JP2015082921A - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
JP2015082921A
JP2015082921A JP2013220285A JP2013220285A JP2015082921A JP 2015082921 A JP2015082921 A JP 2015082921A JP 2013220285 A JP2013220285 A JP 2013220285A JP 2013220285 A JP2013220285 A JP 2013220285A JP 2015082921 A JP2015082921 A JP 2015082921A
Authority
JP
Japan
Prior art keywords
rotor
electrical machine
rotating electrical
rotating
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013220285A
Other languages
Japanese (ja)
Inventor
坂本 正文
Masabumi Sakamoto
正文 坂本
重善 佐藤
Shigeyoshi Sato
重善 佐藤
俊輔 竹口
Shunsuke Takeguchi
俊輔 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2013220285A priority Critical patent/JP2015082921A/en
Priority to US14/518,737 priority patent/US20150108856A1/en
Publication of JP2015082921A publication Critical patent/JP2015082921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/1004Structural association with clutches, brakes, gears, pulleys or mechanical starters with pulleys
    • H02K7/1008Structural association with clutches, brakes, gears, pulleys or mechanical starters with pulleys structurally associated with the machine rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/025Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the thickness of the air gap between field and armature
    • H02K21/026Axial air gap machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/12Structural association with clutches, brakes, gears, pulleys or mechanical starters with auxiliary limited movement of stators, rotors or core parts, e.g. rotors axially movable for the purpose of clutching or braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve high speed and high torque of a dynamo-electric machine by an inexpensive, simple and highly reliable technique.SOLUTION: In a dynamo-electric machine including a stator, a rotor arranged in the rotating shaft direction rotatably for the stator via an air gap, and a primary mechanism rotating coaxially with the rotor, the primary mechanism includes a fixed position rotating pulley arranged immovably in the rotating shaft direction, and a movable position pulley arranged movably in the rotating shaft direction for the fixed position rotating pulley. The movable position pulley moves integrally with the rotor in the axial direction.

Description

本発明は回転電機に係り、特に、電動機や発電機として用いられる可変エアギャップを有するアキシャルギャップ式回転電機、あるいは更に変速機を組み合わせたものに関する。   The present invention relates to a rotating electrical machine, and more particularly to an axial gap rotating electrical machine having a variable air gap used as an electric motor or a generator, or a combination of a transmission.

電動機や発電機である回転電機は、市場より軽薄短小化の要求が強く、また最近は地球温暖化対策として、省エネルギー化や高効率化の要求も増加してきている。更に、低振動化、低騒化、そして安価であることも強く要求されている。その中で、回転軸方向にエアギャップを有するアキシャルギャップ式回転電機は扁平で薄型に有利な構造であり、回転子を円盤状にすれば慣性も小さくできるので、一定速度運転にも、可変速度運転にも適した回転電機であり、近年注目されだした回転電機の形態である。   Rotating electrical machines such as electric motors and generators are more demanding to be lighter, thinner and smaller than the market, and recently, demands for energy saving and higher efficiency are increasing as a countermeasure against global warming. Furthermore, low vibration, low noise, and low cost are also strongly required. Among them, the axial gap type rotating electrical machine having an air gap in the direction of the rotation axis is a flat and thin structure that is advantageous for thinness, and if the rotor is made into a disk shape, the inertia can be reduced, so even for constant speed operation, variable speed It is a rotating electrical machine suitable for operation, and is a form of a rotating electrical machine that has been attracting attention in recent years.

特開2012−130086号公報JP2012-130086A

一方、関係する従来技術として上記の特許文献がある。   On the other hand, there is the above-mentioned patent document as related prior art.

回転電機はラジアルギャップ式とアキシャルギャップ式があるが、その回転原理は同一である。   There are a radial gap type and an axial gap type rotary electric machine, but the rotation principle is the same.

従来の一般的なラジアルギャップ式の回転電機で回転子に永久磁石を用いるブラシレスDCモータ(以下BLDCMと略す)や同期発電機、あるいは回転子に永久磁石を用いないで磁性体の歯を有したスイッチドレラクタンスモータ(以下SRMと略す)の場合の技術は、固定子鉄心を珪素鋼鈑で積層して構成し、安価と効率を重視する場合は巻き線は主に集中巻き方式を採用する。   In a conventional general radial gap type rotating electrical machine, a brushless DC motor (hereinafter referred to as BLDCM) using a permanent magnet as a rotor, a synchronous generator, or a rotor without a permanent magnet was used. In the case of a switched reluctance motor (hereinafter abbreviated as SRM), the stator core is formed by laminating a silicon core with a silicon steel plate, and when focusing on low cost and efficiency, a concentrated winding method is mainly used for winding. .

分布巻き方式ではトルク発生に寄与しないコイルエンド部が大きくなり銅損が増大し効率が低下するためと集中巻き方式では巻き線がシンプルでスロットへの直接巻き込が可能となり巻き線が安価となるためである。   In the distributed winding method, the coil end portion that does not contribute to torque generation becomes large, resulting in increased copper loss and reduced efficiency. In the concentrated winding method, the winding is simple and can be directly wound in the slot, so that the winding is inexpensive. Because.

一方、アキシャルギャップ式のBLDCMやSRMも近年、ハイブリッド車や電気自動車用の駆動用車載モータとして検討されている。その理由はエンジンに併設したり、インホイールモータとする場合、扁平形状が都合がよいためである。その場合、特にアキシャルBLDCモータでは始動時および低速回転時は高トルクを得るように強め界磁制御を行い、また高速回転時は高速回転を得るため弱め界磁制御を行うことが知られている。このような界磁制御を行っている理由は、界磁磁束が大きいと、低速時は大トルクが得られるが、高速度時は界磁磁束が大きいと起電力定数も大きくなり、電源電圧にモータ内部誘起電圧が近づくことで電流が流れなくなり、トルクもダウンしてしまうためである。また、これを回避するために多極永久磁石界磁モータで界磁制御することも考えられるが、多極永久磁石界磁モータで界磁制御するにはベクトル制御技術を駆使する等、制御が複雑で高価となる。その点、アキシャルギャップ式BLDCモータ等では回転子を軸方向に移動させて、低速回転時は固定子と回転子間のエアギャップである距離を狭め、高速回転時は距離を大きくすれば、界磁磁束を強め、あるいは弱め制御したことと同様な特性となることが知られている。   On the other hand, axial gap type BLDCM and SRM have recently been studied as driving vehicle motors for hybrid vehicles and electric vehicles. The reason is that a flat shape is convenient when it is provided with an engine or an in-wheel motor. In that case, it is known that, particularly in an axial BLDC motor, strong field control is performed so as to obtain a high torque during start-up and low-speed rotation, and weak field control is performed so as to obtain high-speed rotation during high-speed rotation. The reason why such field control is performed is that if the field flux is large, a large torque can be obtained at low speeds, but if the field flux is large at high speeds, the electromotive force constant also increases and the power supply voltage is This is because when the induced voltage approaches, the current stops flowing and the torque decreases. In order to avoid this, it is conceivable to control the field with a multi-pole permanent magnet field motor, but to control the field with a multi-pole permanent magnet field motor, the vector control technology is used and the control is complicated and expensive. Become. On the other hand, in an axial gap type BLDC motor or the like, if the rotor is moved in the axial direction, the air gap between the stator and the rotor is reduced during low-speed rotation, and the distance is increased during high-speed rotation. It is known that the magnetic flux becomes the same characteristic as when the magnetic flux is strengthened or weakened.

またアキシャルギャップ式モータを電気自動車(以下EVと略す)の動力用に使用する場合、界磁制御のみでの対応では、大きな始動時負荷トルクが必要となる。ダイレクト駆動ではモータサイズが大きくなり、経済的にも、重量的にも問題があり、減速体を介して負荷を駆動することが必要となる。減速体としては、特にVベルトとテーパープーリを組み合わせた無段変速機構(以下CVTと略す)が広く使用されている。   Further, when an axial gap motor is used for powering an electric vehicle (hereinafter abbreviated as EV), a large load torque at the time of starting is required in response to only field control. In direct drive, the motor size is large, and there is a problem in terms of economy and weight, and it is necessary to drive a load via a speed reducer. As the speed reducer, a continuously variable transmission mechanism (hereinafter abbreviated as CVT) that combines a V-belt and a taper pulley is widely used.

図14は典型的な従来技術によるアキシャルギャップ式BLDCMに無段変速機構、所謂CVTを取り付けた断面図である。固定子鉄心19は一般に珪素鋼鈑の積層方式で形成され、例えば6個で3相巻き線2が設けられ、回転子は4極の例が一般的である。尚ホール素子等の図示は省略してある。回転子は、永久磁石18を備えており、永久磁石18は、4個の扇形セグメント磁石が軸方向に磁化されて、交互に異極性に周方向に配置され、軸方向にエアギャップを介して固定子鉄心19と平面対向するように配置されている。即ち図14に記載した従来のアキシャルギャップ式BLDCMは、プレーンエアギャップ式となっている。そして回転子は、バックヨーク17を備えており、バックヨーク17により、磁気回路を形成する。回転子は、回転軸7を備えており、回転軸7は先端がテーパ状のテーパ面を有する軸体であり、スラスト方向には固定され軸受け11を介して固定子鉄心19に対して回転自在に保持されている。このように、バックヨーク17,永久磁石18とは一体に構成されて回転子を形成する。以上が駆動部即ちモータとなる。   FIG. 14 is a cross-sectional view in which a continuously variable transmission mechanism, so-called CVT, is attached to a typical prior art axial gap type BLDCM. The stator core 19 is generally formed by a silicon steel sheet laminating method. For example, six stator cores 19 are provided with three-phase windings 2, and the rotor has a four-pole example. In addition, illustration of Hall elements etc. is omitted. The rotor includes a permanent magnet 18. The permanent magnet 18 has four fan-shaped segment magnets magnetized in the axial direction, alternately arranged in the circumferential direction with different polarities, and through the air gap in the axial direction. It arrange | positions so that the stator core 19 may be planarly opposed. That is, the conventional axial gap type BLDCM shown in FIG. 14 is a plain air gap type. The rotor includes a back yoke 17, and a magnetic circuit is formed by the back yoke 17. The rotor includes a rotation shaft 7, and the rotation shaft 7 is a shaft body having a tapered surface with a tapered tip. The rotation shaft 7 is fixed in the thrust direction and is rotatable with respect to the stator core 19 through a bearing 11. Is held in. Thus, the back yoke 17 and the permanent magnet 18 are integrally formed to form a rotor. The above is a drive part, ie, a motor.

