JP2015084996A - Washing and drying machine - Google Patents

Washing and drying machine Download PDF

Info

Publication number
JP2015084996A
JP2015084996A JP2013226969A JP2013226969A JP2015084996A JP 2015084996 A JP2015084996 A JP 2015084996A JP 2013226969 A JP2013226969 A JP 2013226969A JP 2013226969 A JP2013226969 A JP 2013226969A JP 2015084996 A JP2015084996 A JP 2015084996A
Authority
JP
Japan
Prior art keywords
gas
liquid separator
evaporator
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013226969A
Other languages
Japanese (ja)
Other versions
JP6352614B2 (en
Inventor
鹿島 弘次
Koji Kashima
弘次 鹿島
佐久間 勉
Tsutomu Sakuma
勉 佐久間
西脇 智
Satoshi Nishiwaki
智 西脇
野口 明裕
Akihiro Noguchi
明裕 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Lifestyle Products and Services Corp filed Critical Toshiba Corp
Priority to JP2013226969A priority Critical patent/JP6352614B2/en
Priority to CN201410599369.9A priority patent/CN104594005B/en
Publication of JP2015084996A publication Critical patent/JP2015084996A/en
Application granted granted Critical
Publication of JP6352614B2 publication Critical patent/JP6352614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/10Drying cabinets or drying chambers having heating or ventilating means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/30Drying processes 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/08Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/38Time, e.g. duration
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/50Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to heat pumps, e.g. pressure or flow rate
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/26Heat pumps
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a washing machine capable of determining freezing of moisture in a gas-liquid separator in a heat pump, and also capable of solving the freezing.SOLUTION: A washing machine includes: a heat pump which has a refrigeration cycle configured by connecting a compressor, a condenser, decompression means, an evaporator and a gas-liquid separator in a closed loop shape, and sealing a refrigerant inside, in which the evaporator is arranged at an air outlet side of an accommodation chamber in a circulation air passage, and in which the condenser is arranged on a further downstream side than the evaporator in a circulation air flow; freezing determination means for determining whether or not freezing has occurred in the gas-liquid separator in a drying step; and freezing dealing means for stopping the compressor when the occurrence of freezing in the gas-liquid separator is detected by the freezing determination means.

Description

本発明の実施形態は、洗濯乾燥機に関する。   Embodiments described herein relate generally to a washing dryer.

従来、洗い行程、脱水行程、乾燥行程を行う洗濯乾燥機では、乾燥手段として、電気ヒータ式でなく、衣類のしわや縮みが少なく省エネで乾燥時間も短くて済むヒートポンプを用いた洗濯乾燥機がある。
この種の洗濯乾燥機では、上記ヒートポンプの他、衣類を収容する収容室である水槽の空気を取出して再度当該収容室内に戻す循環空気流を形成する循環風路を備えている。
前記ヒートポンプは、圧縮機と、凝縮器と、減圧手段と、蒸発器と、気液分離器とを閉ループ状に接続し内部に冷媒を封入して構成された冷凍サイクルを有し、蒸発器を循環風路内において収容室の空気出口側に配置するとともに、凝縮器を蒸発器より循環空気流の下流側に配置してなる。
Conventionally, in washing and drying machines that perform washing, dehydration, and drying, washing dryers that use a heat pump that does not use an electric heater as a drying means, reduce wrinkles and shrinkage of clothes, save energy, and shorten drying time. is there.
In this type of washing and drying machine, in addition to the heat pump, there is provided a circulation air passage that forms a circulation air flow that takes out air from a water tank that is a storage chamber for storing clothes and returns it to the storage chamber.
The heat pump has a refrigeration cycle configured by connecting a compressor, a condenser, a decompression unit, an evaporator, and a gas-liquid separator in a closed loop shape and enclosing a refrigerant therein, and the evaporator In the circulation air passage, it is arranged on the air outlet side of the storage chamber, and the condenser is arranged on the downstream side of the circulation air flow from the evaporator.

又、気液分離器は、気液分離器本体の上部に冷媒入口を有するとともに内部に上端開口を冷媒出口として外部に連通する冷媒出口用パイプを有し、且つ気液分離器本体の内部における冷媒入口と冷媒出口と間に網状部材を設けた構成である。
乾燥行程では、前記圧縮機が運転されて冷凍サイクルが稼働する。すなわち、ガス状態の冷媒が圧縮機により圧縮されて吐出され、吐出された冷媒は凝縮器で放熱により凝縮されて液化し、その際、循環空気を加熱する。そして減圧手段で減圧される。減圧された冷媒はさらに蒸発器で蒸発(ガス化、一部液状態)されて周囲を冷却する(循環空気を除湿する)。
The gas-liquid separator has a refrigerant inlet at the top of the gas-liquid separator main body, a refrigerant outlet pipe that communicates with the upper end opening as a refrigerant outlet inside, and the gas-liquid separator inside the gas-liquid separator main body. In this configuration, a mesh member is provided between the refrigerant inlet and the refrigerant outlet.
In the drying process, the compressor is operated to operate the refrigeration cycle. That is, the refrigerant in the gas state is compressed and discharged by the compressor, and the discharged refrigerant is condensed and liquefied by heat radiation in the condenser, and at that time, the circulating air is heated. Then, the pressure is reduced by the pressure reducing means. The decompressed refrigerant is further evaporated (gasified, partially in a liquid state) by an evaporator to cool the surroundings (dehumidify the circulating air).

そして、気液混合状態の冷媒は、前記気液分離器本体の上部の冷媒入口から内部に入り、ガス状態の冷媒(以下ガス冷媒)は網状部材通過して冷媒出口用パイプの冷媒出口から圧縮機に戻される。一方、液状態の冷媒(以下液冷媒)は、前記網状部材に付着して所定方向へ案内され、気液分離器本体の内部に溜められる。   Then, the refrigerant in the gas-liquid mixed state enters inside from the refrigerant inlet at the upper part of the gas-liquid separator body, and the gas refrigerant (hereinafter referred to as gas refrigerant) passes through the mesh member and is compressed from the refrigerant outlet of the refrigerant outlet pipe. Returned to the machine. On the other hand, liquid refrigerant (hereinafter referred to as liquid refrigerant) adheres to the mesh member, is guided in a predetermined direction, and is stored inside the gas-liquid separator body.

特開2009−273488号公報JP 2009-273488 A

ところで、冷凍サイクルの内部に封入される冷媒には、水分が混入しないように極力配慮されているが、各部品の管理状況などや、組み立ての際の周囲環境の変化によっては、極微量の水分が混入することも懸念される。水分が冷媒に混入すると、外気温度が低い場合などにおいて、冷媒温度が蒸発器でかなり下がるため、この蒸発器の後段に存在する気液分離器に冷媒が入ったときに、水分が前記網状部材で氷結するおそれがある。
そして、この網状部材で氷結が発生すると、冷媒の流通が阻害されて、冷凍サイクルが正常に機能しなくなり、つまり、ヒートポンプが正常に機能しなくなり、衣類の乾燥が困難となる不具合が発生する。
By the way, the refrigerant sealed inside the refrigeration cycle is considered as much as possible so that moisture does not get mixed in. However, depending on the management status of each part and the surrounding environment during assembly, a very small amount of moisture There is also concern about the contamination. When moisture is mixed into the refrigerant, the refrigerant temperature drops considerably in the evaporator when the outside air temperature is low. Therefore, when the refrigerant enters the gas-liquid separator existing in the subsequent stage of the evaporator, the moisture is There is a risk of freezing.
If freezing occurs in the mesh member, the refrigerant flow is hindered and the refrigeration cycle does not function normally, that is, the heat pump does not function normally, and it becomes difficult to dry clothes.

そこで、ヒートポンプにおける気液分離器内での水分の氷結を判定でき且つ当該氷結を解消できる洗濯乾燥機を提供する。   Therefore, a washing and drying machine capable of determining moisture icing in a gas-liquid separator in a heat pump and eliminating the icing is provided.

実施形態による洗濯乾燥機は、洗い、脱水、乾燥の各行程を行う洗濯乾燥機であって、衣類が収容される収容室と、循環用送風機を有し前記収容室の空気を取出して再度当該収容室内に戻す循環空気流を形成する循環風路と、気液分離器本体の上部に冷媒入口を有するとともに内部に上端開口を冷媒出口として外部に連通する冷媒出口用パイプを有し且つ前記気液分離器本体の内部における前記冷媒入口と前記冷媒出口用パイプの冷媒出口と間に網状部材を設けた気液分離器と、圧縮機、凝縮器、減圧手段、蒸発器、及び前記気液分離器を閉ループ状に接続し内部に冷媒を封入して構成された冷凍サイクルを有し、前記蒸発器を前記循環風路内において前記収容室の空気出口側に配置するとともに、前記凝縮器を前記蒸発器より前記循環空気流の下流側に配置してなるヒートポンプと、前記乾燥行程において前記気液分離器内に氷結が発生したか否かを判定する氷結判定手段と、前記氷結判定手段により前記氷結の発生が検出されたときに前記圧縮機を停止する氷結対応手段とを備える。   The washing / drying machine according to the embodiment is a washing / drying machine that performs each process of washing, dehydration, and drying. The washing / drying machine includes a storage room in which clothes are stored, a circulation fan, and the air in the storage room is taken out again. A circulation air passage for forming a circulation air flow returning to the housing chamber; a refrigerant inlet pipe having a refrigerant inlet at an upper portion of the gas-liquid separator main body and having an upper end opening as a refrigerant outlet; A gas-liquid separator in which a mesh member is provided between the refrigerant inlet inside the liquid separator main body and the refrigerant outlet of the refrigerant outlet pipe, a compressor, a condenser, a decompression means, an evaporator, and the gas-liquid separation; Having a refrigeration cycle configured by connecting a condenser in a closed loop shape and enclosing a refrigerant therein, disposing the evaporator on the air outlet side of the storage chamber in the circulation air passage, The circulating air from the evaporator A heat pump arranged on the downstream side, an icing determination means for determining whether or not icing has occurred in the gas-liquid separator during the drying process, and the occurrence of icing was detected by the icing determination means And ice freezing means for sometimes stopping the compressor.

第1実施形態による洗濯乾燥機の縦断側面図Longitudinal side view of the washing and drying machine according to the first embodiment ヒートポンプの概略構成を示す図Diagram showing schematic configuration of heat pump 気液分離器の縦断側面図Vertical side view of gas-liquid separator 電気的構成のブロック図Electrical configuration block diagram 制御内容を示すフローチャートFlow chart showing control contents 第2実施形態による電気的構成のブロック図Block diagram of electrical configuration according to second embodiment 気液分離器の縦断側面図Vertical side view of gas-liquid separator 制御内容を示すフローチャートFlow chart showing control contents 第3実施形態による気液分離器の縦断側面図Vertical sectional side view of a gas-liquid separator according to a third embodiment 第4実施形態による気液分離器の縦断側面図Vertical sectional side view of a gas-liquid separator according to a fourth embodiment

第1実施形態による洗濯乾燥機について図1〜図5を参照して説明する。図1において、外箱1の内部には水槽2が配設され、その水槽2の内部には回転槽であるドラム3が配設されている。水槽2及びドラム3は、共に一端部が閉塞された円筒状を成している。この場合、水槽2及びドラム3により、衣類の洗い(洗剤洗い及びすすぎ洗い)、脱水、乾燥に用いる槽が構成される。そして前記ドラム3の内部は、衣類が収容される収容室3aを構成している。   The washing / drying machine according to the first embodiment will be described with reference to FIGS. In FIG. 1, a water tank 2 is disposed inside an outer box 1, and a drum 3 that is a rotating tank is disposed inside the water tank 2. Both the water tank 2 and the drum 3 have a cylindrical shape with one end closed. In this case, the water tank 2 and the drum 3 constitute a tank used for washing clothes (detergent washing and rinsing), dehydration and drying. And the inside of the said drum 3 comprises the storage chamber 3a in which clothing is stored.

これら水槽2及びドラム3は、前側、即ち、図1中、左側の端面部にそれぞれの開口部4,5を有している。このうち、ドラム3の開口部5は、衣類が出し入れされ、その開口部5は水槽2の開口部4に囲繞されている。開口部4は、外箱1の前面部に形成された衣類出し入れ用の開口部6に、ベローズ7を介して連結されている。外箱1の開口部6には扉8が開閉可能に設けられている。   The water tank 2 and the drum 3 have respective openings 4 and 5 on the front side, that is, on the left end surface in FIG. Among these, the opening 5 of the drum 3 is where clothes are put in and out, and the opening 5 is surrounded by the opening 4 of the water tank 2. The opening 4 is connected via a bellows 7 to an opening 6 for putting in and taking out clothes formed on the front surface of the outer box 1. A door 8 is provided at the opening 6 of the outer box 1 so as to be openable and closable.

ドラム3は、開口部5の周囲に、例えば液体封入形の回転バランサ9が設けられ、周側部、つまり、ドラム3の胴部のほぼ全域に孔10が形成されている(図1に一部のみ図示)。この孔10は、洗い時及び脱水時に通水孔として機能し、乾燥時には通風孔として機能する。ドラム3の周側部の内面には複数のバッフル11が該ドラム3の内方に突出して設けられている。ドラム3の後側の端面部には、その中心と同心となる環状配置により複数の温風導入口12が形成されている。   The drum 3 is provided with, for example, a liquid-filled rotary balancer 9 around the opening 5, and a hole 10 is formed in the circumferential side, that is, almost the entire region of the drum 3 (one in FIG. 1). Only the part is shown). The hole 10 functions as a water passage hole during washing and dehydration, and functions as a ventilation hole during drying. A plurality of baffles 11 are provided on the inner surface of the peripheral side portion of the drum 3 so as to protrude inward of the drum 3. A plurality of hot air inlets 12 are formed in the end surface portion on the rear side of the drum 3 by an annular arrangement concentric with the center thereof.

水槽2には、前側の端面部の上部、つまり、開口部4より上方の部分に温風出口13が形成され、後側の端面部の上部に、温風導入口12の回転軌跡に対向させて温風入口14が形成されている。水槽2の底部には排水口15が設けられている。この排水口15には、水槽2外で排水弁16が接続され、更に、排水弁16に排水ホース17が接続されて、これらにより水槽2内の水を機外に排出できるようにしている。   The water tank 2 is formed with a hot air outlet 13 at the upper part of the front end surface, that is, at a portion above the opening 4, and is opposed to the rotation trajectory of the hot air inlet 12 at the upper part of the rear end surface part. Thus, the hot air inlet 14 is formed. A drain port 15 is provided at the bottom of the water tank 2. A drain valve 16 is connected to the drain port 15 outside the water tank 2, and further, a drain hose 17 is connected to the drain valve 16 so that the water in the water tank 2 can be discharged out of the machine.

水槽2の背面部には洗濯機モータ18が取り付けられており、これの回転軸19を水槽2内に挿通させて、その先端部に、ドラム3の後側の端面部の中心部が取り付けられている。これにより、ドラム3は、水槽2に同軸状で回転可能に支持されている。即ち、ドラム3は、洗濯機モータ18により直接回転駆動される構成で、洗濯機モータ18によるダイレクトドライブ方式が採用されている。   A washing machine motor 18 is attached to the back surface of the water tub 2, and the rotation shaft 19 is inserted into the water tub 2, and the center portion of the rear end surface portion of the drum 3 is attached to the front end portion thereof. ing. Thereby, the drum 3 is coaxially supported by the water tank 2 so that rotation is possible. That is, the drum 3 is directly rotated by the washing machine motor 18, and a direct drive system using the washing machine motor 18 is employed.

なお、水槽2は、複数のサスペンション20(図1に、1つのみ図示)を介して外箱1に弾性支持されている。その支持形態は、水槽2の軸方向が、前後となる横軸状かつ、前上がりの傾斜状をなしている。さらに、この水槽2に支持されたドラム3も、同形態となっている。洗濯機モータ18は、この場合アウターロータ形のブラシレスDCモータで構成されており、ドラム3を回転させる駆動手段として機能するようになっている。   The water tank 2 is elastically supported by the outer box 1 via a plurality of suspensions 20 (only one is shown in FIG. 1). As for the support form, the axial direction of the water tank 2 has a horizontal axis shape that is front and rear and an upwardly inclined shape. Further, the drum 3 supported by the water tank 2 has the same form. In this case, the washing machine motor 18 is constituted by an outer rotor type brushless DC motor, and functions as a driving means for rotating the drum 3.

水槽2の下方、即ち、外箱1の底面上には、台板21が配置され、この台板21上に通風ダクト22が配置されている。通風ダクト22は、前端部の上部に吸風口23を有している。この吸風口23には、水槽2の温風出口13が、還風ダクト24及び接続ホース25を介して接続されている。なお、還風ダクト24は、水槽2の開口部4の左側を迂回するように配管されている。   A base plate 21 is disposed below the water tank 2, that is, on the bottom surface of the outer box 1, and a ventilation duct 22 is disposed on the base plate 21. The ventilation duct 22 has an air inlet 23 at the top of the front end. A warm air outlet 13 of the water tank 2 is connected to the air inlet 23 via a return air duct 24 and a connection hose 25. The return air duct 24 is piped so as to bypass the left side of the opening 4 of the water tank 2.

通風ダクト22の後端部には、循環用送風機26のケーシング27が連設されている。このケーシング27の出口部28は、接続ホース29及び給風ダクト30を介して、水槽2の温風入口14に接続されている。なお、給風ダクト30は、前記洗濯機モータ18の左側を迂回するように配管されている。ここで、還風ダクト24、接続ホース25、通風ダクト22、循環用送風機26のケーシング27、接続ホース29、給風ダクト30により、水槽2の温風出口13と温風入口14とが接続されて、循環風路31が構成されている。   A casing 27 of a circulation fan 26 is connected to the rear end portion of the ventilation duct 22. The outlet portion 28 of the casing 27 is connected to the hot air inlet 14 of the water tank 2 via a connection hose 29 and an air supply duct 30. The air supply duct 30 is piped so as to bypass the left side of the washing machine motor 18. Here, the warm air outlet 13 and the warm air inlet 14 of the water tank 2 are connected by the return air duct 24, the connection hose 25, the ventilation duct 22, the casing 27 of the circulation fan 26, the connection hose 29, and the air supply duct 30. Thus, the circulation air passage 31 is configured.

この循環風路31は、水槽2内と連通しているとともにドラム3内とも連通している。なお、循環用送風機26は、この場合、遠心ファンであり、ケーシング27の内部に遠心羽根車32を有するとともに、その遠心羽根車32を回転させるモータ33をケーシング27の外部に有している。循環用送風機26は、ドラム3内の空気を、循環風路31を通して循環させる送風手段を構成している。この循環用送風機26の運転により循環風路31及び収容室3a内に矢印Aで示す循環空気流が形成される。   The circulation air passage 31 communicates with the water tank 2 and also with the drum 3. In this case, the circulation fan 26 is a centrifugal fan, and has a centrifugal impeller 32 inside the casing 27 and a motor 33 that rotates the centrifugal impeller 32 outside the casing 27. The circulation fan 26 constitutes a blowing means for circulating the air in the drum 3 through the circulation air passage 31. By the operation of the circulation fan 26, a circulation air flow indicated by an arrow A is formed in the circulation air passage 31 and the accommodating chamber 3a.

そして、循環風路31中、通風ダクト22の内部において、収容室3aの空気出口側である温風出口13側には蒸発器34が配設されている。又、循環風路31中、通風ダクト22の内部において、当該蒸発器34より前記循環空気流の下流側には凝縮器35が配設されている。これらの蒸発器34及び凝縮器35は、いずれも詳しくは図示しないが、冷媒流通パイプに伝熱フィンを細かいピッチで多数配設して成るフィン付きチューブ形のもので、熱交換性に優れており、それらの伝熱フィンの各間を、通風ダクト22内の前述の循環空気流(循環風)が通るようになっている。   An evaporator 34 is disposed in the circulation air passage 31 inside the ventilation duct 22 on the warm air outlet 13 side which is the air outlet side of the storage chamber 3a. Further, a condenser 35 is disposed in the circulation air passage 31 in the ventilation duct 22 on the downstream side of the circulation air flow from the evaporator 34. Although neither of these evaporator 34 and condenser 35 are shown in detail, they are tube-shaped with fins in which a large number of heat transfer fins are arranged at a fine pitch on the refrigerant flow pipe, and are excellent in heat exchange. Thus, the circulating air flow (circulating wind) in the ventilation duct 22 passes between the heat transfer fins.

前記循環風路31及び循環用送風機26とともに乾燥手段を構成するヒートポンプ36は、冷凍サイクル37(図2参照)を備えて構成されている。冷凍サイクル37は、圧縮機38と、前記凝縮器35と、前記蒸発器34と、例えば電子式の制御弁からなる絞り弁(減圧手段)39と、気液分離器40とを冷媒管(冷媒管34a、38aなど)により閉ループ状に接続し内部に冷媒を封入して構成されている。そして、このヒートポンプ36では、前述したように、前記蒸発器34を前記循環風路31内において前記収容室3aの空気出口側に配置するとともに、前記凝縮器35を前記蒸発器34より前記循環空気流の下流側に配置している。なお、前記圧縮機38はロータリー形である。   The heat pump 36 that constitutes the drying means together with the circulation air passage 31 and the circulation fan 26 includes a refrigeration cycle 37 (see FIG. 2). The refrigeration cycle 37 includes a compressor 38, the condenser 35, the evaporator 34, a throttle valve (decompression unit) 39 including, for example, an electronic control valve, and a gas-liquid separator 40. The tubes 34a, 38a, etc.) are connected in a closed loop and are filled with a refrigerant. In the heat pump 36, as described above, the evaporator 34 is disposed in the circulating air passage 31 on the air outlet side of the housing chamber 3a, and the condenser 35 is connected to the circulating air from the evaporator 34. Located downstream of the flow. The compressor 38 is a rotary type.

前記気液分離器40は、図3に示すように、上ケース41aと下ケース41bとで容器状をなす気液分離器本体41を備えている。この気液分離器本体41の上部には開口からなる冷媒入口41cが形成されており、この冷媒入口41cは、冷媒管34aを介して蒸発器34の冷媒出口に接続されている。   As shown in FIG. 3, the gas-liquid separator 40 includes a gas-liquid separator main body 41 that forms a container shape with an upper case 41 a and a lower case 41 b. A refrigerant inlet 41c having an opening is formed in the upper portion of the gas-liquid separator main body 41, and the refrigerant inlet 41c is connected to a refrigerant outlet of the evaporator 34 via a refrigerant pipe 34a.

又、この気液分離器本体41の底部には、下部接続口41dが形成されており、この下部接続口41dには、冷媒出口用パイプ42の下端部が外部に連通する形態に接続されている。この冷媒出口用パイプ42は、前記下部接続口41dから内部上方へ延びる形態に設けられており、その上端開口は冷媒出口42aを構成している。前記冷媒出口用パイプ42の下端開口は、冷媒管38aを介して前記圧縮機38の入口に接続されている。   A lower connection port 41d is formed at the bottom of the gas-liquid separator body 41, and the lower connection port 41d is connected to the lower end of the refrigerant outlet pipe 42 so as to communicate with the outside. Yes. The refrigerant outlet pipe 42 is provided so as to extend upward from the lower connection port 41d, and its upper end opening constitutes a refrigerant outlet 42a. A lower end opening of the refrigerant outlet pipe 42 is connected to an inlet of the compressor 38 through a refrigerant pipe 38a.

又、気液分離器本体41の内部には、前記冷媒入口41cと冷媒出口42aとの間に位置してドーム状の網状部材43が取付具44を介して配設されている。すなわち、取付具44は、円環部44aが前記冷媒入口41cと冷媒出口42aとの間に位置して前記気液分離器本体41の内周面に接触する形態に取り付けられており、この円環部44aに網状部材43が保持されている。又、この取付具44は、円環部44a内方の中央部に、前記冷媒出口42aの真上に位置する遮蔽板部44bを有しており、この遮蔽板部44bと円環部44aとの間には通液部44cが形成されている。前記網状部材43は、細い金属線を網状に組成して構成されている。なお、この網状部材43としては、板部材に多数の小孔を形成する構成としても良い。   A dome-like mesh member 43 is disposed in the gas-liquid separator body 41 between the refrigerant inlet 41 c and the refrigerant outlet 42 a via a fixture 44. That is, the attachment 44 is attached in such a manner that the annular portion 44a is located between the refrigerant inlet 41c and the refrigerant outlet 42a and contacts the inner peripheral surface of the gas-liquid separator body 41. A mesh member 43 is held on the ring portion 44a. In addition, the fixture 44 has a shielding plate portion 44b located directly above the refrigerant outlet 42a in the central portion inside the annular portion 44a. The shielding plate portion 44b and the annular portion 44a A liquid passing part 44c is formed between the two. The mesh member 43 is configured by composing thin metal wires into a mesh shape. The net member 43 may have a structure in which a large number of small holes are formed in the plate member.

前記ヒートポンプ36の能力(乾燥能力)は、圧縮機38の回転数や循環用送風機26の回転数により決定されるものである。
なお、外箱1の内上部には、洗濯乾燥機の制御に必要な電源系の制御部45及び表示系の制御部46と、水槽2内に給水するための給水弁47、給水ケース48、及び給水ホース49が配設されている。
The capacity (drying capacity) of the heat pump 36 is determined by the rotational speed of the compressor 38 and the rotational speed of the circulation fan 26.
In the inner upper portion of the outer box 1, a power supply system control unit 45 and a display system control unit 46 necessary for controlling the washing and drying machine, a water supply valve 47 for supplying water into the water tank 2, a water supply case 48, In addition, a water supply hose 49 is provided.

図2に示すように、循環風路31の内部には、収容室3aに入る空気の温度を検出する入口空気温度センサ50、収容室3aから出た空気の温度を検出する出口空気温度センサ51が配置されている。前記蒸発器34には、冷媒入口側の蒸発器温度を検出する蒸発器温度センサ52が設けられている。凝縮器35には、当該凝縮器35の温度を検出する凝縮器温度センサ53が設けられている。又、圧縮機38の吐出口部分には、当該圧縮機38の温度この場合吐出口部分の温度を検出する圧縮機温度センサ54が設けられている。   As shown in FIG. 2, inside the circulation air passage 31, there are an inlet air temperature sensor 50 for detecting the temperature of the air entering the storage chamber 3a, and an outlet air temperature sensor 51 for detecting the temperature of the air exiting the storage chamber 3a. Is arranged. The evaporator 34 is provided with an evaporator temperature sensor 52 for detecting the evaporator temperature on the refrigerant inlet side. The condenser 35 is provided with a condenser temperature sensor 53 that detects the temperature of the condenser 35. Further, a compressor temperature sensor 54 for detecting the temperature of the compressor 38, in this case, the temperature of the discharge port portion, is provided at the discharge port portion of the compressor 38.

図4に制御系の機能ブロック図を示すが、制御装置55は、前記制御部45,46(図1参照)を含むもので、例えばマイクロコンピュータやRAM、ROM等で構成されている。この制御装置55は、予め記憶された制御プログラムを実行することで、洗濯乾燥機の運転全般(洗い行程、脱水行程、乾燥行程)を制御する制御手段として機能するとともに、氷結判定手段55a、氷結対応手段55bとして機能する。   FIG. 4 shows a functional block diagram of the control system. The control device 55 includes the control units 45 and 46 (see FIG. 1), and is composed of, for example, a microcomputer, RAM, ROM, or the like. The control device 55 functions as control means for controlling the overall operation (washing process, dehydration process, drying process) of the washing / drying machine by executing a control program stored in advance, and the icing determination means 55a, It functions as the handling means 55b.

前記制御装置55には、洗濯乾燥機の運転に係る操作をユーザーがするための操作手段たる操作部56から各種操作信号が入力される。そして、その操作結果や現在の運転状況、及び異常表示などを含めた各種表示が、例えば液晶ディスプレイからなる表示手段たる表示部57に表示される。また、制御装置55には、水槽2内の水位を検出するように設けられた水位センサ58から、水位検出信号が入力される。そして、制御装置55には、入口空気温度センサ50、出口空気温度センサ51、蒸発器温度センサ52、凝縮器温度センサ53、圧縮機温度センサ54から夫々温度検出信号が入力されるとともに、外箱1の背板部付近に配設された外気温度センサ59からの温度検出信号が入力される。   Various operation signals are input to the control device 55 from an operation unit 56 which is an operation means for a user to perform operations related to the operation of the washing and drying machine. Then, various displays including the operation result, the current driving situation, and an abnormality display are displayed on the display unit 57 which is a display unit including a liquid crystal display, for example. In addition, a water level detection signal is input to the control device 55 from a water level sensor 58 provided to detect the water level in the water tank 2. The control device 55 receives temperature detection signals from the inlet air temperature sensor 50, the outlet air temperature sensor 51, the evaporator temperature sensor 52, the condenser temperature sensor 53, and the compressor temperature sensor 54, respectively, A temperature detection signal from an outside air temperature sensor 59 disposed in the vicinity of the back plate portion 1 is input.

