   The polysaccharide contained as an active ingredient of the present invention preferably contains 5 to 30 types, more preferably 8 to 30 types, and even more preferably 11 to 30 types of constituent monosaccharides. This polysaccharide includes various sugar chain molecules having slightly different structures in the molecular structure, and also contains many sulfate groups, carboxylic acid groups, amino groups, and the like, and is an ampholyte. Therefore, it has a range in the expression of ion exchange capacity, and has stability of material characteristics against changes in pH and the like. Therefore, the flocculation method according to the present invention has the advantage that the procedure for pretreatment such as pH adjustment can be omitted or simplified, and the suspension can be flocculated and settled more easily and effectively.

この多糖類の構成単糖として、例えば、中性糖であるグルコース、ガラクトース、マンノース、ラムノース、フコース、キシロース、アラビノースなど、酸性糖であるウロン酸類(グルクロン酸、ガラクツロン酸)、硫酸化ムラミン酸など、並びにアミノ糖であるガラクトサミンなどが挙げられる。   Examples of the constituent monosaccharides of this polysaccharide include neutral sugars such as glucose, galactose, mannose, rhamnose, fucose, xylose, and arabinose, and acidic sugars such as uronic acids (glucuronic acid and galacturonic acid), sulfated muramic acid, and the like. And galactosamine which is an amino sugar.

このうち、ウロン酸類は、カルボキシル基を有しており、プラスイオンを捕捉して錯体を形成する性質を有する。本発明では、プラスイオンの鉄塩が懸濁物の粒子を凝集するとともに、その鉄イオンの周囲に多糖類中のウロン酸が集まって絡み合い、高度の凝集が進行すると推測する。   Of these, uronic acids have a carboxyl group and have the property of capturing a positive ion to form a complex. In the present invention, it is presumed that the positive ion iron salt aggregates the particles of the suspension, and uronic acid in the polysaccharide gathers around the iron ion and becomes entangled to cause a high degree of aggregation.

従って、この多糖類は、構成単糖として少なくともウロン酸類を含有することが好ましい。多糖類における全構成単糖中のウロン酸類の割合は特に限定されないが、例えば、2〜20%が好適であり、4〜15%がより好適であり、5〜12%が最も好適である。   Therefore, this polysaccharide preferably contains at least uronic acids as constituent monosaccharides. Although the ratio of uronic acids in all the constituent monosaccharides in the polysaccharide is not particularly limited, for example, 2 to 20% is preferable, 4 to 15% is more preferable, and 5 to 12% is most preferable.

なお、構成単糖の定性・定量分析は、例えば、高速液体クロマトグラフィー、質量分析計による分析などにより、公知の方法で行うことができる。   In addition, the qualitative / quantitative analysis of the constituent monosaccharide can be performed by a known method, for example, by high performance liquid chromatography, analysis by a mass spectrometer, or the like.

この多糖類は、硫酸基を含有する構成単糖を、好適には1〜20%、より好適には3〜15%、さらに好適には5〜10%有する。硫酸基は、カルボキシル基と同様、プラスイオンを捕捉して錯体を形成する性質を有する。従って、多糖類中の硫酸基は、ウロン酸と同様、本発明における鉄塩と多糖類の凝集に重要な機能を果たしていると推測する。   This polysaccharide has preferably 1 to 20%, more preferably 3 to 15%, and even more preferably 5 to 10% of a constituent monosaccharide containing a sulfate group. Similar to the carboxyl group, the sulfate group has a property of capturing a positive ion to form a complex. Therefore, it is assumed that the sulfate group in the polysaccharide plays an important function for the aggregation of the iron salt and the polysaccharide in the present invention, like uronic acid.

なお、硫酸基の定量分析は、例えば、質量分析計による分析などにより、公知の方法で行うことができる。また、多糖類中における硫黄含量は、例えば、ICP発光分光法などによる公知の方法で行うことができる。   In addition, the quantitative analysis of a sulfate group can be performed by a well-known method, for example by analysis by a mass spectrometer. The sulfur content in the polysaccharide can be determined by a known method such as ICP emission spectroscopy.

上述の通り、本発明は、広範な懸濁水の凝集処理に適用できる。例えば、浄水場における有機物・無機物などの除去、排水処理場における汚濁物質などの除去、水域での土木工事における泥水・濁水の発生抑制と汚濁物・泥などの除去、水域におけるアオコや微細藻類(植物プランクトン)などの有機性懸濁物の除去などに有効である。   As described above, the present invention can be applied to a wide range of suspended water coagulation treatments. For example, removal of organic and inorganic substances in water treatment plants, removal of pollutants in wastewater treatment plants, suppression of mud and muddy water generation in civil engineering works and removal of pollutants and mud, aquatic and microalgae in water areas ( It is effective for removing organic suspensions such as phytoplankton).

加えて、本発明に係る多糖類は、上述の通り、金属塩などのプラスイオンと結合する性質を有する。従って、本発明は、例えば、浄水場・排水処理場などにおける有害物質の除去、その他、水中に含有した有害物質などの回収・除去、水域での土木工事の際に水底などから巻き上げられた有害物質などの回収・除去などにも有効であるという有利性を持つ。   In addition, the polysaccharide according to the present invention has the property of binding to positive ions such as metal salts as described above. Therefore, the present invention, for example, removes harmful substances from water purification plants, wastewater treatment plants, etc., collects and removes harmful substances contained in water, and harmful substances wound up from the bottom of the water during civil engineering work in water areas. It has the advantage of being effective for recovery and removal of substances.

除去可能な有害物質として、例えば、鉛、銅、クロム、カドミウム、水銀、亜鉛、ヒ素、マンガン、コバルト、ニッケル、モリブデン、タングステン、スズ、ビスマスなどの重金属、ウラン、プルトニウム、セシウム、ストロンチウム、亜鉛、マンガンなどの放射性同位元素などが挙げられる。   Hazardous substances that can be removed include, for example, heavy metals such as lead, copper, chromium, cadmium, mercury, zinc, arsenic, manganese, cobalt, nickel, molybdenum, tungsten, tin, bismuth, uranium, plutonium, cesium, strontium, zinc, Examples include radioactive isotopes such as manganese.