回転子は、さらにプーリ8を備えている。プーリ8はスラスト方向に移動可能で且つ回転軸7とともに回転自在に配置されると共に、回転軸7のテーパ面と対応して形成されたテーパ所謂傾斜面を有する。回転軸7とプーリ8の互いに対向するテーパ面でV字型溝ができて、その溝でV字状ベルト15がサンドイッチ状に挟持されている。通常はプーリ8は図示は省略するが油圧やバネ圧等でV字状ベルト15を加圧するように制御されている。以上が駆動側であり、説明の便宜上、これらを1次側とよぶ。そして巻き線2に3相交流電流を流すことで、モータは回転磁界が発生して、V字状ベルト15は駆動される。V字状ベルト15は負荷軸20を駆動するが、負荷軸20は回転軸7と類似形状でその先端はテーパ状のテーパ面を有する軸体である。また負荷軸20に回転自在に設けられたプーリ21はプーリ8と同様の形状を有しており、スラスト方向に移動可能で且つ負荷軸20と共に回転自在に設けられたテーパ面を有している。また、上述した1次側と同様に、負荷軸20とプーリ21のテーパ面でサンドイッチ状に前述のV字状ベルト15を挟持している。なお、プーリ21は、負荷軸20に固着されたストッパ22を力点としてスプリングバネ23によって常にV字状ベルト15を加圧している。そして負荷軸20の右端に負荷が接続される。これらを説明の便宜上2次側とよぶ。例えばEVの場合は1次側がモータで、2次側が駆動輪タイヤとなる。この様な構成では無段変速機構が形成される。即ち、モータが始動開始すればV字状ベルト15の張力が大きくなるため、プーリ8は図14において右側に移動して、V字状ベルト15の1次側の径は小さくなり、反対に2次側ではV字状ベルト15がたわむのでスプリングバネ23の加圧でプーリ21がV字状ベルト15の内周にもぐりこみ、ベルト径は大きくなる。即ち減速機が形成され、大きな負荷トルクを駆動可能になる。即ち図14と反対の状態となる。逆に、高回転時は負荷トルクは低減されるので、V字状ベルト15の張力が駆動側で緩むため、あるいは、前述のプーリ8に加えられている油圧やバネ圧等の制御でプーリ8がV字状ベルト15の内周にもぐりこみV字状ベルト15は駆動側で径大、負荷側で径小になり増速機能を有したものとなる。即ち図14に図示した状態となる。このように無段変速が可能となる。   The rotor further includes a pulley 8. The pulley 8 is movable in the thrust direction and is rotatably arranged with the rotary shaft 7, and has a tapered so-called inclined surface formed corresponding to the tapered surface of the rotary shaft 7. V-shaped grooves are formed on the tapered surfaces of the rotating shaft 7 and the pulley 8 facing each other, and the V-shaped belt 15 is sandwiched between the grooves. Normally, the pulley 8 is controlled so as to pressurize the V-shaped belt 15 by hydraulic pressure, spring pressure or the like, although not shown. The above is the driving side, and for convenience of explanation, these are called the primary side. When a three-phase alternating current is passed through the winding 2, a rotating magnetic field is generated in the motor, and the V-shaped belt 15 is driven. The V-shaped belt 15 drives the load shaft 20. The load shaft 20 is a shaft body having a shape similar to that of the rotary shaft 7 and having a tapered surface at the tip. The pulley 21 provided rotatably on the load shaft 20 has the same shape as the pulley 8, and has a tapered surface that is movable in the thrust direction and rotatably provided with the load shaft 20. . Similarly to the primary side described above, the V-shaped belt 15 described above is sandwiched between the taper surfaces of the load shaft 20 and the pulley 21. The pulley 21 always pressurizes the V-shaped belt 15 by the spring spring 23 with the stopper 22 fixed to the load shaft 20 as a power point. A load is connected to the right end of the load shaft 20. These are called secondary sides for convenience of explanation. For example, in the case of EV, the primary side is a motor and the secondary side is a drive wheel tire. In such a configuration, a continuously variable transmission mechanism is formed. That is, since the tension of the V-shaped belt 15 increases when the motor starts, the pulley 8 moves to the right side in FIG. 14 and the diameter of the primary side of the V-shaped belt 15 decreases. Since the V-shaped belt 15 bends on the next side, the pressure of the spring spring 23 causes the pulley 21 to slip into the inner periphery of the V-shaped belt 15 and the belt diameter increases. That is, a reduction gear is formed, and a large load torque can be driven. That is, the state is opposite to that in FIG. On the contrary, since the load torque is reduced at the time of high rotation, the tension of the V-shaped belt 15 is loosened on the driving side, or the pulley 8 is controlled by controlling the hydraulic pressure or the spring pressure applied to the pulley 8 described above. However, the V-shaped belt 15 has a speed increasing function because it has a large diameter on the drive side and a small diameter on the load side. That is, the state shown in FIG. 14 is obtained. In this way, continuously variable transmission is possible.

しかし、特にEV用途等のように低速から高速まで広範囲に速度制御を必要とする場合は速度制御を十分に効率よく行うにはCVTのみでは不十分で高速時は弱め界磁制御、低速時は強め界磁制御が必要であった。この弱め、強め界磁制御をおこなうには、界磁制御用の余分な電力や複雑なベクトル制御が必要であった。しかし、アキシャルギャップ式モータでは回転子と固定子間のエアギャップ長を可変にすることで比較的簡単に高速時の弱め界磁制御、低速時の強め界磁制御と同等の効果が得られることが知られている。   However, in particular, when speed control is required over a wide range from low speed to high speed, such as in EV applications, CVT alone is not sufficient to perform speed control sufficiently efficiently. Weak field control at high speed and strong field control at low speed Was necessary. In order to perform the weak and strong field control, extra electric power for field control and complicated vector control are required. However, it is known that axial gap motors can achieve the same effects as field-weakening control at high speed and field-intensity control at low speed by making the air gap length between the rotor and stator variable. Yes.

その典型的なアキシャルギャップ式BLDCモータに更にギャップ長を外力で強制的に可変させる先行技術として上述した特開2012−130086がある。しかし上記の図10、図11を含めた上述の先行技術に記載された方法では次のような欠点があった。即ち、界磁磁石と固定子鉄心が平面で対向するプレーンエアギャップ式ではラジアルギャップモータと比較して、最小エアギャップが小さく出来ないこと等によりトルクが小さく実用性に問題があった。すなわち、ラジアルギャップ式に対してアキシャルギャップ式では回転子面振れを考慮して、エアギャップ長が概略2倍必要となり、その分トルクが低下してしまうという問題もあった。さらに、エアギャップ長対トルク特性がエアギャップ長に対して線形変化でなく、非線形となるため制御性がよくないといった問題があった。   Japanese Patent Application Laid-Open No. 2012-130086 described above is a prior art in which the gap length is forcibly changed by an external force in the typical axial gap type BLDC motor. However, the method described in the above prior art including the above FIG. 10 and FIG. 11 has the following drawbacks. That is, in the plain air gap type in which the field magnet and the stator iron core are opposed to each other in a plane, the minimum air gap cannot be reduced compared to the radial gap motor. In other words, the axial gap type, in contrast to the radial gap type, has a problem that the air gap length needs to be approximately doubled in consideration of the rotor surface runout, and the torque decreases accordingly. Further, there is a problem that the controllability is not good because the air gap length vs. torque characteristic is not linearly changed with respect to the air gap length but becomes nonlinear.

そこで、本発明は上記問題に鑑みてなされたものであり、上述したCVTに適したモータ構造である立体エアギャップモータを採用することで、アキシャルギャップ式でエアギャップ可変回転子とCVTの位置可変プーリを合体させてモータとCVTを融合させたコンパクトな、CVTを有したアキシャル可変ギャップモータを提供するものである。本発明は以上の問題を解決して安価で高性能なアキシャルモータを提供するものである。   Therefore, the present invention has been made in view of the above problems, and by adopting a three-dimensional air gap motor that is a motor structure suitable for the above-described CVT, the position of the air gap variable rotor and the CVT can be varied by an axial gap type. A compact axial variable gap motor having a CVT in which a pulley and a motor are combined with a CVT is provided. The present invention solves the above problems and provides an inexpensive and high-performance axial motor.

本発明に係る回転電機は、固定子と、前記固定子に対して回転軸方向にエアギャップを介して回転可能に配置された回転子と、前記回転子の軸心と同軸心に回転する1次側機構を備えた回転電機において、前記1次側機構は、回転軸方向に移動不能に配置された定位置回転プーリと、前記定位置回転プーリに対して前記回転軸方向に沿って移動可能に配置された可変位置プーリとを備え、記可変位置プーリが、前記回転子と一体に回転且つ軸方向に移動するものであることを特徴とする。   A rotating electrical machine according to the present invention includes a stator, a rotor arranged to be rotatable with respect to the stator through an air gap in a rotation axis direction, and a shaft 1 coaxially rotating with the rotor axis. In a rotating electrical machine having a secondary side mechanism, the primary side mechanism is movable along the rotational axis direction with respect to the fixed position rotary pulley arranged so as not to move in the rotary axis direction and the fixed position rotary pulley. The variable position pulley is configured to rotate integrally with the rotor and move in the axial direction.

また、本発明に係る回転電機において、前記可変位置プーリは、前記回転子との間に円錐体内部状空間部を有し、その空間部内で軸方向に移動不能に設けられた前記円錐体内部と逆方向に傾斜面を有するプレートとでできる空間内で前記回転軸の周方向に1個または複数に分割配置された錘を備え、前記錘は、必要により縮径方向に付勢する弾性部材によって一連に組み付けられると好適である。   Further, in the rotating electrical machine according to the present invention, the variable position pulley has a conical internal space portion between the rotor and the rotor, and the conical internal portion provided so as not to move in the axial direction within the space portion. And a weight divided into one or a plurality in the circumferential direction of the rotating shaft in a space formed by a plate having an inclined surface in the opposite direction, and the weight is an elastic member that urges in the reduced diameter direction as necessary Is preferably assembled in series.

また、本発明に係る回転電機において、前記回転子は、偶数極で周方向に異極性に磁化された永久磁石を備えることとすることができる。   Moreover, the rotary electric machine which concerns on this invention WHEREIN: The said rotor can be provided with the permanent magnet magnetized by the different polarity in the circumferential direction by the even number pole.

また、本発明に係る回転電機において、前記回転子は、永久磁石を備えないこととすることができる。   In the rotating electrical machine according to the present invention, the rotor may not include a permanent magnet.

