JP2015084886A5 - - Google Patents

Download PDF

Info

Publication number
JP2015084886A5
JP2015084886A5 JP2013224765A JP2013224765A JP2015084886A5 JP 2015084886 A5 JP2015084886 A5 JP 2015084886A5 JP 2013224765 A JP2013224765 A JP 2013224765A JP 2013224765 A JP2013224765 A JP 2013224765A JP 2015084886 A5 JP2015084886 A5 JP 2015084886A5
Authority
JP
Japan
Prior art keywords
irradiation
ions
ion
ion beam
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013224765A
Other languages
English (en)
Other versions
JP2015084886A (ja
JP6256974B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2013224765A external-priority patent/JP6256974B2/ja
Priority to JP2013224765A priority Critical patent/JP6256974B2/ja
Priority to US14/524,495 priority patent/US9757590B2/en
Priority to EP15193822.2A priority patent/EP3020452B1/en
Priority to CN201410592195.3A priority patent/CN104548387B/zh
Priority to EP14190918.4A priority patent/EP2868347B1/en
Publication of JP2015084886A publication Critical patent/JP2015084886A/ja
Publication of JP2015084886A5 publication Critical patent/JP2015084886A5/ja
Publication of JP6256974B2 publication Critical patent/JP6256974B2/ja
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

(6)上記(1)、(2)、(3)、(4の荷電粒子ビームシステムにおいて、照射装置に各種イオンを走査する走査電磁石を備える。目標内部を深さ方向および横方向に複数の要素に体積分割し、各体積分割要素の水等価深さと、各イオン種の最長水中飛程を比較し、各体積分割要素の水等価深さが最長水中飛程以下のイオン種を選択し、選択したイオン種を、水中飛程が各体積分割要素の水等価深さになるように加速し、各体積分割要素の横方向の照射位置を照射装置の走査電磁石で制御し、各体積要素に予め治療計画で定めた線量を照射する。
本発明の好適な一実施例である実施例1の荷電粒子ビーム照射方法に適用される荷電粒子ビームシステムの構成図である。 図1に示された照射装置の拡大構成図である。 実施例1の荷電粒子ビーム照射方法における照射目標へのイオンビームの照射状態を示す説明図である。 図3に示された照射目標における体積分割示す説明図である。 イオンビームが照射されたときにおける体内の深さ方向での相対線量分布の例を示す説明図である。 イオンの体内飛程とイオンの核子あたりのエネルギーの関係を示す特性図である。 イオンの体内飛程によるビームサイズの変化の例を示す説明図である。 イオンの体内飛程とイオンの磁気剛性率の関係を示す特性図である。 本発明の他の好適な実施例である実施例2の荷電粒子ビーム照射方法における照射目標へのイオンビームの照射状態を示す説明図である。 本発明の他の好適な実施例である実施例3の荷電粒子ビーム照射方法に適用される荷電粒子ビームシステムの照射装置の構成図である。 実施例3の荷電粒子ビーム照射方法においてイオンビームが照射される照射目標の層分割を示す説明図である。 本発明の他の好適な実施例である実施例4の荷電粒子ビーム照射方法に適用される荷電粒子ビームシステムの構成図である。 実施例4の荷電粒子ビーム照射方法における照射目標へのイオンビームの照射状態を示す説明図である。 荷電粒子ビームシステムの他の実施例の構成図である。
水中でのイオンビームの飛程と患者の体表面での核子あたりの運動エネルギーの関係の例を図6に示す。例えば、陽子(H+)およびヘリウムイオン(He2+)は、同じ水中飛程を得るための核子あたりの運動エネルギーは同一である。しかし、ヘリウムイオンより重いイオン(例えば、炭素イオン(C6+))は、質量が大きくなるほど、水中飛程を増加させるために必要な運動エネルギーは高くなる。
一方、イオンビームは、照射装置から体内の照射目標に照射される過程において、照射装置内および体内のそれぞれの物質による側方散乱によりビームサイズが増加する。照射装置内でのイオンビームの側方散乱は、イオンビームのエネルギーが小さいほど大きい。一方、体内物質によるイオンビームの側方散乱は、水中飛程の増加とともに増加する。その結果、イオンビームのサイズの増加は、図に示すように、体内の浅い位置で顕著となる。また、イオンビームのサイズの増加は、図に示すように、イオンビームに含まれるイオンが重くなるほど小さくなる。