その他、本発明は、淡水、汽水、海水のいずれの懸濁水に対しても有効である。   In addition, the present invention is effective for any suspension water of fresh water, brackish water, and seawater.

実施例1では、ラン藻類由来成分の調製を行った。   In Example 1, a cyanobacteria-derived component was prepared.

野養殖したスイゼンジノリをエタノールに一定時間浸し、水溶性色素、脂溶性色素などを除去した。次に、水酸化ナトリウム水溶液に移し、加熱処理を行い、ラン藻類から多糖類を主とする成分を抽出した。この抽出液に塩酸を滴下し、pH7付近に中和した。   A field-cultivated suizendinori was soaked in ethanol for a certain period of time to remove water-soluble pigments and fat-soluble pigments. Next, it moved to the sodium hydroxide aqueous solution, heat-processed, and extracted the component which mainly has a polysaccharide from cyanobacteria. Hydrochloric acid was added dropwise to the extract to neutralize it to around pH 7.

次に、その中和液にエタノールを添加して脱水処理を行った後、低温乾燥処理を行い、重量平均分子量200万〜2,000万の多糖類を主成分とする粉末を得た。この粉末を蒸留水で溶解し、ラン藻類由来成分の水溶液を調製し、以下の実施例で用いた。   Next, ethanol was added to the neutralized solution for dehydration treatment, followed by low-temperature drying treatment to obtain a powder mainly composed of a polysaccharide having a weight average molecular weight of 2 million to 20 million. This powder was dissolved in distilled water to prepare an aqueous solution of a cyanobacterium-derived component and used in the following examples.

実施例2では、ラン藻類由来成分の凝集効果を調べた。   In Example 2, the aggregation effect of the cyanobacterium-derived component was examined.

懸濁モデルとして、表1に示すNo.1〜No.6の試験ケースを準備した。各試験水を200mLビーカーに入れ、50〜200NTU濁度になるように調製した。カオリンには和光純薬株式会社製のはくとう土を用いた。また、学名「Tetraselmis tetrathele」の海産微細藻類、及び、学名「Microcrystis aetuginosa」の淡水アオコを用いた。

Figure 2012217972
As a suspension model, No. 1 shown in Table 1. 1-No. Six test cases were prepared. Each test water was put into a 200 mL beaker and prepared to have a turbidity of 50 to 200 NTU. As kaolin, Hakuto soil made by Wako Pure Chemical Industries, Ltd. was used. In addition, marine microalgae with scientific name “Tetraselmis tetrathele” and freshwater aoko with scientific name “Microcrystis aetuginosa” were used.
Figure 2012217972

実験温度を21℃に設定し、各試験ケースに、塩化第二鉄水溶液又はラン藻類由来成分の水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌した後、静置した。   The experimental temperature was set to 21 ° C., and an aqueous ferric chloride solution or an aqueous solution of a cyanobacterium-derived component was added to each test case to a final concentration of 50 mg / L, and the mixture was stirred for 5 minutes and then allowed to stand.

また、同様に、実験温度を21℃に設定し、各試験ケースに、塩化第二鉄水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌した後、ラン藻類由来成分の水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌し、静置した。   Similarly, the experiment temperature is set to 21 ° C., and an aqueous ferric chloride solution is added to each test case so that the final concentration is 50 mg / L. After stirring for 5 minutes, an aqueous solution of cyanobacteria-derived components is added. The final concentration was 50 mg / L, and the mixture was stirred for 5 minutes and allowed to stand.

これらの添加材料の添加前、及び、静置から5、10、30分後に濁度(NTU)を測定した。濁度の測定は、携帯式濁度計(製品名「TB-25A」、DKK・TOA社製)で行った。その測定値を「数1」に示す式で演算して濁り除去率を算出し、評価した。

Figure 2012217972
Turbidity (NTU) was measured before the addition of these additive materials and 5, 10, 30 minutes after standing. The turbidity was measured with a portable turbidimeter (product name “TB-25A”, manufactured by DKK / TOA). The turbidity removal rate was calculated by calculating the measured value using the equation shown in “Equation 1” and evaluated.
Figure 2012217972

結果を図1に示す。図1は鉄塩及び/又はラン藻類由来成分を添加した場合における濁り除去率を表すグラフである。同グラフ中、横軸は各試験ケースを、縦軸は濁り除去率(%)を表す。各試験ケースにおける3つの値は、それぞれ、左から、鉄塩を単独で添加した場合の結果(白色のグラフ)、ラン藻類由来成分を添加した場合の結果(斜線のグラフ)、鉄塩及びラン藻類由来成分を添加した場合の結果(黒色のグラフ)を表す。   The results are shown in FIG. FIG. 1 is a graph showing the turbidity removal rate when an iron salt and / or cyanobacteria-derived component is added. In the graph, the horizontal axis represents each test case, and the vertical axis represents the turbidity removal rate (%). The three values in each test case are, from the left, the results when iron salt is added alone (white graph), the results when cyanobacterium-derived components are added (hatched graph), iron salt and orchid, respectively. The result (black graph) at the time of adding an algae origin component is represented.

図1に示す通り、カオリン及び泥の試験ケースでは、海水と水道水のいずれのケースでも、ラン藻類由来成分を添加した場合、鉄塩を添加した場合と比較して、濁り除去率が顕著に高かった。また、鉄塩とラン藻類由来成分の水溶液の両添加材料を添加した場合、ほぼ100%濁りを除去できた。   As shown in FIG. 1, in the case of kaolin and mud, in both cases of seawater and tap water, when cyanobacterium-derived components are added, the turbidity removal rate is significantly higher than when iron salts are added. it was high. Moreover, when both the additive materials of the iron salt and the aqueous solution of the cyanobacterium-derived component were added, the turbidity was almost 100% removed.

藻類によって汚濁させた試験ケースでは、海産微細藻類と淡水アオコのいずれのケースでも、鉄塩とラン藻類由来成分の両添加材料を添加した場合、鉄塩又はラン藻類由来成分を単独で添加した場合と比較して、濁り除去率が顕著に高かった。   In the test case contaminated with algae, in both cases of marine microalgae and freshwater aoko, when both iron salt and cyanobacterium-derived components are added, iron salt or cyanobacterium-derived components are added alone Compared with, the turbidity removal rate was remarkably high.

