JP2015083949A - Visibility simulation device - Google Patents

Visibility simulation device Download PDF

Info

Publication number
JP2015083949A
JP2015083949A JP2013222611A JP2013222611A JP2015083949A JP 2015083949 A JP2015083949 A JP 2015083949A JP 2013222611 A JP2013222611 A JP 2013222611A JP 2013222611 A JP2013222611 A JP 2013222611A JP 2015083949 A JP2015083949 A JP 2015083949A
Authority
JP
Japan
Prior art keywords
snowflake
pseudo
simulated
snowflakes
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013222611A
Other languages
Japanese (ja)
Other versions
JP6206915B2 (en
Inventor
奉根 金
Bong Keun Kim
奉根 金
角 保志
Yasushi Sumi
保志 角
吉央 松本
Yoshihisa Matsumoto
吉央 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013222611A priority Critical patent/JP6206915B2/en
Publication of JP2015083949A publication Critical patent/JP2015083949A/en
Application granted granted Critical
Publication of JP6206915B2 publication Critical patent/JP6206915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable artificial snowflakes to uniformly fall down in a space around a test piece with inexpensive test equipment to achieve simple reproduction of visibility under a specific weather condition.SOLUTION: A visibility simulation device for evaluating determination performance of a sensor with artificial snowflakes 4 falling in a test space where a test piece 2 is placed at a predetermined position comprises: a suction pipe 8 which sucks the artificial snowflakes 4 together with an air flow from an artificial snowflake storage section 7 installed at a bottom of the test space; and a discharge pipe 11 which is connected to an end of the suction pipe 8 and arranged along a ceiling surface. An artificial snowflake swirling section which has a plurality of spiral fins arranged in a circumferential direction at equal intervals on an inner face thereof and a tube body made up of an equal number of tubes to the spiral fins are installed at the end of the discharge pipe 11. Each tube has an injection port at a tip thereof and a direction of each injection port is decided so as to allow the artificial snowflakes equally taken in by the artificial snowflake swirling section to uniformly fall down in a space around the test piece.

Description

本発明は、CCDカメラ、レーザーレーダ、赤外線距離センサ等、視界により影響を受けるセンサを試験するための模擬視界シミュレーション装置に関する。   The present invention relates to a simulated visual field simulation apparatus for testing a sensor affected by visual field, such as a CCD camera, a laser radar, an infrared distance sensor, and the like.

視界により影響を受けるセンサとして、例えば、生活支援ロボットには、CCDカメラ等のセンサが搭載されている。生活支援ロボットが人間と安全に空間を共有し、移動及び作業を実行するためには、CCDカメラ等のセンサ、センサ群によって、適切かつ確実に周囲の環境を認識できることが要求される。そのために、様々な環境下で、こうしたセンサ、センサ群が、安全面の要件を満たす性能を発揮できるかどうかを評価するための試験方法・手順に関する国際規格策定が検討されている。   As a sensor affected by the field of view, for example, a life support robot is equipped with a sensor such as a CCD camera. In order for the life support robot to safely share a space with a human and perform movement and work, it is required that the surrounding environment can be recognized appropriately and reliably by a sensor or a sensor group such as a CCD camera. Therefore, the development of international standards for testing methods and procedures for evaluating whether such sensors and sensor groups can exhibit performance that satisfies safety requirements under various environments is being considered.

国際電気標準会議(International Electrotechnical Commission,IEC)は、非接触の人検知装置であるESPE(Electro-Sensitive Protective Equipment,電気的検知保護設備)の安全規格としてIEC61496シリーズを開発・発行している。
これらの規格では、センサの検出能力や耐久性等とともに、周囲温度や湿度、電気的ならびに機械的妨害、外乱光に対する光干渉、センサの光学窓の汚染妨害などについて、その要求事項と試験方法について記載されている。規格に準拠したセンサは、規定の環境にさらされても、正常運転を続けること、あるいは、危険側故障を起こさないことが求められている。
The International Electrotechnical Commission (IEC) has developed and issued the IEC61496 series as a safety standard for ESPE (Electro-Sensitive Protective Equipment), a non-contact human detection device.
In these standards, sensor detection capability and durability, as well as requirements and test methods for ambient temperature and humidity, electrical and mechanical interference, interference with ambient light, interference with sensor optical window contamination, etc. Have been described. Sensors that comply with the standard are required to continue normal operation or to cause no dangerous failure even when exposed to a specified environment.

しかしながら、これらの規格は、工場等における労働者の安全確保を目的とした規格であるため、環境条件として専ら屋内が想定されており、雨や雪などの自然環境下での気象条件については考慮されていない。ロボット等に搭載されるセンサの安全面等での基準を策定するには、自然環境下での試験は極めて重要であるが、試験に適した自然環境を再現することが非常に困難であり、大規模な施設が必要となる等、試験の実施には困難が伴う。
そのため、模擬降雪装置を利用して、試験空間内に、悪天候下での視界を再現できる人工降雨装置・人工降雪装置等を利用することが現実的である。
However, since these standards are intended to ensure the safety of workers in factories, etc., indoors are assumed exclusively as environmental conditions, and weather conditions under natural environments such as rain and snow are considered. It has not been. Testing in the natural environment is extremely important to formulate safety standards for sensors mounted on robots, etc., but it is very difficult to reproduce the natural environment suitable for testing, Implementation of the test is difficult due to the need for large-scale facilities.
Therefore, it is realistic to use an artificial rain device, an artificial snow device, or the like that can reproduce the field of view under bad weather in the test space using a simulated snow device.

特許文献1には、氷ブロックを任意の圧下力で圧下する自動圧下機構と、圧下状態の氷ブロックを受けこれに相対回転させる刃により切削して砕氷片を作りこれを落下させる自動砕氷機構と、砕氷片を受けてこれを一様に分布落下させる自動ふるい機構と、分布落下する砕氷片を自由落下させ模擬降雪として観測する降雪筒と、降雪筒内を落下する砕氷片の一部を融解して模擬湿雪を作る熱処理機構と、模擬湿雪を受けて模擬降雪量を測定する測定機構を備えた模擬湿雪降雪実験装置が記載されている。   Patent Document 1 discloses an automatic rolling mechanism that rolls down an ice block with an arbitrary rolling force, and an automatic ice breaking mechanism that cuts an ice block that is in a reduced state by cutting it with a blade that rotates relative to the ice block and makes it fall. Automatic sieving mechanism that receives ice breaks and distributes and drops them uniformly, snow falling cylinders that allow free fall of the falling ice pieces to observe them as simulated snowfall, and melting some of the ice breaks that fall inside the snow falling cylinders A simulated wet snow snowfall experiment apparatus including a heat treatment mechanism that creates simulated wet snow and a measurement mechanism that receives the simulated wet snow and measures the simulated snowfall amount is described.

特開平10−253405号公報Japanese Patent Laid-Open No. 10-253405

特許文献1の模擬湿雪降雪実験装置は、氷ブロックを切削して砕氷片に、赤外線レーザーを照射して、模擬湿雪を製造することを前提としている。このため、高価な設備を必要とし、しかも、一定の容積が必要な試験空間内に、擬似雪片を均一に降雪させることはできない。
そこで、擬似雪片を使用して、試験空間の天井部に沿うように複数の排出パイプを設置し、各パイプに擬似雪片噴出口を開口させ、天井部全体から圧縮空気とともに擬似雪片を噴出させることが考えられる。
The simulated wet snow snowfall experiment apparatus of Patent Document 1 is premised on manufacturing simulated wet snow by cutting an ice block and irradiating an ice laser on an crushed ice piece. For this reason, it is not possible to cause the snow flakes to fall uniformly in a test space that requires expensive equipment and requires a certain volume.
Therefore, using simulated snowflakes, install multiple discharge pipes along the ceiling of the test space, open simulated snowflake outlets in each pipe, and eject simulated snowflakes with compressed air from the entire ceiling. Can be considered.

しかし、このような模擬降雪装置では、複数の排出パイプのそれぞれに擬似雪片を均等に分配するのが非常に困難である。そのため、各排出パイプ毎に擬似雪片供給部、吸引部を設ける必要がある。さらに、個々の擬似雪片排出パイプにおいても、上流側から下流側に向うにつれ風量が圧縮空気の圧力によって変化するため、上流側の開口と下流側の開口のそれぞれで、均一な量の擬似雪片を噴出させるよう、各開口端から噴出される擬似雪片の量を均等化することも必要になる。   However, in such a simulated snowfall device, it is very difficult to evenly distribute the simulated snowflakes to each of the plurality of discharge pipes. Therefore, it is necessary to provide a pseudo snowflake supply part and a suction part for each discharge pipe. Furthermore, since the amount of air in each simulated snowflake discharge pipe changes depending on the pressure of the compressed air from the upstream side to the downstream side, a uniform amount of simulated snowflakes is applied to each of the upstream opening and the downstream opening. It is also necessary to equalize the amount of pseudo snowflakes ejected from each opening end so as to be ejected.

そこで、本発明の模擬視界シミュレーション装置では、圧縮空気とともに擬似雪片を送給する際、旋回流を発生させ、噴出口を備えた複数のチューブに、擬似雪片を均等に分配し、各噴出口の向きを選定することにより、試験片の周辺の空間において、擬似雪片が均等に降下するようにした。
より具体的には、本発明の模擬視界シミュレーション装置は、試験空間内に擬似雪片を降下させ、センサによる物体の判別性能を評価するため、あるいは、悪天候による視程低下を模擬的に再現するための模擬視界シミュレーション装置であって、前記試験空間の底部に設けた擬似雪片貯留部から、前記擬似雪片を空気流とともに吸い込む吸引パイプと、前記吸引パイプの末端に接続され、前記試験空間の天井面に沿って配置された排出パイプと、前記排出パイプの末端に接続され、その入口端から出口端に到るまで、内面に複数本の螺旋状フィンが円周方向に均等に形成された擬似雪片旋回部と、前記螺旋状フィンと同数のチューブからなるチューブ体とを備え、前記チューブの入口端のそれぞれは、前記擬似雪片旋回部において、隣り合う螺旋状フィン間で均等に分配された前記擬似雪片を取り込むよう、前記擬似雪片旋回部の出口端に正対向するよう配置され、前記チューブのそれぞれは、取り込んだ擬似雪片が、前記試験空間内において均一に降下するよう、その先端に設けられた噴出口の向きが選定されている。
Therefore, in the simulated visual field simulation device of the present invention, when feeding the simulated snowflakes together with the compressed air, a swirling flow is generated, and the simulated snowflakes are evenly distributed to the plurality of tubes provided with the ejection ports. By selecting the orientation, the simulated snowflakes descended evenly in the space around the test piece.
More specifically, the simulated field-of-view simulation apparatus of the present invention lowers a simulated snowflake in the test space and evaluates the object discrimination performance by the sensor, or simulates the reduction in visibility due to bad weather. A simulated visual field simulation device, which is connected to a suction pipe for sucking the simulated snowflake together with an air flow from a simulated snowflake storage part provided at the bottom of the test space, and connected to an end of the suction pipe, on the ceiling surface of the test space. A discharge pipe disposed along the end of the discharge pipe, and a pseudo snowflake turning with a plurality of spiral fins uniformly formed in the circumferential direction on the inner surface from the inlet end to the outlet end. And a tube body comprising the same number of tubes as the spiral fins, each of the inlet ends of the tubes being adjacent to each other in the pseudo snowflake turning portion. In order to take in the pseudo snowflake distributed evenly between the spiral fins, it is arranged so as to face the exit end of the pseudo snowflake turning section, and each of the tubes has the pseudo snowflake taken in the test space. The direction of the jet nozzle provided at the tip is selected so as to descend uniformly.

本発明によれば、擬似雪片旋回部により、擬似雪片が各チューブのそれぞれに均等に分配されるので、各チューブ先端の噴出口の向きを選定することにより、擬似雪片を試験片の周辺の空間に均等に降下させることができ、空気流の流速や擬似雪片の形状などにより、特定の気象条件における視界を簡単に再現することが可能となる。
しかも、試験室の天井部に排出パイプを1本設けるだけで、1基のエアコンプレッサーにより試験片の周辺に擬似雪片を均等に降下させることが可能となるので、試験設備の低コスト化が可能になる。
According to the present invention, since the simulated snowflake is evenly distributed to each tube by the simulated snowflake turning section, by selecting the direction of the jet outlet at the tip of each tube, the simulated snowflake is placed in the space around the test piece. The field of view in a specific weather condition can be easily reproduced by the flow velocity of air flow, the shape of a pseudo snowflake, and the like.
Moreover, it is possible to lower the cost of the test equipment because it is possible to evenly drop simulated snowflakes around the test piece with a single air compressor just by providing one discharge pipe on the ceiling of the test room. become.

図1は、本実施例による模擬降雪装置を備えた試験設備の全体構造を示す図である。FIG. 1 is a diagram showing the overall structure of a test facility equipped with a simulated snowfall device according to this embodiment. 図2は、本実施例による擬似雪片降雪装置の基本構造を示す図である。FIG. 2 is a diagram showing a basic structure of the simulated snowflake falling device according to the present embodiment. 図3は、本実施例による擬似雪片降雪装置の擬似雪片旋回部を示す図である。FIG. 3 is a diagram illustrating a simulated snowflake turning unit of the simulated snowflake falling apparatus according to the present embodiment. 図4は、本実施例による擬似雪片降雪装置のノズル部の構造を示す図である。FIG. 4 is a diagram showing the structure of the nozzle portion of the simulated snowflake falling device according to the present embodiment.

以下、本発明の実施例を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施例による模擬降雪装置を備えた試験設備の全体構造を示すものである。
一般的には、3mの距離で人間の存在を認識できれば、安全が確保されるとしていることから、この模擬降雪装置は、図1に示すように、幅4m、奥行き1m、高さ1.5mの試験室1の内部に、側壁から1mのところに、人間を模した試験片2を設置し、擬似雪片噴射部3から擬似雪片4を降雪させた状態で、3m離れた窓5から、ロボット等に搭載されるセンサ6により、試験片2の存在を確実に視認できるか否かを試験する。なお、センサ6としては、CCDカメラ、ステレオカメラ、レーザー測距装置、赤外線測距装置など様々なものが含まれる。
なお、本実施例では、ステンレスフレームに、ビニールシートで天井面、側壁を覆うことで試験室1を製作した。
FIG. 1 shows the overall structure of a test facility equipped with a simulated snowfall device according to this embodiment.
In general, if it is possible to recognize the presence of a person at a distance of 3 m, safety is ensured. As shown in FIG. 1, this simulated snowfall device has a width of 4 m, a depth of 1 m, and a height of 1.5 m. A test piece 2 that imitates a human being is placed 1 m from the side wall in the test chamber 1 and the simulated snowflake 4 is snowed from the simulated snowflake injection unit 3, and the robot 5 is opened from the window 5 that is 3 m away. It is tested whether or not the presence of the test piece 2 can be surely recognized by the sensor 6 mounted on the sensor. The sensor 6 includes various devices such as a CCD camera, a stereo camera, a laser distance measuring device, and an infrared distance measuring device.
In this example, the test chamber 1 was manufactured by covering a ceiling surface and side walls with a vinyl sheet on a stainless frame.

ここで、試験空間内において、試験片2周囲の擬似雪片による反射の影響をも再現するため、所定の降雪量の程度が再現されるよう、擬似雪片4の降下量を、試験片2の周辺の空間内に均等に分配して降下させることが必要となる。   Here, in order to reproduce the influence of the reflection by the simulated snowflake around the test piece 2 in the test space, the amount of fall of the simulated snowflake 4 is set to the periphery of the test piece 2 so that the predetermined amount of snowfall is reproduced. It is necessary to distribute it evenly in the space.

図2は、そのための擬似雪片降雪装置の基本構造を説明する図である。
図1に示すような試験空間の床面には、逆裁頭円錐形の擬似雪片貯留部7が設けられ、擬似雪片4が貯留されている。擬似雪片貯留部7の中央部には、貯留した擬似雪片4の直上面に位置するよう、吸引パイプ8の先端が配置されている。吸引パイプ8の外周には、圧縮空気噴出部9が設けられており、吸引パイプ8の内部において、エアコンプレッサー10からの圧縮空気を上方に向けて噴出するようにしている。なお、エアコンプレッサー10は、ボールバルブなどの風量調節機能、圧力調節機能を備えたもので、シミュレーションを行う視界条件に応じて擬似雪片4の噴出量を調整できるようになっている。
FIG. 2 is a diagram for explaining the basic structure of the simulated snowflake falling device for that purpose.
On the floor surface of the test space as shown in FIG. 1, a reverse truncated cone-shaped pseudo snowflake storage part 7 is provided, and the pseudo snowflake 4 is stored. The tip of the suction pipe 8 is arranged at the central part of the pseudo snowflake storage part 7 so as to be positioned directly above the stored pseudo snowflake 4. A compressed air ejection portion 9 is provided on the outer periphery of the suction pipe 8, and the compressed air from the air compressor 10 is ejected upward in the suction pipe 8. The air compressor 10 is provided with an air volume adjustment function and a pressure adjustment function such as a ball valve, and can adjust the ejection amount of the pseudo snowflake 4 according to the visibility condition for performing the simulation.

擬似雪片4としては、発泡ビーズなどの樹脂素材を用いるが、互いに接触したり、衝突することにより静電気が発生して塊となったり、試験装置の側壁に付着するのを防止するため、表面に静電気防止処理を行うことが好ましい。また、擬似雪片4は、比重や粒径により空気中に滞留する時間や、反射量が異なるため、実際に発生する降雪時の視界が再現できるよう、樹脂材料の材質や形状が選定される。本実施例では、粒径が1mm〜3mm程度の球状の樹脂製発泡ビーズを使用した。   As the pseudo snowflake 4, a resin material such as foam beads is used, but in order to prevent static electricity from being generated due to contact with or colliding with each other and forming a lump or adhering to the side wall of the test apparatus, It is preferable to perform antistatic treatment. Further, since the pseudo snowflake 4 has a different residence time in the air and a reflection amount depending on the specific gravity and particle size, the material and shape of the resin material are selected so that the field of view at the time of actual snowfall can be reproduced. In this example, spherical resin foam beads having a particle size of about 1 mm to 3 mm were used.

吸引パイプ8は、試験室1の側壁に沿って天井部まで上昇し、本実施例では、天井面に沿って、試験片2の直上付近までパイプが延設されている。本実施例では、天井部に到るまでを吸引パイプ8、その上端から天井面に沿い、後述する擬似雪片噴射部3までを排出パイプ11と称する。   The suction pipe 8 rises to the ceiling along the side wall of the test chamber 1, and in the present embodiment, the pipe extends along the ceiling surface to the vicinity immediately above the test piece 2. In the present embodiment, the suction pipe 8 is referred to as reaching the ceiling portion, and the pseudo-snow piece injection portion 3 described later is referred to as the discharge pipe 11 along the ceiling surface from the upper end thereof.

擬似雪片噴射部3から噴射された擬似雪片4は、再び、裁円錐状の擬似雪片貯留部7に回収され、試験期間中、擬似雪片貯留部7の中央部における擬似雪片高さをほぼ一定に維持することができる。これにより、吸引パイプ8から吸引される擬似雪片4の量が変動するのを防止することができる。もちろん、裁円錐状の擬似雪片貯留部7の上端外縁を、試験室1の側壁まで延出させ、噴出された擬似雪片の全量を回収できるようにしてもよい。   The simulated snowflake 4 injected from the simulated snowflake injection unit 3 is again collected in the pseudo-cone-shaped simulated snowflake storage unit 7, and the height of the simulated snowflake in the central part of the simulated snowflake storage unit 7 is made substantially constant during the test period. Can be maintained. Thereby, it is possible to prevent the amount of the pseudo snowflake 4 sucked from the suction pipe 8 from fluctuating. Of course, the outer edge of the upper end of the truncated cone-shaped pseudo snowflake storage portion 7 may be extended to the side wall of the test chamber 1 so that the entire amount of the pseudo snowflake that has been ejected can be recovered.

次に、擬似雪片噴射部3の構造について説明する。
擬似雪片噴射部3は、図3に示すような、ラッパ状に拡開する円筒状の擬似雪片旋回部12を備えており、その拡開側端部(図3において上方)に形成した嵌合部13に、天井面に沿ってその中央部付近まで延設された排出パイプ11の末端が結合されている。擬似雪片旋回部12の内周面には、嵌合部13の下方から徐々に縮径する基端部20(図3において下方)に向けて、所定の高さを有する、螺旋状のフィン14が内周面に設けられている。
Next, the structure of the pseudo snowflake injection unit 3 will be described.
The pseudo snowflake injection section 3 includes a cylindrical pseudo snowflake turning section 12 that expands in a trumpet shape as shown in FIG. 3, and a fitting formed at an end of the expansion side (upward in FIG. 3). The end of the discharge pipe 11 extending to the vicinity of the center portion along the ceiling surface is coupled to the portion 13. A spiral fin 14 having a predetermined height is formed on the inner peripheral surface of the pseudo snowflake turning part 12 from the lower part of the fitting part 13 toward the base end part 20 (downward in FIG. 3). Is provided on the inner peripheral surface.

擬似雪片旋回部12の基端部20外周には、図4に示されるように、ノズル部15の基端部16が外嵌されている。基端部16の上面には、擬似雪片旋回部12の内周面に形成したフィン14と同数の8本のチューブ17からなるチューブ体18が一体成形されている。各チューブ17の垂直断面は、中心角略45°の扇形形状をしており、内部に擬似雪片4が通過する通路が形成されている。   As shown in FIG. 4, the base end portion 16 of the nozzle portion 15 is fitted on the outer periphery of the base end portion 20 of the pseudo snowflake turning portion 12. On the upper surface of the base end portion 16, a tube body 18 composed of eight tubes 17 of the same number as the fins 14 formed on the inner peripheral surface of the pseudo snowflake turning portion 12 is integrally formed. The vertical cross section of each tube 17 has a fan shape with a central angle of approximately 45 °, and a passage through which the pseudo snowflake 4 passes is formed inside.

なお、図4は、チューブ体18の構造を分かりやすく説明したもので、この実施例では、ノズル部15の基端部16が、天井面に沿う擬似雪片旋回部12と連続するように結合されているので、各チューブ17の先端に形成された噴射口から、擬似雪片4が試験片2の周囲に均等に降下するように、各チューブの17の長さや噴射口の向きが選定されている。   FIG. 4 explains the structure of the tube body 18 in an easy-to-understand manner. In this embodiment, the base end portion 16 of the nozzle portion 15 is coupled so as to be continuous with the pseudo snowflake turning portion 12 along the ceiling surface. Therefore, the length of each tube 17 and the direction of the injection port are selected so that the pseudo snowflake 4 is uniformly lowered around the test piece 2 from the injection port formed at the tip of each tube 17. .

各チューブ17の下端は、基端部16の上面において、8本の放射状のリブ19を形成するよう一体成形されており、このリブ19は、擬似雪片旋回部12の下端に嵌合されたとき、8本のフィン14の末端と整合するよう形状が定まられている。このため、各チューブ17の下端と擬似雪片旋回部12の基端部20が正しく位置決めされるよう、双方にマークや、互いに嵌合する凹部、凸部が形成されている。   The lower end of each tube 17 is integrally formed so as to form eight radial ribs 19 on the upper surface of the base end portion 16, and when the rib 19 is fitted to the lower end of the pseudo snowflake turning portion 12. The shape is determined so as to be aligned with the ends of the eight fins 14. For this reason, the mark, the recessed part which fits each other, and the convex part are formed in both so that the lower end of each tube 17 and the base end part 20 of the pseudo snowflake turning part 12 may be positioned correctly.

擬似雪片噴射部3の作用について説明する。
図2に示したように、エアコンプレッサー10により、擬似雪片貯留部7に貯留された擬似雪片4は、吸引パイプ8の末端から吸い込まれる。その後、試験空間の天井部に到り、排出パイプ11を経て、擬似雪片旋回部12に導入される。
擬似雪片4は、その自重により、排出パイプ11の内部において、下方を流れることになるが、擬似雪片旋回部12内周に形成された螺旋状のフィン14によりその下流側(図2において下方側)に向けて、強力な旋回流が形成されることになる。
この旋回流により擬似雪片4に遠心力が作用するが、擬似雪片旋回部12の内周面が徐々に縮径しているため、基端部20に到るまでに、隣り合うフィン14の間に均等に分散されることになる。
その結果、各チューブ17の下端に形成されるリブ19に到るまでに、擬似雪片4が均等に分配され、各チューブ17にほぼ同数の擬似雪片4が導入されるので、各チューブ17の先端に設けられた噴出口から、試験室1内の試験片周辺に同数の擬似雪片4が噴出されることになる。
The operation of the pseudo snowflake injection unit 3 will be described.
As shown in FIG. 2, the pseudo snowflake 4 stored in the pseudo snowflake storage unit 7 is sucked from the end of the suction pipe 8 by the air compressor 10. Then, it reaches the ceiling part of the test space, and is introduced into the pseudo snowflake turning part 12 through the discharge pipe 11.
The simulated snowflake 4 flows under the inside of the discharge pipe 11 due to its own weight, but the downstream side (the lower side in FIG. 2) is formed by a spiral fin 14 formed on the inner periphery of the simulated snowflake turning portion 12. ), A strong swirl flow is formed.
Centrifugal force acts on the pseudo snowflake 4 by this swirl flow, but since the inner peripheral surface of the pseudo snowflake turning portion 12 is gradually reduced in diameter, between the adjacent fins 14 before reaching the base end portion 20. Will be evenly distributed.
As a result, the pseudo snowflakes 4 are evenly distributed until reaching the rib 19 formed at the lower end of each tube 17, and almost the same number of pseudo snowflakes 4 are introduced into each tube 17. Thus, the same number of pseudo snowflakes 4 are ejected around the test piece in the test chamber 1 from the jet port provided in the test chamber 1.

各チューブ17は、エアコンプレッサー10の風量に合わせて、各噴出口から噴出される擬似雪片4が、試験片2の周辺に均等に降下するよう、その先端の噴出口の向きが設定されており、シミュレーションを行う視界条件に応じて最適なものを選択する。なお、各チューブ17の先端の向きを自由に調節できるよう調節機構を設けたり、チューブ17自体をフレキシブルな材質で形成してもよい。各チューブ17の先端に設けられた噴出口から同数の擬似雪片が噴出されるため、調整を簡単に行うことが可能となる。
また、各チューブ17の先端の噴出口の形状によっても、擬似雪片4の空間内における降下密度を調整することが可能である。
The direction of the jet outlet at the tip of each tube 17 is set so that the pseudo snowflakes 4 ejected from the respective jet outlets descend uniformly around the test piece 2 according to the air volume of the air compressor 10. Then, the optimum one is selected according to the viewing conditions for the simulation. An adjustment mechanism may be provided so that the direction of the tip of each tube 17 can be freely adjusted, or the tube 17 itself may be formed of a flexible material. Since the same number of pseudo snowflakes is ejected from the ejection port provided at the tip of each tube 17, the adjustment can be easily performed.
The descending density in the space of the pseudo snowflake 4 can also be adjusted by the shape of the jet outlet at the tip of each tube 17.

なお、実施例では、試験室1に擬似雪片噴射部3を1ユニット設けているが、試験室1の容積や、シミュレーションを行う視界条件によっては複数のユニットを設けるようにしても良い。
また、雨天、降雪、濃霧等、実施の気象条件に応じて、それぞれの視界条件が再現できるよう、予め、実験結果を比較し、エアコンプレッサー10の風量や、使用する擬似雪片などを選択できるよう、対応マップを作成することが好ましい。
In the embodiment, one unit of the pseudo snowflake injection unit 3 is provided in the test chamber 1, but a plurality of units may be provided depending on the volume of the test chamber 1 and the visibility condition for performing the simulation.
In addition, the experimental results are compared in advance so that the visibility conditions can be reproduced according to the weather conditions such as rain, snowfall, dense fog, etc., so that the air volume of the air compressor 10 and the simulated snowflakes to be used can be selected. It is preferable to create a correspondence map.

以上説明したように、本発明によれば、エアコンプレッサー1基で、しかも、試験室の天井部に配設させる排出パイプを1本設けるという低コストの設備により、試験片の周辺に擬似雪片を均一に降下させることが可能となり、低コストの設備で様々な視界条件を正確に再現することが可能になるので、模擬視界シミュレーション装置として広く採用されることが期待できる。   As described above, according to the present invention, a pseudo-snow piece is placed around the test piece by using a low-cost facility in which one air compressor is provided and one discharge pipe is provided on the ceiling of the test room. It can be lowered uniformly, and various viewing conditions can be accurately reproduced with low-cost equipment. Therefore, it can be expected to be widely used as a simulated viewing simulation apparatus.

1 試験室
2 試験片
3 擬似雪片噴射部
4 擬似雪片
5 窓
6 センサ
7 擬似雪片貯留部
8 吸引パイプ
9 圧縮空気噴出部
10 エアコンプレッサー
11 排出パイプ
12 擬似雪片旋回部
13 排出パイプとの嵌合部
14 螺旋状のフィン
15 ノズル部
16 ノズル部の基端部
17 チューブ
18 チューブ体
19 リブ
20 擬似雪片旋回部の基端部
DESCRIPTION OF SYMBOLS 1 Test chamber 2 Test piece 3 Pseudo snowflake injection part 4 Pseudo snowflake 5 Window 6 Sensor 7 Pseudo snowflake storage part 8 Suction pipe 9 Compressed air ejection part 10 Air compressor 11 Discharge pipe 12 Pseudo snowflake turning part 13 Fitting part with discharge pipe 14 Spiral fin 15 Nozzle part 16 Base end part of nozzle part 17 Tube 18 Tube body 19 Rib 20 Base end part of pseudo snowflake turning part

Claims (4)

試験空間内に擬似雪片を降下させ、センサによる物体の判別性能を評価するため、あるいは、悪天候による視程低下を模擬的に再現するための模擬視界シミュレーション装置であって、
前記試験空間の底部に設けた擬似雪片貯留部から、前記擬似雪片を空気流とともに吸い込む吸引パイプと、
前記吸引パイプの末端に接続され、前記試験空間の天井面に沿って配置された排出パイプと、
前記排出パイプの末端に接続され、その入口端から出口端に到るまで、内面に複数本の螺旋状フィンが円周方向に均等に形成された擬似雪片旋回部と、
前記螺旋状フィンと同数のチューブからなるチューブ体とを備え、
前記チューブの入口端のそれぞれは、前記擬似雪片旋回部において、隣り合う螺旋状フィン間で均等に分配された前記擬似雪片を取り込むよう、前記擬似雪片旋回部の出口端に正対向するよう配置され、
前記チューブのそれぞれは、取り込んだ擬似雪片が、前記試験空間内において均一に降下するよう、その先端に設けられた噴出口の向きが選定されていることを特徴とする模擬視界シミュレーション用装置。
A simulated visual field simulation device for lowering simulated snowflakes in a test space and evaluating object discrimination performance by a sensor, or for reproducing simulated visibility reduction due to bad weather,
A suction pipe that sucks in the pseudo snowflake together with an air flow from the pseudo snowflake storage section provided at the bottom of the test space;
A discharge pipe connected to the end of the suction pipe and disposed along the ceiling surface of the test space;
Connected to the end of the discharge pipe, and from the inlet end to the outlet end, a pseudo snowflake turning part in which a plurality of spiral fins are uniformly formed in the circumferential direction on the inner surface,
A tube body comprising the same number of tubes as the spiral fins;
Each of the inlet ends of the tubes is disposed so as to face the outlet end of the pseudo snowflake turning portion so as to take in the pseudo snowflake evenly distributed between adjacent spiral fins in the pseudo snowflake turning portion. ,
Each of the tubes is a simulated visual field simulation device, wherein the direction of the jet port provided at the tip thereof is selected so that the captured pseudo snowflakes are uniformly lowered in the test space.
前記擬似雪片旋回部は、前記排出パイプ末端との接続部から前記出口端に向けて、徐々に内径が縮径する逆裁頭円錐形であることを特徴とする請求項1に記載の模擬視界シミュレーション用装置。   The simulated field of view according to claim 1, wherein the pseudo snowflake turning portion has a reverse truncated cone shape in which an inner diameter gradually decreases from a connection portion with the end of the discharge pipe toward the outlet end. Simulation device. 前記チューブ体は、その基端部上面に放射状のリブを備えており、前記チューブが前記リブから延出するよう一体成形されたものであることを特徴とする請求項1または請求項2に記載された模擬視界シミュレーション装置。   The said tube body is equipped with the radial rib on the upper surface of the base end part, The said tube is integrally molded so that it may extend from the said rib, The Claim 1 or Claim 2 characterized by the above-mentioned. Simulated visual field simulation device. 前記リブが、前記螺旋状フィンの末端と整合するよう配置されていることを特徴とする請求項3に記載された模擬視界シミュレーション装置。   4. The simulated visual field simulation apparatus according to claim 3, wherein the rib is disposed so as to be aligned with an end of the helical fin.
JP2013222611A 2013-10-25 2013-10-25 Simulated visibility simulation device Active JP6206915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013222611A JP6206915B2 (en) 2013-10-25 2013-10-25 Simulated visibility simulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013222611A JP6206915B2 (en) 2013-10-25 2013-10-25 Simulated visibility simulation device

Publications (2)

Publication Number Publication Date
JP2015083949A true JP2015083949A (en) 2015-04-30
JP6206915B2 JP6206915B2 (en) 2017-10-04

Family

ID=53047617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013222611A Active JP6206915B2 (en) 2013-10-25 2013-10-25 Simulated visibility simulation device

Country Status (1)

Country Link
JP (1) JP6206915B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003326A (en) * 2018-06-05 2018-12-14 湖北亿咖通科技有限公司 A kind of virtual laser radar data generation method based on virtual world
CN109725301A (en) * 2017-10-31 2019-05-07 北醒(北京)光子科技有限公司 A kind of test method
JP2020134261A (en) * 2019-02-18 2020-08-31 エスペック株式会社 Artificial meteorological environment test chamber and environment test method
CN113252526A (en) * 2021-05-10 2021-08-13 中国气象局上海物资管理处 System and method for artificial rainfall and spray cleaning of visibility measurement test shelter
CN114973894A (en) * 2022-04-27 2022-08-30 中船九江大正科技有限公司 Temperature simulation test box based on microclimate simulation
KR102586593B1 (en) * 2022-09-16 2023-10-06 (재)한국건설생활환경시험연구원 Lab-based Performance Evaluation System Of Lidar For Autonomous Driving Considering Real Road Environment
KR102586596B1 (en) * 2022-09-16 2023-10-06 (재)한국건설생활환경시험연구원 Lab-Based Performance Evaluation Method of LiDAR For Autonomous Driving

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623600U (en) * 1979-07-30 1981-03-03
JPH08219945A (en) * 1995-02-20 1996-08-30 Mitsubishi Electric Corp Tester for transmissometer
US20060111011A1 (en) * 2004-11-23 2006-05-25 Sheng-Chien Wang Inflatable decorative device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623600U (en) * 1979-07-30 1981-03-03
JPH08219945A (en) * 1995-02-20 1996-08-30 Mitsubishi Electric Corp Tester for transmissometer
US20060111011A1 (en) * 2004-11-23 2006-05-25 Sheng-Chien Wang Inflatable decorative device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725301A (en) * 2017-10-31 2019-05-07 北醒(北京)光子科技有限公司 A kind of test method
CN109003326A (en) * 2018-06-05 2018-12-14 湖北亿咖通科技有限公司 A kind of virtual laser radar data generation method based on virtual world
JP2020134261A (en) * 2019-02-18 2020-08-31 エスペック株式会社 Artificial meteorological environment test chamber and environment test method
JP7111637B2 (en) 2019-02-18 2022-08-02 エスペック株式会社 Artificial climate chamber and environmental test method
CN113252526A (en) * 2021-05-10 2021-08-13 中国气象局上海物资管理处 System and method for artificial rainfall and spray cleaning of visibility measurement test shelter
CN114973894A (en) * 2022-04-27 2022-08-30 中船九江大正科技有限公司 Temperature simulation test box based on microclimate simulation
KR102586593B1 (en) * 2022-09-16 2023-10-06 (재)한국건설생활환경시험연구원 Lab-based Performance Evaluation System Of Lidar For Autonomous Driving Considering Real Road Environment
KR102586596B1 (en) * 2022-09-16 2023-10-06 (재)한국건설생활환경시험연구원 Lab-Based Performance Evaluation Method of LiDAR For Autonomous Driving

Also Published As

Publication number Publication date
JP6206915B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6206915B2 (en) Simulated visibility simulation device
CN103606333B (en) Low-pressure plane cargo space fire experiment simulation device
ES2804257T3 (en) Test apparatus and method for testing dust suppression systems
KR101499672B1 (en) A standard aerosol sampling system
KR101827916B1 (en) Drone system for checking of fire sensor
US20180015315A1 (en) Water Mist Protection For Forced Ventilation Interstitial Spaces
CN103292835A (en) Comprehensive detection simulation experiment device for fire detection performance
CN206945501U (en) A kind of multifunction manual ageing test apparatus for coating
JP7049506B2 (en) Smoke detector
CN203644291U (en) Low-pressure airplane cargo bay fire experiment simulation device
CN109239282A (en) Coal mine dust, methane, the simulation of humidity environment ball-type and control device and method
Fromentin Particle resuspension from a multi-layer deposit by turbulent flow
CN106935005B (en) Test device and method for evaluating dust transient interference resistance of smoke detector
CN206583879U (en) A kind of pernicious gas detection case
US20190301982A1 (en) Shower/safety shower/fire sprinkler testing device
CN209543728U (en) Weather simulation laboratory with air control structure
KR101315306B1 (en) Simulation apparatus for solar cell
JP4340666B2 (en) How to control mist explosions of flammable liquids
CN104849189A (en) Mine tunnel dust environment simulating testing system
CN109031466B (en) Hail simulator
WO2018167757A2 (en) Portable device for water level detection
JP2018200260A (en) Environment testing device, and smoke generation detection device
Kim et al. Snowfall simulation for evaluating visibility performance of vision based sensors using expanded polystyrene beads—Nozzle design for snowfall simulation
JP2015001327A (en) Maintenance method of air conditioning machine
CN206833692U (en) Evaluate and test the experimental rig of the anti-dust glitch performance of smoke detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170830

R150 Certificate of patent or registration of utility model

Ref document number: 6206915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250