また、本発明に係る回転電機において、前記固定子は、同心円弧的で軸方向に第1の歯部を突き出して有した複数の巻き線用突極鉄心を有するとともに、巻き線軸が前記回転軸と平行に形成された前記巻き線用突極鉄心を周方向に複数分布配置した固定子鉄心部を備え、前記回転子は、複数の磁性体による回転子磁極が周方向に分布されて各々の回転子磁極は同心円的で軸方向に前記第1の歯部と前記エアギャップを介して噛み合うように対向配置された第2の歯部を突き出して有すると好適である。   Further, in the rotating electrical machine according to the present invention, the stator has a plurality of winding salient cores having a concentric arc shape and protruding first teeth in the axial direction, and the winding shaft is the rotating shaft. A stator core portion in which a plurality of the winding salient pole cores formed in parallel with each other are arranged in the circumferential direction, and the rotor has a plurality of magnetic poles distributed in the circumferential direction. It is preferable that the rotor magnetic pole has a concentric circular shape and protrudes a second tooth portion disposed so as to face the first tooth portion via the air gap in the axial direction.

また、本発明に係る回転電機において、前記1次側機構及び2次側機構の定位置及び可変位置プーリで可変幅V溝を形成してV字状ベルトを架け渡して無段変速機構を構成することができる。   Further, in the rotating electrical machine according to the present invention, a continuously variable transmission mechanism is formed by forming a variable width V-groove with the fixed position and variable position pulleys of the primary side mechanism and the secondary side mechanism, and spanning a V-shaped belt. can do.

また、本発明に係る回転電機において、前記固定子又は前記回転子の何れかの巻き線を有する方へ電力を入力して前記1次側機構を回転させて前記2次側機構から出力を得ることができる。   Further, in the rotating electrical machine according to the present invention, electric power is input to the one having the winding of either the stator or the rotor to rotate the primary side mechanism to obtain an output from the secondary side mechanism. be able to.

また、本発明に係る回転電機において、前記2次側機構に風力、水力又はエンジンなどの外力によって駆動力を入力し、1次側機構に設けられた回転電機を発電機として用いることができる。   In the rotating electrical machine according to the present invention, a driving force can be input to the secondary side mechanism by an external force such as wind power, hydraulic power, or an engine, and the rotating electrical machine provided in the primary side mechanism can be used as a generator.

本発明に係るアキシャル可変ギャップ式の回転電機の回転子を軸方向に移動する手段とCVTの可変位置プーリを直結させれば、両者とも同じ動きで、低速時大トルクで高速時高回転で高出力の特性がモータとCVTで相乗効果をうむ。   If the means for moving the rotor of the axial variable gap type rotating electrical machine according to the present invention in the axial direction and the variable position pulley of the CVT are directly connected, both of them can move in the same way, with high torque at low speed and high speed at high speed. The output characteristics are synergistic with the motor and CVT.

また、本発明に係るアキシャルギャップ式BLDCMは固定子に形成された第1の歯部と回転子に形成された第2の歯部同士がかみ合い回転できるので、鎖交磁束がプレーンギャップの2倍以上と大きくなり、始動時および低速時のトルクも2倍以上が得られる。また従来のアキシャルギャップ式モータに比べ本モータは凹凸噛み合い部がラジアルギャップも有しているので低騒音である。
さらに、固定子に形成された第1の歯部と回転子に形成された第2の歯部の間のエアギャップ対向部がかみ合い対向なので、対向面積が増大しエアギャップ部パーミアンスの大きな高効率回転電機にして、エアギャップの増加に対して、そのアキシャル方向吸引力及びトルクはエアギャップ長にほぼ比例するのでギャップ長制御でトルク制御が容易に行える。
Further, the axial gap type BLDCM according to the present invention can mesh and rotate the first tooth portion formed on the stator and the second tooth portion formed on the rotor so that the interlinkage magnetic flux is twice the plane gap. As a result, the torque at the time of starting and at a low speed can be more than doubled. Compared with the conventional axial gap motor, this motor has low noise because the concave-convex engagement portion also has a radial gap.
Further, since the air gap facing portion between the first tooth portion formed on the stator and the second tooth portion formed on the rotor is in meshing opposition, the facing area increases and the air gap portion permeance is large and highly efficient. In the rotating electrical machine, the axial suction force and torque are almost proportional to the air gap length as the air gap increases, so that torque control can be easily performed by gap length control.

また、本発明に係るアキシャルギャップ式SRMも凹凸状に固定子に形成された第1の歯部と回転子に形成された第2の歯部同士がかみ合い回転できるので、従来技術に比較して優れたものとなる。   In addition, since the axial gap type SRM according to the present invention can rotate by meshing the first tooth portion formed on the stator with the concave and convex portions and the second tooth portion formed on the rotor, it can be rotated compared to the prior art. It will be excellent.

さらに、本発明に係るアキシャルギャップ式の回転電機を電気自動車の駆動主機に応用すれば、低速時の強め界磁や高速時の弱め界磁に要する電力が不要で効率を高めることができる。   Furthermore, if the axial gap type rotating electrical machine according to the present invention is applied to a driving main machine of an electric vehicle, the power required for a strong field at a low speed and a weak field at a high speed is unnecessary and the efficiency can be increased.

また、本発明に係るアキシャルギャップ式の回転電機においてCVTの2次側軸を風力で駆動するように構成すれば、微風時は増速とし、大風時は減速制御して、ほぼ一定電力が得られる発電装置を構成することができる。   Also, if the axial gap type rotating electrical machine according to the present invention is configured so that the secondary side shaft of the CVT is driven by wind force, the speed is increased during light winds and is decelerated during heavy winds so that a substantially constant power is obtained. The resulting power generator can be configured.

本発明の第1の実施形態に係る回転電機の軸方向断面図1 is an axial sectional view of a rotating electric machine according to a first embodiment of the present invention. 図1におけるA−A断面図AA sectional view in FIG. 図1におけるB−B断面図BB sectional view in FIG. 本発明の第1の実施形態の変形例の回転電機の軸方向断面図Sectional drawing of the axial direction of the rotary electric machine of the modification of the 1st Embodiment of this invention 本発明の第1の実施形態の更なる変形例の回転電機の軸方向断面図Sectional drawing of the axial direction of the rotary electric machine of the further modification of the 1st Embodiment of this invention 図4(a)及び(b)における錘の部分断面図Partial sectional view of the weight in FIGS. 4 (a) and 4 (b) 本発明に係る回転電機の動作説明図Operation explanatory diagram of the rotating electrical machine according to the present invention 本発明に係る回転電機の動作説明図Operation explanatory diagram of the rotating electrical machine according to the present invention 本発明の第2の実施形態に係る回転電機の動作説明図Operation | movement explanatory drawing of the rotary electric machine which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る回転電機の動作説明図Operation | movement explanatory drawing of the rotary electric machine which concerns on the 2nd Embodiment of this invention. 更に別の本発明のCVT装着時回転電機の動作説明図Still another operation explanatory diagram of the rotating electric machine with CVT of the present invention. 本発明の回転電機の動作説明図Operation explanatory diagram of the rotating electrical machine of the present invention 本発明の回転電機の特性説明図Characteristic explanatory diagram of the rotating electrical machine of the present invention 本発明の回転電機の特性説明図Characteristic explanatory diagram of the rotating electrical machine of the present invention 従来技術の回転電機の動作説明図Operation explanatory diagram of conventional rotating electrical machine

以下図面によって説明する。   This will be described below with reference to the drawings.

[第一の実施形態]
本発明のアキシャルギャップ式モータの固定子鉄心1や回転子磁極4あるいは永久磁石5のバックヨーク6等は軟磁性鉄粉をプレスすることで簡単安価に製作できる。珪素鋼鈑の積層式の場合において、従来のラジアルギャップ式の場合は2次元形状の鉄心を軸方向に積層して、界磁磁束も軸と垂直平面磁路で用いられる。しかしアキシャルギャップ式モータでは界磁磁束磁路は立体的になるので珪素鋼鈑の積層方式を採用するには積層方式では積層方向には磁束が通過困難であるという問題があり、これがアキシャルギャップモータがラジアルギャップに比べて普及しない別の理由でもあった。この点、圧粉鉄心は無方向性であるので立体的な形状を構成するのに適したものとなる。圧粉鉄心とは軟磁性鉄粉を樹脂コーテングして加圧後熱処理したもので、プレス型で複雑な形状品を製作できる。また、透磁率は珪素鋼鈑の圧延方向には劣るが、磁束通過方向は無方向性である。さらに鉄粉が個々に樹脂で絶縁されているので渦電流が発生せず、鉄損が小さい鉄心とすることができる。
[First embodiment]
The stator core 1, the rotor magnetic pole 4, the back yoke 6 of the permanent magnet 5, and the like of the axial gap motor of the present invention can be easily and inexpensively manufactured by pressing soft magnetic iron powder. In the case of the laminated type of silicon steel plates, in the case of the conventional radial gap type, a two-dimensional iron core is laminated in the axial direction, and the field magnetic flux is also used in a plane magnetic path perpendicular to the axis. However, in the axial gap motor, the field magnetic flux magnetic path is three-dimensional, so there is a problem that the magnetic flux cannot pass in the stacking direction in the stacking method to adopt the silicon steel sheet stacking method. However, this was another reason why it was not widespread compared to the radial gap. In this respect, since the dust core is non-directional, it is suitable for forming a three-dimensional shape. The dust core is a soft magnetic iron powder coated with resin, heat treated after pressurization, and can be manufactured in a complicated shape with a press die. Further, the magnetic permeability is inferior to the rolling direction of the silicon steel sheet, but the magnetic flux passing direction is non-directional. Furthermore, since the iron powder is individually insulated with resin, eddy currents are not generated, and an iron core with a small iron loss can be obtained.

図1は本発明の構成の一部を示したものであり、軸回転式のアキシャル可変シングルギャップ式回転電機とCVTの1次側部品を示したものである。図2は図1の回転電機のA−A断面矢視図、図3は図1の回転電機のB−B断面矢視図である。図1〜3を参照して第一の本発明例を説明する。   FIG. 1 shows a part of the configuration of the present invention, and shows a shaft rotation type axially variable single gap type rotating electrical machine and a primary part of a CVT. 2 is an AA cross-sectional arrow view of the rotary electric machine of FIG. 1, and FIG. 3 is a BB cross-sectional arrow view of the rotary electric machine of FIG. A first example of the present invention will be described with reference to FIGS.

図2に示すように固定子鉄心1は圧粉鉄心等によって構成された巻き線用突極鉄心1bが円盤状に配列されており、巻き線用突極鉄心1bは、図1に示すように軸線方向に同心的に複数の第1の歯部1aが突き出して円弧状に形成されている。本図の場合は固定子鉄心1は6個の略扇形溝つきの巻き線突極用鉄心1bあるいは6個の分割鉄心で構成され、3相巻き線、回転子は4極の例である。例えばこの他に固定子が12スロットで回転子が8,10,14極あるいは、固定子が9スロットで回転子が8,10極等多数の組合せを適用可能である。   As shown in FIG. 2, the stator core 1 has winding salient cores 1b made of a dust core or the like arranged in a disc shape, and the winding salient core 1b is formed as shown in FIG. A plurality of first tooth portions 1a project concentrically in the axial direction and are formed in an arc shape. In the case of this figure, the stator iron core 1 is composed of six substantially fan-shaped winding cores 1b for winding salient poles or six divided iron cores, and the three-phase winding and rotor are examples of four poles. For example, a number of combinations such as 12 slots for the stator and 8, 10, 14 poles for the rotor, or 9 slots for the stator and 8, 10 poles for the rotor can be applied.

なお、固定子鉄心1の外周面には、巻き線2が巻かれており、この場合、6個の巻き線が、図2に示したように周方向に配置されて、固定子鉄心1の6個の溝部に略扇形に設けられている。回転子は図3に示したように回転子磁極4が4個でそれらの裏側には磁化された永久磁石5があり、4極でN極、S極が交互に配置されている。   The winding 2 is wound around the outer peripheral surface of the stator core 1, and in this case, six windings are arranged in the circumferential direction as shown in FIG. Six grooves are provided in a substantially fan shape. As shown in FIG. 3, the rotor has four rotor magnetic poles 4 and magnetized permanent magnets 5 on the back side thereof, and four poles are alternately arranged with N and S poles.

永久磁石5は4個の磁石片を軸方向で磁石厚み方向に交互に異極性となるように磁化しバックヨーク6をその裏面に配置するのが望ましいが、1枚の円盤状磁石をN極S極交互に磁化し、軸方向に重ねて4個の回転子磁極4を固着させてもよい。永久磁石5の裏側にはバックヨーク6あるいは回転子支持体があり、定位置回転プーリ7の1次側鍔つき回転軸部に固着されている。そして固定子鉄心1及び回転子磁極4には同心的に軸方向に突き出た第1の歯部1a及び第2の歯部4aを有して、固定子と回転子が凹凸状にエアギャップを介してかみ合いながら軸受け11及びスベリ軸受け10で回転自在に対向している。ラジアルギャップ式回転電機に、この凹凸エギャップを適用すると、固定子鉄心1を分割して、回転子と組み合わせないと、回転電機として組みあがらない。しかしアキシャルギャップ式であれば、組み立ては容易である。また固定子及び回転子は凹凸かみ合いの第1の歯部1a及び第2の歯部4aがあっても、圧粉鉄心製法なら簡単安価にできる。なお、軸受け11は一対配置されており、軸受け11の間及び定位置回転プーリ7の回転軸には、スペーサ3及び9が介在している。即ち図1で回転子磁極4,永久磁石5,バックヨーク6及び可変位置プーリ8はお互いに固着合体されて1個の回転子を形成し、この回転子は、スベリ軸受け10を介して1次側鍔つき回転軸を有する定位置回転プーリ7とは回転もスラスト移動も可能としてある。定位置回転プーリ7は軸受け11に回転可能に保持されているので、固定子に対してスラスト方向には定位置で固定される。尚ホール素子等の図示は省略してある。   In the permanent magnet 5, it is desirable that four magnet pieces are magnetized so as to have different polarities alternately in the axial direction in the axial direction, and the back yoke 6 is disposed on the back surface thereof. Alternatively, the four rotor magnetic poles 4 may be fixed while being magnetized alternately with S poles and stacked in the axial direction. On the back side of the permanent magnet 5, there is a back yoke 6 or a rotor support, which is fixed to the primary side tacking rotary shaft portion of the fixed position rotary pulley 7. The stator core 1 and the rotor magnetic pole 4 have a first tooth portion 1a and a second tooth portion 4a concentrically protruding in the axial direction, and the stator and the rotor have an air gap in an uneven shape. The bearings 11 and the sliding bearings 10 are opposed to each other so as to be freely rotatable. If this uneven gap is applied to a radial gap type rotating electrical machine, the stator core 1 cannot be assembled unless the stator core 1 is divided and combined with the rotor. However, if it is an axial gap type, assembly is easy. Further, even if the stator and the rotor have the first tooth portion 1a and the second tooth portion 4a that are engaged with each other, the powder iron core manufacturing method can be made easily and inexpensively. A pair of bearings 11 are arranged, and spacers 3 and 9 are interposed between the bearings 11 and on the rotation shaft of the fixed position rotating pulley 7. That is, in FIG. 1, the rotor magnetic pole 4, the permanent magnet 5, the back yoke 6, and the variable position pulley 8 are fixedly combined with each other to form a single rotor. Rotation and thrust movement are possible with the fixed-position rotating pulley 7 having a side-shafted rotating shaft. Since the fixed position rotating pulley 7 is rotatably held by the bearing 11, it is fixed at a fixed position in the thrust direction with respect to the stator. In addition, illustration of Hall elements etc. is omitted.

次に、図1の動作を説明する。この回転電機が負荷を始動させる場合はBLDCMの特性から始動負荷トルクに見合った最大電流が流れる。アキシャルギャップモータはラジアルギャップモータと比較して大きなアキシャル方向の吸引力がしかも電流に比例した大きさで発生するので図1図示の如く回転子は固定子鉄心1に最小の所定エアギャップで吸引されて始動を開始する。また回転子の可変位置プーリ8はV字状ベルト15の張力が始動時は大きいため該張力によって回転子磁極4は一層固定子鉄心1とのエアギャップが小さくなる方向に力を受けた状態で始動する。即ち定位置回転プーリ7と可変位置プーリ8の間のV溝間隔が開いた状態で始動する。此のときV字状ベルト15の径は最小状態で、負荷側の2次軸を減速するレシオである。   Next, the operation of FIG. 1 will be described. When the rotating electrical machine starts the load, a maximum current corresponding to the starting load torque flows from the characteristics of BLDCM. Since the axial gap motor generates a large suction force in the axial direction as compared with the radial gap motor and is in proportion to the current, the rotor is attracted to the stator core 1 with a minimum predetermined air gap as shown in FIG. Start. Further, since the variable position pulley 8 of the rotor has a large tension of the V-shaped belt 15 at the time of starting, the rotor magnetic pole 4 receives a force in such a direction that the air gap with the stator core 1 is further reduced by the tension. Start. That is, the engine is started with the V-groove interval between the fixed position rotating pulley 7 and the variable position pulley 8 opened. At this time, the diameter of the V-shaped belt 15 is a minimum and a ratio for decelerating the secondary shaft on the load side.

次にデューティ制御や印加電圧制御等でモータ速度を増加させると、回転電機でエアギャップが小さいことによる大トルクが生じ、これにCVTの減速レシオによるトルク増加が加わることで、相乗効果で負荷を始動加速しやすく出来る。そして加速が終わり、定速度運転あるいは高速運転となった場合では負荷が加速時より大幅に減少するのでV字状ベルト15の張力も減少する。またBLDCMの速度―トルク特性の関係から、速度が増加すると、負荷電流は減少していくので、ギャップ間の吸引力も減少していく。此のとき、定位置回転プーリ7の回転軸を保持するスペーサ9の代わりにこの場所にコイルバネ圧や油圧等の付勢手段を設けておけば、可変位置プーリ8のテーパ部がV字状ベルト15の内周に回転しながらもぐりこみV字状ベルト15の径は拡大する。V字状ベルト15の径が拡大することで、固定子と回転子間のエアギャップは拡大し、弱め界磁効果が発生し回転数を増加させ、CVT側でも増速レシオとなり相乗効果が生まれる。尚、図1の回転子は定位置回転プーリ7には発生トルクがV字状ベルト15の摩擦力を介して伝達されている。またギャップ長と発生トルクが線形に変化することが重要であるが、これは後述する図11及び12に記載した例を適用することで解決することができる。   Next, when the motor speed is increased by duty control, applied voltage control, etc., a large torque is generated due to the small air gap in the rotating electrical machine, and a torque increase due to the deceleration ratio of the CVT is added to this, thereby synergistically loading the load. Easy to start acceleration. Then, when the acceleration is finished and the constant speed operation or the high speed operation is performed, the load is greatly reduced compared to the acceleration time, so that the tension of the V-shaped belt 15 is also reduced. Also, from the relationship between the speed-torque characteristics of BLDCM, as the speed increases, the load current decreases, so the attractive force between the gaps also decreases. At this time, if a biasing means such as a coil spring pressure or hydraulic pressure is provided in this place instead of the spacer 9 for holding the rotating shaft of the fixed position rotating pulley 7, the taper portion of the variable position pulley 8 becomes a V-shaped belt. The diameter of the V-shaped belt 15 is increased while rotating around the inner periphery of the belt 15. As the diameter of the V-shaped belt 15 is increased, the air gap between the stator and the rotor is expanded, a field weakening effect is generated and the rotational speed is increased, and a speed increasing ratio is also achieved on the CVT side, thereby producing a synergistic effect. . 1, the generated torque is transmitted to the fixed-position rotating pulley 7 through the frictional force of the V-shaped belt 15. Further, it is important that the gap length and the generated torque change linearly, but this can be solved by applying an example described in FIGS. 11 and 12 described later.

図1が回転電機の対速度での電流変化やバネ圧、あるいは油圧により回転電機のエアギャップを増減させるのに対し、図4(a)は遠心力を利用した一例である。図4(a)でモータ部は図1とほぼ同じであるのでその説明は省略する。CVT部が図1とは異なり、図1での可変位置プーリ8はむくの円錐部材であったが、図4(a)では空洞円錐体30を設けてバックヨーク(回転子支持体)にその外周で固着して、バックヨーク6と空洞円錐体30で囲まれた空間部を作りスラスト方向に移動を固定した空洞円錐体30の内壁面とは逆斜面を有したプレート12を設ける。空洞円錐体30の中心部は定位置回転プーリ7とは図示しないスベリ軸受けを介した回転及びスラスト移動可能にしてある。その内部すなわちプレート12と空洞円錐体30の内壁による空間部に、1個またはドーナツ状体を複数個に分割した錘13を配置する。錘13は、その中心穴部に錘13を必要により縮径方向に付勢する弾性部材14を有し定位置回転プーリ7なる1次軸の周りに配置される。弾性部材14は、例えば弾性紐、環状スプリングあるいは弾性リング体である。そして空洞円錐体30と定位置回転プーリ7と傾斜面でできるV溝にはV字状ベルト15を設けたものである。尚錘13の形状はドーナツ状体に限らず、球体状錘を弾性部材14で連結する等、適宜適応可能である。   FIG. 1 shows an example in which the air gap of the rotating electrical machine is increased or decreased by a change in current at the speed of the rotating electrical machine, a spring pressure, or a hydraulic pressure, while FIG. In FIG. 4A, the motor part is substantially the same as in FIG. The CVT portion is different from FIG. 1 and the variable position pulley 8 in FIG. 1 is a solid conical member. However, in FIG. 4A, a hollow cone 30 is provided and the back yoke (rotor support) is provided with the hollow cone 30. A plate 12 having an inclined surface opposite to the inner wall surface of the hollow cone 30 fixed on the outer periphery and having a space surrounded by the back yoke 6 and the hollow cone 30 and fixed in the thrust direction is provided. The central portion of the hollow cone 30 is capable of rotating and thrusting via a sliding bearing (not shown) with respect to the fixed position rotating pulley 7. A weight 13 obtained by dividing one piece or a donut-like body into a plurality of parts is disposed in the interior, that is, in the space portion formed by the plate 12 and the inner wall of the hollow cone 30. The weight 13 has an elastic member 14 that urges the weight 13 in the diameter-reducing direction as necessary in the center hole portion thereof, and is arranged around a primary shaft that is a fixed-position rotating pulley 7. The elastic member 14 is, for example, an elastic string, an annular spring, or an elastic ring body. A V-shaped belt 15 is provided in a V-groove formed by the hollow cone 30, the fixed-position rotating pulley 7, and the inclined surface. Note that the shape of the weight 13 is not limited to a donut-like body, and can be appropriately applied, such as connecting a spherical weight with an elastic member 14.