以上の結果は、鉄塩とラン藻類由来成分の両方で懸濁液を処理することにより、泥などをほぼ100%凝集させることができ、かつ有機性懸濁物を有効に凝集させることができることを示す。   The above results show that by treating the suspension with both iron salt and cyanobacteria-derived components, mud and the like can be aggregated almost 100%, and the organic suspension can be effectively aggregated. Indicates.

実施例3では、実施例2で形成された凝集粒子の大きさを測定した。   In Example 3, the size of the aggregated particles formed in Example 2 was measured.

実施例2の試験ケースNo.3(泥/海水)及びNo.5(海産微細藻類)に、塩化第二鉄水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌した後、ラン藻類由来成分の水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌し、静置した。また、比較例として、同様の試験ケースに塩化第二鉄水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌した後、静置した。静置から5分後に、形成された凝集粒子の最大直径をマイクロスコープ(製品名「VH8000」、Keyence社製)で計測し、平均値と標準偏差値を求めた。   Test case No. 2 of Example 2 3 (mud / seawater) and no. To 5 (marine microalgae), an aqueous ferric chloride solution is added to a final concentration of 50 mg / L, and after stirring for 5 minutes, an aqueous solution of cyanobacteria-derived components is added to a final concentration of 50 mg / L. Stir for 5 minutes and let stand. As a comparative example, an aqueous ferric chloride solution was added to the same test case so as to have a final concentration of 50 mg / L, stirred for 5 minutes, and then allowed to stand. Five minutes after standing, the maximum diameter of the formed aggregated particles was measured with a microscope (product name “VH8000”, manufactured by Keyence), and an average value and a standard deviation value were obtained.

結果を図2に示す。図2は鉄塩とラン藻類由来成分の両添加材料を添加した際に形成された凝集粒子の最大直径を表すグラフである。同グラフ中、横軸は各試験ケースを、縦軸は凝集粒子の最大直径(mm)を表す。各試験ケースにおける2つの値は、それぞれ、左から、鉄塩とラン藻類由来成分の両添加材料を添加した場合の結果(黒色)、及び、鉄塩を単独で添加した場合の結果(比較例、白色)を表す。   The results are shown in FIG. FIG. 2 is a graph showing the maximum diameter of agglomerated particles formed when both the iron salt and cyanobacteria-derived components are added. In the graph, the horizontal axis represents each test case, and the vertical axis represents the maximum diameter (mm) of the aggregated particles. The two values in each test case are, from the left, the result when both the iron salt and cyanobacteria-derived ingredients are added (black) and the result when the iron salt is added alone (comparative example). , White).

図2に示す通り、泥及び海産微細藻類の試験ケースに、塩化第二鉄水溶液とラン藻類由来成分の水溶液の両添加材料を添加した際に形成された凝集粒子の最大直径は、塩化第二鉄水溶液を単独で添加した場合と比較して、約5倍の大きさであった。   As shown in FIG. 2, the maximum diameter of the agglomerated particles formed when both the ferric chloride aqueous solution and the aqueous solution of cyanobacteria-derived components are added to the mud and marine microalgae test cases is as follows. Compared to the case where the aqueous iron solution was added alone, the size was about 5 times.

実施例4では、添加材料として鉄塩及び各種糖類を懸濁モデルに添加した場合における凝集効果を調べた。   In Example 4, the coagulation effect was examined when iron salts and various sugars were added as additive materials to the suspension model.

添加材料として、塩化第二鉄水溶液、及び、(1)ラン藻類由来成分の水溶液、(2)グルコース水溶液、(3)デンプン水溶液、(4)デキストリン水溶液、(5)サッカロース水溶液を準備した。実験温度を21℃に設定し、実施例2の試験ケースNo.2(カオリン/水道水)に塩化第二鉄水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌した後、(1)〜(5)のいずれかの添加材料を最終濃度50mg/Lになるように添加し、5分間撹拌し、静置した。静置から5分後に、形成された凝集粒子の最大直径をマイクロスコープ(製品名「VH8000」、Keyence社製)で計測し、平均値と標準偏差値を求めた。   As additive materials, ferric chloride aqueous solution, (1) aqueous solution of cyanobacteria-derived component, (2) glucose aqueous solution, (3) starch aqueous solution, (4) dextrin aqueous solution, and (5) sucrose aqueous solution were prepared. The experimental temperature was set to 21 ° C., and the test case no. 2 (kaolin / tap water) was added ferric chloride aqueous solution to a final concentration of 50 mg / L and stirred for 5 minutes, and then any of the additive materials (1) to (5) was added to a final concentration of 50 mg / L. L was added, stirred for 5 minutes, and allowed to stand. Five minutes after standing, the maximum diameter of the formed aggregated particles was measured with a microscope (product name “VH8000”, manufactured by Keyence), and an average value and a standard deviation value were obtained.

また、水道水を入れた50cm深さの円錐容器に、形成された凝集粒子を浸し、その凝集粒子の沈降速度を計測した。   Further, the formed aggregated particles were immersed in a 50 cm deep conical container containing tap water, and the sedimentation rate of the aggregated particles was measured.

結果を図3及び図4に示す。図3は鉄塩と各糖類を添加した際に形成された凝集粒子の最大直径を表すグラフ、図4は鉄塩と各糖類を添加した際に形成された凝集粒子の沈降速度を表すグラフである。   The results are shown in FIGS. FIG. 3 is a graph showing the maximum diameter of the aggregated particles formed when the iron salt and each saccharide are added, and FIG. 4 is a graph showing the sedimentation rate of the aggregated particles formed when the iron salt and each saccharide are added. is there.

図3のグラフ中、横軸は各添加材料を、縦軸は凝集粒子の最大直径(mm)を表す。図4のグラフ中、横軸は各添加材料を、縦軸は凝集粒子の沈降速度(mm/分)を表す。   In the graph of FIG. 3, the horizontal axis represents each additive material, and the vertical axis represents the maximum diameter (mm) of the aggregated particles. In the graph of FIG. 4, the horizontal axis represents each additive material, and the vertical axis represents the sedimentation rate (mm / min) of the aggregated particles.

図3に示す通り、鉄塩とラン藻類由来成分の両添加材料を添加した際に形成された凝集粒子の最大直径は、鉄塩と他の糖類を添加した場合と比較して、3倍以上の大きさであった。   As shown in FIG. 3, the maximum diameter of the aggregated particles formed when both the iron salt and cyanobacteria-derived ingredients are added is 3 times or more compared to the case where the iron salt and other saccharides are added. It was the size of.

図4に示す通り、鉄塩とラン藻類由来成分を添加した際に形成された凝集粒子の沈降速度は1071.4mm/分であり、鉄塩と他の糖類を添加した場合と比較して最も速かった。   As shown in FIG. 4, the settling rate of the aggregated particles formed when the iron salt and cyanobacteria-derived component are added is 1071.4 mm / min, which is the highest compared to the case where the iron salt and other saccharides are added. It was fast.

実施例5では、鉄塩とラン藻類由来成分の両添加材料を添加した場合における水浄化効力と、カルシウム塩と海藻類由来成分の両添加材料を添加した場合における水浄化効力を比較した。   In Example 5, the water purification effect in the case of adding both the iron salt and cyanobacteria-derived component additive materials was compared with the water purification effect in the case of adding both the calcium salt and seaweed-derived component additive materials.

実施例2の試験ケースNo.2(泥/水道水)及びNo.5(海産微細藻類)を準備した。試験ケースNo.2の濁度は100NTU、試験ケースNo.5の濁度は50NTUであった。   Test case No. 2 of Example 2 2 (mud / tap water) and No. 2 5 (marine microalgae) was prepared. Test case no. 2 has a turbidity of 100 NTU and test case no. The turbidity of 5 was 50 NTU.

添加材料として、(1)塩化第二鉄水溶液及びラン藻類由来成分の水溶液、(2)塩化カルシウム水溶液及び海藻類由来成分の水溶液を準備した。海藻類由来成分の水溶液は、乾燥コンブ50gを450mLの水に30分間浸してペースト状にし、そのペースト状物200gに対し1%炭酸ナトリウム水溶液を300mL加え、加熱して5分間沸騰させて得た。   As additive materials, (1) a ferric chloride aqueous solution and an aqueous solution of a cyanobacterium-derived component, and (2) a calcium chloride aqueous solution and an aqueous solution of a seaweed-derived component were prepared. An aqueous solution of the seaweed-derived component was obtained by immersing 50 g of dried kombu in 450 mL of water for 30 minutes to form a paste, adding 300 mL of 1% sodium carbonate aqueous solution to 200 g of the paste, heating and boiling for 5 minutes. .

(1)の添加材料を添加したケースでは、実験温度を21℃に設定し、塩化第二鉄水溶液を最終濃度が50mg/Lになるように添加し、5分間撹拌した後、ラン藻類由来成分の水溶液を最終濃度が50mg/Lになるように添加し、5分間撹拌し、静置した。   In the case where the additive material of (1) was added, the experimental temperature was set to 21 ° C., an aqueous ferric chloride solution was added so that the final concentration was 50 mg / L, and the mixture was stirred for 5 minutes. Was added to a final concentration of 50 mg / L, stirred for 5 minutes, and allowed to stand.

(2)の添加材料を添加したケースでは、同様に、実験温度を21℃に設定し、塩化カルシウム水溶液を最終濃度が10g/Lになるように添加し、5分間撹拌した後、海藻類由来成分の水溶液を最終濃度が480mg/Lになるように添加し、5分間撹拌し、静置した。   In the case where the additive material of (2) is added, similarly, the experimental temperature is set to 21 ° C., an aqueous calcium chloride solution is added so that the final concentration is 10 g / L, and the mixture is stirred for 5 minutes. An aqueous solution of the components was added to a final concentration of 480 mg / L, stirred for 5 minutes, and allowed to stand.

添加材料の添加前、及び、静置から5、10、30分後に濁度(NTU)を測定した。濁度の測定は、実施例2と同様、携帯式濁度計(製品名「TB-25A」、DKK・TOA社製)で行った。その測定値を上記「数1」に示す式で演算して濁り除去率を算出し、評価した。   Turbidity (NTU) was measured before the addition of the additive material and after 5, 10, 30 minutes from standing. The turbidity was measured with a portable turbidimeter (product name “TB-25A”, manufactured by DKK / TOA) as in Example 2. The turbidity removal rate was calculated by calculating the measured value using the equation shown in the above “Equation 1” and evaluated.

また、添加材料による汚染負荷評価のため、試験ケースNo.2(泥/水道水)について、CODパックテスト(共立理化学研究所)を用いて、濁り除去後の上澄み水のCOD分析を行った。   In addition, test case no. 2 (mud / tap water) was subjected to COD analysis of the supernatant water after removing turbidity using the COD pack test (Kyoritsu Riken).

結果を図5及び図6に示す。図5は鉄塩とラン藻類由来成分、又は、カルシウム塩と海藻類由来成分を添加した場合における濁り除去率を表すグラフ、図6は鉄塩とラン藻類由来成分、又は、カルシウム塩と海藻類由来成分を添加した場合における濁り除去後の上澄み水のCOD分析の結果を表すグラフである。   The results are shown in FIGS. FIG. 5 is a graph showing the turbidity removal rate when an iron salt and cyanobacteria-derived component or a calcium salt and seaweed-derived component are added. FIG. 6 is an iron salt and cyanobacteria-derived component, or calcium salt and seaweed. It is a graph showing the result of COD analysis of the supernatant water after removing turbidity in the case of adding a derived component.

図5のグラフ中、横軸は各試験ケースを、縦軸は濁り除去率(%)を表す。各試験ケースにおける3つの値は、それぞれ、左から、添加材料を添加しなかった場合の結果(対照、白色のグラフ)、カルシウム塩と海藻類由来成分を添加した場合の結果(斜線のグラフ)、鉄塩とラン藻類由来成分を添加した場合の結果(黒色のグラフ)を表す。   In the graph of FIG. 5, the horizontal axis represents each test case, and the vertical axis represents the turbidity removal rate (%). From the left, the three values in each test case are the results when the additive material is not added (control, white graph), the results when the calcium salt and seaweed-derived components are added (shaded graph), respectively. The result (black graph) at the time of adding an iron salt and a cyanobacteria-derived component is represented.