イオン源1に接続されてシャッター4Aが設けられたビームダクト(ビーム経路)とイオン源2に接続されてシャッター4Bが設けられたビームダクトは、互いに合流した後、直線加速器20に接続される。イオン源1に接続されたビームダクトとイオン源2に接続されたビームダクトの合流点に、切替電磁石3が配置される。荷電変換装置12が、直線加速器20とシンクロトロン加速器13の間、具体的には、直線加速器20と後述の入射器11の間に配置されている。
直線加速器20は、水素分子イオンおよびヘリウムイオンのそれぞれを加速できるように構成されているが、イオンビーム10の照射時には、2つのイオン源1および2のうち切替電磁石3により切り替えられた一方のイオン源(イオン源1またはイオン源2)から入射される水素分子イオンまたはヘリウムイオンを加速する。制御装置33による切替電磁石3の切り替え制御によって、イオン源1および2の内の一方のイオン源から直線加速器20にイオン(水素分子イオンまたはヘリウムイオン)の入射が制御される。直線加速器20で加速された水素分子イオンまたはヘリウムイオンのビームは、直線加速器20から出射されてシンクロトロン加速器13の環状のビームダクトに入射される。直線加速器20で水素分子イオンを加速した場合には、制御装置33の制御により荷電変換装置12を作動させ、荷電変換装置12により、直線加速器20から出射された水素分子イオンを陽子に変換する。このため、直線加速器20から出射された水素分子イオンのビームが、荷電変換装置12により陽子イオンビームになって入射器11によりシンクロトロン加速器13の環状ビームダクトに入射される。
この環状ダクトに入射されたイオンビーム10は、高周波加速装置17に印加する高周波電圧の周波数を高めることによって加速されて周回軌道である環状のビームダクト内を周回する。高周波電圧は、高周波加速装置17に接続される高周波電源装置(図示せず)から印加される。高周波加速装置17に印加する高周波電圧の周波数は、制御装置33によって高周波電源装置を制御することによって高められる。環状ビームダクトを周回するイオンビーム10の加速時には、高周波加速装置17に印加する高周波電圧の周波数を高めると共に、制御装置33の制御により各偏向電磁石18および各四極電磁石19等の磁場強度を高めて、周回するイオンビーム10のエネルギーを所定エネルギーまで加速する。加速されて周回するイオンビーム10のエネルギーが加速終了時の最高エネルギー(前述の所定エネルギー)になったとき、制御装置33の制御によって出射用高周波電極15に出射用高周波電圧を印加することにより、環状ビームダクト内を周回するイオンビーム10にこの出射用高周波電圧を印加する。イオンビーム10に出射用高周波電圧が印加されると、このイオンビーム10は、出射用デフレクター16を通してビーム輸送系21のビーム経路22に出射される。イオンビーム10は、ビーム経路22を通って射装置30に入射され、さらに、射装置30から治療用ベッド28上の患者29のがんの患部に照射される。イオンビームが出射用デフレクター16を通してビーム輸送系21のビーム経路22に出射されるときには、ビーム輸送系21の各4極電磁石23、偏向電磁石24、各4極電磁石25および偏向電磁石26のそれぞれの磁場強度が、制御装置33からの制御信号により、シンクロトロン加速器13の環状ビームダクトを周回するイオンビーム10の加速終了時における最高エネルギーになったとき調節される各偏向電磁石18および各四極電磁石19等の磁場強度と同じになるように、高められている。
水中飛程4cmのヘリウムイオンビームを得るためには、加速後の最高エネルギーである核子あたり69MeVのヘリウムイオンビームが周回できるように、シンクロトロン加速器13の各偏向電磁石18および各四極電磁石19の磁場強度を制御装置33からの制御信号に基づいて高められ、このヘリウムイオンビームは、制御装置33により高周波加速装置17に印加する高周波電圧の周波数を高めることにより、ヘリウムイオンビームのエネルギーが核子あたり69MeVまで高められる。照射する患部の位置に到達するために必要なエネルギーまで高められる。ビーム輸送系21の各4極電磁石23、偏向電磁石24、各4極電磁石25および偏向電磁石26のそれぞれの磁場強度も、同様に、制御装置33により前述したように制御される。核子あたり69MeVのエネルギーを有するヘリウムイオンビームが、シンクロトロン加速器13からビーム輸送系21のビーム経路22に出射され、照射装置30から患部照射される。ヘリウムイオンビームの照射により、ブラッグピークが患者2の体表面から深さ方向において水等価深さ4cmの位置に形成される。
水中飛程30cmの陽子イオンビームを得るためには、加速後の最高エネルギーである220MeVの陽子イオンビームが周回できるように、シンクロトロン加速器13の各偏向電磁石18および各四極電磁石19の磁場強度を制御装置33からの制御信号に基づいて高められ、この陽子イオンビームは、制御装置33により高周波加速装置17に印加する高周波電圧の周波数を高めることにより、陽子イオンビームのエネルギーがおよそ220MeVまで高められる。陽子イオンビームは、照射する患部の位置に到達するために必要なエネルギーまで高められる。ビーム輸送系21の各4極電磁石23、偏向電磁石24、各4極電磁石25および偏向電磁石26のそれぞれの磁場強度も、同様に、制御装置33により前述したように制御される。およそ220MeVのエネルギーを有する陽子イオンビームが、シンクロトロン加速器13からビーム輸送系21のビーム経路22に出射され、照射装置30から患部照射される。陽子イオンビームの照射により、ブラッグピークが患者2の体表面から深さ方向において水等価深さ30cmの位置に形成される。
本実施例では、図3に示すように、回転ガントリー27の回転角度を制御装置33により制御し、方向Aおよび方向Bから患部40に向かってイオンビームを照射する。方向Aからのイオンビームの照射では、患部40全体の水等価深さが患者29の体表面から水中飛程4cm以下の3cmであり、全ての体積要素41にヘリウムイオンビームを照射する。ヘリウムイオンビームを各体積要素41に適する水中飛程が得られる加速終了後のエネルギーまでシンクロトロン加速器13により加速し、加速後にビーム輸送系21のビーム経路22に出射する。回転ガントリー27を回転させて照射装置30のビーム軸を方向Aに事前に合わせておく。横方向のヘリウムイオンビームの照射位置は、照射装置30の走査電磁石32a,32bによる走査により定め、計画した線量量のヘリウムイオンビームを体積要素41に照射する。計画量のヘリウムイオンビームを照射したことを照射量モニター52a,52bで確認した後、ヘリウムイオンビームのその体積要素41への照射を停止する。次に、照射する体積要素41の水等価深さが同じ場合は、走査電磁石32a,32bの磁場強度を変更して次の体積要素41にヘリウムイオンビーム照射する。体積要素41の水等価深さが異なる場合は、ヘリウムイオンビームの加速エネルギーを、ヘリウムイオンビームの水中飛程がその水等価深さに適した値になるように高周波加速装置17を用いて変更し、横方向の照射位置を走査電磁石32a,32bの磁場で設定して該当する体積要素41へのヘリウムイオンビームの照射を行う。このようなヘリウムイオンビームの照射を繰り返し行い、患部40全体の体積要素41に対してヘリウムイオンビームの所定量の照射を行う。
方向Aからのヘリウムイオンビームの照射を終えた後、回転ガントリー27の回転角度を変更して、照射装置30のビーム軸を方向Bに合せる。方向Bからのイオンビームの照射では、図3に示すように、照射目標である患部40は、水中飛程4cmより深い位置にある。このため、方向Bからは、全体積要素41に対して陽子イオンビームの照射を行う。各体積要素41への陽子イオンビームの照射手順は、方向Aからのヘリウムイオンビームを使って照射する場合と同じである。
照射目標である患部40Aは、方向Aにおいては患者2の体表面から水等価深さ2cm〜7cmの間に位置しており、方向Bにおいては患者2の体表面から水等価深さはヘリウムイオンビームの水中飛程4cmよりも深い位置にある。実施例1と同様に、患部40を複数の体積要素41で分割して、照射装置0のビーム軸を方向Aに合わせて方向Aからイオンビームの照射を行う場合には、体表面からの水等価深さが4cmよりも浅い位置に存在する、患部40の体積要素41に対してはヘリウムイオンビームを照射し、体表面からの水等価深さが4cmよりも深い位置に存在する、患部40の体積要素41に対しては陽子イオンビームを照射する。また、照射装置0のビーム軸を方向Bに合わせて方向Bからイオンビームの照射を行う場合には、全ての体積要素41が体表面からの水等価深さが10cm以上の位置に存在するため、全ての体積要素41に対して陽子イオンビームを照射する。
本発明の他の好適な実施例である実施例3の荷電粒子ビーム照射方法を説明する。本実施例の荷電粒子ビーム照射方法では、実施例1で用いた荷電粒子ビームシステム5において照射装置30を図10に示す照射装置30Aに替えた荷電粒子ビームシステムが用いられる。本実施例で用いられる、照射装置30A以外における荷電粒子ビームシステムの構成は、荷電粒子ビームシステム5と同じである。
照射装置30Aには、走査電磁石32a,32bと照射量を計測する照射量モニター52a,52bと横方向の照射野範囲を定めるコリメータ53を設置する。また、照射装置30の下部には、照射目標の深さ方向の形状に基づいて水中飛程を補償する飛程補償器54を設置する。そのほかの構成は、図1の構成と同じである。本実施例でも、陽子とヘリウムイオンを用い、陽子は水中飛程30cmのエネルギーまで、ヘリウムは水中飛程4cmのエネルギーまで加速する。シンクロトロン加速器13から出射したイオンビームは、ビーム輸送系21により回転ガントリー27に設置した照射装置30に輸送する。
本実施例では、加速器に直線加速器20とシンクロトロン加速器13を使用しているが、加速器を図14に示すように、エネルギー一定で陽(H+イオンビームおよびヘリウム(He2+イオンビーム出射するサイクロトロン加速器55とし、イオンビームを通過させる金属製デグレーダ56をビーム輸送系に設置し、このデグレーダの厚さを変化させてイオンビームのエネルギーの減衰量を制御することにより、他の実施例と同様のシステムを実現できる。
陽子とヘリウムイオンを切替える時には、図14に示す切替電磁石3の極性を変更し、サイクロトロン加速器55の偏向電磁石57の磁場、高周波加速装置58の共振周波数制御および印加高周波、出射用デフレクター59へ加える電圧を変更、制御して加速、出射する。
荷電粒子ビームシステム5Aは、荷電粒子発生装置6A、ビーム輸送系21、回転ガントリー27、照射装置30および制御装置33を備えている。荷電粒子発生装置6Aは、シンクロトロン加速器13以外に、ヘリウムイオン源2(He2+)、炭素イオン源7(C4+)、直線加速器20,8、炭素イオン(C4+)を炭素イオンC6+に荷電変換する荷電変換装置12B、および切替電磁石3を備えている。ヘリウムイオン源2は直線加速器20に接続され、炭素イオン源7が直線加速器8に接続される。切替電磁石3は、直線加速器20から出射されたヘリウムイオンビームと、直線加速器8から出射された炭素イオン(C6+)ビームのシンクロトロン加速器13の環状ビームダクトへの入射を切り替える。シンクロトロン加速器13、ビーム輸送系21、回転ガントリー27および照射装置30のそれぞれの構成は、荷電粒子ビームシステム5と同じである。
シンクロトロン加速器13では、ヘリウムイオンビームおよび炭素イオンビームが、高周波加速装置17により最高エネルギー220MeV/核子(磁気剛性率4.5Tm)までそれぞれ加速される。これによりヘリウムイオンビームは最長水中飛程30cm、炭素イオンビームは最長水中飛程が10cmとなる。
照射装置30の照射量モニター52a,52bはヘリウムイオンビームおよび炭素イオンビームによるそれぞれの照射量を逐次確認する。ヘリウムイオンビーム(または炭素イオンビーム)は走査電磁石32a、32bにより照射目標の形状に従って、横方向に走査されて患部に照射される。患部の深さ方向には、ヘリウムイオンビーム(または炭素イオンビーム)の加速エネルギーを変更して、ブラッグピーク深さとイオンビームの水中飛程を変更する。
照射方向Aからの照射では、患部40B全体の水等価深さが10cm以上であり、全体積要素41にヘリウムイオンビームを照射する。各体積要素41の照射に必要なヘリウムイオンビームのエネルギーとその照射量をあらかじめ治療計画で定めておく。予め治療計画で定めた角度に回転ガントリー27を設定し、ヘリウムイオンビームを各体積要素41の水等価深さに適する水中飛程を得るエネルギーまで加速する。横方向の照射位置は、照射装置30の走査電磁石32a,32bで定め、計画した量のヘリウムイオンビームを照射する。計画量のヘリウムイオンビームを照射した後、ヘリウムイオンビームの照射を停止し、次に照射する体積要素41の水等価深さが同じ場合は、走査電磁石32a,32bの強度を変更して照射し、体積要素41の位置の水等価深さが異なる場合は、ヘリウムイオンビームの加速エネルギーを変更し、横方向の照射位置を走査電磁石32a,32bで設定して、照射を繰り返し行い、目標全体積の照射を行う。
上記実施例では、水等価深さ深さが10cm以下の場合、いずれの体積要素41についても炭素イオンビームを照射するが、水等価深さが10cm以下の場合にも、各体積要素41をヘリウムイオンビームと炭素イオンビームそれぞれで照射することも可能である。これにより、高い線量集中性や線量分布制御性を得て、かつ、照射時間を抑えることが可能である。
本実施例では、加速器に直線加速器20とシンクロトロン加速器13を使用するが、加速器を図14に示すように、サイクロトロン加速器55、イオン源はヘリウムイオン源(He2+)と炭素イオン源(C6+)を使用して各イオンをエネルギー220MeV/核子まで加速し、それぞれイオンビームを通過させる金属製デグレーダ56をビーム輸送系21に設置し、このデグレーダ56の厚さを変化させてイオンビームのエネルギーの減衰量を制御することにより、他の実施例と同様のシステムを実現できる。
ヘリウムイオンビームと炭素イオンビームを切替える時には、図14に示す切替電磁石
3の極性を変更し、サイクロトロン加速器55の高周波加速装置58の共振周波数、印加高周波を制御装置33により制御して加速する。

Claims (13)

  1. イオン源
    前記イオン源で生成されるイオンを加速する加速器
    前記加速器から出射されるイオンビームを輸送するビーム輸送系
    前記イオンビームの照射目標への照射方向を設定する回転ガントリー
    前記回転ガントリーに設置され、前記ビーム輸送系によって導かれる前記イオンビームを前記照射方向において前記照射目標に照射する照射装置と、および
    制御装置とを備え、
    記イオン源が、お互いに重さの異なる複数種類のイオンを生成するイオン源であり、
    前記制御装置が、前記照射装置のビーム軸を、前記イオンの種類ごとに異なる照射方向に合わせるように前記回転ガントリーを回転させる制御を行う制御装置であることを特徴とする荷電粒子ビームシステム。
  2. 前記制御装置は、前記回転ガントリーの回転制御以外に、前記イオン源から入射される前記複数種類のイオンであって前記異なる照射方向で前記照射目標に照射される前記イオンの種類ごとの、加速後の最高エネルギーでの水中飛程が、前記種類ごとに異なるように、且つ前記異なる照射方向で異なっている前記照射目標の水等価深さに到達するように前記複数種類のイオンを加速する制御を前記加速器に対して実施する制御装置である請求項1に記載の荷電粒子ビームシステム。
  3. 前記制御装置は、前記回転ガントリーの回転制御以外に、前記イオン源から入射される前記複数種類のイオンのうち最も重いイオンの、前記異なる照射方向のうち前記最も重いイオンに対する或る前記照射方向における加速後の最高エネルギーでの水中飛程が、前記最も重いイオン以外の他の前記イオンの、前記異なる照射方向のうち前記他のイオンに対する他の前記照射方向における最高エネルギーへの加速後での水中飛程よりも短くなるように、前記他の照射方向における前記照射目標の水等価深さが前記最も重いイオンの最長水中飛程を越えるとき、前記複数種類のイオンのうち前記最も重いイオン以外の前記他のイオンが前記照射目標に到達するように、且つ前記或る照射方向における前記照射目標の水等価深さが前記最も重いイオンの前記最長水中飛程以下のとき、前記最も重いイオンが前記照射目標に到達するように、前記複数種類のイオンを加速する制御を前記加速器に対して実施する制御装置である請求項1に記載の荷電粒子ビームシステム。
  4. 前記制御装置は、前記回転ガントリーの回転制御以外に、前記イオン源から入射される前記複数種類のイオンのうち最も重いイオンの、前記異なる照射方向のうち前記最も重いイオンに対する或る前記照射方向における加速後の最高エネルギーでの水中飛程が、前記最も重いイオンよりも軽い前記イオンの、前記異なる照射方向のうち前記軽いイオンに対する他の前記照射方向における最高エネルギーへの加速後での水中飛程よりも短くなるように、前記他の照射方向における前記照射目標の水等価深さが前記最も重いイオンの最長水中飛程を越えるとき、前記複数種類のイオンのうち前記軽いイオンが前記照射目標に到達するように、且つ前記或る照射方向における前記照射目標の水等価深さが前記最も重いイオンの前記最長水中飛程以下のとき、前記最も重いイオンが前記照射目標に到達するように、前記複数種類のイオンを加速する制御を前記加速器に対して実施する制御装置である請求項1に記載の荷電粒子ビームシステム。
  5. 前記制御装置は、前記回転ガントリーの回転制御以外に、前記イオン源から入射される前記複数種類のイオンのそれぞれの、前記異なる照射方向における加速後の最高エネルギーでの水中飛程が、イオンの重さの増加と共に減少するように、前記異なる照射方向のうち最も重いイオン以外の他の前記イオンに対する或る前記照射方向における前記照射目標の水等価深さが前記最も重いイオンの加速後の最高エネルギーでの水中飛程を越えるとき、前記他のイオンが前記照射目標に到達するように、且つ前記異なる照射方向のうち前記最も重いイオンに対する他の前記照射方向における前記照射目標の水等価深さが前記最も重いイオンの加速後の最高エネルギーでの水中飛程以下であるとき、前記最も重いイオンが前記照射目標に到達するように、前記複数種類のイオンを加速する制御を前記加速器に対して実施する制御装置である請求項1に記載の荷電粒子ビームシステム。
  6. 前記制御装置は、前記照射目標を前記回転ガントリーで設定される前記異なる照射方向のそれぞれにおける深さ方向に分割して得られる複数層のそれぞれの水等価深さと前記イオンの種類ごとの最長水中飛程を比較し、前記照射目標における前記層の水等価深さに対応した水中飛程が前記最長水中飛程以下になる前記イオンの種類を選択し、前記選択した種類のイオンのエネルギーを制御してこのイオンを前記照射装置から前記照射目標に照射する制御装置である請求項2ないし5のいずれか1項に記載の荷電粒子ビームシステム
  7. 前記照射装置は、照射するイオンの前記照射装置のビーム軸に垂直な方向における照射位置および前記イオンの照射範囲を設定する走査電磁石を備え、
    前記制御装置は、前記照射目標内で分割された複数の体積要素のそれぞれの、前記垂直な方向における照射位置および範囲に基づいて前記走査電磁石を制御し、前記回転ガントリーで設定される前記異なる照射方向のそれぞれにおける各体積要素の水等価深さと、前記イオンの種類ごとの最長水中飛程を比較し、各体積要素の水等価深さが前記最長水中飛程以下になる前記イオンの種類を選択し、この選択された種類のイオンを、各体積要素に照射するための水中飛程を得るエネルギーに加速し、前記体積要素ごとに予め定められる線量を照射する請求項2ないし5のいずれか1項に記載の荷電粒子ビームシステム。
  8. 前記イオン源が、お互いに重さの異なる前記複数種類のイオンとして、第1イオンおよび前記第1イオンよりも重い第2イオンを生成するイオン源であり、
    前記制御装置が、前記回転ガントリーの回転制御以外に、前記第1イオンを含む第1イオンビームの、前記異なる照射方向のうちの第1照射方向における前記照射目標の水等価深さが前記第2イオンを含む第2イオンビームの設定水中飛程よりも大きいとき、前記第1イオンビームの水中飛程が前記第2イオンビームの前記設定水中飛程よりも大きくなって前記第1照射方向において前記第1イオンビームが前記照射目標に到達するように、前記加速器の高周波加速装置に印加する高周波電圧の周波数を制御して前記第1イオンビームを加速する第1制御、および前記第2イオンビームの、前記異なる照射方向のうちの第2照射方向における前記照射目標の水等価深さが前記第2イオンビームの前記設定水中飛程以下であるとき、前記第2イオンビームの水中飛程が前記第2イオンビームの前記設定水中飛程以下になって前記第2照射方向において前記第2イオンビームが前記照射目標に到達するように、前記高周波加速装置に印加する前記高周波電圧の周波数を制御して前記第2イオンビームを加速する第2制御をそれぞれ実施する制御装置である請求項1に記載の荷電粒子ビームシステム。
  9. 前記制御装置が、前記照射目標の水等価深さが前記第2イオンビームの前記設定水中飛程よりも大きくなる第1照射方向から、前記第1イオンを含む第1イオンビームを前記照射目標に対して照射するとき、前記照射装置からの前記第1イオンビームの前記照射方向が前記第1照射方向に合うように前記回転ガントリーを回転させる第3制御、および前記照射目標の水等価深さが前記第2イオンビームの前記設定水中飛程以下になる第2照射方向から、前記第2イオンビームを前記照射目標に対して照射するとき、前記照射装置からの前記第2イオンビームの前記照射方向が前記第2照射方向に合うように前記回転ガントリーを回転させる第4制御のそれぞれをさらに行い、前記第1制御を前記第3制御の後に行い、および前記第2制御を前記第4制御の後に行う制御装置である請求項8に記載の荷電粒子ビームシステム。
  10. 前記制御装置が、前記第1照射方向において異なる深さで分割された、前記照射目標の複数の第1層のそれぞれに前記第1イオンビームを照射するとき、前記第1照射方向においてこれらの第1層のそれぞれに前記第1イオンビームが到達するように、前記第1制御において、前記高周波加速装置に印加する前記高周波電圧の周波数を制御して前記第1イオンビームを加速し、前記第2照射方向において異なる深さで分割された、前記照射目標の複数の第2層に前記第2イオンビームを照射するとき、前記第2照射方向においてこれらの第2層のそれぞれに前記第2イオンビームが到達するように、前記第2制御において、前記高周波加速装置に印加する前記高周波電圧の周波数を制御して前記第2イオンビームを加速する制御装置である請求項8または9に記載の荷電粒子ビームシステム。
  11. 前記照射装置に取り付けられ、前記第1イオンビームおよび第2イオンビームのそれぞれを前記照射装置のビーム軸に垂直な方向に走査する走査電磁石を備え、
    前記制御装置が、さらに、前記第1イオンビームが到達する前記第1層内で前記第1イオンビームを前記ビーム軸に垂直な方向に走査するとき、前記第1イオンビームが到達する前記第1層内で前記第1イオンビームを走査するように前記走査電磁石を制御し、前記第2イオンビームが到達する前記第2層内で前記第2イオンビームを前記ビーム軸に垂直な方向に走査するとき、前記第2イオンビームが到達する前記第2層内で前記第2イオンビームを走査するように前記走査電磁石を制御する制御装置である請求項10に記載の荷電粒子ビームシステム。
  12. 前記第1イオンおよび前記第2イオンを生成する前記イオン源が、前記第1イオンを生成する第1イオン源および前記第2イオンを生成する第2イオン源を含んでいる請求項8ないし11のいずれか1項に記載の荷電粒子ビームシステム。
  13. 前記第1イオンおよび前記第2イオンのうち前記加速器に入射する一種のイオンを切り替える切替装置を備え、
    前記制御装置が、前記切替装置を切り替える第5制御を実施する請求項8ないし11のいずれか1項に記載の荷電粒子ビームシステム。
JP2013224765A 2013-10-29 2013-10-29 荷電粒子ビームシステム Active JP6256974B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013224765A JP6256974B2 (ja) 2013-10-29 2013-10-29 荷電粒子ビームシステム
US14/524,495 US9757590B2 (en) 2013-10-29 2014-10-27 Charged particle beam system
EP14190918.4A EP2868347B1 (en) 2013-10-29 2014-10-29 Charged particle beam system
CN201410592195.3A CN104548387B (zh) 2013-10-29 2014-10-29 带电粒子束系统
EP15193822.2A EP3020452B1 (en) 2013-10-29 2014-10-29 Charged particle beam system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224765A JP6256974B2 (ja) 2013-10-29 2013-10-29 荷電粒子ビームシステム

Publications (3)

Publication Number Publication Date
JP2015084886A JP2015084886A (ja) 2015-05-07
JP2015084886A5 true JP2015084886A5 (ja) 2016-12-22
JP6256974B2 JP6256974B2 (ja) 2018-01-10

Family

ID=51865998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224765A Active JP6256974B2 (ja) 2013-10-29 2013-10-29 荷電粒子ビームシステム

Country Status (4)

Country Link
US (1) US9757590B2 (ja)
EP (2) EP3020452B1 (ja)
JP (1) JP6256974B2 (ja)
CN (1) CN104548387B (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170216632A1 (en) * 2010-04-16 2017-08-03 W. Davis Lee Dispersive force corrected gantry based radiation treatment apparatus and method of use thereof
EP3232742B1 (en) * 2014-12-08 2020-11-18 Hitachi, Ltd. Accelerator and particle beam radiation device
CN105251137A (zh) * 2015-11-14 2016-01-20 霍进铭 一种基于癌症治疗的直线粒子加速器
CN106406216B (zh) * 2016-10-24 2018-02-16 合肥中科离子医学技术装备有限公司 一种用于粒子束流降能器的控制装置及其控制方法
US10485995B2 (en) * 2016-12-28 2019-11-26 Varian Medical Systems, Inc. Compact lightweight high-performance proton therapy beamline
CN111603687A (zh) * 2017-10-11 2020-09-01 希尔应用医学有限公司 提供离子束的系统和方法
JP6901381B2 (ja) * 2017-11-20 2021-07-14 株式会社日立製作所 加速器および粒子線治療システム
JP2019092985A (ja) * 2017-11-27 2019-06-20 三菱電機株式会社 ビーム輸送系の電磁石調整方法
JP6942347B2 (ja) 2018-02-09 2021-09-29 国立研究開発法人量子科学技術研究開発機構 イオン源装置、粒子線発生装置、およびイオンビーム生成方法
SE542451C2 (en) * 2018-03-12 2020-05-05 Ph Kleven As PARTICLE BEAM GUIDING SYSTEM AND RELATED RADIOTHERAPY SYSTEM
JP7160716B2 (ja) * 2019-02-18 2022-10-25 株式会社日立製作所 粒子線治療装置及びその作動方法
JP7378326B2 (ja) 2020-03-18 2023-11-13 住友重機械工業株式会社 粒子線装置
CN111249633A (zh) * 2020-03-21 2020-06-09 华中科技大学 用于质子治疗的大动量接受度超导旋转机架
CN111408070A (zh) * 2020-03-30 2020-07-14 合肥中科离子医学技术装备有限公司 一种基于等时性回旋加速器的多离子治疗系统
CN111686377A (zh) * 2020-06-16 2020-09-22 中国科学院近代物理研究所 一种碳离子束超导旋转Gantry
JP7458291B2 (ja) * 2020-10-13 2024-03-29 株式会社東芝 荷電粒子線の入射装置及びその入射システムの作動方法
JP2023084781A (ja) * 2021-12-08 2023-06-20 株式会社日立製作所 円形加速器および粒子線治療システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3518270B2 (ja) 1996-08-30 2004-04-12 株式会社日立製作所 荷電粒子ビーム装置
EP0986070B1 (en) 1998-09-11 2010-06-30 GSI Helmholtzzentrum für Schwerionenforschung GmbH Ion beam therapy system and a method for operating the system
JP2000354637A (ja) 1999-06-15 2000-12-26 Mitsubishi Electric Corp 荷電粒子照射装置
DE10010523C2 (de) 2000-03-07 2002-08-14 Schwerionenforsch Gmbh Ionenstrahlanlage zur Bestrahlung von Tumorgewebe
US7102144B2 (en) 2003-05-13 2006-09-05 Hitachi, Ltd. Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method
DE602005027128D1 (de) * 2005-03-09 2011-05-05 Scherrer Inst Paul System zur gleichzeitigen aufnahme von weitfeld-bev (beam-eye-view) röntgenbildern und verabreichung einer protonentherapie
WO2008081480A1 (en) * 2006-12-28 2008-07-10 Fondazione Per Adroterapia Oncologica - Tera Ion acceleration system for medical and/or other applications
DE102007014723A1 (de) * 2007-03-23 2008-11-27 Gesellschaft für Schwerionenforschung mbH (GSI) Bestimmung eines Planungsvolumens für eine Bestrahlung eines Körpers
DE102007020600A1 (de) * 2007-05-02 2008-11-13 Siemens Ag Verfahren zur Kalibrierung eines Positronen-Emissions-Tomographen einer Strahlentherapievorrichtung sowie Strahlentherapievorrichtung
DE102007054919B4 (de) * 2007-08-24 2009-07-30 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Schnelle Regelung der Reichweite von hochenergetischen Ionenstrahlen für Präzisionsbestrahlungen von bewegten Zielvolumina
DE102007050168B3 (de) * 2007-10-19 2009-04-30 Siemens Ag Gantry, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Gantry mit beweglichem Stellelement
JP2009217938A (ja) 2008-03-07 2009-09-24 Hitachi Ltd 加速器システム及び粒子線治療システム
JP2010032451A (ja) 2008-07-31 2010-02-12 Hitachi Ltd 粒子線照射システム
DE102008044901A1 (de) * 2008-08-29 2010-03-04 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Auswahl eines Bestrahlungsplans sowie Bestrahlungsanlage
EP2229981A1 (en) * 2009-03-17 2010-09-22 Paul Scherrer Institut A method for evaluating radiation model data in particle beam radiation applications
DE102009018545A1 (de) * 2009-04-24 2010-11-04 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Verfahren zur Bestrahlung eines Zielvolumens
DE102009032275A1 (de) * 2009-07-08 2011-01-13 Siemens Aktiengesellschaft Beschleunigeranlage und Verfahren zur Einstellung einer Partikelenergie
DE102009040392A1 (de) * 2009-09-07 2011-04-07 Siemens Aktiengesellschaft Verfahren zum Registrieren eines ersten Abbildungsdatensatzes zu einem zweiten Abbildungsdatensatz und Vorrichtung
EP2308561B1 (en) * 2009-09-28 2011-06-15 Ion Beam Applications Compact gantry for particle therapy
EP2400506A1 (en) 2010-06-23 2011-12-28 GSI Helmholtzzentrum für Schwerionenforschung GmbH Particle beam generating device
US9480862B2 (en) * 2011-03-07 2016-11-01 Ion Beam Applications S.A. Water equivalent depth measurement for providing a continuous calibration range based on discrete measurements
JP5954705B2 (ja) * 2012-05-07 2016-07-20 国立研究開発法人量子科学技術研究開発機構 照射計画装置、照射計画プログラム、照射計画決定方法、および荷電粒子照射システム
US9839793B2 (en) * 2013-06-06 2017-12-12 Mitsubishi Electric Corporation Particle therapy device and method for setting dose calibration factor
ITCO20130036A1 (it) * 2013-08-22 2015-02-23 Fond Per Adroterapia Oncologi Ca Tera ¿sistema di acceleratori di ioni per il trattamento della fibrillazione atriale¿

Similar Documents

Publication Publication Date Title
JP6256974B2 (ja) 荷電粒子ビームシステム
JP2015084886A5 (ja)
US11260246B2 (en) Apparatus and methods for magnetic control of radiation electron beam
US9283406B2 (en) Charged hadron beam delivery
US10090132B2 (en) Charged particle beam irradiation apparatus
US20080290299A1 (en) Particle therapy system
US20210060358A1 (en) 3d high speed rf beam scanner for hadron therapy
WO2015070865A1 (en) Particle therapy system
US20220331610A1 (en) System for radiation therapy
Schippers et al. The use of protons in cancer therapy at PSI and related instrumentation
US20220387824A1 (en) Device For Ultra-High Dose Rate Radiation Treatment
Yap et al. Preliminary Study of a Large Energy Acceptance FFA Beam Delivery System for Particle Therapy
CN110582234B (zh) 辐照治疗系统和方法
Masood et al. Novel Approach to Utilize Proton Beams from High Power Laser Accelerators for Therapy
Fukuda et al. Beam-delivery systems
Prelec Medical applications of light ions