その動作を以下説明する。   The operation will be described below.

この回転電機が負荷を始動させる場合はBLDCMの特性から始動負荷トルクに見合った最大電流が流れる。アキシャルギャップモータはラジアルギャップモータと比較して大きなアキシャル方向の吸引力が発生し、その吸引力は電流に比例するので図4(a)に図示の如く回転子は固定子鉄心1に最小の所定エアギャップで吸引されて始動を開始する。また回転子の空洞円錐体30はV字状ベルト15の張力が始動時大きいため張力に負けて回転子磁極4は一層固定子鉄心1とのエアギャップが小さくなる方向に力を受けた状態、即ち定位置回転プーリ7と空洞円錐体30間のV溝間隔が開いた状態で始動する。此のときV字状ベルト15の径は最小状態で、負荷側の2軸を減速するレシオである。   When the rotating electrical machine starts the load, a maximum current corresponding to the starting load torque flows from the characteristics of BLDCM. The axial gap motor generates a large axial attractive force as compared to the radial gap motor, and the attractive force is proportional to the current. Therefore, as shown in FIG. Aspiration starts at the air gap. Further, the rotor cone 30 loses the tension because the tension of the V-shaped belt 15 is large at the start, and the rotor magnetic pole 4 receives a force in the direction in which the air gap with the stator core 1 is further reduced. That is, the engine is started in a state where the gap between the V-grooves between the fixed position rotating pulley 7 and the hollow cone 30 is open. At this time, the diameter of the V-shaped belt 15 is a minimum and a ratio for decelerating the two axes on the load side.

次にデューティ制御や印加電圧制御等でモータ速度を増加させると、回転電機ではエアギャップ小による大トルクに、CVTの減速レシオによるトルク増加が加わり相乗効果で負荷を始動加速しやすく出来る。この状態の図示が図4(a)の横軸中心線の上半分に示した図である。そして加速が終わり、定速度運転あるいは高速運転では負荷が加速時より大幅に減少するのでV字状ベルト15の張力も減少する。またBLDCMの速度―トルク特性の関係から、速度が増加すると、負荷電流は減少していくので、ギャップ吸引力も減少していく。   Next, when the motor speed is increased by duty control, applied voltage control, etc., the rotating electrical machine can increase the torque due to the CVT deceleration ratio in addition to the large torque due to the small air gap, making it easy to start and accelerate the load with a synergistic effect. This state is shown in the upper half of the horizontal axis of FIG. 4A. Then, the acceleration is finished, and in the constant speed operation or the high speed operation, the load is greatly reduced as compared with the acceleration time. Further, because of the relationship between the speed-torque characteristics of BLDCM, the load current decreases as the speed increases, so that the gap attractive force also decreases.

此のとき、錘13は速度が増加するにつれて、遠心力が発生し回転軸の径方向の遠方に力を受けて図4(a)の下半分の図示状態となる。即ち、錘13は空洞円錐体30とプレート12の内部壁を外方向に遠心力で押し上げるがプレート12は定位置回転プーリ7の回転軸にスラスト方向には固定されているので、空洞円錐体30が図4(a)の右方向に移動し、V字状ベルト15の位置を外周方向に押し上げV字状ベルト15の径を大きくし、増速レシオとなる。此のとき同時に回転子である回転子磁極4,永久磁石5及びバックヨーク6も右に同量移動して固定子鉄心1と回転子磁極4の間のエアギャップを拡大し界磁弱め効果が生じ益々高速型モータに変身する。錘13が遠心力で外周の位置にいるときは弾性部材14は伸びている。そして再び速度を減らすモードになると、回転速度の減速時は錘13には遠心力がなくなるので空洞円錐体30を右側に押す力が消滅し、同時に負荷側からV字状ベルト15に張力が加えられるので、V字状ベルト15の張力で空洞円錐体30は左側に移動させられて、回転子である回転子磁極4,永久磁石5及びバックヨーク6も同時に左に移動して、エアギャップも小さくなり、弾性部材14は収縮して、図4(a)の上半分の図の状態に戻る。弾性部材14が収縮して定位置回転プーリ7の回転軸の周りに位置している状態の図が図5である。   At this time, as the speed of the weight 13 increases, a centrifugal force is generated and the force is received in the radial direction of the rotating shaft, and the lower half of FIG. That is, the weight 13 pushes the cavity cone 30 and the inner wall of the plate 12 outward by centrifugal force, but the plate 12 is fixed in the thrust direction to the rotation axis of the fixed position rotating pulley 7, so the cavity cone 30. 4A moves to the right in FIG. 4A, pushes up the position of the V-shaped belt 15 in the outer peripheral direction, increases the diameter of the V-shaped belt 15, and increases the speed ratio. At the same time, the rotor magnetic pole 4, the permanent magnet 5, and the back yoke 6 as the rotor are also moved to the right by the same amount to widen the air gap between the stator core 1 and the rotor magnetic pole 4 and have a field weakening effect. It is gradually transformed into a high-speed motor. When the weight 13 is at the outer peripheral position due to centrifugal force, the elastic member 14 is extended. When the speed is reduced again, the centrifugal force is lost in the weight 13 when the rotational speed is reduced, so that the force pushing the hollow cone 30 to the right side disappears, and at the same time, tension is applied to the V-shaped belt 15 from the load side. Therefore, the cavity cone 30 is moved to the left side by the tension of the V-shaped belt 15, and the rotor magnetic pole 4, the permanent magnet 5 and the back yoke 6 as the rotor are also moved to the left at the same time, and the air gap is also reduced. The elastic member 14 shrinks and returns to the state shown in the upper half of FIG. FIG. 5 shows a state in which the elastic member 14 is contracted and positioned around the rotation axis of the fixed position rotation pulley 7.

図4(b)は、図4(a)と同様に遠心力でエアギャップを開閉するものである。図4(b)の固定子及び回転子の構成は図1と同じなので説明は省略する。回転子はバックヨーク25の外周で第1のプレート26を固着している。第1のプレート26は軸心に向かって空洞円錐体形状をなし固定子に固定された軸50とは非接触あるいはスベリ軸受け10を介して軸50に対し回転及び軸方向に移動可能にして回転子と一体的に動けるものである。第1のプレート26と軸50で囲まれた空間部にはスラスト方向に移動を固定した第1のプレート26の内壁面とは逆斜面を有した第2のプレート27を設ける。その内部すなわち第2のプレート27と第1のプレート26の内壁による空間部に1個またはドーナツ状体を複数個に分割した錘13を配置する。錘13は、その中心穴部に、錘13を必要により縮径方向に付勢する弾性部材14を有し、軸50の周りに配置する。ドーナツ状体を複数に分割した錘13は複数球体でもよく、その形状はこの限りでない。1個の球体でもよいが複数の方が遠心力が第1のプレート26と第2のプレート27に均等に作用するので好適である。なお、図4(b)の第1のプレート26は、図4(a)の空洞円錐体30、あるいは図1の可変位置プーリ8に相当し同様な可変ギャップ機能を持つが、電動機の出力はV字状ベルト15で2次側機構へ伝達されるのと異なり、回転体28に伝達される1次側機構を構成する。尚錘13の形状はドーナツ状体に限らず、球体状錘を弾性部材14で連結する等、適宜適応可能である。   FIG. 4 (b) opens and closes the air gap by centrifugal force as in FIG. 4 (a). The configuration of the stator and the rotor in FIG. 4B is the same as that in FIG. The rotor secures the first plate 26 on the outer periphery of the back yoke 25. The first plate 26 has a hollow conical shape toward the shaft center, and is not in contact with the shaft 50 fixed to the stator, or can rotate and move in the axial direction with respect to the shaft 50 via the sliding bearing 10. It can move together with the child. A space surrounded by the first plate 26 and the shaft 50 is provided with a second plate 27 having a slope opposite to the inner wall surface of the first plate 26 fixed in the thrust direction. A weight 13 in which one or a donut-shaped body is divided into a plurality of parts is disposed in the inside, that is, in the space formed by the inner walls of the second plate 27 and the first plate 26. The weight 13 has an elastic member 14 that urges the weight 13 in the diameter-reducing direction, if necessary, in the center hole portion, and is disposed around the shaft 50. The weight 13 obtained by dividing the donut-shaped body into a plurality may be a plurality of spheres, and the shape thereof is not limited to this. Although one sphere may be used, a plurality of spheres are preferable because the centrifugal force acts equally on the first plate 26 and the second plate 27. The first plate 26 in FIG. 4B corresponds to the hollow cone 30 in FIG. 4A or the variable position pulley 8 in FIG. 1 and has a similar variable gap function, but the output of the motor is Unlike the transmission to the secondary mechanism by the V-shaped belt 15, the primary mechanism to be transmitted to the rotating body 28 is configured. Note that the shape of the weight 13 is not limited to a donut-like body, and can be appropriately applied, such as connecting a spherical weight with an elastic member 14.

その動作は以下のようになる。
この回転電機が負荷を始動させる場合はBLDCM等の特性から始動負荷トルクに見合った最大電流が流れる。アキシャルギャップモータはラジアルギャップモータと比較して大きなアキシャル方向の吸引力が発生し、その吸引力は電流に比例するので図4(b)の軸50の軸心線の上半図に図示の如く回転子は固定子鉄心1に最小の所定エアギャップで吸引されて始動を開始する。
The operation is as follows.
When the rotating electrical machine starts the load, a maximum current corresponding to the starting load torque flows from characteristics such as BLDCM. The axial gap motor generates a large suction force in the axial direction as compared with the radial gap motor, and the suction force is proportional to the current. Therefore, as shown in the upper half of the axis of the shaft 50 in FIG. The rotor is sucked into the stator core 1 with a minimum predetermined air gap and starts to start.