図6のグラフ中、横軸は添加材料を、縦軸はCODの値(mg/L)をそれぞれ表す。同グラフにおける3つの値は、それぞれ、左から、添加材料を添加しなかった場合の結果(対照、白色のグラフ)、カルシウム塩と海藻類由来成分を添加した場合の結果(斜線のグラフ)、鉄塩とラン藻類由来成分を添加した場合の結果(黒色のグラフ)を表す。   In the graph of FIG. 6, the horizontal axis represents the additive material, and the vertical axis represents the COD value (mg / L). From the left, the three values in the graph are the results when the additive material is not added (control, white graph), the results when the calcium salt and seaweed-derived components are added (shaded graph), The result (black graph) at the time of adding an iron salt and a cyanobacterium-derived component is represented.

図5に示す通り、無機質懸濁液(カオリン/水道水)に鉄塩とラン藻類由来成分を添加した場合、カルシウム塩と海藻類由来成分を添加した場合と同様、ほぼ100%濁りを除去できた。   As shown in FIG. 5, when an iron salt and a cyanobacteria-derived component are added to an inorganic suspension (kaolin / tap water), almost 100% of turbidity can be removed as in the case of adding a calcium salt and a seaweed-derived component. It was.

加えて、有機質懸濁液(海産微細藻類)の試験ケースでは、カルシウム塩と海藻類由来成分を添加した場合はほとんど濁りを除去できなかったのに対し、鉄塩とラン藻類由来成分を添加した場合は、ほぼ100%濁りを除去できた。   In addition, in the organic suspension (sea microalgae) test case, when adding calcium salt and seaweed-derived components, turbidity could hardly be removed, whereas iron salt and cyanobacteria-derived components were added. In the case, turbidity could be removed almost 100%.

図6に示す通り、試験ケースに添加材料を添加した際の濁り除去後の上澄み水のCOD分析の結果、カルシウム塩と海藻類由来成分を添加した場合のCODの値が約50mg/mLと高かったのに対し、鉄塩とラン藻類由来成分を添加した場合は添加後もCODの値を低く維持できた。この結果は、鉄塩とラン藻類由来成分を凝集剤として用いて水質浄化を行った場合、凝集・沈降後の上澄みへの両凝集剤の残留がほとんどなく、これらの凝集剤を水域などに添加しても環境への影響が小さいことを示唆する。   As shown in FIG. 6, as a result of COD analysis of the supernatant water after removing the turbidity when the additive material is added to the test case, the COD value when calcium salt and seaweed-derived components are added is as high as about 50 mg / mL. On the other hand, when the iron salt and cyanobacteria-derived component were added, the COD value could be kept low even after the addition. This result shows that when water purification is performed using iron salts and cyanobacteria-derived components as flocculants, both flocculants remain in the supernatant after flocculation / sedimentation, and these flocculants are added to water areas. This suggests that the impact on the environment is small.

実施例6では、鉄塩とラン藻類由来成分を用いた水質浄化におけるpHの影響を検討した。   In Example 6, the influence of pH in water purification using iron salts and cyanobacteria-derived components was examined.

実施例2の試験ケースNo.2(泥/水道水)を準備し、濁度を200NTUに調製するとともに、塩酸又は水酸化ナトリウムを加えてpHをそれぞれ2、3、4、6、11に調整した。   Test case No. 2 of Example 2 2 (mud / tap water) was prepared, the turbidity was adjusted to 200 NTU, and hydrochloric acid or sodium hydroxide was added to adjust the pH to 2, 3, 4, 6, 11 respectively.

実験温度を21℃に設定し、各試験ケースに塩化第二鉄水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌した後、ラン藻類由来成分の水溶液を最終濃度50mg/Lになるように添加し、5分間撹拌し、静置した。   The experimental temperature was set to 21 ° C., and an aqueous ferric chloride solution was added to each test case to a final concentration of 50 mg / L. After stirring for 5 minutes, the aqueous solution of cyanobacteria-derived components was adjusted to a final concentration of 50 mg / L. And stirred for 5 minutes and allowed to stand.

添加材料の添加前、及び、静置から5、10、30分後に濁度(NTU)を測定した。濁度の測定は、実施例2などと同様、携帯式濁度計(製品名「TB-25A」、DKK・TOA社製)で行った。その測定値を上記「数1」に示す式で演算して濁り除去率を算出し、評価した。   Turbidity (NTU) was measured before the addition of the additive material and after 5, 10, 30 minutes from standing. The turbidity was measured with a portable turbidimeter (product name “TB-25A”, manufactured by DKK / TOA) in the same manner as in Example 2. The turbidity removal rate was calculated by calculating the measured value using the equation shown in the above “Equation 1” and evaluated.

結果を図7に示す。図7は懸濁液のpHと濁り除去率との関係を示すグラフである。図7のグラフ中、横軸は試験ケースのpHを、縦軸は濁り除去率(%)を表す。   The results are shown in FIG. FIG. 7 is a graph showing the relationship between the pH of the suspension and the turbidity removal rate. In the graph of FIG. 7, the horizontal axis represents the pH of the test case, and the vertical axis represents the turbidity removal rate (%).

図7に示す通り、懸濁液のpHが4〜11の範囲の場合、98%以上の濁りを除去できた。また、pH2及びpH3でも、80%以上の濁りを除去できた。   As shown in FIG. 7, when the pH of the suspension was in the range of 4 to 11, turbidity of 98% or more could be removed. Further, even at pH 2 and pH 3, turbidity of 80% or more could be removed.

この結果は、ラン藻類由来成分の主成分である多糖類が5種類以上の構成単糖を含み、イオン交換能発現に幅を有しており、pHの変化に対して安定性を備えているためであると推測する。   This result shows that the polysaccharide that is the main component of the cyanobacteria-derived component contains 5 or more types of constituent monosaccharides, has a wide range of ion exchange ability, and has stability against changes in pH. I guess it is because.

従って、本実験結果は、鉄塩とラン藻類由来液成分を懸濁水に添加する方法を採用ことにより、pH調整などの前処理を行う手順を省略又は簡略化でき、より簡易かつ有効に懸濁物を凝集・沈降させることができることを示唆する。   Therefore, the results of this experiment show that by adopting a method of adding iron salt and cyanobacteria-derived liquid components to the suspension water, the procedure for pretreatment such as pH adjustment can be omitted or simplified, and the suspension can be performed more simply and effectively. This suggests that the product can be aggregated and settled.