そして、制御装置55は、各種の入力信号並びにあらかじめ記憶された制御プログラムに基づいて、水槽2内(ドラム3内)に給水するように設けた給水弁47と、ドラム3駆動用の洗濯機モータ18、水槽2内(ドラム3内)から排水するように設けた排水弁16、圧縮機38、循環用送風機26、及び絞り弁39を、駆動回路60を介して駆動制御する。   The control device 55 includes a water supply valve 47 provided to supply water into the water tank 2 (inside the drum 3), and a washing machine motor for driving the drum 3 based on various input signals and a control program stored in advance. 18. The drain valve 16, the compressor 38, the circulation fan 26, and the throttle valve 39 provided so as to drain from the water tank 2 (in the drum 3) are driven and controlled via the drive circuit 60.

前記制御装置55は、上述したように、洗い行程、脱水行程及び乾燥行程を制御するが、そのうち、洗い行程、脱水行程について簡単に説明する。
ユーザーが衣類を収容室3a内に収容し、例えば全自動コースである洗濯乾燥運転を選択して運転を開始すると、まず洗い行程を制御する。この洗い行程には、洗剤洗い行程とすすぎ洗い行程とが含まれる。洗剤洗い行程では、給水弁47を作動させることにより水槽2内に所定給水量で給水し、洗濯機モータ18を作動させることにより、ドラム3を低速で正逆両方向に交互に回転させる。この洗剤洗い行程は所定時間実行される。すすぎ洗い行程は、上述の洗剤洗い行程と同様の動作(但し洗剤投入はない)を所定時間実行する。
As described above, the control device 55 controls the washing process, the dehydration process, and the drying process. Of these, the washing process and the dehydration process will be briefly described.
When a user stores clothes in the storage chamber 3a and selects, for example, a washing / drying operation which is a fully automatic course and starts the operation, the washing process is first controlled. This washing process includes a detergent washing process and a rinsing process. In the detergent washing process, the water supply valve 47 is operated to supply water into the water tank 2 with a predetermined amount of water, and the washing machine motor 18 is operated to rotate the drum 3 alternately in both forward and reverse directions at a low speed. This detergent washing process is executed for a predetermined time. In the rinsing process, the same operation as the above-described detergent cleaning process (however, no detergent is added) is executed for a predetermined time.

脱水行程は、排水弁16を作動させて水槽2内の水を排出した後、洗濯機モータ18を作動させることによりドラム3を高速で一方向に回転させる動作が行われる。この脱水行程は所定時間実行される。
次に乾燥行程について、図5のフローチャートを参照して説明する。
ステップP1では、乾燥運転を開始する。この場合、循環用送風機26を予め設定された回転数例えば4500rpmで駆動するとともに、ドラム3を低速で正逆両方向に回転させる。さらに圧縮機38を予め設定された周波数(回転数)で駆動する。
In the dehydration process, the drain valve 16 is operated to discharge the water in the water tank 2, and then the washing machine motor 18 is operated to rotate the drum 3 in one direction at a high speed. This dehydration process is performed for a predetermined time.
Next, the drying process will be described with reference to the flowchart of FIG.
In step P1, the drying operation is started. In this case, the circulation fan 26 is driven at a preset rotation speed, for example, 4500 rpm, and the drum 3 is rotated in both forward and reverse directions at a low speed. Further, the compressor 38 is driven at a preset frequency (rotational speed).

上記循環用送風機26の送風作用で、既述したように、循環風路31及び収容室3a内に矢印A方向の循環空気流が発生する。
一方、圧縮機38の回転駆動により、冷凍サイクル37に封入された冷媒(初期状態ではガス冷媒)が圧縮されて高温高圧の冷媒となり、その高温高圧のガス冷媒が図2の矢印Bで示すように凝縮器35に流れ、当該凝縮器35で放熱される。上記放熱作用により通風ダクト22内の空気と熱交換する。その結果、循環風路31内の空気が加熱され、反対に、冷媒の温度は低下して凝縮する(液冷媒となる)。この液冷媒が、次に、絞り弁39を通過して減圧された後、蒸発器34に流入し、気化する(ガス冷媒となるが一部液冷媒状態の場合もある)。この蒸発器34は循環風路31内の空気を冷却し除湿する。蒸発器34を通過した冷媒(ガス冷媒、もしくは一部液冷媒を含む)は気液分離器40に冷媒入口41cから内部に入る。
As described above, a circulating air flow in the direction of arrow A is generated in the circulating air passage 31 and the accommodating chamber 3a by the air blowing action of the circulation fan 26.
On the other hand, as the compressor 38 is driven to rotate, the refrigerant (gas refrigerant in the initial state) sealed in the refrigeration cycle 37 is compressed into a high-temperature and high-pressure refrigerant, and the high-temperature and high-pressure gas refrigerant is indicated by an arrow B in FIG. To the condenser 35 and radiated by the condenser 35. Heat is exchanged with the air in the ventilation duct 22 by the heat dissipation action. As a result, the air in the circulation air passage 31 is heated, and conversely, the temperature of the refrigerant decreases and condenses (becomes a liquid refrigerant). Next, the liquid refrigerant passes through the throttle valve 39 and is decompressed, and then flows into the evaporator 34 and vaporizes (becomes a gas refrigerant but may be partially in the liquid refrigerant state). The evaporator 34 cools and dehumidifies the air in the circulation air passage 31. The refrigerant (including gas refrigerant or partially liquid refrigerant) that has passed through the evaporator 34 enters the gas-liquid separator 40 from the refrigerant inlet 41c.

そして、この気液分離器40において、ガス冷媒は網状部材43を通過して冷媒出口42aへ流入して圧縮機38に戻される。一方、液冷媒は、前記網状部材43に付着して、この網状部材43を伝ってその周囲下方に移動し、そして前記通液部44cを通り、冷媒出口用パイプ42外周面と気液分離器本体41内周面との間(気液分離器40内)に溜められる。なお、この気液分離器40に溜められた液冷媒は、圧縮機38から伝わる熱により加熱されて順次ガス化し、冷媒出口42aから圧縮機38に戻される。   In the gas-liquid separator 40, the gas refrigerant passes through the mesh member 43 and flows into the refrigerant outlet 42 a and is returned to the compressor 38. On the other hand, the liquid refrigerant adheres to the mesh member 43, travels along the mesh member 43 and moves downward around the mesh member 43, passes through the liquid passage portion 44c, and the outer peripheral surface of the refrigerant outlet pipe 42 and the gas-liquid separator. It is stored between the inner peripheral surface of the main body 41 (in the gas-liquid separator 40). The liquid refrigerant stored in the gas-liquid separator 40 is heated by heat transmitted from the compressor 38 to be sequentially gasified, and returned to the compressor 38 from the refrigerant outlet 42a.

上述の乾燥運転により、収容室3aに凝縮器35で加熱された空気(温風)が供給され、収容室3aで衣類の乾燥に寄与した温風は蒸発器34で除湿され、もって衣類が乾燥されてゆく。   By the above-described drying operation, air (warm air) heated by the condenser 35 is supplied to the storage chamber 3a, and the warm air that has contributed to drying of the clothes in the storage chamber 3a is dehumidified by the evaporator 34, thereby drying the clothes. It will be done.

上述したステップP1の乾燥運転開始後、すぐにステップP2で時間カウントを開始する。
そして、ステップP3〜ステップP8、及びステップP12〜ステップP14で、乾燥運転が順調(正常)に立ち上がっているか否かの判定を行う(立ち上がり判定手段)。すなわち、まずステップP3で、乾燥運転開始から所定時間例えば5分が経過したか否かを判断し、5分が経過したことが判断されるとステップP4で、圧縮機温度センサ54により検出した圧縮機38の温度を取得するとともに、蒸発器温度センサ52により検出した蒸発器34の温度を取得する。なお、上記ステップP3での所定時間の待機は、冷凍サイクル37が乾燥運転開始後、圧縮機38、凝縮器35、蒸発器34の各温度に相違が出でくるまでの時間を待機するものである。つまり、乾燥運転開始直後は圧縮機38、凝縮器35、蒸発器34の各温度がほぼ同じとなっていることから、直ぐに後述の氷結発生の判定を行うと氷結発生を誤判定するおそれもある。この状態を抜け出す時間を持つことで、後述の氷結発生判定を良好に行うことができる。さらに換言すれば、氷結発生判定のために適正な温度データを取得するのに必要とされる目安の時間(乾燥運転開始から所定時間)である。
Immediately after the start of the drying operation in step P1, the time counting is started in step P2.
Then, in Steps P3 to P8 and Steps P12 to P14, it is determined whether or not the drying operation has started up smoothly (normally) (rise determination unit). That is, first, in step P3, it is determined whether or not a predetermined time, for example, 5 minutes has elapsed since the start of the drying operation. If it is determined that 5 minutes have elapsed, the compression detected by the compressor temperature sensor 54 in step P4. The temperature of the machine 38 is acquired, and the temperature of the evaporator 34 detected by the evaporator temperature sensor 52 is acquired. Note that the standby for the predetermined time in Step P3 is a time until the refrigeration cycle 37 starts the drying operation and until the temperatures of the compressor 38, the condenser 35, and the evaporator 34 become different. is there. That is, immediately after the start of the drying operation, the temperatures of the compressor 38, the condenser 35, and the evaporator 34 are substantially the same, and therefore, if the determination of the occurrence of freezing described later is performed immediately, the occurrence of freezing may be erroneously determined. . By having time to exit this state, it is possible to satisfactorily determine the occurrence of freezing described later. In other words, it is a reference time (predetermined time from the start of the drying operation) required to acquire appropriate temperature data for determining the occurrence of freezing.

ステップP5では、乾燥運転開始から所定時間後(この場合前記5分後)において、検出された圧縮機38の温度と蒸発器34の温度の温度差(圧縮機38温度−蒸発器34温度)を算出する。そしてステップP6で、上記温度差が所定温度例えば5℃以上であるか否かを判断する。ステップP6で「YES」であればステップP12に移行して、この5℃以上の温度差の状態が所定時間例えば5分間継続したかを判断し、温度差5℃以上の状態が5分間継続したと判断されると(ステップP12で「YES」)、ステップP14に移行して、ステップP14に移行して乾燥運転が正常に立ち上がったと判定する。又、ステップP12で「NO」である場合には、ステップP13に移行して乾燥運転の立ち上がりが不良であると判定する。   In step P5, after a predetermined time from the start of the drying operation (in this case, after 5 minutes), the temperature difference between the detected temperature of the compressor 38 and the temperature of the evaporator 34 (compressor 38 temperature−evaporator 34 temperature) is calculated. calculate. In step P6, it is determined whether or not the temperature difference is a predetermined temperature, for example, 5 ° C. or more. If “YES” in the step P6, the process shifts to a step P12 to determine whether the temperature difference state of 5 ° C. or more has continued for a predetermined time, for example, 5 minutes, and the state of temperature difference 5 ° C. or more has continued for 5 minutes. ("YES" in step P12), the process proceeds to step P14, and the process proceeds to step P14 to determine that the drying operation has started up normally. If “NO” in the step P12, the process shifts to a step P13 to determine that the start of the drying operation is defective.

前記ステップP6で、前記温度差が5℃以上でない場合には、ステップP7に移行し乾燥運転開始から所定時間例えば20分が経過したか否かを判断する。この「20分」は乾燥運転の立ち上がりが正常か不良かの結果が確実に現れる判定用時間である。このステップP7で、20分が経過したと判断されるとステップP8に移行する。このステップP8では、立ち上がり不良があったか否かを判断し、立ち上がり不良があったと判断すると、ステップP11に移行する。このステップP11で図示しないブザー又は表示部57により異常報知(異常音声出力、異常表示など)をさせた後、ステップP10で乾燥運転を停止する。   In step P6, if the temperature difference is not 5 ° C. or more, the process proceeds to step P7 to determine whether or not a predetermined time, for example, 20 minutes has elapsed since the start of the drying operation. This “20 minutes” is a determination time in which the result of whether the start-up of the drying operation is normal or defective appears reliably. If it is determined in step P7 that 20 minutes have elapsed, the process proceeds to step P8. In step P8, it is determined whether or not there is a rising failure. If it is determined that there is a rising failure, the process proceeds to step P11. In step P11, a buzzer (not shown) or a display unit 57 notifies an abnormality (abnormal sound output, abnormality display, etc.), and then the drying operation is stopped in step P10.

なお、温度差5℃以上の状態が5分間継続することをもって、乾燥運転が正常と判定できる理由は次にある。すなわち、冷凍サイクル37において凝縮器35における放熱(凝縮)及び蒸発器34における冷却(蒸発)が順調に行われると、乾燥運転が順調に立ち上がってゆく。この場合、次第に凝縮器35と蒸発器34との温度差は大きくなる(凝縮器35が高温度で、蒸発器34が低温度となる)。そして、凝縮器35と蒸発器34との温度差が5℃以上となってその状態が5分以上は継続するようになる。これをもって乾燥運転が正常と判定できる。   The reason why the drying operation can be determined to be normal when the temperature difference of 5 ° C. or more continues for 5 minutes is as follows. That is, when the heat release (condensation) in the condenser 35 and the cooling (evaporation) in the evaporator 34 are performed smoothly in the refrigeration cycle 37, the drying operation starts up smoothly. In this case, the temperature difference between the condenser 35 and the evaporator 34 gradually increases (the condenser 35 is at a high temperature and the evaporator 34 is at a low temperature). Then, the temperature difference between the condenser 35 and the evaporator 34 becomes 5 ° C. or more, and this state continues for 5 minutes or more. With this, it can be determined that the drying operation is normal.

ステップP14で、乾燥運転の立ち上がりが正常と判定された後は、ステップP9に移行して運転状況が乾燥終了条件となったか否かを判断する。この乾燥終了条件は、入口空気温度センサ50と出口空気温度センサ51との検出温度差が所定判断値まで減少したことでも良いし、乾燥運転の経過時間が所定時間に達したことでも良い。   After it is determined in step P14 that the start of the drying operation is normal, the process proceeds to step P9 and it is determined whether or not the operation state is a drying end condition. The drying end condition may be that the detected temperature difference between the inlet air temperature sensor 50 and the outlet air temperature sensor 51 has decreased to a predetermined determination value, or that the elapsed time of the drying operation has reached a predetermined time.

このステップP9で、乾燥終了条件に達していないと判断されたときには、ステップP15〜ステップP18で気液分離器40内部に氷結が発生したか否かの判定を行う(氷結判定手段55a)。すなわち、ステップP15では外気温度センサ59で検出した外気温度(室温)が所定温度15℃未満か否かを判断し、15℃未満であれば、ステップP16に移行して前述の凝縮器35と蒸発器34との温度差が5℃未満か否かを判断する。   If it is determined in step P9 that the drying end condition has not been reached, it is determined in steps P15 to P18 whether or not icing has occurred in the gas-liquid separator 40 (icing determination means 55a). That is, in step P15, it is determined whether or not the outside air temperature (room temperature) detected by the outside air temperature sensor 59 is less than a predetermined temperature of 15 ° C. If it is less than 15 ° C., the process proceeds to step P16 and the above-described condenser 35 and evaporation are performed. It is determined whether or not the temperature difference from the vessel 34 is less than 5 ° C.

ステップP16で温度差が5℃未満であれば、ステップP17で、温度差が5℃未満の状態が5分間継続したか否かを判断し、温度差が5℃未満の状態が5分間継続したことが判断されると、ステップP18に移行して気液分離器40内に氷結が発生したと判定する。   If the temperature difference is less than 5 ° C in Step P16, it is determined in Step P17 whether or not the temperature difference is less than 5 ° C for 5 minutes, and the temperature difference is less than 5 ° C for 5 minutes. If it is determined, the process proceeds to step P18 and it is determined that icing has occurred in the gas-liquid separator 40.

上述の「凝縮器35と蒸発器34との温度差が5℃未満でこの状態が5分間継続した」ことをもって氷結が発生したと判断する理由は次にある。すなわち、冷凍サイクル37内に水分が混入していない場合に、冷凍サイクル37が正常に動作すると(乾燥運転が正常に立ち上がると)、凝縮器35では正常に凝縮作用がすすみ、且つ蒸発器34では正常に蒸発作用がすすむ。この結果、凝縮器35は温度上昇し蒸発器34は温度低下する。そして、凝縮器35と蒸発器34との温度差は5℃以上となる。   The reason why it is determined that icing has occurred when “the temperature difference between the condenser 35 and the evaporator 34 is less than 5 ° C. and this state continues for 5 minutes” is as follows. That is, when water is not mixed in the refrigeration cycle 37 and the refrigeration cycle 37 operates normally (when the drying operation starts up normally), the condenser 35 normally performs a condensing action, and the evaporator 34 Evaporation works normally. As a result, the temperature of the condenser 35 increases and the temperature of the evaporator 34 decreases. And the temperature difference of the condenser 35 and the evaporator 34 will be 5 degreeC or more.

ところが、冷凍サイクル37内に水分が混入している場合、特に外気温度が低い場合には蒸発器34の温度も下がるため、この蒸発器34から気液分離器40内に冷媒が流入したとき、この冷媒に混入している水分が網状部材43で氷結して、当該網状部材43の目(通気部分)が詰まってしまう可能性がある。そして乾燥運転の進行に伴って、この氷結領域が増えて網状部材43の目詰まり領域が広くなっていくと、冷凍サイクル37内の冷媒の流れが悪くなる。すると、蒸発器34での蒸発作用も低下し、蒸発器34の温度が上昇してゆく。このため、除湿が促進されずに乾燥が進まない状態となる。この場合、圧縮機38は気液分離器40内のガス冷媒を吸引し続けるため、気液分離器40内の圧力が下がり、内部は低温状態のままとなり、氷結は解消されない。   However, when moisture is mixed in the refrigeration cycle 37, particularly when the outside air temperature is low, the temperature of the evaporator 34 also decreases. Therefore, when the refrigerant flows into the gas-liquid separator 40 from the evaporator 34, There is a possibility that moisture mixed in the refrigerant freezes in the mesh member 43 and the eyes (ventilation portion) of the mesh member 43 are clogged. As the icing region increases and the clogging region of the mesh member 43 increases as the drying operation progresses, the refrigerant flow in the refrigeration cycle 37 becomes worse. Then, the evaporation action in the evaporator 34 is also reduced, and the temperature of the evaporator 34 is increased. For this reason, the dehumidification is not promoted and the drying does not proceed. In this case, since the compressor 38 continues to suck the gas refrigerant in the gas-liquid separator 40, the pressure in the gas-liquid separator 40 decreases, the inside remains at a low temperature, and icing is not eliminated.

そこで、上述したように氷結が発生すると蒸発器34の温度が上昇して凝縮器35の温度に近づくことに着目し、「凝縮器35と蒸発器34との温度差が5℃未満(所定温度未満)でこの状態が5分間(所定時間)が継続した」ことを判断すれば(ステップP17)、氷結が発生したことを判定できる(ステップP18)。   Therefore, paying attention to the fact that the temperature of the evaporator 34 rises and approaches the temperature of the condenser 35 when icing occurs as described above, “the temperature difference between the condenser 35 and the evaporator 34 is less than 5 ° C. (predetermined temperature). If it is determined that this state has continued for 5 minutes (predetermined time) (step P17), it can be determined that icing has occurred (step P18).

前記ステップP18の後、ステップP19及びステップP20で氷結対応処理を実行する(氷結対応手段55b)。すなわち、ステップP19では、圧縮機38を停止するとともに、循環用送風機26の回転数を4000rpmから3000rpmに変更する。この圧縮機38の停止を所定時間例えば3分継続する(ステップP20)。これにより、気液分離器40に対する圧縮機38の吸引作用が停止されて減圧状態が解消され、さらに、圧縮機38の運転時に発生した熱が冷媒管38aを介して気液分離器40に伝達される。これにより、気液分離器40が温度上昇し氷結が解消されてゆき、前記3分を経過すると、前記氷結が解消される。   After the step P18, freezing handling processing is executed in steps P19 and P20 (freezing handling means 55b). That is, in step P19, the compressor 38 is stopped and the rotational speed of the circulation fan 26 is changed from 4000 rpm to 3000 rpm. The stop of the compressor 38 is continued for a predetermined time, for example, 3 minutes (step P20). As a result, the suction action of the compressor 38 on the gas-liquid separator 40 is stopped, the reduced pressure state is eliminated, and the heat generated during the operation of the compressor 38 is transmitted to the gas-liquid separator 40 via the refrigerant pipe 38a. Is done. As a result, the temperature of the gas-liquid separator 40 rises, and freezing is eliminated. When the three minutes have elapsed, the freezing is eliminated.

このステップP20の後、ステップP21に移行し、圧縮機38の温度が再起動可能な温度例えば70℃未満であれば、ステップP22に移行して、圧縮機38を再起動するとともに、循環用送風機26の回転数を3000rpmから5500rpmに変更する。ステップP21で圧縮機38の温度が70℃以上である場合(再起動可能な温度でない)場合には、当該圧縮機38の停止を継続して自然放熱により再起動可能な温度状態となるのを待って、ステップP22に移行する。   After Step P20, the process proceeds to Step P21, and if the temperature of the compressor 38 is a restartable temperature, for example, less than 70 ° C., the process proceeds to Step P22, the compressor 38 is restarted, and the circulation blower The number of rotations 26 is changed from 3000 rpm to 5500 rpm. When the temperature of the compressor 38 is 70 ° C. or higher in step P21 (not a restartable temperature), the compressor 38 is continuously stopped to reach a restartable temperature state by natural heat dissipation. After waiting, the process proceeds to Step P22.

上述した実施形態においては、乾燥行程において気液分離器40内における氷結が発生したか否かを判定する氷結判定手段55aを設けたから、ヒートポンプ36における気液分離器40内での水分の氷結を判定できる。
又、上記実施形態においては、氷結判定手段55aにより気液分離器40内における氷結の発生が検出されたときに圧縮機38を停止する氷結対応手段55bを設けたから、気液分離器40内に氷結が発生した場合、圧縮機38を停止することで気液分離器40を温度上昇させ得、これにより、氷結を解消できる。
In the embodiment described above, since the icing determination means 55a for determining whether or not icing has occurred in the gas-liquid separator 40 during the drying process is provided, the icing of moisture in the gas-liquid separator 40 in the heat pump 36 is performed. Can be judged.
Further, in the above embodiment, the icing countermeasure means 55b for stopping the compressor 38 when the icing determination means 55a detects the occurrence of icing in the gas / liquid separator 40 is provided. When icing occurs, the temperature of the gas-liquid separator 40 can be raised by stopping the compressor 38, thereby eliminating icing.

又、本実施形態においては、凝縮器35の温度を検出する凝縮器温度センサ53と、蒸発器34の温度を検出する蒸発器温度センサ52とを備え、前記氷結判定手段55aを、乾燥行程において、凝縮器温度センサ53により検出した凝縮器温度と蒸発器温度センサ52により検出した蒸発器温度との温度差を検出し、当該温度差が所定温度差である例えば5℃未満となったときであって当該温度差状態が所定時間例えば5分間以上継続したときに、氷結が発生したと判定する構成としたから、気液分離器40内における氷結発生を確実に判定できる。   In the present embodiment, a condenser temperature sensor 53 for detecting the temperature of the condenser 35 and an evaporator temperature sensor 52 for detecting the temperature of the evaporator 34 are provided, and the icing determination means 55a is provided in the drying process. When the temperature difference between the condenser temperature detected by the condenser temperature sensor 53 and the evaporator temperature detected by the evaporator temperature sensor 52 is detected, and the temperature difference is less than a predetermined temperature, for example, less than 5 ° C. In this configuration, when the temperature difference state continues for a predetermined time, for example, 5 minutes or more, it is determined that icing has occurred. Therefore, icing in the gas-liquid separator 40 can be reliably determined.

又、本実施形態においては、室温が所定温度例えば15℃未満の場合に、氷結判定手段55aによる判定動作を行うようにした。室温が15℃以上の状態では冷凍サイクル37内に水分が含まれていたとしても氷結が発生するおそれはない。従って、室温が15℃以上の場合には、氷結判定手段55aによる判定動作を省略でき、制御の簡単化を図ることができる。但し、室温に関係なく氷結判定手段55aによる判定動作を行うようにしても差し支えはない。   In this embodiment, when the room temperature is lower than a predetermined temperature, for example, 15 ° C., the determination operation by the icing determination means 55a is performed. In the state where the room temperature is 15 ° C. or higher, even if moisture is contained in the refrigeration cycle 37, there is no possibility of freezing. Therefore, when the room temperature is 15 ° C. or higher, the determination operation by the icing determination means 55a can be omitted, and the control can be simplified. However, the determination operation by the icing determination means 55a may be performed regardless of the room temperature.

図6〜図8は第2実施形態を示している。この実施形態においては、気液分離器40の温度(網状部材43部分の温度)を検出する気液分離器温度センサ71を設けている。又、氷結判定手段55cの機能が第1実施形態における氷結判定手段55aの機能と異なる。なお、第1実施形態の凝縮器温度センサ53は設けていない。   6 to 8 show a second embodiment. In this embodiment, a gas-liquid separator temperature sensor 71 for detecting the temperature of the gas-liquid separator 40 (the temperature of the mesh member 43) is provided. Further, the function of the icing determination means 55c is different from the function of the icing determination means 55a in the first embodiment. Note that the condenser temperature sensor 53 of the first embodiment is not provided.

前記氷結判定手段55cについて図8のフローチャートを参照して説明する。このフローチャートにおいて、ステップP15、ステップP16a、ステップP17a、ステップP18が氷結判定手段55cに相当する。すなわち、ステップP15で室温が15℃未満であると判断されると、ステップP16aに移行する。このステップP16aでは、前記気液分離器温度センサ71により検出した気液分離器40の温度が前記蒸発器温度センサ52により検出した蒸発器34の入口温度よりも所定温度例えば10℃以上低いか否かを判断し、10℃以上低いと判断されたときにはステップP17aに移行して上記温度差状態(10℃以上低い温度差状態)が所定時間例えば1分間継続したか否かを判断する。10℃以上低い温度差状態が5分間継続すると、ステップP18に移行して気液分離器40に氷結が発生したと判定する。   The icing determination means 55c will be described with reference to the flowchart of FIG. In this flowchart, Step P15, Step P16a, Step P17a, and Step P18 correspond to the icing determination means 55c. That is, if it is determined in step P15 that the room temperature is less than 15 ° C., the process proceeds to step P16a. In this step P16a, whether or not the temperature of the gas-liquid separator 40 detected by the gas-liquid separator temperature sensor 71 is lower than the inlet temperature of the evaporator 34 detected by the evaporator temperature sensor 52 by a predetermined temperature, for example, 10 ° C. or more. If it is determined that the temperature is lower by 10 ° C. or more, the process proceeds to step P17a to determine whether or not the temperature difference state (temperature difference state lower by 10 ° C. or more) has continued for a predetermined time, for example, 1 minute. When the temperature difference state lower by 10 ° C. or more continues for 5 minutes, the process proceeds to step P18 and it is determined that icing has occurred in the gas-liquid separator 40.

この氷結判定の趣旨は次にある。すなわち、気液分離器40の網状部材43に氷結が発生すると、当該気液分離器40の温度が急激に温度低下する。この場合、室温などにより気液分離器40の温度は一様ではないが、どの室温状況でも、氷結発生によって気液分離器40の温度が蒸発器34の入口温度に対して10℃以上低くなる。この温度差をもって氷結が発生したと判定できる。この場合、この温度差状態が少なくとも1分間継続することを判断すれば、氷結の発生がさらに確実であると判定できる。但し、この温度差での1分間継続の判断は、なくても良い。   The purpose of this freezing determination is as follows. That is, when icing occurs in the mesh member 43 of the gas-liquid separator 40, the temperature of the gas-liquid separator 40 rapidly decreases. In this case, although the temperature of the gas-liquid separator 40 is not uniform depending on the room temperature or the like, the temperature of the gas-liquid separator 40 is lowered by 10 ° C. or more with respect to the inlet temperature of the evaporator 34 due to the occurrence of freezing in any room temperature situation. . With this temperature difference, it can be determined that icing has occurred. In this case, if it is determined that this temperature difference state continues for at least 1 minute, it can be determined that the occurrence of freezing is more certain. However, it is not necessary to determine whether to continue for one minute at this temperature difference.

この第2実施形態によれば、気液分離器40の温度を直接検出し、且つ気液分離器40の温度が蒸発器34の入口温度に対して10℃以上低くなるか否かを判断するから、室温(外気温度)に関係なく気液分離器40の氷結発生を確実に判定できる。   According to the second embodiment, the temperature of the gas-liquid separator 40 is directly detected, and it is determined whether the temperature of the gas-liquid separator 40 is lower by 10 ° C. or more than the inlet temperature of the evaporator 34. Therefore, the occurrence of freezing in the gas-liquid separator 40 can be reliably determined regardless of the room temperature (outside air temperature).

図9は第3実施形態を示している。この第3実施形態においては、気液分離器40における網状部材43と冷媒出口用パイプ42とを熱良導材例えば鋼板や銅板などからなる伝熱部材72により伝熱可能とした点が第1実施形態と異なる。この伝熱部材72には、通液可能な孔部72aが適宜形成されている。なお、この伝熱部材72には孔部72aは形成せずに、相互間に通液用の隙間をおいて複数設ける構成としても良い。   FIG. 9 shows a third embodiment. In the third embodiment, the first feature is that the mesh member 43 and the refrigerant outlet pipe 42 in the gas-liquid separator 40 can be transferred by a heat transfer member 72 made of a heat conducting material such as a steel plate or a copper plate. Different from the embodiment. The heat transfer member 72 is appropriately formed with a hole 72a through which liquid can pass. Note that the heat transfer member 72 may be provided with a plurality of holes 72a with no gap 72a between them, with a gap for liquid passage therebetween.

この第3実施形態によれば、圧縮機38の熱が冷媒管38a、冷媒出口用パイプ42及び前記伝熱部材72を介して網状部材43に伝熱可能であるため、氷結の発生を遅らせることが可能であるとともに、氷結が発生した場合の氷結の解氷を速くできる。   According to the third embodiment, the heat of the compressor 38 can be transferred to the mesh member 43 via the refrigerant pipe 38a, the refrigerant outlet pipe 42, and the heat transfer member 72, so that the occurrence of icing is delayed. In addition, it is possible to speed up the thawing of ice when icing occurs.

図10は第4実施形態を示している。この第4実施形態においては網状部材73が第1実施形態の網状部材43と異なる。網状部材73は、網目の粗い第1の網状部材73aと、相対的に網目の細かい第2の網状部材73bとを備えている。前記第1の網状部材73aを前記冷媒入口41c側に配設し、前記第2の網状部材73bを前記第1の網状部材73aと離間させて前記冷媒出口用パイプ42の冷媒出口42a側に配設している。   FIG. 10 shows a fourth embodiment. In the fourth embodiment, the mesh member 73 is different from the mesh member 43 of the first embodiment. The mesh member 73 includes a first mesh member 73a having a coarse mesh and a second mesh member 73b having a relatively fine mesh. The first mesh member 73a is disposed on the refrigerant inlet 41c side, and the second mesh member 73b is spaced apart from the first mesh member 73a and disposed on the refrigerant outlet 42a side of the refrigerant outlet pipe 42. Has been established.

この第4実施形態において、気液分離器40内で氷結が発生する場合、冷媒は最初に第1の網状部材73aに付着するから当該第1の網状部材73aで水分が氷結する。この場合、この第1の網状部材73aは目が粗いから、目詰まりがすぐに発生することはなく、ガス冷媒の通気性が直ちに損なわれることがない。この結果、氷結により冷凍サイクル37の冷媒の流通が低下する現象の発生を遅らせることが可能となる。なお、第1の網状部材73aは目が粗いため液冷媒に対する通過阻止作用は若干落ちる。しかし、第1の網状部材73aの下側に、目が細かい第2の網状部材73bが存在するため、当該第2の網状部材73bにより液冷媒の通過を阻止して周囲(冷媒出口用パイプ42の真上から外れた領域)に案内できる。   In the fourth embodiment, when icing occurs in the gas-liquid separator 40, the refrigerant first adheres to the first mesh member 73a, so that moisture is frozen in the first mesh member 73a. In this case, since the first mesh member 73a is rough, clogging does not occur immediately, and the air permeability of the gas refrigerant is not immediately impaired. As a result, it is possible to delay the occurrence of a phenomenon in which the refrigerant flow in the refrigeration cycle 37 is reduced due to icing. Since the first mesh member 73a is rough, the passage blocking action for the liquid refrigerant is slightly reduced. However, since the second mesh member 73b having a fine mesh exists below the first mesh member 73a, the second mesh member 73b prevents the liquid refrigerant from passing therearound (the refrigerant outlet pipe 42). Can be guided to the area off the top).

この第4実施形態によれば、氷結が発生した場合に、冷凍サイクル37における冷媒の流通が低下する現象の発生を遅らせることが可能となる。
以上説明した実施形態の洗濯乾燥機によれば、乾燥行程において気液分離器内に氷結が発生したか否かを判定する氷結判定手段と、氷結判定手段により気液分離器内における氷結の発生が検出されたときに圧縮機を停止する氷結対応手段とを備えたから、ヒートポンプにおける気液分離器内での水分の氷結を判定でき且つ当該氷結を解消できる。
According to the fourth embodiment, it is possible to delay the occurrence of a phenomenon in which the refrigerant flow in the refrigeration cycle 37 decreases when icing occurs.
According to the washing and drying machine of the embodiment described above, icing determination means for determining whether or not icing has occurred in the gas-liquid separator during the drying process, and generation of icing in the gas-liquid separator by the icing determination means. Since it is provided with an icing countermeasure means for stopping the compressor when the mist is detected, it is possible to determine the icing of moisture in the gas-liquid separator in the heat pump and to eliminate the icing.

なお、第1実施形態及び第2実施形態における各所定温度の具体的温度値や具体的温度差あるいは所定時間の具体的時間は、一例を示すものであり、適宜変更が可能である。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変更は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
In addition, the specific temperature value of each predetermined temperature in the 1st Embodiment and 2nd Embodiment, the specific temperature difference, or the specific time of predetermined time shows an example, and can be changed suitably.
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and equivalents thereof.

図面中、1は第1実施形態による洗濯乾燥機の外箱、2は水槽、3はドラム、3aは収容室、26は循環用送風機、31は循環風路、34は蒸発器、35は凝縮器、36はヒートポンプ、37は冷凍サイクル、38は圧縮機、39は絞り弁(減圧手段)、40は気液分離器、41cは冷媒入口、42は冷媒出口用パイプ、42aは冷媒出口、43は網状部材、52は蒸発器温度センサ、53は凝縮器温度センサ、54は圧縮機温度センサ、55は制御装置、55aは氷結判定手段、55bは氷結対応手段、71は気液分離器温度センサ、72は伝熱部材、73は網状部材を示す。   In the drawings, 1 is the outer box of the washer / dryer according to the first embodiment, 2 is a water tank, 3 is a drum, 3a is a storage chamber, 26 is a circulation fan, 31 is a circulation air passage, 34 is an evaporator, and 35 is condensation. 36, a heat pump, 37 a refrigeration cycle, 38 a compressor, 39 a throttle valve (pressure reduction means), 40 a gas-liquid separator, 41c a refrigerant inlet, 42 a refrigerant outlet pipe, 42a a refrigerant outlet, 43 Is a mesh member, 52 is an evaporator temperature sensor, 53 is a condenser temperature sensor, 54 is a compressor temperature sensor, 55 is a control device, 55a is icing determination means, 55b is icing countermeasure means, and 71 is a gas-liquid separator temperature sensor. , 72 is a heat transfer member, and 73 is a mesh member.

Claims (5)

洗い、脱水、乾燥の各行程を行う洗濯乾燥機であって、
衣類が収容される収容室と、
循環用送風機を有し前記収容室の空気を取出して再度当該収容室内に戻す循環空気流を形成する循環風路と、
気液分離器本体の上部に冷媒入口を有するとともに内部に上端開口を冷媒出口として外部に連通する冷媒出口用パイプを有し且つ前記気液分離器本体の内部における前記冷媒入口と前記冷媒出口用パイプの冷媒出口と間に網状部材を設けた気液分離器と、
圧縮機、凝縮器、減圧手段、蒸発器、及び前記気液分離器を閉ループ状に接続し内部に冷媒を封入して構成された冷凍サイクルを有し、前記蒸発器を前記循環風路内において前記収容室の空気出口側に配置するとともに、前記凝縮器を前記蒸発器より前記循環空気流の下流側に配置してなるヒートポンプと、
前記乾燥行程において前記気液分離器内に氷結が発生したか否かを判定する氷結判定手段と、
前記氷結判定手段により前記氷結の発生が検出されたときに前記圧縮機を停止する氷結対応手段と
を備えた洗濯乾燥機。
A washing and drying machine that performs each process of washing, dehydration, and drying,
A storage room in which clothing is stored;
A circulation air passage that has a circulation fan and forms a circulation air flow that takes out the air in the accommodation chamber and returns it to the accommodation chamber;
It has a refrigerant inlet at the upper part of the gas-liquid separator main body, and has a refrigerant outlet pipe communicating with the outside with the upper end opening as a refrigerant outlet inside, and for the refrigerant inlet and the refrigerant outlet inside the gas-liquid separator main body A gas-liquid separator provided with a mesh member between the refrigerant outlet of the pipe;
A compressor, a condenser, a decompression means, an evaporator, and a gas-liquid separator connected in a closed loop and having a refrigeration cycle configured to enclose a refrigerant therein; and the evaporator is disposed in the circulation air passage A heat pump that is arranged on the air outlet side of the housing chamber and that the condenser is arranged on the downstream side of the circulating air flow from the evaporator,
Freezing determination means for determining whether or not freezing has occurred in the gas-liquid separator in the drying process;
A washing and drying machine comprising: an icing countermeasure unit that stops the compressor when the icing determination unit detects the occurrence of the icing.
前記凝縮器の温度を検出する凝縮器温度センサと、
前記蒸発器の温度を検出する蒸発器温度センサとを備え、
前記氷結判定手段は、
乾燥運転開始から所定時間後において前記凝縮器温度センサにより検出した凝縮器温度と前記蒸発器温度センサにより検出した蒸発器温度との温度差を検出し、当該温度差が所定温度差未満となったときであって当該温度差状態が所定時間以上継続したときに、前記氷結が発生したと判定する請求項1記載の洗濯乾燥機。
A condenser temperature sensor for detecting the temperature of the condenser;
An evaporator temperature sensor for detecting the temperature of the evaporator;
The icing determination means includes
A temperature difference between the condenser temperature detected by the condenser temperature sensor and the evaporator temperature detected by the evaporator temperature sensor is detected after a predetermined time from the start of the drying operation, and the temperature difference becomes less than the predetermined temperature difference. The washing and drying machine according to claim 1, wherein when the temperature difference state continues for a predetermined time or more, it is determined that the icing has occurred.
前記蒸発器における冷媒入口側の温度を検出する蒸発器温度センサと、
前記気液分離器の温度を検出する気液分離器温度センサとを備え
前記氷結判定手段は、
乾燥運転開始から所定時間後において前記気液分離器温度センサにより検出した気液分離器温度が前記蒸発器温度センサにより検出した蒸発器温度に対して所定温度以上低いときに、前記氷結が発生したと判定する請求項1記載の洗濯乾燥機。
An evaporator temperature sensor for detecting the temperature of the refrigerant inlet side in the evaporator;
A gas-liquid separator temperature sensor for detecting the temperature of the gas-liquid separator;
The freezing occurred when the gas-liquid separator temperature detected by the gas-liquid separator temperature sensor was lower than the evaporator temperature detected by the evaporator temperature sensor by a predetermined time after the start of the drying operation. The washing / drying machine according to claim 1, which is determined as follows.
前記気液分離器における前記網状部材と冷媒出口用パイプとを熱良導材製の伝熱部材により伝熱可能とした請求項1から3のいずれか一項記載の洗濯乾燥機。   The washing and drying machine according to any one of claims 1 to 3, wherein the mesh member and the refrigerant outlet pipe in the gas-liquid separator can transfer heat by a heat transfer member made of a heat conducting material. 前記網状部材は、網目の粗い第1の網状部材と、相対的に網目の細かい第2の網状部材とを備え、前記第1の網状部材を前記冷媒入口側に配設し、前記第2の網状部材を前記第1の網状部材と離間させて前記冷媒出口用パイプの冷媒出口側に配設した構成である請求項1から4のいずれか一項記載の洗濯乾燥機。   The mesh member includes a first mesh member having a coarse mesh and a second mesh member having a relatively fine mesh, the first mesh member being disposed on the refrigerant inlet side, and the second mesh member. The washing and drying machine according to any one of claims 1 to 4, wherein a mesh member is disposed on the refrigerant outlet side of the refrigerant outlet pipe so as to be separated from the first mesh member.
JP2013226969A 2013-10-31 2013-10-31 Washing and drying machine Active JP6352614B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013226969A JP6352614B2 (en) 2013-10-31 2013-10-31 Washing and drying machine
CN201410599369.9A CN104594005B (en) 2013-10-31 2014-10-30 Scrubbing-and-drying unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013226969A JP6352614B2 (en) 2013-10-31 2013-10-31 Washing and drying machine

Publications (2)

Publication Number Publication Date
JP2015084996A true JP2015084996A (en) 2015-05-07
JP6352614B2 JP6352614B2 (en) 2018-07-04

Family

ID=53048455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013226969A Active JP6352614B2 (en) 2013-10-31 2013-10-31 Washing and drying machine

Country Status (2)

Country Link
JP (1) JP6352614B2 (en)
CN (1) CN104594005B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170082047A (en) * 2016-01-05 2017-07-13 엘지전자 주식회사 Gas-liquid separator and clothes treatment apparatus having the gas-liquid separator
WO2018026092A1 (en) * 2016-08-01 2018-02-08 엘지전자 주식회사 Garment processing device
JP2018033841A (en) * 2016-09-02 2018-03-08 東芝ライフスタイル株式会社 Clothing dryer
EP3392393A1 (en) * 2016-01-05 2018-10-24 LG Electronics Inc. Clothes treatment apparatus having a heat pump module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404682A (en) * 2021-05-27 2022-11-29 重庆海尔滚筒洗衣机有限公司 Method and device for detecting temperature of drum of clothes dryer and clothes dryer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107070A (en) * 1987-10-21 1989-04-24 Hitachi Ltd Method of detecting shortage of refrigerant for air conditioner
JPH06257896A (en) * 1993-03-08 1994-09-16 Matsushita Electric Ind Co Ltd Gas-liquid separator
JP2007327691A (en) * 2006-06-07 2007-12-20 Sanden Corp Compressor
JP2008014606A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Air conditioner
JP2010104579A (en) * 2008-10-30 2010-05-13 Toshiba Corp Washing machine
EP2527518A1 (en) * 2011-05-26 2012-11-28 Electrolux Home Products Corporation N.V. Articles treatment apparatus having heat pump system with safety element
JP2013007529A (en) * 2011-06-24 2013-01-10 Denso Corp Dryer for refrigeration cycle and refrigeration cycle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343593C (en) * 2003-04-02 2007-10-17 松下电器产业株式会社 Drying device and method of operation therefor
WO2005075728A1 (en) * 2004-02-04 2005-08-18 Matsushita Electric Industrial Co., Ltd. Drying apparatus and operating method thereof
CN201202044Y (en) * 2008-05-06 2009-03-04 上海理工大学 Heat pump type clothes dryer
EP2468946B1 (en) * 2010-12-27 2014-05-07 Electrolux Home Products Corporation N.V. A heat pump system for a laundry dryer and a method for operating a heat pump laundry dryer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01107070A (en) * 1987-10-21 1989-04-24 Hitachi Ltd Method of detecting shortage of refrigerant for air conditioner
JPH06257896A (en) * 1993-03-08 1994-09-16 Matsushita Electric Ind Co Ltd Gas-liquid separator
JP2007327691A (en) * 2006-06-07 2007-12-20 Sanden Corp Compressor
JP2008014606A (en) * 2006-07-10 2008-01-24 Matsushita Electric Ind Co Ltd Air conditioner
JP2010104579A (en) * 2008-10-30 2010-05-13 Toshiba Corp Washing machine
EP2527518A1 (en) * 2011-05-26 2012-11-28 Electrolux Home Products Corporation N.V. Articles treatment apparatus having heat pump system with safety element
JP2013007529A (en) * 2011-06-24 2013-01-10 Denso Corp Dryer for refrigeration cycle and refrigeration cycle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10745854B2 (en) 2016-01-05 2020-08-18 Lg Electronics Inc. Clothes treatment apparatus having a heat pump module
JP2022078142A (en) * 2016-01-05 2022-05-24 エルジー エレクトロニクス インコーポレイティド Gas-liquid separator and clothing treatment device comprising the same
KR102627101B1 (en) * 2016-01-05 2024-01-22 엘지전자 주식회사 Gas-liquid separator and clothes treatment apparatus having the gas-liquid separator
EP3392393A1 (en) * 2016-01-05 2018-10-24 LG Electronics Inc. Clothes treatment apparatus having a heat pump module
KR102598932B1 (en) * 2016-01-05 2023-11-06 엘지전자 주식회사 Clothes treatment apparatus having the heat pump module
US10619288B2 (en) 2016-01-05 2020-04-14 Lg Electronics Inc. Clothes treatment apparatus having a heat pump module
JP7296497B2 (en) 2016-01-05 2023-06-22 エルジー エレクトロニクス インコーポレイティド Gas-liquid separator and clothes processing apparatus provided with the same
US11053631B2 (en) 2016-01-05 2021-07-06 Lg Electronics Inc. Clothes treatment apparatus having a heat pump module
KR20170082047A (en) * 2016-01-05 2017-07-13 엘지전자 주식회사 Gas-liquid separator and clothes treatment apparatus having the gas-liquid separator
KR20220127204A (en) * 2016-01-05 2022-09-19 엘지전자 주식회사 Clothes treatment apparatus having the heat pump module
US10793994B2 (en) 2016-08-01 2020-10-06 Lg Electronics Inc. Clothes treatment apparatus
US11293134B2 (en) 2016-08-01 2022-04-05 Lg Electronics Inc. Clothes treatment apparatus
WO2018026092A1 (en) * 2016-08-01 2018-02-08 엘지전자 주식회사 Garment processing device
JP2019524271A (en) * 2016-08-01 2019-09-05 エルジー エレクトロニクス インコーポレイティド Clothing processing equipment
JP2018033841A (en) * 2016-09-02 2018-03-08 東芝ライフスタイル株式会社 Clothing dryer

Also Published As

Publication number Publication date
CN104594005B (en) 2017-04-12
CN104594005A (en) 2015-05-06
JP6352614B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP5755036B2 (en) Washing and drying machine
JP6352614B2 (en) Washing and drying machine
JP2009273488A (en) Washing/drying machine
JP2010017270A (en) Drying machine and washing and drying machine
JP2014018502A (en) Clothing treatment apparatus
JP2008000195A (en) Clothes dryer
JP6199687B2 (en) Clothes dryer
JP7173719B2 (en) clothes dryer
JP5925999B2 (en) Clothes dryer
JP2009034306A (en) Clothes dryer
JP2015042208A (en) Clothes dryer
JP6466093B2 (en) Clothes dryer
JP6334951B2 (en) Clothes dryer
JP2018033841A (en) Clothing dryer
JP5048817B2 (en) Washing and drying machine
JP2014180406A (en) Washing machine
JP6571478B2 (en) Heat pump dryer
JP2017196132A (en) Dryer
JP5947103B2 (en) Clothes dryer
JP2014161540A (en) Clothes dryer
JP6225322B2 (en) Dryer
JP2014140439A (en) Washing and drying machine
JP5520344B2 (en) Washing and drying machine
JP2016052450A (en) Washing and drying machine
JP6121693B2 (en) Clothes dryer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6352614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150