次にデューティ制御や印加電圧制御等でモータ速度を増加させると、内部誘導電圧が増加して電流が減るので固定子と回転子間に働くスラスト吸引力も減少する。
このとき、錘13は速度が増加するにつれて、遠心力が発生し回転軸の径方向の遠心力を受けて図4(b)の下半分の図示状態となる。即ち、錘13は第1のプレート26と第2のプレート27の内部壁を外方向に遠心力で押し上げるが第2のプレート27は固定軸50に軸方向移動は固定されているので、第1のプレート26のみが右方向に移動し、回転子も同時に移動してエアギャップは拡大される。そして再び速度を減らすモードになると、回転数の減速時は錘13には遠心力がなくなるので第1のプレート26を右側に押す力が消滅し、また低速回転時は電流も増大するのでアキシャルギャップ特有の強力なスラスト吸引力でエアギャップは最小位置まで縮小する。図4(b)で前記回転子あるいは第1のプレート26の外周にはエクスターナルギヤが形成され、軸方向に定位置で回転する回転体28の内周には軸方向に伸びるインターナルギヤが噛み合うように形成され、回転子が軸方向に移動しても、それらのギヤは常にかみ合い回転力を回転体28に伝達できる。インホイール式電気自動車駆動に用いる場合は、回転体28の外周にタイヤを装着すればよい。以下の説明は図1と同じなので省略する。
Next, when the motor speed is increased by duty control, applied voltage control, or the like, the internal induction voltage increases and the current decreases, so the thrust attracting force acting between the stator and the rotor also decreases.
At this time, as the speed of the weight 13 increases, a centrifugal force is generated and receives the centrifugal force in the radial direction of the rotating shaft, and the lower half of FIG. That is, the weight 13 pushes up the inner walls of the first plate 26 and the second plate 27 outwardly by centrifugal force, but the second plate 27 is fixed to the fixed shaft 50 in the axial direction. Only the plate 26 moves to the right, and the rotor also moves at the same time, thereby expanding the air gap. In the mode for reducing the speed again, the centrifugal force disappears in the weight 13 when the rotational speed is reduced, so that the force pushing the first plate 26 to the right side disappears, and the current also increases during the low speed rotation, so the axial gap is increased. The air gap is reduced to the minimum position by the unique strong thrust suction force. In FIG. 4B, an external gear is formed on the outer periphery of the rotor or the first plate 26, and an internal gear extending in the axial direction meshes with the inner periphery of the rotating body 28 rotating at a fixed position in the axial direction. Even if the rotor moves in the axial direction, the gears can always mesh and transmit the rotational force to the rotating body 28. When used for driving an in-wheel electric vehicle, a tire may be attached to the outer periphery of the rotating body 28. The following description is the same as FIG.

図6と図7はCVTの1次側と2次側を同時に図示して説明する図である。モータ部は図1、図4と異なり、固定子と回転子との間のエアギャップが凹凸状にかみ合ってないがアキシャル型回転子とCVTの可変位置プーリ8は合体して同時にスラスト方向に移動できるメリットは有している。なお、回転子は、固定子19、永久磁石18及びバックヨーク17を備えている。その他の部材は図1と同じなので図1と同じ符号を付して説明は省略する。図6は回転電機が始動時においてV字状ベルト15の張力が増大することで可変位置プーリ8は右側に寄せられて永久磁石18と固定子19間のエアギャップは最小となっている。この状態では、大きな起動トルクでしかもCVTの1次軸のプーリ間V溝間は開いた状態なのでV字状ベルト15の径は小さく、減速レシオで起動容易状態である。   6 and 7 are diagrams illustrating the primary side and the secondary side of the CVT at the same time. The motor part is different from FIG. 1 and FIG. 4, but the air gap between the stator and the rotor is not meshed unevenly, but the axial rotor and the CVT variable position pulley 8 are united and moved in the thrust direction at the same time. There are merits that can be done. The rotor includes a stator 19, a permanent magnet 18, and a back yoke 17. Since other members are the same as those in FIG. 1, the same reference numerals as those in FIG. In FIG. 6, when the rotating electric machine starts, the tension of the V-shaped belt 15 increases, so that the variable position pulley 8 is moved to the right side, and the air gap between the permanent magnet 18 and the stator 19 is minimized. In this state, since the VVT between the pulleys of the primary shaft of the CVT is open with a large starting torque, the diameter of the V-shaped belt 15 is small, and it is easy to start with a deceleration ratio.

CVTの2次側鍔つき回転軸20の鍔部はテーパ状形状で、プーリ21は回転軸20の軸部を中心軸として回転し、スラスト方向への位置移動を固定すれば、V字状ベルト15をバネ23で加圧し、回転軸20のテーパ状形状部とで挟持する。バネ23は、回転軸20に取り付けたバネストッパ22によって保持されている。CVTの1次軸と2次軸間距離は一定なので、1次側でプーリ間V溝が開けば2次側でベルトがたわむのでバネ23のバネ加圧力で回転軸20のテーパ状形状部がV字状ベルト15の内周部にもぐりこみ図6の状態で始動加速に適した状態となる。   If the collar part of the rotary shaft 20 with the secondary side tack of the CVT has a tapered shape and the pulley 21 rotates about the shaft part of the rotation shaft 20 as a central axis and the position movement in the thrust direction is fixed, the V-shaped belt 15 is pressed by a spring 23 and sandwiched between the tapered portion of the rotating shaft 20. The spring 23 is held by a spring stopper 22 attached to the rotary shaft 20. Since the distance between the primary shaft and the secondary shaft of the CVT is constant, if the V groove between the pulleys is opened on the primary side, the belt bends on the secondary side. Recessed into the inner peripheral portion of the V-shaped belt 15 is in a state suitable for starting acceleration in the state shown in FIG.

図7は一定速度の軽負荷あるいは高速回転に適した状態である。加速が終わり、定速度運転あるいは高速運転では負荷が加速時より大幅に減少するのでV字状ベルト15の張力も減少する。またBLDCMの速度―トルク特性の関係から、速度が増加すると、負荷電流は減少していくので、ギャップ吸引力も減少していく。するとバネ16等の加圧により可変位置プーリ8がV字状ベルト15内部にもぐりこむ。同時にV字状ベルト15の張力が2次側に加わり、プーリ21はスラスト方向に定位置に固定されているので、回転軸20のテーパ状形状部はV字状ベルト15の張力で左に移動して、V溝間隔が開き、図の高速回転に適した状態になる。   FIG. 7 shows a state suitable for a light load at a constant speed or high-speed rotation. After the acceleration, the load is greatly reduced in the constant speed operation or the high speed operation, and the tension of the V-shaped belt 15 is also reduced. Further, because of the relationship between the speed-torque characteristics of BLDCM, the load current decreases as the speed increases, so that the gap attractive force also decreases. Then, the variable position pulley 8 is pulled into the V-shaped belt 15 by pressurization of the spring 16 or the like. At the same time, the tension of the V-shaped belt 15 is applied to the secondary side, and the pulley 21 is fixed at a fixed position in the thrust direction, so the tapered portion of the rotating shaft 20 moves to the left by the tension of the V-shaped belt 15. As a result, the V-groove interval is opened, and the state becomes suitable for high-speed rotation in the figure.

また図6、図7でCVTの2次側軸に風車等を取り付けるとCVT1次側についている回転電機は発電機として使用できる。図6が微風時対応で2次側軸は低速回転なので1次側軸の発電機を増速して回転数を増加させて発電量を大きく出来る。また図7は強風時対応で2次側軸は高速回転するので1次側軸回転を減速して発電量を抑えたり発電機の高速回転による破損を防止したりできる。   In addition, when a windmill or the like is attached to the secondary shaft of the CVT in FIGS. 6 and 7, the rotating electrical machine attached to the CVT primary side can be used as a generator. Since FIG. 6 corresponds to the time of light wind and the secondary side shaft rotates at a low speed, the power generation amount can be increased by increasing the number of revolutions by increasing the speed of the generator on the primary side shaft. Further, FIG. 7 corresponds to a strong wind, and the secondary side shaft rotates at a high speed. Therefore, the primary side shaft rotation can be decelerated to suppress the amount of power generation or to prevent damage due to the high speed rotation of the generator.

[第2の実施形態]
図8と図9は第2の実施形態に係る回転電機をCVTの1次側と2次側を同時に図示して説明する図である。モータ部は図1、図4と同じく、固定子鉄心24と回転子磁極25の間のエアギャップが凹凸状にかみ合っているが、凹凸のかみ合う歯数は図を簡素にするために少なく図示してある。アキシャル型回転子とCVTの可変位置プーリは合体して同時にスラスト方向に移動できるメリットを有しているのは同じである。なお、回転子磁極25は永久磁石18が取り付けられており、可変位置プーリ8を磁性体で構成してバックヨークをそれで代用した例である。その他の部材は図1と同じなので同一の符号を付して説明は省略する。
[Second Embodiment]
FIGS. 8 and 9 are diagrams for explaining the rotating electrical machine according to the second embodiment by simultaneously showing the primary side and the secondary side of the CVT. As in FIGS. 1 and 4, the motor part has an air gap between the stator core 24 and the rotor magnetic pole 25 meshed in a concave-convex shape, but the number of teeth with which the concave-convex meshes is shown to be small for simplicity It is. It is the same that the axial rotor and the variable position pulley of the CVT have the merit of being able to move together in the thrust direction at the same time. The rotor magnetic pole 25 is an example in which the permanent magnet 18 is attached, the variable position pulley 8 is made of a magnetic material, and the back yoke is used instead. The other members are the same as those in FIG.

また図8と図9の動作は図6と図7の場合と同じなので動作説明は省略するが、図8は回転電機のエアギャップが最小でCVTのV溝が最大で、1次側のV字状ベルトの径が最小、従ってCVT2次側のV字状ベルト径が最大であり、始動時あるいは加速時の図を示している。図9は逆に回転電機のエアギャップが最大でCVTのV溝が最小で、1次側のV字状ベルト径が最大、従ってCVT2次側のV字状ベルト径が最小であり、高速回転時の図である。   8 and 9 are the same as those in FIG. 6 and FIG. 7, and the explanation of the operation is omitted. However, in FIG. 8, the air gap of the rotating electrical machine is the smallest and the V groove of the CVT is the largest. The figure shows the figure at the time of start-up or acceleration, with the diameter of the letter-shaped belt being the smallest, and hence the diameter of the V-shaped belt on the CVT secondary side being the largest. In contrast, FIG. 9 shows that the air gap of the rotating electrical machine is the largest, the V groove of the CVT is the smallest, the V-shaped belt diameter on the primary side is the largest, and therefore the V-shaped belt diameter on the CVT secondary side is the smallest. It is a figure of time.

また図8、図9でCVTの2軸に風車等を取り付けるとCVT1次側軸についている回転電機は発電機として使用できる。図8が微風時対応で2次側軸は低速回転なので1次側軸の発電機を増速して回転数を増加させて発電量を大きく出来る。また図9は強風時対応で2次側軸は高速回転するので1次側軸回転を減速して発電量を抑えたり発電機の高速回転による破損を防止したりできる。なお、図4(b)に記載した回転電機を適用する場合には、2次側軸を設けずに直接回転体28に風車等を取り付けて発電機として使用することもできる。   8 and 9, when a windmill or the like is attached to the two shafts of the CVT, the rotating electrical machine attached to the CVT primary shaft can be used as a generator. Since FIG. 8 corresponds to the time of light wind and the secondary side shaft rotates at a low speed, the power generation amount can be increased by increasing the number of revolutions by increasing the speed of the generator on the primary side shaft. Further, FIG. 9 corresponds to a strong wind and the secondary shaft rotates at high speed, so that the primary shaft rotation can be decelerated to suppress the amount of power generation or prevent the generator from being damaged by the high speed rotation. In addition, when applying the rotary electric machine described in FIG.4 (b), a windmill etc. can be directly attached to the rotary body 28, without providing a secondary side axis | shaft, and it can also be used as a generator.

また図10はモータの固定子鉄心24及び回転子磁極25は図8、図9の場合とおなじで、第1の歯部及び第2の歯部を有した凹凸エアギャップであるが、図8、図9のBLDCMの場合のような永久磁石18を用いない場合の図である。所謂レラクタンス式回転電機であり、近年、SRMとして注目されている回転電機の場合である。軸方向から見たエアギャップ対向部の固定子及び回転子は図2及び図3と同じ図示となる。本機は吸引力で回転するが、エアギャップが小さいほど、またエアギャップ対抗面積が大きいほど、発生トルクも大きくなる。またBLDCMと比較して永久磁石がない分、コストは安価であるが、発生トルクは小さいので、EV用途などには凹凸ギャップ式が必要となる。そしてBLDCMほど顕著ではないが、エアギャップが大きい方が高速回転となる。従ってアキシャルギャップ式SRMに本発明のCVTのデバイスを適用することは有効である。図10はエアギャップを大きくした高速回転対応の図で示したものである。   FIG. 10 shows an uneven air gap having a first tooth portion and a second tooth portion as in the case of FIGS. 8 and 9, wherein the stator core 24 and the rotor magnetic pole 25 of the motor are the same as those in FIGS. FIG. 10 is a diagram when the permanent magnet 18 is not used as in the BLDCM of FIG. 9. This is a so-called reluctance type rotating electrical machine, which is a rotating electrical machine that has been attracting attention as an SRM in recent years. The stator and rotor of the air gap facing portion viewed from the axial direction are the same as those shown in FIGS. This machine rotates with suction force, but the smaller the air gap and the larger the area facing the air gap, the greater the generated torque. In addition, since there is no permanent magnet as compared with BLDCM, the cost is low, but the generated torque is small, so an uneven gap type is required for EV applications and the like. And although not as remarkable as BLDCM, the larger the air gap, the faster the rotation. Therefore, it is effective to apply the CVT device of the present invention to the axial gap type SRM. FIG. 10 is a diagram corresponding to high-speed rotation with a large air gap.

回転電機のトルクは鎖交磁束に比例する。鎖交磁束はギャップパーミアンスPに比例し、Pは次式で与えられる。
P=μS/L (1)
ここで、μ:真空の透磁率、S:ギャップ対向面積、L:エアギャップ長
しかるに、図1、図8等はモータのエアギャップは凹凸ギャップのため、(1)式より考察すれば、対向面積Sは容易に従来型の2倍〜3倍になる。従ってパーミアンスPも2から3倍でトルクもPに比例して増加できる。従って、ラジアルギャップ式モータに比べて、アキシャルギャップ式モータの欠点であったエアギャップ大によるトルク小が改善される。ラジアルギャップ式モータに凹凸エアギャップを適用しようとすると固定子と回転子の組み立てが容易にはできないがアキシャルギャップ式モータなら簡単であることは前述した。本発明は圧粉鉄心を用いるが、圧粉の珪素鋼鈑に比べた透磁率の悪さも、この凹凸ギャップ効果でカバーされる。ここで固定子と回転子が平面で対抗する所謂プレーンギャップ式アキシャルモータに対して凹凸ギャップ式アキシャルギャップモータの特徴を述べる。
The torque of the rotating electrical machine is proportional to the flux linkage. The flux linkage is proportional to the gap permeance P, and P is given by the following equation.
P = μ 0 S / L (1)
Here, μ 0 : vacuum permeability, S: gap facing area, L: air gap length However, since the air gap of the motor in FIGS. The facing area S can easily be two to three times that of the conventional type. Therefore, the permeance P can be increased by 2 to 3 times and the torque can be increased in proportion to P. Therefore, compared with the radial gap type motor, the small torque due to the large air gap, which was a drawback of the axial gap type motor, is improved. As described above, when an uneven air gap is applied to a radial gap motor, the stator and rotor cannot be easily assembled, but an axial gap motor is simple. Although the present invention uses a dust core, the poor magnetic permeability compared with the dust silicon steel plate is also covered by this uneven gap effect. Here, the features of the concave-convex gap type axial gap motor will be described with respect to the so-called plain gap type axial motor in which the stator and the rotor face each other in a plane.

ギャップ長Lを変化させた時のトルクTとの特性を比較すると図11及び図12の如くなる。図11(A)(B)はプレーンギャップ式であり、回転子の永久磁石18がエアギャップを保持して直接固定子19と対向している。(A)はエアギャップがL1と狭い場合、(B)はL2に拡大された場合の図である。これに対して、図11の(C),(D)は凹凸ギャップ式アキシャルギャップモータの場合であり、(C)はエアギャップがL1と狭い場合、(D)はL2に拡大された場合の図である。図12を参照して、エアギャップが同じL1でも、凹凸ギャップ式はプレーンギャップ式のトルクの2倍程度でエアギャップLを増加していくと、プレーンギャップ式はギャップ距離Lの自乗に反比例してトルクが減少するが、凹凸ギャップ式はギャップLがL2までは常に固定子と回転子の第1及び第2の歯部がラジアル方向で対向しているので、トルクは図示の如くほぼ線形に減少する。線形に減少することはギャップLの可変制御でトルクを線形に制御できるものであり、EV用モータとして使用した場合、車の低速から高速までの制御が容易となる。さらに試作した結果から判明したことであるが、本発明モータはアキシャルギャップ式モータでありながら、ラジアルギャップ式の対向部が存在しているので、騒音がプレーンギャップ式アキシャルモータに対して、大幅に低いメリットもある。   When the characteristics with the torque T when the gap length L is changed are compared, the characteristics are as shown in FIGS. FIGS. 11A and 11B show a plane gap type, in which a permanent magnet 18 of the rotor directly faces the stator 19 while holding an air gap. (A) is a figure when an air gap is as narrow as L1, (B) is a figure when it expands to L2. On the other hand, FIGS. 11C and 11D show the case of the concave-convex gap type axial gap motor, FIG. 11C shows the case where the air gap is as narrow as L1, and FIG. 11D shows the case where the air gap is enlarged to L2. FIG. Referring to FIG. 12, even if the air gap is the same L1, the uneven gap type is inversely proportional to the square of the gap distance L when the air gap L is increased by about twice the torque of the plain gap type. Although the torque decreases, the concave and convex gap type always has the stator and the first teeth of the rotor facing each other in the radial direction until the gap L is L2, so the torque is almost linear as shown in the figure. Decrease. The linear decrease means that the torque can be linearly controlled by the variable control of the gap L, and when used as an EV motor, the vehicle can be easily controlled from low speed to high speed. Furthermore, as the result of the trial production, it was found that although the motor of the present invention is an axial gap type motor, there is a radial gap type facing portion, so the noise is significantly larger than that of a plain gap type axial motor. There is also a low merit.

図13はBLDCMのアキシャル可変ギャップ式モータのエアギャップを可変した時の特性を説明するための図である。エアギャップが最小の場合の速度―負荷トルク特性が実線(1)でそのときの電流―負荷トルク特性が点線(2)である。エアギャップを最小で実線(1)の速度―負荷トルクカーブにおいて始動トルクT1、速度N1で始動する時、電流I1は最大電流に近く、アキシャル方向吸引力が大きくなり、予圧バネ力より大きく設定されていれば、最小エアギャップを保持して大トルクで始動後、モータは増速していく。増速するに伴い、負荷トルクが減少し、負荷電流も減少していく。するとアキシャル方向吸引力も減少するので、エアギャップはバネ予圧の方が大きくなり、エアギャップが増大していく。そして所定のエアギャップまでギャップ長が増加した最大エアギャップ時の速度―負荷トルク特性が実線(3)でそのときの電流―負荷トルク特性が点線(4)である。そのときの負荷トルクがT2で電流がI2となる。即ち、本発明モータの速度―負荷トルク特性は実線(1)から実線(3)へと無段階に連続変化して負荷を始動、加速させる。もし速度―負荷トルク特性がエアギャップ固定で実線(1)のみであれば負荷トルクT2時、速度はN2までしか、増加しないが、本発明の可変エアギャップモータで速度―負荷トルク特性(3)上のN3まで増速できるものである。これを強め界磁で(1)とし、弱め界磁制御で(3)となるように行えば、余分な励磁コイルや界磁制御電力、あるいは複雑なベクトル制御回路等が必要になる。   FIG. 13 is a diagram for explaining the characteristics when the air gap of the BLDCM axial variable gap motor is varied. The speed-load torque characteristic when the air gap is minimum is a solid line (1), and the current-load torque characteristic at that time is a dotted line (2). When starting with the starting torque T1 and speed N1 in the speed-load torque curve of the solid line (1) with the minimum air gap, the current I1 is close to the maximum current, and the axial suction force increases and is set larger than the preload spring force. If so, the motor speed increases after starting with a large torque while maintaining the minimum air gap. As the speed increases, the load torque decreases and the load current also decreases. As a result, the axial suction force also decreases, so that the air gap becomes larger in the spring preload, and the air gap increases. The speed-load torque characteristic at the time of the maximum air gap where the gap length has increased to a predetermined air gap is a solid line (3), and the current-load torque characteristic at that time is a dotted line (4). At that time, the load torque is T2, and the current is I2. That is, the speed-load torque characteristic of the motor of the present invention continuously changes steplessly from the solid line (1) to the solid line (3) to start and accelerate the load. If the speed-load torque characteristic is fixed to the air gap and only the solid line (1), the speed increases only to N2 at the load torque T2, but the speed-load torque characteristic (3) is increased with the variable air gap motor of the present invention. The speed can be increased up to N3 above. If this is set to (1) for the strong field and (3) for the weak field control, an extra exciting coil, field control power, or a complicated vector control circuit is required.

以上の説明は主にアキシャルギャプ式BLDCMで固定子と回転子の対向面を凹凸かみ合いの場合で説明したが円弧あるいは3角状の歯対向にしても十分な効果を有する。また永久磁石を使用しないSRMでも固定子と回転子の対向面を凹凸や円弧あるいは3角状の歯対向にすれば十分な効果を有する。SRMの場合は、図13に示した速度―トルク曲線がBLDCMほどきれいな直線とはならないが、エアギャップを増加していけば特性曲線は概略(1)から(3)への傾向で変化する。従って本発明のSRMへの展開も永久磁石不要の安価なモータで行えるため有益である。   In the above description, the axial gap type BLDCM is mainly described in the case where the opposing surfaces of the stator and the rotor are engaged with each other. Further, even in an SRM that does not use a permanent magnet, sufficient effects can be obtained if the opposing surfaces of the stator and the rotor are made to be opposed to irregularities, arcs, or triangular teeth. In the case of SRM, the speed-torque curve shown in FIG. 13 is not as clean as BLDCM, but if the air gap is increased, the characteristic curve changes with a tendency from (1) to (3). Therefore, the development of the SRM of the present invention is beneficial because it can be performed with an inexpensive motor that does not require a permanent magnet.

本発明によるアキシャルギャップ式回転電機は、安価で堅牢で軽薄短小、高トルク化、高効率化、さらに低騒音に適した、シンプルにして、きわめて実用的なものである。従って工業的に大きな貢献が期待される。   The axial gap type rotating electrical machine according to the present invention is simple and extremely practical, inexpensive, robust, light and thin, suitable for high torque, high efficiency, and low noise. Therefore, it is expected to make a significant industrial contribution.

1、19、24 固定子鉄心
2 巻き線
3、9 スペーサ
4 回転子磁極
5、18 永久磁石
6、17、25 バックヨーク、または回転子支持体、
7 定位置回転プーリ
8 可変位置プーリ
10 スベリ軸受け
11 軸受
12、26,27 プレート
13 錘
14 弾性部材
15 V字状ベルト
16、23 コイルバネ
20 2次側鍔つき回転軸
21 2次側プーリ
22 バネストッパ
28 回転体
30 空洞円錐体
50 軸
1, 19, 24 Stator core 2 Winding wire 3, 9 Spacer 4 Rotor magnetic pole 5, 18 Permanent magnet 6, 17, 25 Back yoke or rotor support,
7 Fixed position rotating pulley 8 Variable position pulley 10 Sliding bearing 11 Bearing 12, 26, 27 Plate 13 Weight 14 Elastic member 15 V-shaped belt 16, 23 Coil spring 20 Secondary side tacking rotating shaft 21 Secondary pulley 22 Spring stopper 28 Rotating body 30 Cavity cone 50 Axis

Claims (8)

固定子と、
前記固定子に対して回転軸方向にエアギャップを介して回転可能に配置された回転子と、
前記回転子の軸心と同軸心に回転する1次側機構を備えた回転電機において、
前記1次側機構は、回転軸方向に移動不能に配置された定位置回転プーリと、前記定位置回転プーリに対して前記回転軸方向に沿って移動可能に配置された可変位置プーリとを備え、
前記可変位置プーリが、前記回転子と一体に回転且つ軸方向に移動するものであることを特徴とする回転電機。
A stator,
A rotor arranged to be rotatable with respect to the stator through an air gap in a rotation axis direction;
In a rotating electrical machine having a primary side mechanism that rotates coaxially with the axis of the rotor,
The primary side mechanism includes a fixed-position rotating pulley disposed so as not to move in the rotation axis direction, and a variable-position pulley disposed so as to be movable along the rotation axis direction with respect to the fixed-position rotating pulley. ,
The rotating electric machine is characterized in that the variable position pulley rotates integrally with the rotor and moves in the axial direction.
請求項1に記載の回転電機において、
前記可変位置プーリは、前記回転子との間に円錐体内部状空間部を有し、その空間部内で軸方向に移動不能に設けられた前記円錐体内部と逆方向に傾斜面を有するプレートとでできる空間内で前記回転軸の周方向に1個または複数に分割配置された錘を備え、
前記錘は、必要により縮径方向に付勢する弾性部材によって一連に組み付けられることを特徴とする回転電機。
In the rotating electrical machine according to claim 1,
The variable position pulley has a conical internal space between the rotor and the rotor, and a plate having an inclined surface in a direction opposite to the internal direction of the conical body provided in an axially immovable manner in the space. A weight divided into one or more in the circumferential direction of the rotating shaft in a space formed by
The rotating electric machine according to claim 1, wherein the weights are assembled in series by an elastic member that urges in the direction of diameter reduction if necessary.
請求項1又は2に記載の回転電機において、
前記回転子は、偶数極で周方向に異極性に磁化された永久磁石を備えることを特徴とする回転電機。
In the rotating electrical machine according to claim 1 or 2,
The rotating electric machine includes a permanent magnet magnetized with an even number of poles and different polarities in the circumferential direction.
請求項1又は2に記載の回転電機において、
前記回転子は、永久磁石を備えないことを特徴とする回転電機。
In the rotating electrical machine according to claim 1 or 2,
The rotary electric machine is characterized in that the rotor does not include a permanent magnet.
請求項1から4のいずれか1項に記載の回転電機において、
前記固定子は、同心円弧的で軸方向に第1の歯部を突き出して有した複数の巻き線用突極鉄心を有するとともに、巻き線軸が前記回転軸と平行に形成された前記巻き線用突極鉄心を周方向に複数分布配置した固定子鉄心部を備え、
前記回転子は、複数の磁性体による回転子磁極が周方向に分布されて各々の回転子磁極は同心円的で軸方向に前記第1の歯部と前記エアギャップを介して噛み合うように対向配置された第2の歯部を突き出して有することを特徴とする回転電機。
In the rotary electric machine according to any one of claims 1 to 4,
The stator has a plurality of winding salient cores that are concentric arcs and protrude in the axial direction with a first tooth portion, and the winding shaft is formed in parallel with the rotating shaft. It has a stator core with multiple salient pole cores distributed in the circumferential direction.
The rotor is arranged so that the rotor magnetic poles of a plurality of magnetic bodies are distributed in the circumferential direction, and each rotor magnetic pole is concentric and axially meshed with the first tooth portion via the air gap. A rotating electrical machine characterized by having a protruding second tooth portion.
請求項1から5のいずれか1項に記載の回転電機において、
前記1次側機構及び2次側機構の定位置及び可変位置プーリで可変幅V溝を形成してV字状ベルトを架け渡して無段変速機構を構成したことを特徴とする回転電機。
The rotating electrical machine according to any one of claims 1 to 5,
A rotating electrical machine characterized in that a variable-width V-groove is formed by fixed position and variable position pulleys of the primary side mechanism and the secondary side mechanism and a V-shaped belt is bridged to constitute a continuously variable transmission mechanism.
請求項6に記載の回転電機において、
前記固定子又は前記回転子の何れかの巻き線を有する方へ電力を入力して前記1次側機構機を回転させて前記2次側機構から出力を得ることを特徴とする回転電機。
In the rotating electrical machine according to claim 6,
A rotating electrical machine characterized in that electric power is input to one of the stator or the rotor having a winding to rotate the primary side mechanism machine to obtain an output from the secondary side mechanism.
請求項6に記載の回転電機において、
前記2次側機構に風力、水力又はエンジンなどの外力によって駆動力を入力し、1次側機構に設けられた回転電機を発電機として用いることを特徴とする回転電機。
In the rotating electrical machine according to claim 6,
A rotating electrical machine, wherein a driving force is input to the secondary side mechanism by an external force such as wind power, hydraulic power, or an engine, and the rotating electrical machine provided in the primary side mechanism is used as a generator.
JP2013220285A 2013-10-23 2013-10-23 Dynamo-electric machine Pending JP2015082921A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013220285A JP2015082921A (en) 2013-10-23 2013-10-23 Dynamo-electric machine
US14/518,737 US20150108856A1 (en) 2013-10-23 2014-10-20 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220285A JP2015082921A (en) 2013-10-23 2013-10-23 Dynamo-electric machine

Publications (1)

Publication Number Publication Date
JP2015082921A true JP2015082921A (en) 2015-04-27

Family

ID=52825581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220285A Pending JP2015082921A (en) 2013-10-23 2013-10-23 Dynamo-electric machine

Country Status (2)

Country Link
US (1) US20150108856A1 (en)
JP (1) JP2015082921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654132B1 (en) * 2015-04-29 2016-09-05 (주)캠시스 Continuously variable transmission
JP2019508342A (en) * 2016-01-11 2019-03-28 ライトラム、エル.エル.シー. Electric pulley and belt drive system
JP2020198749A (en) * 2019-06-05 2020-12-10 ジヤトコ株式会社 Power transmission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654132B1 (en) * 2015-04-29 2016-09-05 (주)캠시스 Continuously variable transmission
JP2019508342A (en) * 2016-01-11 2019-03-28 ライトラム、エル.エル.シー. Electric pulley and belt drive system
JP2020198749A (en) * 2019-06-05 2020-12-10 ジヤトコ株式会社 Power transmission device

Also Published As

Publication number Publication date
US20150108856A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP4394115B2 (en) Axial gap type motor
CN102104303B (en) Disc-type low-speed large-torque composite motor based on magnetic wheel gear
JP4576363B2 (en) Auxiliary drive
JP6214990B2 (en) Rotating electric machine
US8339010B2 (en) Dual rotor electric machine having a field-controlling rotor
JP4474547B2 (en) Permanent magnet movable electric machine
CN202004600U (en) Magnetic gear based disc type composite motor with low speed and large torque
KR20140022747A (en) Rotating electromechanical converter
JP4791013B2 (en) Brushless motor
TW201141011A (en) Adjustable axial-flux thin-plate motor
KR101684841B1 (en) Permanent magnet rotating electric machine
JP6327474B2 (en) Outer rotor type variable field motor
CN105471212A (en) Rotation linear permanent magnetism motor
CN102891575B (en) Brushless permanent magnet motor
JP2015082921A (en) Dynamo-electric machine
Aiso et al. Reluctance magnetic gear and flux switching magnetic gear for high speed motor system
JP6410037B2 (en) Outer rotor type variable field motor
JP6044077B2 (en) Electric rotating machine and electric rotating system
WO2013056458A1 (en) Electric motor
JP6205264B2 (en) Axial variable gap rotating electric machine
Cao et al. Design and analysis of electromagnetic gears with variable gear ratios
CN208046416U (en) A kind of magneto
US8188629B2 (en) Magnetic transmission assembly
JP7345759B2 (en) magnetic gears
JP2007110776A (en) Rotating-electric machine