実施例7では、鉄塩とラン藻類由来成分を用いた場合の添加濃度を検討した。   In Example 7, the addition concentration when an iron salt and a cyanobacterium-derived component were used was examined.

実施例2の試験ケースNo.2(泥/水道水)を準備し、濁度を200NTUに調製するとともに、実験温度を21℃に設定し、各試験ケースに塩化第二鉄水溶液をそれぞれ最終濃度5、12.5、25、50mg/Lになるように添加し、5分間撹拌した後、ラン藻類由来成分の水溶液を、それぞれ最終濃度5、12.5、25、50mg/Lになるように添加し、5分間撹拌し、静置した。   Test case No. 2 of Example 2 2 (mud / tap water), the turbidity is adjusted to 200 NTU, the experimental temperature is set to 21 ° C., and ferric chloride aqueous solution is added to each test case at a final concentration of 5, 12.5, 25, Add to 50 mg / L and stir for 5 minutes, then add the aqueous solution of cyanobacteria-derived components to final concentrations of 5, 12.5, 25, and 50 mg / L, respectively, and stir for 5 minutes. Left to stand.

添加材料の添加前、及び、静置から30分後に濁度(NTU)を測定した。濁度の測定は、実施例2などと同様、携帯式濁度計(製品名「TB-25A」、DKK・TOA社製)で行った。その測定値を上記「数1」に示す式で演算して濁り除去率を算出し、評価した。   Turbidity (NTU) was measured before addition of the additive material and 30 minutes after standing. The turbidity was measured with a portable turbidimeter (product name “TB-25A”, manufactured by DKK / TOA) in the same manner as in Example 2. The turbidity removal rate was calculated by calculating the measured value using the equation shown in the above “Equation 1” and evaluated.

結果を図8に示す。図8は凝集剤の添加濃度と濁り除去率との関係を示すグラフである。図8のグラフ中、横軸は両添加材料の合計の添加濃度(mg/mL)を、縦軸は濁り除去率(%)を表す。   The results are shown in FIG. FIG. 8 is a graph showing the relationship between the flocculant addition concentration and the turbidity removal rate. In the graph of FIG. 8, the horizontal axis represents the total addition concentration (mg / mL) of both additive materials, and the vertical axis represents the turbidity removal rate (%).

図8に示す通り、鉄塩及びラン藻類由来成分を合計5mg/mL以上添加すれば、混合・静置30分後において90%以上の濁りを除去できた。この結果は、本発明に係る凝集剤は凝集効果が高く、少量の凝集剤添加でも凝集効果を得られることを示唆する。   As shown in FIG. 8, 90% or more of turbidity could be removed after 30 minutes of mixing and standing by adding a total of 5 mg / mL or more of iron salt and cyanobacteria-derived components. This result suggests that the flocculant according to the present invention has a high flocculant effect, and that the flocculant effect can be obtained even when a small amount of flocculant is added.

本発明は、例えば、浄水場における有機物・無機物・有害物質などの除去、排水処理場における汚濁物質・有害物質の除去、その他、水中などに含有した有害物質などの回収・除去、水域での土木工事における泥水・濁水の発生抑制と汚濁物・泥の除去、水域での土木工事の際に水底などから巻き上げられた有害物質などの除去、水域におけるアオコや微細藻類(植物プランクトン)などの有機性懸濁物の除去などに適用できる。また、淡水、汽水、海水のいずれの懸濁水に対しても有効である。   The present invention, for example, removes organic substances / inorganic substances / hazardous substances from a water treatment plant, removes pollutants / hazardous substances from a wastewater treatment plant, collects / removes harmful substances contained in water, etc., and civil engineering in the water area. Suppression of mud and muddy water in construction and removal of pollutants and mud, removal of harmful substances rolled up from the bottom of the water during civil engineering work in waters, organicity such as sea lions and microalgae (phytoplankton) in waters It can be applied to the removal of suspension. It is also effective for any suspension of fresh water, brackish water, and seawater.

その他、本発明に係る凝集処理方法で用いる鉄塩とラン藻類由来成分は、いずれも自然界由来の成分であり、水域などに比較的大量に添加しても環境負荷が少ない。加えて、この凝集処理方法は凝集効果が高いため、凝集・沈降後の上澄みへの両凝集剤の残留はほとんどない。従って、例えば、万が一、台風・大雨などにより施工中にこれらの凝集剤が流出した場合でも、水域環境への影響を最小限に抑えることができる。   In addition, the iron salt and cyanobacteria-derived component used in the aggregating treatment method according to the present invention are components derived from nature, and even when added in a relatively large amount to a water area, the environmental load is small. In addition, since this coagulation treatment method has a high coagulation effect, there is almost no residual coagulant in the supernatant after coagulation / sedimentation. Therefore, for example, even if these flocculants flow out during construction due to typhoons or heavy rain, the influence on the water environment can be minimized.

実施例2において、鉄塩及び/又はラン藻類由来成分を添加した場合における濁り除去率を表すグラフ。In Example 2, the graph showing the turbidity removal rate at the time of adding an iron salt and / or a cyanobacterium origin component. 実施例3において、鉄塩とラン藻類由来成分の両添加材料を添加した際に形成された凝集粒子の最大直径を表すグラフ。In Example 3, the graph showing the maximum diameter of the aggregated particle formed when both the addition material of the iron salt and the cyanobacterium-derived component are added. 実施例4において、鉄塩と各糖類を添加した際に形成された凝集粒子の最大直径を表すグラフ。In Example 4, the graph showing the maximum diameter of the aggregated particle formed when adding an iron salt and each saccharide | sugar. 実施例4において、鉄塩と各糖類を添加した際に形成された凝集粒子の沈降速度を表すグラフ。In Example 4, the graph showing the sedimentation rate of the aggregated particle formed when adding an iron salt and each saccharide | sugar. 実施例5において、鉄塩とラン藻類由来成分、又は、カルシウム塩と海藻類由来の抽出成分を添加した場合における濁り除去率を表すグラフ。In Example 5, the graph showing the turbidity removal rate at the time of adding the extraction component derived from an iron salt and cyanobacteria, or a calcium salt and seaweed. 実施例5において、鉄塩とラン藻類由来成分、又は、カルシウム塩と海藻類由来の抽出成分を添加した場合における濁り除去後の上澄み水のCOD分析の結果を表すグラフ。In Example 5, the graph showing the result of COD analysis of the supernatant water after removing turbidity in the case of adding an iron salt and a cyanobacteria-derived component or a calcium salt and a seaweed-derived extract component. 実施例6において、懸濁液のpHと濁り除去率との関係を示すグラフ。In Example 6, the graph which shows the relationship between pH of a suspension, and a turbidity removal rate. 実施例7において、凝集剤の添加濃度と濁り除去率との関係を示すグラフ。In Example 7, the graph which shows the relationship between the addition density | concentration of a flocculant and a turbidity removal rate.

Claims (5)

鉄塩とラン藻類由来成分とを個別に添加する手順を含む凝集処理方法。   A coagulation treatment method including a procedure of individually adding an iron salt and a cyanobacteria-derived component. 前記ラン藻類由来成分中に、重量平均分子量200万〜2,000万の多糖類を有効成分として含有する請求項1記載の凝集処理方法。   The aggregation treatment method according to claim 1, wherein the cyanobacterium-derived component contains a polysaccharide having a weight average molecular weight of 2 million to 20 million as an active ingredient. 前記多糖類が5〜20種類の構成単糖を含む請求項2記載の凝集処理方法。   The aggregation treatment method according to claim 2, wherein the polysaccharide contains 5 to 20 kinds of constituent monosaccharides. 前記多糖類が、構成単糖としてウロン酸類を含有する請求項2記載の凝集処理方法。   The aggregation treatment method according to claim 2, wherein the polysaccharide contains uronic acids as constituent monosaccharides. 前記多糖類が、硫酸基を含有する構成単糖を1〜20%有する請求項2記載の凝集処理方法。   The aggregation treatment method according to claim 2, wherein the polysaccharide has 1 to 20% of a constituent monosaccharide containing a sulfate group.
JP2011089492A 2011-04-13 2011-04-13 Aggregation method Expired - Fee Related JP5754769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089492A JP5754769B2 (en) 2011-04-13 2011-04-13 Aggregation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089492A JP5754769B2 (en) 2011-04-13 2011-04-13 Aggregation method

Publications (3)

Publication Number Publication Date
JP2012217972A true JP2012217972A (en) 2012-11-12
JP2012217972A5 JP2012217972A5 (en) 2014-01-16
JP5754769B2 JP5754769B2 (en) 2015-07-29

Family

ID=47270088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089492A Expired - Fee Related JP5754769B2 (en) 2011-04-13 2011-04-13 Aggregation method

Country Status (1)

Country Link
JP (1) JP5754769B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036139A (en) * 2013-08-15 2015-02-23 鹿島建設株式会社 Flocculation method of turbid water
JP2015085219A (en) * 2013-10-28 2015-05-07 鹿島建設株式会社 Flocculation method
CN105169758A (en) * 2015-10-16 2015-12-23 无锡德林海藻水分离技术发展有限公司 Blue-green algae blastophore wall breaking method
JP2016165688A (en) * 2015-03-10 2016-09-15 株式会社神鋼環境ソリューション Water treatment method and water treatment equipment
JP2016165689A (en) * 2015-03-10 2016-09-15 株式会社神鋼環境ソリューション Water treatment method and water treatment equipment
CN110092563A (en) * 2019-04-16 2019-08-06 无锡市政设计研究院有限公司 A kind of method that cyanobacteria algal gel cooperates with deep dehydration with municipal sludge
CN111018095A (en) * 2019-12-26 2020-04-17 中国水产科学研究院渔业机械仪器研究所 Method for controlling cyanobacterial microcystis bloom and portable treatment system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103881A (en) * 1975-03-11 1976-09-14 Japan Maize Prod Nosankakohaiekino shorihoho
JPS59115707A (en) * 1982-12-23 1984-07-04 Agency Of Ind Science & Technol Flocculating method of pollutant by microorganism
US4649110A (en) * 1982-07-29 1987-03-10 Solmat Systems, Ltd. Polymeric substance, and method of separating and culturing bacteria to provide polymeric substance useful in liquid clarification and soil conditioning
JPH02293088A (en) * 1989-04-13 1990-12-04 Fmc Corp Method for treating waste water from food processing factory
JPH0356102A (en) * 1989-03-08 1991-03-11 Agency Of Ind Science & Technol Polysaccharide produced by alkaligenese cupidas and flocculant using the polysaccharide and flocculation
JPH07100304A (en) * 1993-09-30 1995-04-18 Nippon Synthetic Chem Ind Co Ltd:The Flocculating method for suspension liquid
JPH09168800A (en) * 1995-10-17 1997-06-30 Terunaito:Kk Treatment of high water content dredging sludge
JPH10216737A (en) * 1997-02-04 1998-08-18 Hiroshi Takatomi Method for producing floc
JPH1157311A (en) * 1997-08-25 1999-03-02 Tosoh Corp Flocculate originating from microorganism and flocculating method using same
WO2001009044A1 (en) * 1999-07-29 2001-02-08 Myeong Heon Um Coagulant composition consisting of organic coagulant of brown algae and inorganic coagulant
JP2001079308A (en) * 1999-09-20 2001-03-27 Microalgae Corporation Flocculating material for waste pulp in paper making waste water and treatment of paper making waste water using the same
JP2003164708A (en) * 2001-11-29 2003-06-10 Ben Gurion Univ Of The Negev Research & Development Authority Method for treating liquid containing contaminant
JP2004501750A (en) * 2000-06-27 2004-01-22 ザ、プロクター、エンド、ギャンブル、カンパニー Water treatment composition
WO2007044439A2 (en) * 2005-10-05 2007-04-19 Acillix Incorporated Microbial exopolymers useful for water demineralization
WO2008062574A1 (en) * 2006-11-22 2008-05-29 Tatsuo Kaneko Sugar derivative and use thereof
WO2009113435A1 (en) * 2008-03-14 2009-09-17 Kaneko Tatsuo Sugar derivative preparation

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103881A (en) * 1975-03-11 1976-09-14 Japan Maize Prod Nosankakohaiekino shorihoho
US4649110A (en) * 1982-07-29 1987-03-10 Solmat Systems, Ltd. Polymeric substance, and method of separating and culturing bacteria to provide polymeric substance useful in liquid clarification and soil conditioning
JPS59115707A (en) * 1982-12-23 1984-07-04 Agency Of Ind Science & Technol Flocculating method of pollutant by microorganism
JPH0356102A (en) * 1989-03-08 1991-03-11 Agency Of Ind Science & Technol Polysaccharide produced by alkaligenese cupidas and flocculant using the polysaccharide and flocculation
JPH02293088A (en) * 1989-04-13 1990-12-04 Fmc Corp Method for treating waste water from food processing factory
JPH07100304A (en) * 1993-09-30 1995-04-18 Nippon Synthetic Chem Ind Co Ltd:The Flocculating method for suspension liquid
JPH09168800A (en) * 1995-10-17 1997-06-30 Terunaito:Kk Treatment of high water content dredging sludge
JPH10216737A (en) * 1997-02-04 1998-08-18 Hiroshi Takatomi Method for producing floc
JPH1157311A (en) * 1997-08-25 1999-03-02 Tosoh Corp Flocculate originating from microorganism and flocculating method using same
WO2001009044A1 (en) * 1999-07-29 2001-02-08 Myeong Heon Um Coagulant composition consisting of organic coagulant of brown algae and inorganic coagulant
JP2001079308A (en) * 1999-09-20 2001-03-27 Microalgae Corporation Flocculating material for waste pulp in paper making waste water and treatment of paper making waste water using the same
JP2004501750A (en) * 2000-06-27 2004-01-22 ザ、プロクター、エンド、ギャンブル、カンパニー Water treatment composition
JP2003164708A (en) * 2001-11-29 2003-06-10 Ben Gurion Univ Of The Negev Research & Development Authority Method for treating liquid containing contaminant
WO2007044439A2 (en) * 2005-10-05 2007-04-19 Acillix Incorporated Microbial exopolymers useful for water demineralization
WO2008062574A1 (en) * 2006-11-22 2008-05-29 Tatsuo Kaneko Sugar derivative and use thereof
WO2009113435A1 (en) * 2008-03-14 2009-09-17 Kaneko Tatsuo Sugar derivative preparation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036139A (en) * 2013-08-15 2015-02-23 鹿島建設株式会社 Flocculation method of turbid water
JP2015085219A (en) * 2013-10-28 2015-05-07 鹿島建設株式会社 Flocculation method
JP2016165688A (en) * 2015-03-10 2016-09-15 株式会社神鋼環境ソリューション Water treatment method and water treatment equipment
JP2016165689A (en) * 2015-03-10 2016-09-15 株式会社神鋼環境ソリューション Water treatment method and water treatment equipment
CN105169758A (en) * 2015-10-16 2015-12-23 无锡德林海藻水分离技术发展有限公司 Blue-green algae blastophore wall breaking method
CN105169758B (en) * 2015-10-16 2017-03-22 无锡德林海环保科技股份有限公司 Blue-green algae blastophore wall breaking method
CN110092563A (en) * 2019-04-16 2019-08-06 无锡市政设计研究院有限公司 A kind of method that cyanobacteria algal gel cooperates with deep dehydration with municipal sludge
CN111018095A (en) * 2019-12-26 2020-04-17 中国水产科学研究院渔业机械仪器研究所 Method for controlling cyanobacterial microcystis bloom and portable treatment system
CN111018095B (en) * 2019-12-26 2024-03-12 中国水产科学研究院渔业机械仪器研究所 Method for controlling cyanobacteria microcystis bloom and portable treatment system

Also Published As

Publication number Publication date
JP5754769B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5754769B2 (en) Aggregation method
Kumar et al. Applications of natural coagulants to treat wastewater− a review
Nharingo et al. Exploring the use of cactus Opuntia ficus indica in the biocoagulation–flocculation of Pb (II) ions from wastewaters
Singh et al. Removal of fluoride from aqueous solution: status and techniques
Tang et al. The removal of microplastics from water by coagulation: A comprehensive review
Choumane et al. Valorisation of a bioflocculant and hydroxyapatites as coagulation-flocculation adjuvants in wastewater treatment of the steppe in the wilaya of Saida (Algeria)
Barrado-Moreno et al. Microalgae removal with Moringa oleifera
CN104478047A (en) Diatomite processing agent for blue-green algae and preparation method thereof
CN104671367A (en) Algaecide for effectively removing algae and precipitating alga bodies
Diver et al. The potential and constraints of replacing conventional chemical coagulants with natural plant extracts in water and wastewater treatment
CN107986412B (en) Modified clay system for controlling harmful algal blooms in aquaculture water
Vijayaraghavan et al. Efficacy of alginate extracted from marine brown algae (Sargassum sp.) as a coagulant for removal of direct blue2 dye from aqueous solution
Ghawi Using natural coagulant to remove turbidity and heavy metal from surface water treatment plant in Iraq
JP6132351B2 (en) Aggregation method
Ani et al. Coagulation-flocculation performance of snail shell biomass for waste water purification
CN102674517A (en) Method for rapidly flocculating blue-green algae in water body
Coagulation-Flocculation Removing boron from an aqueous solution using turmeric extract-aided coagulation-flocculation
Gandhi Biodepollution of paint manufacturing industry waste water containing chromium by using coagulation process
Najem Evaluation the biosorption capacity of water hyacinth (Eichhornia crassipes) root for some heavy metals
Makhtar et al. High lead ion removal in a single synthetic solution utilising plant-based Tacca leontopetaloides biopolymer flocculant (TBPF)
KR101643176B1 (en) Apparatus for producing a non poisonous sea water
Zainol et al. Effectiveness of banana pith as plant based coagulant for river water treatment
Siangko et al. Biosorption optimization and kinetic modeling of Ni2+ and Zn2+ removal from aqueous solution using calamansi (Citrofortunella microcarpa) and dalandan (Citrus aurantium) peels
KR20100127340A (en) The composition which contains dredged sediments for red algae removal and a method of preparing thereof
Sonam Technologies for Removal of Arsenic from Water: An Overview

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150521

R150 Certificate of patent or registration of utility model

Ref document number: 5754769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees