JP2015083282A - Static mixing structure, fluid mixing method and mixed fluid manufacturing method - Google Patents

Static mixing structure, fluid mixing method and mixed fluid manufacturing method Download PDF

Info

Publication number
JP2015083282A
JP2015083282A JP2013221716A JP2013221716A JP2015083282A JP 2015083282 A JP2015083282 A JP 2015083282A JP 2013221716 A JP2013221716 A JP 2013221716A JP 2013221716 A JP2013221716 A JP 2013221716A JP 2015083282 A JP2015083282 A JP 2015083282A
Authority
JP
Japan
Prior art keywords
mixing element
mixing
fluid
passage
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013221716A
Other languages
Japanese (ja)
Other versions
JP6232683B2 (en
Inventor
昇 望月
Noboru Mochizuki
昇 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISEL Co Ltd
Original Assignee
ISEL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISEL Co Ltd filed Critical ISEL Co Ltd
Priority to JP2013221716A priority Critical patent/JP6232683B2/en
Publication of JP2015083282A publication Critical patent/JP2015083282A/en
Application granted granted Critical
Publication of JP6232683B2 publication Critical patent/JP6232683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a static mixing structure, a fluid mixing method and a mixed fluid manufacturing method capable of performing mixing while suppressing pressure loss in the static mixing structure which performs mixing of fluids in such a process that the fluids pass through a channel.SOLUTION: A plurality of sheets of planar mixing element parts 13 which spread in such a direction as to block a channel 12 are arranged leaving an interval along the channel 12 direction. A plurality of passage parts 14 which cause fluids to pass therethrough and a closing part 15 which blocks the passage of fluids are formed on the mixing element parts 13, and the mixing element parts 13 are arranged such that the downstream side of the passage parts 14 of one side mixing element parts 13 is closed by the closing parts 15 of the other side mixing element sides 13. Therein, when it is supposed that one side mixing element parts 13 and the other side mixing element parts 13 are overlapped onto a part of edge parts 17 on the passage parts 14 or the closing parts 15 of one side mixing element parts 13, and a part of edge parts 17 on the closing parts 15 or the passage parts 14 of the other side mixing element parts 13 on the same flat surface, adjacent edge parts 18 which come into contact with or come close to each other are formed.

Description

この発明は、流体自体のもつエネルギーにより流体を混合する静的混合構造に関し、より詳しくは、圧力損失を抑えながら流体の混合が行えるようにする静的混合構造に関する。   The present invention relates to a static mixing structure that mixes fluids with the energy of the fluid itself, and more particularly to a static mixing structure that enables fluid mixing while suppressing pressure loss.

静的混合装置として、例えば下記特許文献1に開示されているようなものがある。この静的混合装置は、円筒状の配管に複数のオリフィス板を配置して構成されている。これらすべてのオリフィス板は、配管の軸方向にみたときに隣接する2枚のオリフィス板同士の間で重ならないように複数の穴を有している。これらの穴はすべて円形である。   As a static mixing device, for example, there is one disclosed in Patent Document 1 below. This static mixing device is configured by arranging a plurality of orifice plates on a cylindrical pipe. All these orifice plates have a plurality of holes so that they do not overlap between two adjacent orifice plates when viewed in the axial direction of the pipe. These holes are all round.

このような構成であるので、配管に入った流体は、オリフィス板の穴を順次通過しながら分割・合流を繰り返す。この結果、流体が混合される。   Since it is such a structure, the fluid which entered into piping repeats a division | segmentation and confluence | merging, passing the hole of an orifice plate sequentially. As a result, the fluid is mixed.

つまり、流体の混合は、穴を通過した流体の直進を阻止して行う構成であって、穴を通過した流体は行く手を阻まれて分割・合流し、オリフィス板間を通ったのち、下流側のオリフィス板における近い穴に流れ込む。   In other words, fluid mixing is performed by preventing the fluid that has passed through the hole from going straight, and the fluid that has passed through the hole is blocked by the hand going to divide and merge, and then passes between the orifice plates and then downstream. Flows into a near hole in the orifice plate.

しかし、前述のように隣接する2枚のオリフィス板の穴は円形で、穴同士が配管の軸方向において互いに重ならないように配設された構成であるので、圧力損失が大きい。   However, as described above, since the holes of the two adjacent orifice plates are circular and are arranged so that the holes do not overlap each other in the axial direction of the pipe, the pressure loss is large.

特開2011−121038号公報JP 2011-121038 A

そこで、この発明は、圧力損失が小さくても流体の混合ができるようにすることを主な目的とする。   Accordingly, the main object of the present invention is to enable fluid mixing even when the pressure loss is small.

そのための第1の手段は、流体が通過する流路に、該流路を塞ぐ方向に広がる板状の混合エレメント部を、前記流路の長手方向に間隔をあけて複数備えた静的混合構造であって、前記混合エレメント部に、前記流体を通過させる複数の通過部と、前記流体の通過を阻止する閉塞部が形成されるとともに、前記混合エレメント部が複数枚で一組となる混合エレメント群を備え、前記混合エレメント群のうちの一の混合エレメント部の前記通過部が、同一の混合エレメント群のうちの他の混合エレメント部の前記閉塞部によって流路方向視において閉じられるように、前記混合エレメント部の前記通過部と前記閉塞部が配設されるとともに、前記混合エレメント群のうちの一の混合エレメント部の前記通過部または前記閉塞部における縁部の少なくとも一部と、該混合エレメント部に対して流路方向視において隣接する他の混合エレメント部の前記閉塞部または前記通過部における縁部の少なくとも一部に、前記一の混合エレメント部と前記隣接する他の混合エレメント部が同一平面上で重なっていると仮定したときに互いに接する又は近接する近隣縁部が形成された静的混合構造である。   For this purpose, the first means is a static mixing structure in which a plurality of plate-like mixing element portions extending in the direction of closing the flow path are provided in the flow path through which the fluid passes with a gap in the longitudinal direction of the flow path. The mixing element portion includes a plurality of passage portions that allow the fluid to pass therethrough and a blocking portion that blocks the passage of the fluid, and the mixing element portion includes a plurality of the mixing element portions. And the passage portion of one mixing element portion of the mixing element group is closed in the flow channel direction view by the closing portion of the other mixing element portion of the same mixing element group, The passing portion and the closing portion of the mixing element portion are disposed, and the passing portion of the mixing element portion of the mixing element group or the edge portion of the closing portion is small. The one mixing element portion and the adjacent portion at least in part and at least a part of the edge portion of the other mixing element portion adjacent to the mixing element portion as viewed in the flow path direction. This is a static mixing structure in which neighboring edges are formed in contact with or close to each other when it is assumed that other mixing element portions overlap on the same plane.

課題を解決するための第2の手段は、流体が通過する流路に、該流路を塞ぐ方向に広がる板状の混合エレメント部を、前記流路の長手方向に間隔をあけて複数配設した静的混合構造を用いて前記流体を混合する流体混合方法であって、前記混合エレメント部に、前記流体を通過させる複数の通過部と、前記流体の通過を阻止する閉塞部を形成するとともに、前記混合エレメント部が複数枚で一組となる混合エレメント群を備え、前記混合エレメント群のうちの一の混合エレメント部の前記通過部が、同一の混合エレメント群のうちの他の混合エレメント部の前記閉塞部によって流路方向視において閉じられるように、前記混合エレメント部の前記通過部と前記閉塞部を配設するとともに、前記混合エレメント群のうちの一の混合エレメント部の前記通過部または前記閉塞部における縁部の少なくとも一部と、該混合エレメント部に対して流路方向視において隣接する他の混合エレメント部の前記閉塞部または前記通過部における縁部の少なくとも一部に、前記一の混合エレメント部と前記隣接する他の混合エレメント部が同一平面上で重なっていると仮定したときに互いに接する又は近接する近隣縁部を形成して、前記一の混合エレメント部における前記通過部を通った流体が直進することを、前記隣接する他の混合エレメント部の前記閉塞部が阻止して流体を分割するとともに、その流体を前記閉塞部に隣接する前記通過部に前記近隣縁部を通して速やかに迂回させて合流させ、流体を混合する流体混合方法である。   The second means for solving the problem is that a plurality of plate-like mixing element portions extending in the direction of closing the flow path are disposed in the flow path through which the fluid passes with a gap in the longitudinal direction of the flow path. In the fluid mixing method of mixing the fluid using the static mixing structure, a plurality of passage portions for allowing the fluid to pass therethrough and a closing portion for preventing the passage of the fluid are formed in the mixing element portion. The mixing element unit includes a plurality of mixing element groups, and the passing unit of one mixing element unit of the mixing element group is the other mixing element unit of the same mixing element group. The passage portion and the closing portion of the mixing element portion are disposed so as to be closed in the flow path direction view by the closing portion, and one mixing element portion of the mixing element group At least a part of the edge in the passage part or the closing part and at least a part of the edge part in the closing part or the passage part of another mixing element part adjacent to the mixing element part in the flow channel direction view The adjacent mixing element portion and the adjacent other mixing element portion are adjacent to each other on the same plane to form adjacent edges that are adjacent to or adjacent to each other. The blocking portion of the adjacent other mixing element portion prevents the fluid passing through the passage portion from going straight and divides the fluid, and the fluid is adjacent to the passage portion adjacent to the blocking portion. This is a fluid mixing method in which fluids are mixed by quickly detouring and joining through an edge.

課題を解決するための第3の手段は、流体が通過する流路に、該流路を塞ぐ方向に広がる板状の混合エレメント部を、前記流路の長手方向に間隔をあけて複数配置した静的混合構造を用いて混合流体を製造する混合流体製造方法であって、前記混合エレメント部に、前記流体を通過させる複数の通過部と、前記流体の通過を阻止する閉塞部を形成するとともに、前記混合エレメント部が複数枚で一組となる混合エレメント群を備え、前記混合エレメント群のうちの一の混合エレメント部の前記通過部が、同一の混合エレメント群のうちの他の混合エレメント部の前記閉塞部によって流路方向視において閉じられるように、前記混合エレメント部の前記通過部と前記閉塞部を配設するとともに、前記混合エレメント群のうちの一の混合エレメント部の前記通過部または前記閉塞部における縁部の少なくとも一部と、該混合エレメント部に対して流路方向視において隣接する他の混合エレメント部の前記閉塞部または前記通過部における縁部の少なくとも一部に、前記一の混合エレメント部と前記隣接する他の混合エレメント部が同一平面上で重なっていると仮定したときに互いに接する又は近接する近隣縁部を形成して、前記一の混合エレメント部における前記通過部を通った流体が直進することを、前記隣接する他の混合エレメント部の前記閉塞部が阻止して流体を分割するとともに、その流体を前記閉塞部に隣接する前記通過部に前記近隣縁部を通して速やかに迂回させて合流させ、流体を混合させる混合流体製造方法である。   According to a third means for solving the problem, a plurality of plate-like mixing element portions extending in the direction of closing the flow path are disposed in the flow path through which the fluid passes with a gap in the longitudinal direction of the flow path. A mixed fluid manufacturing method for manufacturing a mixed fluid using a static mixing structure, wherein a plurality of passage portions that allow the fluid to pass therethrough and a blocking portion that prevents passage of the fluid are formed in the mixing element portion. The mixing element unit includes a plurality of mixing element groups, and the passing unit of one mixing element unit of the mixing element group is the other mixing element unit of the same mixing element group. The passage portion and the closing portion of the mixing element portion are disposed so as to be closed in the flow path direction view by the closing portion of the mixing element, and one mixing element of the mixing element group At least a part of the edge of the passing part or the closed part of the part, and at least the edge of the closed part or the passing part of another mixing element part adjacent to the mixing element part in the flow channel direction view The one mixing element part is formed with a neighboring edge part that touches or is close to each other when it is assumed that the one mixing element part and the other adjacent mixing element part overlap on the same plane. The fluid that has passed through the passage part in the part is blocked by the blocking part of the other adjacent mixing element part to divide the fluid, and the fluid is passed to the passage part adjacent to the blocking part. In the mixed fluid manufacturing method, fluids are mixed by quickly detouring and joining through the adjacent edge portion.

これらの構成では、流路を流れる流体が混合エレメント群に流入するとき、混合エレメント部の閉塞部が流体を分割するとともに、通過部がその流体を合流させて下流側に通過させる。この混合エレメント部の下流側で隣接する別の混合エレメント部では、上流側の通過部を通った流体を閉塞部が遮り、前述と同様に流体の分割をするとともに、通過部がその流体を合流させて下流側に流す。このような流動が順次行われる過程において、上流側の混合エレメント部の通過部を通った流体は、流路方向視において近くに存在する閉塞部の近隣縁部とその近傍部分においてより多く流れ、流体は混合される。   In these configurations, when the fluid flowing through the flow path flows into the mixing element group, the blocking portion of the mixing element portion divides the fluid, and the passage portion joins the fluid and passes it downstream. In another mixing element part adjacent on the downstream side of the mixing element part, the blocking part blocks the fluid that has passed through the upstream passing part, and the fluid is divided as described above, and the passing part joins the fluid. And let it flow downstream. In the process in which such a flow is sequentially performed, the fluid that has passed through the passage portion of the upstream mixing element portion flows more in the vicinity edge portion and the vicinity portion of the close portion that is present in the flow passage direction view, The fluid is mixed.

この発明によれば、流体の流動性を確保しながらも流体の分割・合流を行う構成であるので、圧力損失が低くても流体の混合を行うことができる。   According to the present invention, since the fluid is divided and merged while ensuring the fluidity of the fluid, the fluid can be mixed even if the pressure loss is low.

静的混合構造の概略構造と作用を示す斜視図。The perspective view which shows the schematic structure and effect | action of a static mixing structure. 静的混合構造を適用した管体の斜視図。The perspective view of the tubular body to which the static mixing structure is applied. 静的混合構造を適用した管体の分解斜視図。The disassembled perspective view of the tubular body to which the static mixing structure is applied. 図2の管体の断面図。Sectional drawing of the tubular body of FIG. 混合ユニットの分解斜視図。The disassembled perspective view of a mixing unit. 混合エレメント部の平面図。The top view of a mixing element part. 混合ユニットにおける混合エレメント部の断面図(図7(a))と、作用状態の説明図(図7(a))。Sectional drawing (FIG. 7 (a)) of the mixing element part in a mixing unit, and explanatory drawing of an operation state (FIG. 7 (a)). 混合ユニットにおける混合エレメント部の断面図(図8(a)、(図8(b))。Sectional drawing (FIG. 8 (a), (b)) of the mixing element part in a mixing unit. 混合ユニットの分解斜視図。The disassembled perspective view of a mixing unit. 流動解析のための条件を説明する説明図。Explanatory drawing explaining the conditions for a flow analysis. 流動解析結果。Flow analysis results. 流動解析結果。Flow analysis results. 静的混合構造を適用した管体の断面図。Sectional drawing of the pipe body which applied the static mixing structure. 混合部材の斜視図(図13(a)、(図13(b))。The perspective view of a mixing member (FIG. 13 (a), (FIG.13 (b)). 静的混合構造を適用した混合管体の斜視図。The perspective view of the mixing tube which applied the static mixing structure. 他の例に係る混合エレメント部とスペーサの斜視図。The perspective view of the mixing element part and spacer which concern on another example. 図15に示した混合エレメント部の平面図(図16(a))と、混合エレメント群の断面図(図16(b))。The top view (FIG. 16 (a)) of the mixing element part shown in FIG. 15, and sectional drawing (FIG.16 (b)) of a mixing element group. 混合部材の斜視図。The perspective view of a mixing member. 他の例に係る混合エレメント部の平面図。The top view of the mixing element part which concerns on another example.

この発明を実施するための一形態を、以下図面を用いて説明する。
図1は、静的混合構造11の概略構造と作用を示す斜視図であり、この静的混合構造11は、流体が流路12を通過する間に流体の持つエネルギーにより流体を混合するものである。流体の混合は、流路12を塞ぐ方向に広がる複数枚の混合エレメント部13によって行う。これら混合エレメント部13は流路12の長手方向に間隔をとって配設されている。
An embodiment for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing the schematic structure and operation of a static mixing structure 11, and this static mixing structure 11 mixes fluid by the energy of the fluid while the fluid passes through the flow path 12. is there. The mixing of the fluid is performed by a plurality of mixing element portions 13 spreading in the direction of closing the flow path 12. These mixing element portions 13 are arranged at intervals in the longitudinal direction of the flow path 12.

混合エレメント部13は、流路12の全体を塞ぐ大きさであり、混合エレメント部13の外形形状は、流路12における混合エレメント部13を設ける部分の断面形状に合わせて形成される。図1に示した例における流路12は、その長手方向と直交する方向での縦断面形状が円形であり、混合エレメント部13は流路12の長手方向と直交する方向に広がるように設けるものである。このため、混合エレメント部13の外形形状も円形である。流路12の縦断面形状が円形以外の、例えば四角形などであれば、混合エレメント部13の外形形状はそれと同じ四角形などに形成される。   The mixing element portion 13 has a size that covers the entire flow path 12, and the outer shape of the mixing element section 13 is formed in accordance with the cross-sectional shape of the portion of the flow path 12 where the mixing element portion 13 is provided. The flow path 12 in the example shown in FIG. 1 has a circular longitudinal cross-sectional shape in a direction orthogonal to the longitudinal direction, and the mixing element portion 13 is provided so as to spread in a direction orthogonal to the longitudinal direction of the flow path 12. It is. For this reason, the external shape of the mixing element part 13 is also circular. If the longitudinal cross-sectional shape of the flow path 12 is other than a circle, for example, a quadrangle, the outer shape of the mixing element portion 13 is formed in the same quadrangle.

混合エレメント部13の厚さは、流体の性状や流速、流量等の条件に応じて適宜設定される。混合エレメント部13の材料には、金属や合成樹脂など適宜のものを使用できる。   The thickness of the mixing element portion 13 is appropriately set according to conditions such as fluid properties, flow velocity, and flow rate. As the material of the mixing element portion 13, an appropriate material such as metal or synthetic resin can be used.

混合エレメント部13は、流体が流れるに従って流体に分割と合流を行わせるため、流体を通過させる複数の通過部14と、流体の通過を阻止する閉塞部15を有する。前記通過部14は流体が通過する構造であればよく、この例においては貫通した穴で形成されている。   The mixing element portion 13 has a plurality of passage portions 14 that allow the fluid to pass therethrough and a closing portion 15 that blocks the passage of the fluid so that the fluid is divided and merged as the fluid flows. The passage portion 14 may have a structure through which a fluid passes, and in this example, the passage portion 14 is formed by a through hole.

このような混合エレメント部13は、複数枚で一組の混合エレメント群16を構成する。そして、混合エレメント群16のうちの一の混合エレメント部13の通過部14が、同一の混合エレメント群16のうちの他の混合エレメント部13の閉塞部15によって流路方向視において閉じられるように、混合エレメント部13の通過部14と閉塞部15が配設されている。図1に示した例では、2枚の混合エレメント部13で構成される混合エレメント群16を示している。図1においては便宜上3枚の混合エレメント部13をあらわしている。   A plurality of such mixing element sections 13 constitute a set of mixing element groups 16. And the passage part 14 of one mixing element part 13 in the mixing element group 16 is closed in the flow channel direction view by the closing part 15 of the other mixing element part 13 in the same mixing element group 16. The passage portion 14 and the closing portion 15 of the mixing element portion 13 are disposed. In the example illustrated in FIG. 1, a mixing element group 16 including two mixing element portions 13 is illustrated. In FIG. 1, three mixing element portions 13 are shown for convenience.

静的混合構造11に必要な混合エレメント部13の枚数は、少なくとも一組の混合エレメント群16を構成できる枚数であればよい。二組以上の混合エレメント群16を有する場合には、配列する混合エレメント部13の枚数は、必ずしも混合エレメント群16を構成する混合エレメント部13の枚数の整数倍に限られるものではない。例えば、混合エレメント部13が2枚で一組の混合エレメント群16を構成する場合に、5枚の混合エレメント部13を備えて静的混合構造11を構成することもできる。   The number of mixing element portions 13 required for the static mixing structure 11 may be any number that can form at least one set of mixing element groups 16. In the case of having two or more sets of mixing element groups 16, the number of mixing element units 13 to be arranged is not necessarily limited to an integral multiple of the number of mixing element units 13 constituting the mixing element group 16. For example, when two mixing element portions 13 constitute a set of mixing element groups 16, the static mixing structure 11 can be configured by including five mixing element portions 13.

流路方向視において閉じる・閉じられる関係にある閉塞部15と通過部14は、それらの縁部17に、流路方向視において互いに接する又は近接する近隣縁部18を有する。つまり、混合エレメント群16のうちの一の混合エレメント部13の通過部14または閉塞部15における縁部17の少なくとも一部と、この混合エレメント部13に対して流路方向視において隣接する他の混合エレメント部13の閉塞部15または通過部14における縁部17の少なくとも一部に、前記一の混合エレメント部13と前記隣接する他の混合エレメント部13が同一平面上で重なっていると仮定したときに互いに接する又は近接する近隣縁部18が形成されている。   The closed portion 15 and the passage portion 14 that are in a closed / closed relationship when viewed in the flow path direction have neighboring edges 18 that contact or are close to each other when viewed in the flow path direction. That is, at least a part of the edge portion 17 in the passage portion 14 or the closing portion 15 of one mixing element portion 13 in the mixing element group 16 and the other adjacent to the mixing element portion 13 in the flow channel direction view. It is assumed that the one mixing element part 13 and the other adjacent mixing element part 13 overlap on the same plane with at least a part of the edge part 17 in the closing part 15 or the passing part 14 of the mixing element part 13. Neighboring edges 18 are sometimes formed that touch or are close to each other.

このような構成の静的混合構造11の適用例を、以下に説明する。   An application example of the static mixing structure 11 having such a configuration will be described below.

図2は、静的混合構造11を適用した管体21の一部を示す斜視図で、図3はその分解斜視図、図4は断面図である。   2 is a perspective view showing a part of the tube body 21 to which the static mixing structure 11 is applied, FIG. 3 is an exploded perspective view thereof, and FIG. 4 is a sectional view thereof.

これらの図に示すように管体21は、断面円形の流路12を形成するもので、管体21の上流側の内周面に、その下流側の内周面よりも内径が大きい大径部22を有している。静的混合構造11の要部である混合ユニット31は、管体21の大径部22とそれより下流側の小径部23との間の段差部24に先端を当接した状態で保持される。   As shown in these drawings, the tubular body 21 forms a flow path 12 having a circular cross section, and has a large inner diameter on the inner peripheral surface on the upstream side of the tubular body 21 that is larger than the inner peripheral surface on the downstream side. A portion 22 is provided. The mixing unit 31 which is a main part of the static mixing structure 11 is held in a state in which the tip is in contact with the stepped portion 24 between the large diameter portion 22 of the tubular body 21 and the small diameter portion 23 on the downstream side thereof. .

混合ユニット31は、図5に示したように、流路12を構成する部分とは別体の混合エレメント部13と、この混合エレメント部13を保持するとともに混合エレメント部13間の間隔を保持するスペーサ32で構成される。図2〜図4の例における混合エレメント部13は、2枚で一組となって混合エレメント群16を構成するもので、この混合エレメント群16を2個連続して備えている。つまり、混合エレメント部13もスペーサ32もそれぞれ4個ずつ有し、図5に示したように、混合エレメント部13もスペーサ32も一種類で、それぞれすべて同一形状である。   As shown in FIG. 5, the mixing unit 31 holds the mixing element portion 13 that is separate from the portion constituting the flow path 12, holds the mixing element portion 13, and holds the spacing between the mixing element portions 13. A spacer 32 is used. The mixing element unit 13 in the example of FIGS. 2 to 4 constitutes a mixing element group 16 as a set of two, and includes two mixing element groups 16 in succession. That is, each of the mixing element portion 13 and the spacer 32 has four pieces, and as shown in FIG. 5, the mixing element portion 13 and the spacer 32 are of one type and all have the same shape.

混合エレメント部13は、図6に示したように、通過部14と閉塞部15を有する部分の形状を含む全体が回転対称の形状である。通過部14は、中心側から外周側に延びる少なくとも2辺17aを有する形状であり、中央部を除く部分に、内周側部分と外周側部分に分けて配設されている。具体的には、すべての通過部14の縁部17が、中心側から外周側に真っ直ぐに延びる2辺17aを有する形状であり、これら2辺17aの間は、中心側の部分よりも外周側の部分のほうが周方向に幅広となっている。つまり、内周側部分において略扇形をなす4個の通過部14が円周方向に沿って等間隔に配置され、外周部分においては、湾曲した略長方形をなす4個の通過部14が、内周側部分の通過部と互い違いになるように円周方向に沿って等間隔に配置されている。   As shown in FIG. 6, the mixing element portion 13 has a rotationally symmetrical shape as a whole including the shape of the portion having the passage portion 14 and the blocking portion 15. The passage portion 14 has a shape having at least two sides 17a extending from the center side to the outer periphery side, and is arranged in an inner peripheral portion and an outer peripheral portion in a portion excluding the central portion. Specifically, the edge portions 17 of all the passing portions 14 have a shape having two sides 17a extending straight from the center side to the outer peripheral side, and the space between these two sides 17a is more on the outer peripheral side than the center side portion. This part is wider in the circumferential direction. That is, the four passage portions 14 that are substantially fan-shaped in the inner peripheral side portion are arranged at equal intervals along the circumferential direction, and the four passage portions 14 that are formed in a substantially rectangular shape in the outer peripheral portion are It arrange | positions at equal intervals along the circumferential direction so that it may alternate with the passage part of a peripheral part.

これら通過部14と外周縁を除いた部分が閉塞部15であり、閉塞部15の配置及び形状は、通過部14の配置及び形状と同様である。つまり、内周側部分の4個の通過部14と外周側部分の4個の通過部14の間に、それぞれ4個の閉塞部15が存在することになる。   A portion excluding the passage portion 14 and the outer peripheral edge is a blocking portion 15, and the arrangement and shape of the blocking portion 15 are the same as the arrangement and shape of the passage portion 14. That is, there are four closed portions 15 between the four passage portions 14 in the inner peripheral portion and the four passage portions 14 in the outer peripheral portion.

内周側部分の4個の通過部14よりも内側である混合エレメント部13の中央部も流体の通過を阻止する部分であり、この部分は中央閉塞部33である。   The central portion of the mixing element portion 13 that is inside the four passage portions 14 on the inner peripheral side portion is also a portion that prevents passage of fluid, and this portion is a central blocking portion 33.

通過部14と閉塞部15の形成に当たっては、混合エレメント部13の通過部14及び閉塞部15が形成される領域における通過部14の総面積割合が、閉塞部15の総面積割合の近似値以上であるとともに、混合エレメント部13の通過部14の総面積割合が、混合エレメント群16を構成するすべての混合エレメント部13において近似するように設定する。前記の通過部14及び閉塞部15が形成される領域とは、混合エレメント部13の中央部と外周縁以外の部分が存在する範囲である。   In forming the passage portion 14 and the blocking portion 15, the total area ratio of the passage portion 14 in the region where the passage portion 14 and the blocking portion 15 of the mixing element portion 13 are formed is equal to or greater than the approximate value of the total area ratio of the blocking portion 15. In addition, the total area ratio of the passing portion 14 of the mixing element portion 13 is set to be approximated in all the mixing element portions 13 constituting the mixing element group 16. The region where the passing portion 14 and the blocking portion 15 are formed is a range where portions other than the central portion and the outer peripheral edge of the mixing element portion 13 exist.

混合エレメント群16が2枚の混合エレメント部13で構成されるものである場合には、通過部14の総面積割合は、閉塞部15の総面積割合の近似値となり、3枚以上の混合エレメント部13で構成されるものである場合には近似値より大きくなる。このように設定することで、各混合エレメント部13の通過部14の総面積割合は最大となるとともに、混合エレメント群16を構成するすべての混合エレメント部13において通過部14の総面積割合は均等もしくはほぼ均等な状態となる。   When the mixed element group 16 is composed of two mixed element sections 13, the total area ratio of the passage section 14 is an approximate value of the total area ratio of the closed section 15, and three or more mixed elements are mixed. In the case of being constituted by the part 13, it becomes larger than the approximate value. By setting in this way, the total area ratio of the passing parts 14 of each mixing element part 13 is maximized, and the total area ratio of the passing parts 14 is uniform in all the mixing element parts 13 constituting the mixing element group 16. Or it will be in an almost equal state.

つまり、前述のように内周側部分と外周側部分のそれぞれに4個の通過部14と4個の閉塞部15を設ける場合には、各通過部14と各閉塞部15における径方向に延びる直線状の2辺17a間の角度は、45度、または45度程度(45度に近い角度)とする。   That is, as described above, when the four passage portions 14 and the four closing portions 15 are provided in the inner peripheral portion and the outer peripheral portion, respectively, the passage portions 14 and the closing portions 15 extend in the radial direction. The angle between the two straight sides 17a is 45 degrees or about 45 degrees (an angle close to 45 degrees).

通過部14と閉塞部15における中心側から外周側に延びる2辺17aの間を45度に設定すると、図6に示したように、一の混合エレメント部13に対して、他の混合エレメント部13を周方向に45度ずらして重ねたときに、図7(a)の断面図(図6のA−A断面図)に示したように、一の混合エレメント部13のすべての通過部14が、混合エレメント部13の厚さ方向、つまり流路方向視において隣接する他の混合エレメント部13の閉塞部15で閉じられることになる。   When the interval between the two sides 17a extending from the center side to the outer peripheral side in the passage portion 14 and the closing portion 15 is set to 45 degrees, as shown in FIG. When the 13 is overlapped by being shifted by 45 degrees in the circumferential direction, as shown in the sectional view of FIG. 7A (cross-sectional view taken along the line AA in FIG. 6), all the passing portions 14 of one mixing element portion 13 are obtained. However, it is closed by the blocking portion 15 of the other mixing element portion 13 adjacent in the thickness direction of the mixing element portion 13, that is, in the flow channel direction view.

そしてこのとき、一の混合エレメント部13の通過部14および閉塞部15と、他の混合エレメント部13の閉塞部15および通過部14が、それぞれ補完し合うような状態となるので、一の混合エレメント部13の通過部14または閉塞部15における縁部17の一部と、他の混合エレメント部13の閉塞部15または通過部14の縁部17の一部が、前記近隣縁部18となる。縁部17の一部は、具体的には図6に示したように、内周側部分と外周側部分の通過部14における径方向に延びる2辺部分18aと、内周側部分の通過部14における外周側において周方向に延びる円弧状部分18bと、外周側部分の通過部14における内周側において円周方向に延びる円弧状部分18cである。   At this time, the passing portion 14 and the blocking portion 15 of one mixing element portion 13 and the closing portion 15 and the passing portion 14 of the other mixing element portion 13 are in a state of complementing each other. A part of the edge 17 in the passage part 14 or the blocking part 15 of the element part 13 and a part of the edge part 17 of the other mixing element part 13 or the passage part 14 become the neighboring edge part 18. . Specifically, as shown in FIG. 6, a part of the edge portion 17 includes a two-side portion 18 a extending in the radial direction in the passage portion 14 in the inner peripheral portion and the outer peripheral portion, and a passage portion in the inner peripheral portion. 14 are an arc-shaped portion 18b extending in the circumferential direction on the outer peripheral side, and an arc-shaped portion 18c extending in the circumferential direction on the inner peripheral side of the passage portion 14 in the outer peripheral side portion.

これら近隣縁部18は、図7(a)に示したように、流路方向視にのびる仮想延長線35上で並ぶ。   As shown in FIG. 7A, these neighboring edge portions 18 are arranged on a virtual extension line 35 extending in the flow path direction view.

このように隣り合う混合エレメント部13同士が同一平面上で重なっていると仮定したときに互いに接するようにするほか、例えば図8(a)に示したように重複するようにしても、図8(b)に示したように僅かに離れるようにしてもよい。   As described above, when it is assumed that the adjacent mixing element portions 13 are overlapped on the same plane, they may be in contact with each other, or may be overlapped as shown in FIG. As shown in (b), it may be slightly separated.

また、混合エレメント部13における外周縁に形成された4個の切欠きは、前記スペーサ32を相対回転不可能に係合する係合凹部34である。係合凹部34は、外周側部分の通過部14同士の中間位置に対応する位置に形成されている。   Further, the four notches formed in the outer peripheral edge of the mixing element portion 13 are engaging recesses 34 that engage the spacer 32 so as not to be relatively rotatable. The engaging recess 34 is formed at a position corresponding to an intermediate position between the passage portions 14 on the outer peripheral side portion.

前記スペーサ32は、合成樹脂や金属で形成され、図5に示したように、混合エレメント部13の大きさに対応した短円筒形状である。円筒形状の周面の一部には、上下方向に延びてスペーサ32を周方向で分断する切り溝36を有し、径方向に拡縮変形可能である。   The spacer 32 is made of synthetic resin or metal and has a short cylindrical shape corresponding to the size of the mixing element portion 13 as shown in FIG. A part of the cylindrical peripheral surface has a cut groove 36 that extends in the vertical direction and divides the spacer 32 in the circumferential direction, and can be expanded and contracted in the radial direction.

スペーサ32の上端面には、混合エレメント部13の係合凹部34と係合する係合突部37が形成されている。係合凹部34と係合突部37は嵌合対応する形状であり、係合によって、相互間で相対回転不可能となる。係合突部37の長さは、混合エレメント部13の厚さと同じである。   On the upper end surface of the spacer 32, an engagement protrusion 37 that engages with the engagement recess 34 of the mixing element portion 13 is formed. The engagement recess 34 and the engagement protrusion 37 have a shape corresponding to fitting, and cannot be rotated relative to each other by engagement. The length of the engaging protrusion 37 is the same as the thickness of the mixing element portion 13.

これら係合突部37の先端には連結突部38が延設されている。この連結突部38は、スペーサ32同士を連結するための連結構造の一方である。連結突部38の長さは適宜設定されるが、たとえば混合エレメント部の連結凹部39と同じ程度であるとよい。   A connecting protrusion 38 extends from the distal ends of the engaging protrusions 37. The connection protrusion 38 is one of connection structures for connecting the spacers 32 to each other. Although the length of the connection protrusion 38 is set as appropriate, it may be, for example, approximately the same as the connection recess 39 of the mixing element portion.

連結構造は、隣接する別のスペーサ32に対してこのスペーサ32と同一方向に隣接する別の混合エレメント部13を周方向に角度をずらして配置できるようにするものである。このため、スペーサ32の下端面には、前記連結突部38が嵌合する連結凹部39が形成されている。この連結凹部39は、混合エレメント部13同士を45度ずらして配設するため、連結突部38の中間位置に対応する位置に形成されている。連結凹部39の高さは連結突部38に対応する高さである。   The connecting structure allows another mixing element portion 13 adjacent in the same direction as this spacer 32 to be arranged in the circumferential direction with a different angle with respect to another adjacent spacer 32. For this reason, a connecting recess 39 into which the connecting protrusion 38 is fitted is formed on the lower end surface of the spacer 32. The connecting recess 39 is formed at a position corresponding to an intermediate position of the connecting protrusion 38 in order to dispose the mixing element portions 13 by 45 degrees. The height of the connection recess 39 is a height corresponding to the connection protrusion 38.

スペーサ32はこのような構成であるので、スペーサ32の連結凹部39の上端位置からスペーサ32の上端面(係合突部37の根元位置)までの長さが、混合エレメント部13間の隙間に対応する長さである。この長さは、所望の混合条件に応じて適宜設定される。   Since the spacer 32 has such a configuration, the length from the upper end position of the coupling recess 39 of the spacer 32 to the upper end surface of the spacer 32 (the base position of the engaging protrusion 37) is the gap between the mixing element portions 13. Corresponding length. This length is appropriately set according to desired mixing conditions.

また、スペーサ32の肉厚は、図4に示したように、管体21の大径部22の内径と、小径部23の内径との差に対応する厚さに設定されている。これにより、管体21の小径部22の内周面とスペーサ32の内周面が面一となる。   Further, as shown in FIG. 4, the thickness of the spacer 32 is set to a thickness corresponding to the difference between the inner diameter of the large diameter portion 22 and the inner diameter of the small diameter portion 23 of the tube body 21. Thereby, the inner peripheral surface of the small diameter portion 22 of the tube body 21 and the inner peripheral surface of the spacer 32 are flush with each other.

このような構成の混合エレメント部13とスペーサ32は、図9に示したように、1個ずつ組み合わせされたのち、必要数、すなわち少なくとも2段以上積み重ねられて混合ユニット31となり、図3に示したように管体21に備えられる。   As shown in FIG. 9, the mixing element portion 13 and the spacer 32 having such a structure are combined one by one, and then the required number, that is, at least two or more stages are stacked to form the mixing unit 31, which is shown in FIG. As shown in FIG.

混合ユニット31の組み立てに際してスペーサ32の連結突部38と連結凹部39を連結すると、隣接する混合エレメント部13同士が自動的に所定角度ずつ周方向にずれた状態になるので、作業性が良い。   When the connecting protrusion 38 and the connecting recess 39 of the spacer 32 are connected when the mixing unit 31 is assembled, the adjacent mixing element portions 13 are automatically shifted in the circumferential direction by a predetermined angle, so that workability is good.

また、スペーサ32には切り溝36が形成されているので、管体21の大径部22に挿入するときに若干縮径させれば、挿入が容易である。スペーサ32は、挿入後に弾性復帰して拡径するので管体21に対して良好な保持状態が得られる。   Further, since the groove 32 is formed in the spacer 32, the insertion is easy if the diameter is slightly reduced when inserted into the large diameter portion 22 of the tube body 21. Since the spacer 32 is elastically restored and expanded in diameter after insertion, a good holding state with respect to the tubular body 21 is obtained.

以上のように構成された静的混合構造11では、次のようにして流体の混合を行う。つまり、図1に示したように、上流側に位置する混合エレメント部13の閉塞部15が流体の直進を阻止して流体を分割し、近隣の通過部14に流入させる。この通過部14では分割された流体が合流して流下する。流下した流体は、下流側で隣接する別の混合エレメント部13の閉塞部15によって再び直進を阻止されて分割される。流体のこのような分割と合流が、複数個所で同時に行われ、繰り返される。   In the static mixing structure 11 configured as described above, fluids are mixed as follows. That is, as shown in FIG. 1, the closing portion 15 of the mixing element portion 13 located on the upstream side prevents the fluid from moving straight, divides the fluid, and flows it into the adjacent passage portion 14. In the passage portion 14, the divided fluids merge and flow down. The fluid that has flowed down is divided by being blocked again by the closing portion 15 of another mixing element portion 13 adjacent on the downstream side. Such division and merging of fluids are performed at multiple locations simultaneously and repeated.

流体がこのように流れるとき図7(b)に示したように、流路方向視において隣接する混合エレメント部13同士の閉塞部15と通過部14の縁部17の一部には近隣縁部18が形成されているので、流体は、閉塞部15で直進を遮られて方向を変え、主に隣接する通過部14に流れる。このとき、通過部14と閉塞部15の総面積割合は近似している、つまり略同一であり、2枚一組とする混合エレメント部13における通過部14の総面積割合は最大であるので、流体が通過する面積は大きい。このため、圧力損失を小さくしつつ、流体の混合を行うことができる。   When the fluid flows in this way, as shown in FIG. 7B, the adjacent edge portion is included in the closed portion 15 between the adjacent mixing element portions 13 and a part of the edge portion 17 of the passage portion 14 in the flow channel direction view. Since 18 is formed, the fluid is blocked from moving straight by the closing portion 15 and changes its direction, and flows mainly to the adjacent passing portion 14. At this time, the total area ratio of the passage part 14 and the blocking part 15 is approximate, that is, substantially the same, and the total area ratio of the passage part 14 in the mixing element part 13 that is a set of two sheets is the largest, The area through which the fluid passes is large. For this reason, the fluid can be mixed while reducing the pressure loss.

混合する複数種類の流体の供給態様は問わないが、たとえば二重管を用いて流路12内の内側と外側に分けて同時に供給することができる。この場合には、流路12が断面円形のときには、流体の供給は、各流体が同心円状に分割された状態で行う。   The supply mode of the plural types of fluids to be mixed is not limited. For example, a double pipe can be used to supply the fluid separately into the inside and the outside of the flow path 12. In this case, when the flow path 12 has a circular cross section, the fluid is supplied in a state where the fluids are concentrically divided.

管体21の小径部23の内周面とスペーサ32の内周面は面一であるので、流体が流動するときに、流体の流路12が狭められることはなく一定である。この点からも流体の流動性を確保できる。   Since the inner peripheral surface of the small diameter portion 23 of the tubular body 21 and the inner peripheral surface of the spacer 32 are flush with each other, when the fluid flows, the fluid flow path 12 is not narrowed and is constant. From this point, the fluidity of the fluid can be secured.

流体の分割と合流のための混合エレメント部13は、板状であり、貫通した穴からなる通過部14を形成した構成であるので、製造が容易で、安価に得られる。   The mixing element portion 13 for dividing and merging the fluid is plate-shaped and has a configuration in which a passage portion 14 formed of a through-hole is formed. Therefore, the manufacture is easy and can be obtained at low cost.

そのうえ混合エレメント部13は中央閉塞部33を有するので、複数の通過部14の形成で得られる閉塞部15の形状を安定したものとすることができる。このため、流体の流速が早い場合や流量が多い場合でも、耐久性を得られる。また、回転対称の形状を得やすいので、前述のように混合エレメント部13同士を周方向に角度をずらして配設する構成を容易に得ることに資する。   In addition, since the mixing element portion 13 has the central blocking portion 33, the shape of the blocking portion 15 obtained by forming the plurality of passage portions 14 can be stabilized. For this reason, durability can be obtained even when the flow rate of the fluid is high or the flow rate is large. In addition, since it is easy to obtain a rotationally symmetric shape, it contributes to easily obtaining a configuration in which the mixing element portions 13 are arranged at different angles in the circumferential direction as described above.

混合エレメント部13は、混合エレメント部13同士を周方向に角度をずらして配設する構成であるため、組み立て構造が簡素である。   Since the mixing element portion 13 has a configuration in which the mixing element portions 13 are arranged at different angles in the circumferential direction, the assembly structure is simple.

しかも、すべての混合エレメント部13の形状は同一であるので、より安価に製造できる上に、部材の管理等も容易である。   Moreover, since all the mixing element portions 13 have the same shape, they can be manufactured at a lower cost and the management of the members is easy.

同様に、スペーサ32もすべて同一の形状であるので、安価に製造でき、部材の管理等の省力化も図れる。   Similarly, since all the spacers 32 have the same shape, they can be manufactured at low cost, and labor saving such as management of members can be achieved.

また、係合構造も連結構造も突部(係合突部37、連結突部38)と凹部(係合凹部34、連結凹部39)で構成しているので、構造が簡素であるうえに、組み付け作業も容易である。しかも、係合突部37の先に連結突部38を一体に形成しているので、いわば係合構造と連結構造を一部供用することになり、この点でも構造が簡素である。これら係合構造と連結構造が各部材の位置関係を定めるので、所望の混合が確実に行える。   In addition, since both the engaging structure and the connecting structure are constituted by protrusions (engaging protrusions 37, connecting protrusions 38) and recesses (engaging recesses 34, connecting recesses 39), the structure is simple. Assembly work is also easy. In addition, since the connecting protrusion 38 is integrally formed at the tip of the engaging protrusion 37, the engaging structure and the connecting structure are partially used, and the structure is simple also in this respect. Since these engagement structure and connection structure define the positional relationship of each member, desired mixing can be performed reliably.

このように、主に圧力損失を小さくしながらも流体の十分な混合が行える。   In this way, the fluid can be sufficiently mixed while mainly reducing the pressure loss.

したがって、この静的混合構造11を用いた流体混合方法では、前述のような近隣縁部18を介しての流体の流動を通じて、圧力損失が小さい状態で良好に流体を混合できる。また、この静的混合構造11を用いた混合流体製造方法においても、前述のような近隣縁部18を介しての流体の流動を通じて、圧力損失が小さい状態で良好に流体を混合できる。このため、さまざまな形状や性状の流路12での流体の混合に広く利用できる。特に圧力損失が小さいので、たとえば細い管体21や柔軟な管体21での流体の混合にも適用可能である。   Therefore, in the fluid mixing method using the static mixing structure 11, the fluid can be well mixed in a state where the pressure loss is small through the flow of the fluid through the neighboring edge portion 18 as described above. Also in the mixed fluid manufacturing method using the static mixing structure 11, the fluid can be mixed well in a state where the pressure loss is small through the flow of the fluid through the neighboring edge portion 18 as described above. For this reason, it can utilize widely for mixing of the fluid in the flow path 12 of various shapes and properties. In particular, since the pressure loss is small, it can be applied to fluid mixing in, for example, a thin tube 21 or a flexible tube 21.

流体の混合状態を検証すべく、流動解析を行ったところ、つぎのような結果が得られた。   In order to verify the mixed state of the fluid, a flow analysis was performed and the following results were obtained.

流動解析は、図1、図6に示した形状の混合エレメント部13を10組、つまり20枚、図10に示したようにすべて等間隔で並べた状態で行った。混合エレメント部13の厚さは1mmで、混合エレメント部13の間隔aは1mmである。流入口と最上流の混合エレメント部13との間と、最下流の混合エレメント部13と流出口との間には、ともに4mmの非混合流路部12aを設定した。このため、流路における混合エレメント部13を有する範囲は40mm程度となる。加えて、断面円形の流路の内径は16.1mmである。   The flow analysis was performed in a state where 10 sets of mixing element portions 13 having the shapes shown in FIGS. 1 and 6, that is, 20 sheets, were all arranged at equal intervals as shown in FIG. 10. The thickness of the mixing element portion 13 is 1 mm, and the distance a between the mixing element portions 13 is 1 mm. Between the inflow port and the most upstream mixing element portion 13 and between the most downstream mixing element portion 13 and the outflow port, a 4 mm non-mixing flow path portion 12a was set. For this reason, the range which has the mixing element part 13 in a flow path will be about 40 mm. In addition, the inner diameter of the circular channel is 16.1 mm.

また、流体には水を想定して、流体密度を1000kg/m、流体粘度を1.0×10−3Pa・Sとし、流入速度を1.0m/sとした。使用ソフトウェアは、株式会社アールフローの流動解析ソフトウェア「RFLOW」を使用し、基礎方程式は、非圧縮ナビエ−ストークス方程式で、乱流モデルは、標準k−εモデルである。 Further, assuming that the fluid is water, the fluid density is 1000 kg / m 3 , the fluid viscosity is 1.0 × 10 −3 Pa · S, and the inflow speed is 1.0 m / s. The software used is flow analysis software “RFLOW” of R-Flow, Inc., the basic equation is an uncompressed Navier-Stokes equation, and the turbulent model is a standard k-ε model.

流体の供給は、2種類の流体が内周側と外周側に同面積ずつ同時に流すように設定した。つまり、内周側の流体が断面円形の流れとなり、外周側の流体が、内周側の流体を取り囲む断面ドーナツ形の流れとなる。   The supply of fluid was set so that two types of fluid could flow simultaneously in the same area on the inner peripheral side and the outer peripheral side. That is, the fluid on the inner peripheral side has a circular cross-sectional flow, and the fluid on the outer peripheral side has a donut-shaped flow surrounding the inner peripheral fluid.

図11がその結果である。図11の縦なが長方形の下側が流体の入口で、上側が流体の出口である。また、縦なが長方形のすべての部分が流路である。2種類の流体は色の違いで表されている。入口における真ん中部分の色の白い部分と、その両側の色の濃い部分が、それぞれ混合されるべき流体を表している。2種類の流体が混合されたことは、白い部分と濃い部分の中間の色になることで判る。色と流体の関係については、図面右横に掲載しているスケールを参照されたい。   FIG. 11 shows the result. The lower side of the vertical rectangle in FIG. 11 is the fluid inlet, and the upper side is the fluid outlet. In addition, all the vertical but rectangular portions are flow paths. The two types of fluid are represented by different colors. The white portion of the middle color at the inlet and the dark portions on both sides represent the fluids to be mixed. The mixing of the two types of fluid can be seen by the middle color between the white and dark areas. For the relationship between color and fluid, refer to the scale on the right side of the drawing.

図11の流路を、下から上にみると、非混合流路部では流体の混合は、2種類の流体の境界部分だけであるが、3組6枚の混合エレメント部を通過するときには、ほぼ完全に混合されていることがわかる。   When the flow path of FIG. 11 is viewed from the bottom to the top, in the non-mixing flow path portion, the fluid is mixed only at the boundary portion between the two types of fluids, but when passing through 3 sets of 6 mixing element portions, It turns out that it is almost completely mixed.

比較例として、混合エレメント部を備えない状態の解析を行った。そのほかの条件は、流路の長さも含めて図11の場合と同じである。その結果は図12の通りである。   As a comparative example, an analysis was performed in a state where no mixing element portion was provided. Other conditions are the same as in the case of FIG. 11 including the length of the flow path. The result is as shown in FIG.

つまり、入口から入った2種類の流体は、それぞれ出口に向けて流れるが、それらの境界部分において混ざり合う部分は次第に広がるが、出口に至っても、2種類の流体が全体的に混じり合うことはない。   In other words, the two types of fluid entering from the inlet flow toward the outlet, respectively, but the mixed portion gradually spreads at the boundary between them, but the two types of fluids are mixed as a whole even when reaching the outlet. Absent.

これら図11、図12から、混合エレメント部13が流体の混合に大きく貢献することがわかる。しかも、その混合は40mmよりも短い範囲で行え、迅速な混合がなされていることもわかる。   11 and 12, it can be seen that the mixing element portion 13 greatly contributes to the mixing of the fluid. Moreover, the mixing can be performed in a range shorter than 40 mm, and it can be seen that rapid mixing is performed.

以下、その他の例を説明する。この説明において、前述の構成と同一または同等の部位については同一の符号を付してその詳しい説明を省略する。   Other examples will be described below. In this description, parts that are the same as or equivalent to those in the above-described configuration are given the same reference numerals, and detailed descriptions thereof are omitted.

図13は、管体21における混合ユニット31部分より上流側に、混合する流体を流入させる流入路25を備えた例を示している。   FIG. 13 shows an example in which an inflow path 25 for allowing the fluid to be mixed to flow is provided upstream of the mixing unit 31 portion in the tube body 21.

図14(a)は、混合エレメント部13にスペーサ32が一体成形された例を示す斜視図である。この、スペーサ32と混合エレメント部13が一体となった混合部材13aの形状は、切り溝36(図5参照)部分を除いて、前述の混合エレメント部13にスペーサ32を係合した形状と同一である。切り溝36に相当する縮径可能な構造を設けてもよい。この混合部材13aは、複数連結して使用される。   FIG. 14A is a perspective view showing an example in which the spacer 32 is integrally formed with the mixing element portion 13. The shape of the mixing member 13a in which the spacer 32 and the mixing element portion 13 are integrated is the same as the shape in which the spacer 32 is engaged with the mixing element portion 13 except for the cut groove 36 (see FIG. 5). It is. A structure capable of reducing the diameter corresponding to the kerf 36 may be provided. A plurality of the mixing members 13a are connected and used.

図14(b)に示したように、混合エレメント部13の両面側にスペーサ32を形成したものであってもよい。   As shown in FIG. 14B, spacers 32 may be formed on both sides of the mixing element portion 13.

このような構成の混合部材13aを用いた場合には、前述の作用効果を得られるほかに、部品点数を低減できる利点がある。   When the mixing member 13a having such a configuration is used, there is an advantage that the number of parts can be reduced in addition to the above-described effects.

図15は、静的混合構造11を管体21の内部に形成した例を示す斜視図である。すなわち、静的混合構造11を内蔵する混合管体27である。混合管体27の上流側の端部には、上流側管体27aが接続され、混合管体27の下流側の端部には下流側管体27bが接続される。   FIG. 15 is a perspective view showing an example in which the static mixing structure 11 is formed inside the tube body 21. That is, the mixing tube body 27 containing the static mixing structure 11. The upstream tube 27 a is connected to the upstream end of the mixing tube 27, and the downstream tube 27 b is connected to the downstream end of the mixing tube 27.

混合管体27は、長手方向の中間部分に、所望の必要な枚数の混合エレメント部13を、所定の間隔を隔てて備えている。間隔は流体の性状や流速、流量等の条件に応じて適宜設定される。   The mixing tube body 27 is provided with a desired number of mixing element portions 13 at a predetermined interval in an intermediate portion in the longitudinal direction. The interval is appropriately set according to conditions such as fluid properties, flow velocity, and flow rate.

図示例の混合エレメント部13の通過部14と閉塞部15の形状は、図6等に示したものと同一であるが、混合エレメント部13の数は5枚として、2.5組の混合エレメント群16を備えるようにしている。   The shape of the passage portion 14 and the blocking portion 15 of the mixing element portion 13 in the illustrated example is the same as that shown in FIG. 6 and the like, but the number of the mixing element portions 13 is five, and 2.5 sets of mixing elements A group 16 is provided.

混合管体27は、既存の管体に図14(a)や図14(b)に示したような混合部材13aを挿入して構成することもできる。また、混合管体27の接続は、上流側管体27aや下流側管体27bを直接接続するほか、上流側管体27aの外周端部及び下流側管体27bの内周端部にネジを配したり、適宜の継手部材を介して接続したりするなどしてもよい。   The mixing tube 27 can also be configured by inserting a mixing member 13a as shown in FIGS. 14A and 14B into an existing tube. In addition to connecting the upstream tube 27a and the downstream tube 27b directly, the mixing tube 27 is connected to the outer peripheral end of the upstream tube 27a and the inner peripheral end of the downstream tube 27b. It may be arranged or connected via an appropriate joint member.

このような混合管体27を用いた場合も、前述のような作用効果が得られる。また、上流側管体27aと下流側管体27bの接続を、接続スリーブ(図示せず)で覆うようにして行えば、既存の管路に適用することもできる。   Even when such a mixing tube body 27 is used, the above-described effects can be obtained. Further, if the connection between the upstream side pipe body 27a and the downstream side pipe body 27b is covered with a connection sleeve (not shown), it can be applied to an existing pipe line.

図16は、3枚の混合エレメント部13で一組の混合エレメント群16を構成する場合の混合エレメント部13とスペーサ32を示している。すなわち、混合エレメント群16を構成する1枚の混合エレメント部の通過部14が、図17(a)、図17(b)に示すように、一組をなす2枚以上の他の混合エレメント部13における閉塞部15の組み合わせで流路方向において閉じられるように形成されている。   FIG. 16 shows the mixing element portion 13 and the spacer 32 in the case where a set of mixing element groups 16 is constituted by three mixing element portions 13. That is, as shown in FIGS. 17 (a) and 17 (b), the passing portion 14 of one mixing element portion constituting the mixing element group 16 forms a set of two or more other mixing element portions. 13 is formed so as to be closed in the flow path direction by the combination of the closing portions 15.

混合エレメント部13の通過部14は、図17(a)に示したように、略扇形形状に4個形成され、各通過部14の中心側から外周側に延びる2辺17aがなす角度は60度に設定されている。このため、これら通過部14の間に設けられる同じく略扇形形状の閉塞部15における中心側から外周側に延びる2辺17aのなす角度は30度である。60度または30度であるほか、これに近い角度にしてもよい。   As shown in FIG. 17A, four passage portions 14 of the mixing element portion 13 are formed in a substantially fan shape, and the angle formed by the two sides 17 a extending from the center side of each passage portion 14 to the outer peripheral side is 60. Is set to degrees. For this reason, the angle formed by the two sides 17a extending from the center side to the outer peripheral side in the substantially fan-shaped blocking portion 15 provided between the passage portions 14 is 30 degrees. In addition to 60 degrees or 30 degrees, an angle close to this may be used.

スペーサ32と係合する係合凹部34は、閉塞部15の周方向の中間位置に形成されている。   The engaging recess 34 that engages with the spacer 32 is formed at an intermediate position in the circumferential direction of the closing portion 15.

このような形状の混合エレメント部13は、スペーサ32を介して配設されると、図17(b)の断面図(切断箇所は図6(a)のB−B)に示したような状態となる。つまり、各通過部14および各閉塞部15の縁部17のうちの中心側から外周側に延びる2辺17aのうちの少なくとも一方と、外周側において周方向に延びる部分の一部が近隣縁部18となる。図17(b)においては、一組の混合エレメント群16のみを示したので、配列方向(流路方向)における両側の混合エレメント部13の通過部14及び閉塞部15では2辺17aのうち一方のみが近隣縁部18であるが、これらに隣接して混合エレメント部13が配設されれば、他方も近隣縁部18となる。   When the mixing element portion 13 having such a shape is disposed via the spacer 32, the mixing element portion 13 is in a state as shown in the cross-sectional view of FIG. 17B (the cut portion is BB in FIG. 6A). It becomes. That is, at least one of the two sides 17a extending from the center side to the outer peripheral side of the edge portions 17 of each passing portion 14 and each closing portion 15 and a part of the portion extending in the circumferential direction on the outer peripheral side are adjacent edge portions. 18 In FIG. 17B, since only one set of mixing element group 16 is shown, one of the two sides 17a in the passing portion 14 and the closing portion 15 of the mixing element portion 13 on both sides in the arrangement direction (flow channel direction). Only the neighboring edge 18 is provided, but if the mixing element part 13 is disposed adjacent thereto, the other is also the neighboring edge 18.

スペーサ32は、図16に示したように、混合エレメント部13を30度ずつずらしながら配置できるように、連結凹部39の位置を、連結突部38同士の間の中間位置よりも一方側にずれた位置としている。   As shown in FIG. 16, the spacer 32 shifts the position of the connecting recess 39 to one side of the intermediate position between the connecting protrusions 38 so that the mixing element portion 13 can be arranged while being shifted by 30 degrees. It is assumed that the position.

このように構成された混合エレメント部13とスペーサ32を有する静的混合構造11においても、前述の2枚で一組をなす混合エレメント部を用いた前述の場合と同様に、閉塞部15で流体の直進を遮りながらも、流体を通過させる通過部14の面積が大きくとれるので、圧力損失を小さくできる。しかも、縁部17の一部に近隣縁部18を有するので、流体の流動を一部で促して、混合を促進する。   Also in the static mixing structure 11 having the mixing element portion 13 and the spacer 32 configured as described above, the fluid is blocked in the closing portion 15 in the same manner as in the above-described case using the mixing element portion that is a pair of the two. Since the area of the passage part 14 that allows fluid to pass through can be increased while blocking the straight travel, pressure loss can be reduced. In addition, since the peripheral edge 18 is provided in a part of the edge 17, the flow of the fluid is partially promoted to promote mixing.

図16、図17の例では、3枚の混合エレメント部13で一組の混合エレメント群16を構成するので、各混合エレメント部13の通過部14の総面積割合が、2枚で一組の混合エレメント群16を構成する混合エレメント部13の場合(図6参照)よりもさらに大きいので、近隣縁部18を有することと相まって、より一層圧力損失を低く抑えながら、良好な混合を行わせることができる。   In the example of FIGS. 16 and 17, a set of mixing element groups 16 is constituted by three mixing element portions 13, so that the total area ratio of the passing portions 14 of each mixing element portion 13 is one set of two. Since it is larger than the case of the mixing element portion 13 constituting the mixing element group 16 (see FIG. 6), it is possible to perform good mixing while further suppressing the pressure loss, coupled with having the neighboring edge portion 18. Can do.

図18は、スペーサ32を混合エレメント部13の中央閉塞部33に備えた混合部材13aの例を示す斜視図である。この混合部材13aは、前述の図6に示した混合エレメント部13と同じ通過部14および閉塞部15を有する混合エレメント部13と、この混合エレメント部13の中央閉塞部33の片面に立設したスペーサ32を有する。   FIG. 18 is a perspective view showing an example of the mixing member 13 a provided with the spacer 32 in the central closing portion 33 of the mixing element portion 13. This mixing member 13a is erected on one side of the mixing element portion 13 having the same passage portion 14 and closing portion 15 as the mixing element portion 13 shown in FIG. 6 and the central closing portion 33 of the mixing element portion 13. A spacer 32 is provided.

スペーサ32は、四角柱形状であり、混合エレメント部13におけるスペーサ32と反対側の面には、スペーサ32の先端部が嵌合する連結凹部39を備えている。スペーサ32の先端部が連結突部38である。連結凹部39は、混合エレメント部13を45度ずつずらしながら連結できるように、周方向におけるスペーサ32の向きから45度ずらした状態にしている。   The spacer 32 has a quadrangular prism shape, and is provided with a connection recess 39 into which the tip of the spacer 32 is fitted on the surface of the mixing element portion 13 opposite to the spacer 32. The leading end of the spacer 32 is a connecting projection 38. The connecting recess 39 is shifted by 45 degrees from the direction of the spacer 32 in the circumferential direction so that the mixing element section 13 can be connected while shifting by 45 degrees.

このような構成の混合部材13aは、スペーサ32の先端の連結突部38を、他の混合部材13aの連結凹部39に差し込んで、必要数連結して混合ユニット31として、流路12に保持して使用する。   In the mixing member 13a having such a configuration, the connecting protrusion 38 at the tip of the spacer 32 is inserted into the connecting recess 39 of the other mixing member 13a, and the required number of the connecting members are held in the flow path 12 as the mixing unit 31. To use.

図19は、他の例に係る混合エレメント部13の平面図である。この図に示すように、混合エレメント部13の通過部14および閉塞部15は、基本的に直線状に延びる形状である。   FIG. 19 is a plan view of the mixing element unit 13 according to another example. As shown in this figure, the passing portion 14 and the closing portion 15 of the mixing element portion 13 are basically linearly extending.

具体的には、流路12に対応させた外形形状の外周部分を除く内側に、通過部14と閉塞部15が等間隔で平行に形成されている。間隔とは、外形形状が円形であるので、通過部14や閉塞部15の幅方向のうちで最も幅広となる部分の間隔のことである。   Specifically, the passage part 14 and the blocking part 15 are formed in parallel at equal intervals on the inner side excluding the outer peripheral part of the outer shape corresponding to the flow path 12. The interval is the interval between the widest portions in the width direction of the passage portion 14 and the closing portion 15 because the outer shape is circular.

図19の混合エレメント部13は、2枚で一組となるもので、一方の混合エレメント部13は、3個の通過部14と、これらの間に位置する2個の閉塞部15を有する。他方の混合エレメント部13は、3個の閉塞部15と、これらの間に位置する2個の閉塞部14を有する。   The mixing element portion 13 of FIG. 19 is a set of two pieces, and one mixing element portion 13 has three passage portions 14 and two blocking portions 15 located between them. The other mixing element portion 13 has three blocking portions 15 and two blocking portions 14 located between them.

一方の混合エレメント部13の中間位置の通過部14の両側において中心側から外周側に延びる2辺17aと、他方の混合エレメント部13の中間位置の閉塞部15の両側において中心側から外周側に延びる2辺17aが、対応する近隣縁部18である。また、一方の混合エレメント部13の左右両位置の通過部14において中心側から外周側に延びる直線状の1辺17bと、他方の混合エレメント部13の左右両側位置の閉塞部15において中心側から外周側に延びる直線状の1辺17bが、対応する近隣縁部18である。   Two sides 17a extending from the center side to the outer peripheral side on both sides of the passage portion 14 at the intermediate position of one mixing element portion 13, and from the center side to the outer peripheral side on both sides of the closing portion 15 at the intermediate position of the other mixing element portion 13. The extending two sides 17 a are the corresponding neighboring edges 18. In addition, a linear one side 17b extending from the center side to the outer peripheral side at the passage portions 14 at both the left and right positions of the one mixing element portion 13, and a closing portion 15 at both the left and right positions of the other mixing element portion 13 from the center side. A linear one side 17b extending to the outer peripheral side is a corresponding neighboring edge 18.

このような混合エレメント部13は、前述の図5に示したようなスペーサ32を用いたり、流路12内に一体成形したりして、使用される。混合エレメント部13の通過部14と閉塞部15が直線状であるので、1組の混合エレメント群16ごとに、通過部14と閉塞部15の延びる向きを変えて配設することもできる。   Such a mixing element part 13 is used by using the spacer 32 as shown in FIG. Since the passing portion 14 and the closing portion 15 of the mixing element portion 13 are linear, the extending direction of the passing portion 14 and the closing portion 15 can be changed for each set of mixing element groups 16.

このような構成の混合エレメント部13を備えた場合も、前述と同様に、小さい圧力損失で必要な混合を行うことができる。   Even when the mixing element portion 13 having such a configuration is provided, the necessary mixing can be performed with a small pressure loss as described above.

この発明の構成と前述の一形態の構成との対応において、
この発明の係合構造は、前述の係合凹部34、係合突部37に対応し、
同様に、
連結構造は、前述の連結凹部38、連結突部39に対応するも、
この発明は前述の構成のみに限定されるものではなく、その他の構成を採用することもできる。
In correspondence between the configuration of the present invention and the configuration of the above-described embodiment,
The engagement structure of the present invention corresponds to the engagement recess 34 and the engagement protrusion 37 described above,
Similarly,
The connecting structure corresponds to the connecting recess 38 and the connecting protrusion 39 described above,
The present invention is not limited to the above-described configuration, and other configurations can be employed.

例えば、前述の例においては、通過部と閉塞部の境界の端面が混合エレメント部の厚さ方向に直角である構造を示したが、この端面を傾斜させることもできる。傾斜させることによって、流体の流動に変化をつけることが可能である。   For example, in the above-described example, the structure in which the end face at the boundary between the passage part and the blocking part is perpendicular to the thickness direction of the mixing element part is shown, but this end face can be inclined. By inclining, it is possible to change the flow of the fluid.

また、通過部と閉塞部の形状が異なる複数種類の混合エレメント部を組み合わせて静的混合構造を構成してもよい。   Further, a static mixing structure may be configured by combining a plurality of types of mixing element parts having different shapes of the passage part and the blocking part.

さらに、前述の例においては、混合エレメント部が2枚で一組の混合エレメント群を構成する例と、3枚で一組の混合エレメント群を構成する例を示したが、4枚以上で一組の混合エレメント群を構成するようにしてもよい。   Further, in the above-described example, an example in which a set of mixing element groups is formed by two mixing element portions and an example in which a set of mixing element groups is formed by three sheets are shown. You may make it comprise a set of mixing element groups.

11…静的混合構造
12…流路
13…混合エレメント部
13a…混合部材
14…通過部
15…閉塞部
16…混合エレメント群
17…縁部
17a,17b…中心側から外周側に延びる辺
18…近隣縁部
31…混合ユニット
32…スペーサ
33…中央閉塞部
34…係合凹部
37…係合突部
38…連結突部
39…連結凹部
DESCRIPTION OF SYMBOLS 11 ... Static mixing structure 12 ... Flow path 13 ... Mixing element part 13a ... Mixing member 14 ... Passing part 15 ... Blocking part 16 ... Mixing element group 17 ... Edge part 17a, 17b ... Side extending from the center side to the outer peripheral side 18 ... Neighboring edge 31 ... Mixing unit 32 ... Spacer 33 ... Central blocking part 34 ... Engagement recess 37 ... Engagement protrusion 38 ... Connection protrusion 39 ... Connection recess

Claims (12)

流体が通過する流路に、該流路を塞ぐ方向に広がる板状の混合エレメント部を、前記流路の長手方向に間隔をあけて複数備えた静的混合構造であって、
前記混合エレメント部に、前記流体を通過させる複数の通過部と、前記流体の通過を阻止する閉塞部が形成されるとともに、
前記混合エレメント部が複数枚で一組となる混合エレメント群を備え、
前記混合エレメント群のうちの一の混合エレメント部の前記通過部が、同一の混合エレメント群のうちの他の混合エレメント部の前記閉塞部によって流路方向視において閉じられるように、前記混合エレメント部の前記通過部と前記閉塞部が配設されるとともに、
前記混合エレメント群のうちの一の混合エレメント部の前記通過部または前記閉塞部における縁部の少なくとも一部と、該混合エレメント部に対して流路方向視において隣接する他の混合エレメント部の前記閉塞部または前記通過部における縁部の少なくとも一部に、前記一の混合エレメント部と前記隣接する他の混合エレメント部が同一平面上で重なっていると仮定したときに互いに接する又は近接する近隣縁部が形成された
静的混合構造。
A static mixing structure comprising a plurality of plate-like mixing element portions extending in the longitudinal direction of the flow path in the flow path through which the fluid passes, and extending in the longitudinal direction of the flow path,
The mixing element portion is formed with a plurality of passage portions that allow the fluid to pass therethrough and a blocking portion that prevents passage of the fluid,
A mixing element group including a plurality of the mixing element portions as a set,
The mixing element portion so that the passage portion of one mixing element portion of the mixing element group is closed in the flow channel direction view by the closing portion of the other mixing element portion of the same mixing element group. And the passage part and the blocking part are disposed,
At least a part of an edge of the passing element or the closing part of one mixing element part of the mixing element group, and the other mixing element part adjacent to the mixing element part in the flow channel direction view Neighboring edges that contact or are close to each other when it is assumed that at least a part of the edge of the blocking part or the passing part overlaps the one mixing element part and the other adjacent mixing element part on the same plane Static mixing structure with parts formed.
前記混合エレメント部における前記通過部および前記閉塞部の縁部が、中心側から外周側に延びる少なくとも2辺を有する形状であるとともに、
前記2辺のうちの少なくとも一方が前記近隣縁部である
請求項1に記載の静的混合構造。
The edges of the passage part and the blocking part in the mixing element part have a shape having at least two sides extending from the center side to the outer peripheral side,
The static mixing structure according to claim 1, wherein at least one of the two sides is the neighboring edge.
前記混合エレメント部の前記通過部14及び前記閉塞部15が形成される領域における前記通過部の総面積割合が、前記閉塞部の総面積割合の近似値以上であるとともに、
前記混合エレメント部の前記通過部の総面積割合が、前記混合エレメント群を構成するすべての前記混合エレメント部において近似している
請求項1または請求項2に記載の静的混合構造。
The total area ratio of the passing section in the region where the passing section 14 and the blocking section 15 of the mixing element section are formed is equal to or greater than the approximate value of the total area ratio of the blocking section, and
3. The static mixing structure according to claim 1, wherein a total area ratio of the passing portion of the mixing element portion is approximated in all the mixing element portions constituting the mixing element group.
前記混合エレメント部の中央部に、前記流体の通過を阻止する中央閉塞部を有する
請求項1から請求項3のうちいずれか一項に記載の静的混合構造。
The static mixing structure according to any one of claims 1 to 3, further comprising a central blocking portion that prevents passage of the fluid at a central portion of the mixing element portion.
前記混合エレメント部における前記通過部と前記閉塞部を有する部分の形状が回転対称形状である
請求項1から請求項4のうちいずれか一項に記載の静的混合構造。
The static mixing structure according to any one of claims 1 to 4, wherein a shape of the portion having the passage portion and the blocking portion in the mixing element portion is a rotationally symmetric shape.
前記混合エレメント群におけるすべての混合エレメント部の形状が同一であるとともに、
隣接する混合エレメント部同士が周方向に角度をずらして配設される
請求項1から請求項5のうちいずれか一項に記載の静的混合構造。
The shape of all the mixing element parts in the mixing element group is the same,
The static mixing structure according to any one of claims 1 to 5, wherein adjacent mixing element portions are disposed with an angle shifted in a circumferential direction.
前記混合エレメント群を構成する1枚の混合エレメント部の前記通過部が、一組をなす2枚以上の他の混合エレメント部における前記閉塞部の組み合わせで流路方向視において閉じられるように形成された
請求項1から請求項6のうちいずれか一項に記載の静的混合構造。
The passage part of one mixing element part constituting the mixing element group is formed so as to be closed in a flow path direction view by a combination of the blocking parts in two or more other mixing element parts forming one set. The static mixing structure according to any one of claims 1 to 6.
前記混合エレメント部が前記流路を構成する部分と別部材で形成されるとともに、
前記混合エレメント部の間隔を保持するスペーサが設けられ、
これら混合エレメント部とスペーサとの間には、相互を相対回転不可能に係合する係合構造が形成された
請求項1から請求項7のうちいずれか一項に記載の静的混合構造。
The mixing element portion is formed of a member separate from the portion constituting the flow path,
A spacer is provided to maintain a gap between the mixing element portions;
The static mixing structure according to any one of claims 1 to 7, wherein an engagement structure is formed between the mixing element portion and the spacer so as to engage with each other so as not to rotate relative to each other.
前記混合エレメント部が前記流路を構成する部分と別部材で形成されるとともに、
前記混合エレメント部の間隔を保持するスペーサが設けられ、
該スペーサには、隣接する別のスペーサに対して該スペーサと同一方向に隣接する別の混合エレメント部を周方向に角度をずらして配置する連結構造が形成された
請求項1から請求項8のうちいずれか一項に記載の静的混合構造。
The mixing element portion is formed of a member separate from the portion constituting the flow path,
A spacer is provided to maintain a gap between the mixing element portions;
9. The connecting structure according to claim 1, wherein the spacer is formed with a connecting structure in which another mixing element portion adjacent to the adjacent spacer in the same direction as the spacer is arranged at an angle shifted in the circumferential direction. Static mixed structure as described in any one of them.
前記スペーサと前記混合エレメント部が一体成形された
請求項8または請求項9に記載の静的混合構造。
The static mixing structure according to claim 8 or 9, wherein the spacer and the mixing element portion are integrally formed.
流体が通過する流路に、該流路を塞ぐ方向に広がる板状の混合エレメント部を、前記流路の長手方向に間隔をあけて複数配設した静的混合構造を用いて前記流体を混合する流体混合方法であって、
前記混合エレメント部に、前記流体を通過させる複数の通過部と、前記流体の通過を阻止する閉塞部を形成するとともに、
前記混合エレメント部が複数枚で一組となる混合エレメント群を備え、
前記混合エレメント群のうちの一の混合エレメント部の前記通過部が、同一の混合エレメント群のうちの他の混合エレメント部の前記閉塞部によって流路方向視において閉じられるように、前記混合エレメント部の前記通過部と前記閉塞部を配設するとともに、
前記混合エレメント群のうちの一の混合エレメント部の前記通過部または前記閉塞部における縁部の少なくとも一部と、該混合エレメント部に対して流路方向視において隣接する他の混合エレメント部の前記閉塞部または前記通過部における縁部の少なくとも一部に、前記一の混合エレメント部と前記隣接する他の混合エレメント部が同一平面上で重なっていると仮定したときに互いに接する又は近接する近隣縁部を形成して、
前記一の混合エレメント部における前記通過部を通った流体が直進することを、前記隣接する他の混合エレメント部の前記閉塞部が阻止して流体を分割するとともに、その流体を前記閉塞部に隣接する前記通過部に前記近隣縁部を通して速やかに迂回させて合流させ、流体を混合する
流体混合方法。
The fluid is mixed by using a static mixing structure in which a plurality of plate-like mixing element portions extending in the direction of closing the flow path are arranged in the flow path through which the fluid passes in the longitudinal direction of the flow path. A fluid mixing method comprising:
In the mixing element portion, a plurality of passage portions that allow the fluid to pass therethrough and a blocking portion that prevents passage of the fluid, and
A mixing element group including a plurality of the mixing element portions as a set,
The mixing element portion so that the passage portion of one mixing element portion of the mixing element group is closed in the flow channel direction view by the closing portion of the other mixing element portion of the same mixing element group. And arranging the passage part and the blocking part of
At least a part of an edge of the passing element or the closing part of one mixing element part of the mixing element group, and the other mixing element part adjacent to the mixing element part in the flow channel direction view Neighboring edges that contact or are close to each other when it is assumed that at least a part of the edge of the blocking part or the passing part overlaps the one mixing element part and the other adjacent mixing element part on the same plane Forming part
The fluid that has passed through the passage portion in the one mixing element portion is prevented from being blocked by the closing portion of the other adjacent mixing element portion to divide the fluid, and the fluid is adjacent to the closing portion. A fluid mixing method in which fluid is mixed by quickly diverting and joining the passing portion through the neighboring edge portion.
流体が通過する流路に、該流路を塞ぐ方向に広がる板状の混合エレメント部を、前記流路の長手方向に間隔をあけて複数配置した静的混合構造を用いて混合流体を製造する混合流体製造方法であって、
前記混合エレメント部に、前記流体を通過させる複数の通過部と、前記流体の通過を阻止する閉塞部を形成するとともに、
前記混合エレメント部が複数枚で一組となる混合エレメント群を備え、
前記混合エレメント群のうちの一の混合エレメント部の前記通過部が、同一の混合エレメント群のうちの他の混合エレメント部の前記閉塞部によって流路方向視において閉じられるように、前記混合エレメント部の前記通過部と前記閉塞部を配設するとともに、
前記混合エレメント群のうちの一の混合エレメント部の前記通過部または前記閉塞部における縁部の少なくとも一部と、該混合エレメント部に対して流路方向視において隣接する他の混合エレメント部の前記閉塞部または前記通過部における縁部の少なくとも一部に、前記一の混合エレメント部と前記隣接する他の混合エレメント部が同一平面上で重なっていると仮定したときに互いに接する又は近接する近隣縁部を形成して、
前記一の混合エレメント部における前記通過部を通った流体が直進することを、前記隣接する他の混合エレメント部の前記閉塞部が阻止して流体を分割するとともに、その流体を前記閉塞部に隣接する前記通過部に前記近隣縁部を通して速やかに迂回させて合流させ、流体を混合させる
混合流体製造方法。
A mixed fluid is manufactured using a static mixing structure in which a plurality of plate-like mixing element portions extending in the direction of closing the flow path are disposed in the flow path through which the fluid passes in the longitudinal direction of the flow path. A mixed fluid manufacturing method comprising:
In the mixing element portion, a plurality of passage portions that allow the fluid to pass therethrough and a blocking portion that prevents passage of the fluid, and
A mixing element group including a plurality of the mixing element portions as a set,
The mixing element portion so that the passage portion of one mixing element portion of the mixing element group is closed in the flow channel direction view by the closing portion of the other mixing element portion of the same mixing element group. And arranging the passage part and the blocking part of
At least a part of an edge of the passing element or the closing part of one mixing element part of the mixing element group, and the other mixing element part adjacent to the mixing element part in the flow channel direction view Neighboring edges that contact or are close to each other when it is assumed that at least a part of the edge of the blocking part or the passing part overlaps the one mixing element part and the other adjacent mixing element part on the same plane Forming part
The fluid that has passed through the passage portion in the one mixing element portion is prevented from being blocked by the closing portion of the other adjacent mixing element portion to divide the fluid, and the fluid is adjacent to the closing portion. A method for producing a mixed fluid, in which the fluid is mixed by quickly detouring and joining the passing portion through the neighboring edge portion.
JP2013221716A 2013-10-25 2013-10-25 Static mixing structure, fluid mixing method, and mixed fluid manufacturing method Expired - Fee Related JP6232683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221716A JP6232683B2 (en) 2013-10-25 2013-10-25 Static mixing structure, fluid mixing method, and mixed fluid manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221716A JP6232683B2 (en) 2013-10-25 2013-10-25 Static mixing structure, fluid mixing method, and mixed fluid manufacturing method

Publications (2)

Publication Number Publication Date
JP2015083282A true JP2015083282A (en) 2015-04-30
JP6232683B2 JP6232683B2 (en) 2017-11-22

Family

ID=53047204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221716A Expired - Fee Related JP6232683B2 (en) 2013-10-25 2013-10-25 Static mixing structure, fluid mixing method, and mixed fluid manufacturing method

Country Status (1)

Country Link
JP (1) JP6232683B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019076820A (en) * 2017-10-23 2019-05-23 修悦 山本 Generation device of gas-dissolved liquid and element used for the same
JP2019081163A (en) * 2017-11-01 2019-05-30 アイセル株式会社 Mixture body, static mixer and assembly method for the same and manufacturing method for mixture fluid
WO2019138984A1 (en) * 2018-01-10 2019-07-18 拓史 鎌田 Edible oil modification device
JP2020037104A (en) * 2019-09-05 2020-03-12 敦好 ▲高▼山 Atomization device
JP2022506201A (en) * 2018-10-30 2022-01-17 サイティバ・スウェーデン・アクチボラグ Mixed device
JP2022106569A (en) * 2021-01-07 2022-07-20 本田技研工業株式会社 Mixing device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1697481A (en) * 1924-04-28 1929-01-01 William E Sloan Flush valve
JPS5173965A (en) * 1974-12-24 1976-06-26 Fujikura Ltd
JPS53116563A (en) * 1977-03-21 1978-10-12 Gen Signal Corp Mixing and blending machine of innline type
JPS5437074A (en) * 1977-08-29 1979-03-19 Nobuko Asayama Closed serpentine reactor
JPS60176237U (en) * 1984-09-28 1985-11-21 不二製油株式会社 Continuous whipper
JPS61227825A (en) * 1985-03-21 1986-10-09 コーマツクス・システムズ、インク Stacking type stationary mixer apparatus
JP2001170466A (en) * 1999-11-10 2001-06-26 Sulzer Chemtech Ag Static mixing apparatus provided with fine casting element
JP2007044616A (en) * 2005-08-09 2007-02-22 Tokyo Electric Power Environmental Engineering Co Inc Liquid mixing device
JP2008161734A (en) * 2006-12-26 2008-07-17 Ngk Insulators Ltd Functional water making apparatus and functional water making method using it
US7621670B1 (en) * 2009-02-25 2009-11-24 The United States of America as represented by the National Aeronautica and Space Administration Unbalanced-flow, fluid-mixing plug with metering capabilities
JP2012011327A (en) * 2010-07-01 2012-01-19 Fujikin Inc Static mixer
JP2012247425A (en) * 2011-05-27 2012-12-13 Krohne Ag Accessory apparatus for flowmeters

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1697481A (en) * 1924-04-28 1929-01-01 William E Sloan Flush valve
JPS5173965A (en) * 1974-12-24 1976-06-26 Fujikura Ltd
JPS53116563A (en) * 1977-03-21 1978-10-12 Gen Signal Corp Mixing and blending machine of innline type
JPS5437074A (en) * 1977-08-29 1979-03-19 Nobuko Asayama Closed serpentine reactor
JPS60176237U (en) * 1984-09-28 1985-11-21 不二製油株式会社 Continuous whipper
JPS61227825A (en) * 1985-03-21 1986-10-09 コーマツクス・システムズ、インク Stacking type stationary mixer apparatus
JP2001170466A (en) * 1999-11-10 2001-06-26 Sulzer Chemtech Ag Static mixing apparatus provided with fine casting element
JP2007044616A (en) * 2005-08-09 2007-02-22 Tokyo Electric Power Environmental Engineering Co Inc Liquid mixing device
JP2008161734A (en) * 2006-12-26 2008-07-17 Ngk Insulators Ltd Functional water making apparatus and functional water making method using it
US7621670B1 (en) * 2009-02-25 2009-11-24 The United States of America as represented by the National Aeronautica and Space Administration Unbalanced-flow, fluid-mixing plug with metering capabilities
JP2012011327A (en) * 2010-07-01 2012-01-19 Fujikin Inc Static mixer
JP2012247425A (en) * 2011-05-27 2012-12-13 Krohne Ag Accessory apparatus for flowmeters

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019076820A (en) * 2017-10-23 2019-05-23 修悦 山本 Generation device of gas-dissolved liquid and element used for the same
JP2019081163A (en) * 2017-11-01 2019-05-30 アイセル株式会社 Mixture body, static mixer and assembly method for the same and manufacturing method for mixture fluid
WO2019138984A1 (en) * 2018-01-10 2019-07-18 拓史 鎌田 Edible oil modification device
JP2022506201A (en) * 2018-10-30 2022-01-17 サイティバ・スウェーデン・アクチボラグ Mixed device
JP7434313B2 (en) 2018-10-30 2024-02-20 サイティバ・スウェーデン・アクチボラグ mixing device
JP2020037104A (en) * 2019-09-05 2020-03-12 敦好 ▲高▼山 Atomization device
JP7050256B2 (en) 2019-09-05 2022-04-08 敦好 ▲高▼山 Micronization device
JP2022106569A (en) * 2021-01-07 2022-07-20 本田技研工業株式会社 Mixing device
JP7242717B2 (en) 2021-01-07 2023-03-20 本田技研工業株式会社 mixing device

Also Published As

Publication number Publication date
JP6232683B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6232683B2 (en) Static mixing structure, fluid mixing method, and mixed fluid manufacturing method
KR101005676B1 (en) Passive micromixer
JP2018501460A (en) Heat transfer device and pneumatic device with heat transfer device
JPH0261294B2 (en)
ATE549079T1 (en) STATIC MIXING ELEMENT
KR20190100351A (en) Static mixers, kits of parts and uses of static mixers
US6595682B2 (en) Mixing element for a flange transition in a pipeline
ATE505262T1 (en) STATIC MIXER
BR112014014584B1 (en) SEPARATION DEVICE, AND, METHOD OF MANUFACTURING A TURBILLONER
ATE390203T1 (en) STATIC MICRO MIXER
JP2018522734A (en) Double wall flow shifter baffle, associated static mixer and mixing method
JP3810778B2 (en) Flat plate static mixer
JPWO2009001509A1 (en) Shunt and air conditioner having the shunt
JP2008246283A (en) Collision type micromixer
US10092887B2 (en) Static mixers and methods for using and making the same
KR101922535B1 (en) Mixing system including extensional mixing element
KR20070061448A (en) Heat exchange plate
EP3538256B1 (en) Static mixer, a kit of parts and use of said static mixer
CN205796997U (en) A kind of venturi mixer of Combined detachable
JP2006281071A (en) Micro device
JP2012120962A (en) Flow channel structure
US20220379273A1 (en) Static mixer
JP6645086B2 (en) Fluid mixing device
JP5794884B2 (en) Fluid control system
JPS6120337B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171006

R150 Certificate of patent or registration of utility model

Ref document number: 6232683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees