JP2015082551A - Laser irradiation device - Google Patents

Laser irradiation device Download PDF

Info

Publication number
JP2015082551A
JP2015082551A JP2013219204A JP2013219204A JP2015082551A JP 2015082551 A JP2015082551 A JP 2015082551A JP 2013219204 A JP2013219204 A JP 2013219204A JP 2013219204 A JP2013219204 A JP 2013219204A JP 2015082551 A JP2015082551 A JP 2015082551A
Authority
JP
Japan
Prior art keywords
surface height
measurement
laser irradiation
irradiation position
heights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013219204A
Other languages
Japanese (ja)
Inventor
裕大 山下
Yudai Yamashita
裕大 山下
俊夫 井波
Toshio Inami
俊夫 井波
徹太郎 河上
Tetsutaro Kawakami
徹太郎 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2013219204A priority Critical patent/JP2015082551A/en
Publication of JP2015082551A publication Critical patent/JP2015082551A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laser irradiation device capable of suppressing deterioration of focus accuracy that is caused by position deviation between a measurement position recognized by a system controller and an actually measured position.SOLUTION: A surface height measuring apparatus is relatively moved along a measurement line set on the surface of an object to be processed and is moved in a reverse direction on an adjacent measurement line to actually measure the surface height of the object to be processed before laser irradiation, and the actually measured surface height is memorized. A plurality of actually measured surface heights in the vicinity of a laser irradiation position are read out, and the surface height of the laser irradiation position is calculated based on a plurality of these actually measured surface heights. Actually measured surface heights on a plurality of measurement lines near the laser irradiation position are included in a plurality of the actually measured surface heights. On measurement lines adjacent to each other, position deviation between the measurement position recognized by the system controller and the actually measured position is reversed. Since the surface of the object to be processed can be considered a plane, if the position deviation is reversed, errors caused by position deviation is offset when calculating the surface height. Thereby, deterioration of focus accuracy can be suppressed.

Description

本発明は、レーザ照射装置に関し、さらに詳しくは、システムコントローラが認識している測定位置と実際に測定された実測位置の間の位置ずれに起因するフォーカス精度の低下を抑制できるレーザ照射装置に関する。   The present invention relates to a laser irradiation apparatus, and more particularly, to a laser irradiation apparatus that can suppress a reduction in focus accuracy due to a positional deviation between a measurement position recognized by a system controller and an actually measured position.

加工対象物の表面に設定した走査ラインに沿ってフォーカスレンズ系を相対移動し加工対象物の表面にフォーカスレンズ系でフォーカスさせてレーザ光を照射するレーザ照射装置であって、レーザ照射前に走査ライン上の加工対象物の表面高さを表面高さ測定器で実測しその実測表面高さを記憶しておき、レーザ照射時に走査ライン上の照射位置にフォーカスレンズ系が到達した時にその位置の実測表面高さを読み出してフォーカスさせてレーザ光を照射する方式のレーザ照射装置が知られている(例えば、特許文献1,2参照。)。   A laser irradiation device that irradiates a laser beam by relatively moving the focus lens system along a scanning line set on the surface of the object to be processed and focusing the surface of the object to be processed by the focus lens system, and scanning before the laser irradiation. The surface height of the workpiece on the line is measured with a surface height measuring instrument, and the measured surface height is stored. When the focus lens system reaches the irradiation position on the scanning line during laser irradiation, There is known a laser irradiation apparatus of a type in which the measured surface height is read and focused to irradiate laser light (see, for example, Patent Documents 1 and 2).

特開2010−258257号公報JP 2010-258257 A 特開2006−32843号公報JP 2006-32843 A

走査ライン上の加工対象物の表面高さを実測するとき、システムコントローラが測定を指示してから表面高さ測定器で実際に測定が行われるまでの間に遅延時間が生じるが、その遅延時間の間にも表面高さ測定器が相対移動するため、システムコントローラが認識している測定位置と実際に測定された実測位置の間に位置ずれを生じてしまう。この位置ずれは、表面高さ測定器の相対移動速度が速いほど大きくなる。
しかし、従来のレーザ照射装置では、この位置ずれを考慮した処理がなされていなかったため、フォーカス精度が低下してしまう問題点がある。
そこで、本発明の目的は、システムコントローラが認識している測定位置と実際に測定された実測位置の間の位置ずれに起因するフォーカス精度の低下を抑制できるレーザ照射装置を提供することにある。
When actually measuring the surface height of the workpiece on the scan line, there is a delay time from when the system controller commands the measurement until the actual measurement is performed by the surface height measuring instrument. Since the surface height measuring device relatively moves between the measurement positions, a displacement occurs between the measurement position recognized by the system controller and the actually measured position. This positional deviation increases as the relative movement speed of the surface height measuring instrument increases.
However, since the conventional laser irradiation apparatus has not been processed in consideration of this positional deviation, there is a problem that the focusing accuracy is lowered.
Accordingly, an object of the present invention is to provide a laser irradiation apparatus capable of suppressing a decrease in focus accuracy due to a positional deviation between a measurement position recognized by a system controller and an actually measured position.

第1の観点では、本発明は、加工対象物の表面に設定した走査ラインに沿ってフォーカスレンズ系を相対移動し加工対象物の表面にフォーカスレンズ系でフォーカスさせてレーザ光を照射するレーザ照射装置であって、加工対象物の表面に設定した測定ラインに沿って且つ隣接する測定ラインでは逆方向に表面高さ測定器を相対移動してレーザ照射前に加工対象物の表面高さを実測しその実測表面高さを記憶しておく実測表面高さ測定手段と、走査ライン上の照射位置に近い複数の測定ライン上の実測表面高さを含む前記照射位置近傍の複数の実測表面高さを読み出しそれら実測表面高さを基に前記照射位置の表面高さを算出する表面高さ算出手段と、前記照射位置でレーザ光を照射する時に前記照射位置の表面高さにフォーカスさせるフォーカス制御手段とを具備したことを特徴とするレーザ照射装置を提供する。
なお、上記構成において、走査ラインおよび測定ラインは仮想のラインである。
上記第1の観点によるレーザ照射装置では、レーザ照射前に加工対象物の表面高さを実測しておき、レーザ照射位置近傍の複数の実測表面高さを読み出し、それら複数の実測表面高さを基にレーザ照射位置の表面高さを算出する。ここで、複数の実測表面高さは、レーザ照射位置に近い複数の測定ライン上の実測表面高さを含んでいる。そして、隣接する測定ラインでは、表面高さ測定器を逆方向に相対移動しているため、システムコントローラが認識している測定位置と実際に測定された実測位置の間の位置ずれが逆方向になっている。平均的にみれば加工対象物の表面は平面とみなせるため、位置ずれが逆方向になっていると、レーザ照射位置の表面高さの算出時に位置ずれによる誤差が相殺される。従って、位置ずれに起因するフォーカス精度の低下を抑制できる効果が得られる。また、それに加えて、異常な値が実測表面高さに混入しても、その影響を抑制できる効果も得られる。
In a first aspect, the present invention relates to laser irradiation in which a focus lens system is relatively moved along a scanning line set on the surface of a workpiece, and the focus lens system is focused on the surface of the workpiece to irradiate laser light. A device that measures the surface height of a workpiece before laser irradiation by relatively moving the surface height measuring device along the measurement line set on the surface of the workpiece and in the opposite direction on the adjacent measurement line. Actual surface height measuring means for storing the actual surface height, and a plurality of actual surface heights in the vicinity of the irradiation position including the actual surface heights on the plurality of measurement lines close to the irradiation position on the scanning line. A surface height calculating means for calculating the surface height of the irradiation position based on the actually measured surface height, and a focus for focusing on the surface height of the irradiation position when irradiating laser light at the irradiation position. To provide a laser irradiation apparatus characterized by comprising a scrap control means.
In the above configuration, the scanning line and the measurement line are virtual lines.
In the laser irradiation apparatus according to the first aspect, the surface height of the workpiece is measured before laser irradiation, a plurality of measured surface heights in the vicinity of the laser irradiation position are read, and the plurality of measured surface heights are read. Based on this, the surface height of the laser irradiation position is calculated. Here, the plurality of measured surface heights include measured surface heights on a plurality of measurement lines close to the laser irradiation position. In the adjacent measurement line, the surface height measuring instrument is relatively moved in the reverse direction, so that the positional deviation between the measurement position recognized by the system controller and the actually measured position is in the reverse direction. It has become. Since the surface of the object to be processed can be regarded as a flat surface on average, if the positional deviation is in the reverse direction, the error due to the positional deviation is canceled when calculating the surface height of the laser irradiation position. Therefore, it is possible to obtain an effect capable of suppressing a decrease in focus accuracy caused by the position shift. In addition, even if an abnormal value is mixed in the measured surface height, an effect of suppressing the influence can be obtained.

第2の観点では、本発明は、前記第1の観点によるレーザ照射装置において、レーザ照射時のフォーカスレンズ系の相対移動速度よりも表面高さ測定時の表面高さ測定器の相対移動速度の方が遅いことを特徴とするレーザ照射装置を提供する。
上記第2の観点によるレーザ照射装置では、なるべく短時間に且つ適正に加工を行うという観点からレーザ照射時のフォーカスレンズ系の相対移動速度(例えば180mm/秒)を決定できると共になるべく短時間に且つ適正に高さ測定を行うという観点から表面高さ測定器の相対移動速度(例えば100mm/秒)を決定できる。
In a second aspect, the present invention provides a laser irradiation apparatus according to the first aspect in which the relative movement speed of the surface height measuring device during surface height measurement is higher than the relative movement speed of the focus lens system during laser irradiation. Provided is a laser irradiation apparatus characterized by being slower.
In the laser irradiation apparatus according to the second aspect, the relative movement speed (for example, 180 mm / second) of the focus lens system at the time of laser irradiation can be determined from the viewpoint of performing processing appropriately in as short a time as possible. From the viewpoint of appropriately measuring the height, the relative moving speed (for example, 100 mm / second) of the surface height measuring device can be determined.

第3の観点では、本発明は、前記第1および第2の観点によるレーザ照射装置において、前記走査ラインの間隔よりも前記測定ラインの間隔の方が狭いことを特徴とするレーザ照射装置を提供する。
上記第3の観点によるレーザ照射装置では、複数の走査ラインが並ぶ方向のレーザスポットの大きさ(例えば8mm)に基づいて走査ラインの間隔(例えば6mm)を決定できると共に測定点密度を上げるという観点から測定ラインの間隔(例えば5mm)を決定できる。
In a third aspect, the present invention provides the laser irradiation apparatus according to the first or second aspect, wherein the interval between the measurement lines is narrower than the interval between the scanning lines. To do.
In the laser irradiation apparatus according to the third aspect, the distance between the scanning lines (for example, 6 mm) can be determined based on the size of the laser spot (for example, 8 mm) in the direction in which the plurality of scanning lines are arranged, and the measurement point density can be increased. From the measurement line can be determined (for example, 5 mm).

第4の観点では、本発明は、前記第1から第3のいずれかの観点によるレーザ照射装置において、前記表面高さ算出手段は、照射位置に最も近い4ラインの測定ライン上の実測表面高さであって且つそれら各測定ライン上で照射位置に最も近い5個の合計20個の実測表面高さを読み出し、それらの実測表面高さを基に前記照射位置の表面高さを算出することを特徴とするレーザ照射装置を提供する。
上記第4の観点によるレーザ照射装置では、複数の測定ラインが並ぶ方向については上記第1の観点と同じ作用によってフォーカス精度の低下を抑制できる。さらに、測定ライン方向についても複数の実測表面高さを用いるため、異常な値が実測表面高さに混入しても、その影響を抑制できる。
In a fourth aspect, the present invention provides the laser irradiation apparatus according to any one of the first to third aspects, wherein the surface height calculation means is a measured surface height on the four measurement lines closest to the irradiation position. Then, a total of 20 actually measured surface heights of five closest to the irradiation position on each measurement line are read out, and the surface height of the irradiation position is calculated based on those actual surface heights. A laser irradiation apparatus characterized by the above is provided.
In the laser irradiation apparatus according to the fourth aspect, it is possible to suppress a decrease in focus accuracy in the direction in which a plurality of measurement lines are arranged by the same action as in the first aspect. Furthermore, since a plurality of measured surface heights are used also in the measurement line direction, even if an abnormal value is mixed in the measured surface height, the influence can be suppressed.

本発明のレーザ照射装置によれば、システムコントローラが認識している測定位置と実際に測定された実測位置の間の位置ずれに起因する誤差がレーザ照射位置の表面高さの算出時に除去されるため、フォーカス精度の低下を抑制できる。   According to the laser irradiation apparatus of the present invention, an error caused by a positional deviation between the measurement position recognized by the system controller and the actually measured actual position is removed when calculating the surface height of the laser irradiation position. Therefore, it is possible to suppress a decrease in focus accuracy.

実施例1に係るレーザ照射装置を示す構成説明図である。1 is a configuration explanatory diagram illustrating a laser irradiation apparatus according to Embodiment 1. FIG. 加工対象物の表面に設定した測定ラインを示す説明図である。It is explanatory drawing which shows the measurement line set to the surface of a workpiece. システムコントローラが認識している測定位置と実際に測定された実測位置の間の位置ずれを示す概念図である。It is a conceptual diagram which shows the position shift between the measurement position which the system controller has recognized, and the actual measurement position actually measured. 加工対象物の表面に設定した走査ラインを示す説明図である。It is explanatory drawing which shows the scanning line set on the surface of the workpiece. レーザ照射位置の表面高さを算出するために読み出す複数の実測表面高さを示す概念図である。It is a conceptual diagram which shows the several measurement surface height read in order to calculate the surface height of a laser irradiation position. 位置ずれによる誤差が相殺される例を示す概念図である。It is a conceptual diagram which shows the example by which the error by position shift is canceled.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

−実施例1−
図1は、実施例1に係るレーザ照射装置100を示す構成説明図である。
このレーザ照射装置100は、レーザ発振器1と、アテネータ2と、レーザビームを反射するミラー3と、所定形状のレーザスポットWとするためのビーム整形器4と、フォーカスレンズ系5と、表面高さ測定位置Dにおける加工対象物Bの表面高さを測定し表面高さ信号を出力する表面高さ測定器6と、加工対象物Bを載置しx方向およびy方向に移動するためのステージ7と、x方向移動モータ8と、y方向移動モータ9と、x方向移動ドライバ10と、y方向移動ドライバ11と、レーザ発振器1の制御やフォーカスレンズ系5の制御やx方向移動モータ8の制御やy方向移動モータ9の制御などを行うシステムコントローラ12とを具備している。
Example 1
FIG. 1 is a configuration explanatory diagram illustrating a laser irradiation apparatus 100 according to the first embodiment.
The laser irradiation apparatus 100 includes a laser oscillator 1, an attenuator 2, a mirror 3 that reflects a laser beam, a beam shaper 4 for forming a laser spot W having a predetermined shape, a focus lens system 5, and a surface height. A surface height measuring device 6 that measures the surface height of the workpiece B at the measurement position D and outputs a surface height signal, and a stage 7 on which the workpiece B is placed and moved in the x and y directions. The x direction moving motor 8, the y direction moving motor 9, the x direction moving driver 10, the y direction moving driver 11, the control of the laser oscillator 1, the control of the focus lens system 5, and the control of the x direction moving motor 8. And a system controller 12 for controlling the y-direction moving motor 9 and the like.

加工対象物Bは、例えばガラス基板上に非晶質シリコン半導体層を形成した基板であり、x方向長=470mm,y方向長=300mmである。
レーザ照射は、非晶質シリコン半導体層を多結晶シリコン半導体層化するためのアニール処理である。
The workpiece B is, for example, a substrate in which an amorphous silicon semiconductor layer is formed on a glass substrate. The length in the x direction is 470 mm and the length in the y direction is 300 mm.
Laser irradiation is an annealing process for forming an amorphous silicon semiconductor layer into a polycrystalline silicon semiconductor layer.

図2に示すように、加工対象物Bの表面に、測定ラインd1〜d6が仮想的に設定される。なお、図示していないが、実際の測定ライン数は例えば60本であり、測定ラインピッチdyは例えば5mmである。   As shown in FIG. 2, measurement lines d1 to d6 are virtually set on the surface of the workpiece B. Although not shown, the actual number of measurement lines is, for example, 60, and the measurement line pitch dy is, for example, 5 mm.

システムコントローラ12は、レーザ照射を行う前に、ステージ7により加工対象物Bを測定ラインd1〜d6に沿って且つ隣接する測定ラインでは逆方向に表面高さ測定器6に対して移動させ、加工対象物Bの表面高さを実測し、その実測表面高さを測定位置(図2に白丸で示している。)に対応つけて記憶する。
加工対象物Bの表面高さを実測するために測定ラインd1〜d6に沿って加工対象物Bを移動させる速度は例えば100mm/秒であり、測定周期は例えば50msである。なお、図示していないが、実際の一つの測定ライン上の測定位置数は例えば94カ所であり、測定位置ピッチdxは例えば5mmである。
Before performing laser irradiation, the system controller 12 moves the workpiece B along the measurement lines d1 to d6 by the stage 7 and in the opposite direction to the surface height measuring device 6 in the opposite direction. The surface height of the object B is measured, and the measured surface height is stored in association with the measurement position (indicated by a white circle in FIG. 2).
The speed at which the workpiece B is moved along the measurement lines d1 to d6 in order to actually measure the surface height of the workpiece B is, for example, 100 mm / second, and the measurement cycle is, for example, 50 ms. Although not shown, the actual number of measurement positions on one measurement line is 94, for example, and the measurement position pitch dx is 5 mm, for example.

図3に示すように、システムコントローラ12が認識している測定位置(図3に白丸で示している。)と実際に測定された実測位置(図3に黒四角で示している。)の間には位置ずれΔがある。これは、システムコントローラ12が測定を指示してから表面高さ測定器6で実際に測定が行われるまでの間に遅延時間があり、その遅延時間の間にも表面高さ測定器6に対して加工対象物Bが移動するためである。
遅延時間が例えば10msとすると、位置ずれΔは例えば1mmである。
As shown in FIG. 3, between the measurement position recognized by the system controller 12 (indicated by a white circle in FIG. 3) and the actually measured position (indicated by a black square in FIG. 3). Has a displacement Δ. This is because there is a delay time between the system controller 12 instructing the measurement and the actual measurement by the surface height measuring device 6, and the surface height measuring device 6 is also in the delay time. This is because the workpiece B moves.
If the delay time is 10 ms, for example, the positional deviation Δ is 1 mm, for example.

図4に示すように、加工対象物Bの表面に、走査ラインL1〜L6が仮想的に設定される。なお、図示していないが、実際の走査ライン数は例えば50本であり、走査ラインピッチPyは例えば6mmである。
レーザスポットWは、レーザ光強度がトップフラット強度の例えば90%以上の領域の形状をいうものとし、例えばx方向の幅Wx=0.06mm,y方向の幅Wy=8mmの線状である。
As shown in FIG. 4, scanning lines L <b> 1 to L <b> 6 are virtually set on the surface of the workpiece B. Although not shown, the actual number of scanning lines is, for example, 50, and the scanning line pitch Py is, for example, 6 mm.
The laser spot W refers to a shape of a region where the laser light intensity is, for example, 90% or more of the top flat intensity, and is, for example, a linear shape having a width Wx = 0.06 mm in the x direction and a width Wy = 8 mm in the y direction.

システムコントローラ12は、レーザ照射を行う時は、ステージ7により加工対象物Bを走査ラインL1〜L5に沿って且つ隣接する走査ラインでは逆方向にフォーカスレンズ系5に対して移動させ、加工対象物Bの表面にレーザスポットWを照射する。
加工対象物Bにレーザ照射するために走査ラインL1〜L5に沿って加工対象物Bを移動させる速度は例えば180mm/秒であり、照射周期は例えば約0.17msである。なお、図示していないが、実際の一つの走査ライン上の照射位置数は例えば約15666カ所であり、照射位置ピッチは例えば0.03mmである。
When performing laser irradiation, the system controller 12 moves the processing object B along the scanning lines L1 to L5 and in the opposite direction with respect to the focus lens system 5 by the stage 7 to perform processing on the processing object. The surface of B is irradiated with a laser spot W.
The speed at which the workpiece B is moved along the scanning lines L1 to L5 to irradiate the workpiece B with laser is, for example, 180 mm / second, and the irradiation cycle is, for example, about 0.17 ms. Although not shown, the actual number of irradiation positions on one scanning line is, for example, about 15666, and the irradiation position pitch is, for example, 0.03 mm.

図5に示すように、システムコントローラ12は、ある照射位置における加工対象物Bの表面高さを次のようにして算出する。
(1)その照射位置(=レーザスポットWの中心点Rの位置とし、図5では黒三角で示している。)に走査進行方向前側で最も近い測定位置(図5にpで示している。)を求める。
(2)測定位置pを含む測定ライン(図5ではd3)上で、測定位置pを挟む2個ずつの測定位置を求める。
(3)測定ラインd3より走査進行方向前側の1つの測定ライン(図5ではd2)上および測定ラインd3より走査進行方向後側の2つの測定ライン(図5ではd4,d5)上でも、(2)における5個の測定位置に対応する各5個ずつの測定位置を求める。
(4)求めた20個の測定位置(=図5の領域Aに含まれる白丸)に対応つけて記憶している実測表面高さ(=図5の領域Aに含まれる黒四角)を読み出す。
(5)読み出した実測表面高さに対して例えばメディアンフィルタや平均化フィルタのような演算処理を施して、その照射位置Rの表面高さを算出する。なお、照射位置が加工対象物Bの端縁に近づいた場合には20個の実測表面高さが得られないが、その場合には得られた実測表面高さの配列に応じて例えばメディアンフィルタや平均化フィルタを変更して演算処理を施す。
As shown in FIG. 5, the system controller 12 calculates the surface height of the workpiece B at a certain irradiation position as follows.
(1) A measurement position closest to the irradiation position (= the position of the center point R of the laser spot W and indicated by a black triangle in FIG. 5) on the front side in the scanning traveling direction (indicated by p in FIG. 5). )
(2) On the measurement line including the measurement position p (d3 in FIG. 5), two measurement positions sandwiching the measurement position p are obtained.
(3) On one measurement line (d2 in FIG. 5) on the front side in the scanning direction from the measurement line d3 and on two measurement lines (d4 and d5 in FIG. 5) on the rear side in the scanning direction from the measurement line d3, ( Five measurement positions each corresponding to the five measurement positions in 2) are obtained.
(4) The actually measured surface height (= black square included in the region A in FIG. 5) stored in association with the 20 measured positions (= white circles included in the region A in FIG. 5) is read.
(5) An arithmetic process such as a median filter or an averaging filter is applied to the read actual surface height, and the surface height at the irradiation position R is calculated. When the irradiation position approaches the edge of the workpiece B, 20 actual measured surface heights cannot be obtained. In this case, for example, a median filter is used depending on the obtained measured surface height arrangement. And the averaging filter is changed to perform arithmetic processing.

レーザスポットWを照射する時、システムコントローラ12は、算出した各照射位置における加工対象物Bの表面高さをフォーカスレンズ系5に与えて、フォーカス制御を行う。   When irradiating the laser spot W, the system controller 12 provides the focus lens system 5 with the calculated surface height of the workpiece B at each irradiation position, and performs focus control.

図6は、位置ずれによる誤差が相殺される例を示す概念図である。
加工対象物Bの表面は、x方向に勾配のある平面とする。
図6の(a)に示すように、測定ラインd3では、測定位置pからの位置ずれΔによって、測定位置pでの表面高さから誤差δ(d3)を生じる。
図6の(b)に示すように、測定ラインd4では、測定位置qからの位置ずれΔによって、測定位置qでの表面高さから誤差δ(d4)を生じる。
測定ラインd3での誤差δ(d3)と測定ラインd4での誤差δ(d4)とは逆向きであるから、測定ラインd3での実測表面高さと測定ラインd4での実測表面高さとを例えば平均すれば、誤差δ(d3)と誤差δ(d4)が相殺される。
FIG. 6 is a conceptual diagram illustrating an example in which an error due to misalignment is canceled.
The surface of the workpiece B is a flat surface having a gradient in the x direction.
As shown in FIG. 6A, in the measurement line d3, an error δ (d3) is generated from the surface height at the measurement position p due to the positional deviation Δ from the measurement position p.
As shown in FIG. 6B, in the measurement line d4, an error δ (d4) is generated from the surface height at the measurement position q due to the positional deviation Δ from the measurement position q.
Since the error δ (d3) on the measurement line d3 and the error δ (d4) on the measurement line d4 are opposite, the actual surface height on the measurement line d3 and the actual surface height on the measurement line d4 are averaged, for example. Then, the error δ (d3) and the error δ (d4) are canceled out.

レーザ照射装置100によれば次の効果が得られる。
(a)図5の領域Aに含まれる20個の実測表面高さ中には、位置ずれが逆方向になっているものが含まれるが、平均的にみれば加工対象物Bの表面は平面とみなせるため、逆方向になっているもの同士で位置ずれによる誤差が相殺される。従って、システムコントローラ12が認識している測定位置と実際に測定された実測位置の間の位置ずれに起因するフォーカス精度の低下を抑制できる。
(b)測定ライン方向についても複数の実測表面高さを用いるため、異常な値が実測表面高さに混入しても、その影響を抑制できる。
According to the laser irradiation apparatus 100, the following effects can be obtained.
(A) The 20 measured surface heights included in the area A in FIG. 5 include those whose displacement is in the opposite direction, but the surface of the workpiece B is flat on average. Therefore, errors caused by misalignment are canceled out in the opposite directions. Accordingly, it is possible to suppress a decrease in focus accuracy caused by a positional deviation between the measurement position recognized by the system controller 12 and the actually measured position.
(B) Since a plurality of actually measured surface heights are used also in the measurement line direction, even if an abnormal value is mixed in the actually measured surface height, the influence can be suppressed.

なお、上記説明では、照射位置Rに最も近い4ラインの測定ライン上の実測表面高さから照射位置Rの表面高さを算出したが、照射位置Rに最も近い2ライン以上(誤差相殺の観点から偶数本が好ましい。)の測定ライン上の実測表面高さから照射位置Rの表面高さを算出してもよい。また、一つの測定ライン上で照射位置Rに最も近い5個の実測表面高さから照射位置Rの表面高さを算出したが、照射位置Rに最も近い2個以上の実測表面高さから照射位置Rの表面高さを算出してもよい。   In the above description, the surface height of the irradiation position R is calculated from the measured surface heights on the four measurement lines closest to the irradiation position R. However, two or more lines closest to the irradiation position R (from the viewpoint of error cancellation) The surface height at the irradiation position R may be calculated from the actually measured surface height on the measurement line. Further, the surface height of the irradiation position R was calculated from the five actually measured surface heights closest to the irradiation position R on one measurement line, but the irradiation was performed from two or more actual measurement surface heights closest to the irradiation position R. The surface height of the position R may be calculated.

本発明のレーザ照射装置は、例えばガラス基板上に形成した非晶質シリコン半導体層を多結晶シリコン半導体層化する処理に利用できる。   The laser irradiation apparatus of the present invention can be used for, for example, a process of forming an amorphous silicon semiconductor layer formed on a glass substrate into a polycrystalline silicon semiconductor layer.

1 レーザ発振器
2 アテネータ
3 ミラー
4 ビーム整形器
5 フォーカスレンズ系
6 表面高さ測定器
7 ステージ
8 x方向移動モータ
9 y方向移動モータ
10 x方向移動ドライバ
11 y方向移動ドライバ
12 システムコントローラ
B 加工対象物
D 表面高さ測定位置
d1〜d6 測定ライン
L1〜L5 走査ライン
R 照射位置
p,q 測定位置
W レーザスポット
DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Attenuator 3 Mirror 4 Beam shaper 5 Focus lens system 6 Surface height measuring instrument 7 Stage 8 X direction moving motor 9 Y direction moving motor 10 X direction moving driver 11 Y direction moving driver 12 System controller B Work object D Surface height measurement position d1 to d6 Measurement line L1 to L5 Scan line R Irradiation position p, q Measurement position W Laser spot

Claims (4)

加工対象物の表面に設定した走査ラインに沿ってフォーカスレンズ系を相対移動し加工対象物の表面にフォーカスレンズ系でフォーカスさせてレーザ光を照射するレーザ照射装置であって、加工対象物の表面に設定した測定ラインに沿って且つ隣接する測定ラインでは逆方向に表面高さ測定器を相対移動してレーザ照射前に加工対象物の表面高さを実測しその実測表面高さを記憶しておく実測表面高さ測定手段と、走査ライン上の照射位置に近い複数の測定ライン上の実測表面高さを含む前記照射位置近傍の複数の実測表面高さを読み出しそれら実測表面高さを基に前記照射位置の表面高さを算出する表面高さ算出手段と、前記照射位置でレーザ光を照射する時に前記照射位置の表面高さにフォーカスさせるフォーカス制御手段とを具備したことを特徴とするレーザ照射装置。 A laser irradiation apparatus for irradiating a laser beam by relatively moving a focus lens system along a scanning line set on the surface of the processing object and focusing the surface of the processing object with the focus lens system, the surface of the processing object The surface height measuring device is relatively moved along the measurement line set in the opposite direction and in the opposite direction, the surface height of the workpiece is measured before laser irradiation, and the measured surface height is stored. A plurality of measured surface heights near the irradiation position, including the measured surface height measuring means and the measured surface heights on the plurality of measurement lines close to the irradiation position on the scanning line, based on the measured surface heights Surface height calculating means for calculating the surface height of the irradiation position, and focus control means for focusing on the surface height of the irradiation position when irradiating laser light at the irradiation position. The laser irradiation apparatus according to claim and. 請求項1に記載のレーザ照射装置において、レーザ照射時のフォーカスレンズ系の相対移動速度よりも表面高さ測定時の表面高さ測定器の相対移動速度の方が遅いことを特徴とするレーザ照射装置。 2. The laser irradiation apparatus according to claim 1, wherein the relative movement speed of the surface height measuring device at the time of measuring the surface height is slower than the relative movement speed of the focus lens system at the time of laser irradiation. apparatus. 請求項1または請求項2に記載のレーザ照射装置において、前記走査ラインの間隔よりも前記測定ラインの間隔の方が狭いことを特徴とするレーザ照射装置。 3. The laser irradiation apparatus according to claim 1, wherein an interval between the measurement lines is narrower than an interval between the scanning lines. 請求項1から請求項3のいずれかに記載のレーザ照射装置において、前記表面高さ算出手段は、照射位置に最も近い4ラインの測定ライン上の実測表面高さであって且つそれら各測定ライン上で照射位置に最も近い5個の合計20個の実測表面高さを読み出し、それら実測表面高さを基に前記照射位置の表面高さを算出することを特徴とするレーザ照射装置。 4. The laser irradiation apparatus according to claim 1, wherein the surface height calculation means includes actual measurement surface heights on four measurement lines closest to the irradiation position and each of the measurement lines. A laser irradiation apparatus characterized in that a total of 20 actually measured surface heights of five closest to the irradiation position are read out, and the surface height at the irradiation position is calculated based on these actual surface heights.
JP2013219204A 2013-10-22 2013-10-22 Laser irradiation device Pending JP2015082551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219204A JP2015082551A (en) 2013-10-22 2013-10-22 Laser irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219204A JP2015082551A (en) 2013-10-22 2013-10-22 Laser irradiation device

Publications (1)

Publication Number Publication Date
JP2015082551A true JP2015082551A (en) 2015-04-27

Family

ID=53013008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219204A Pending JP2015082551A (en) 2013-10-22 2013-10-22 Laser irradiation device

Country Status (1)

Country Link
JP (1) JP2015082551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106166643A (en) * 2016-06-21 2016-11-30 宁波大学 A kind of method improving femtosecond laser machining accuracy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106166643A (en) * 2016-06-21 2016-11-30 宁波大学 A kind of method improving femtosecond laser machining accuracy

Similar Documents

Publication Publication Date Title
CN108568593B (en) Laser processing apparatus
JP5912395B2 (en) Substrate upper surface detection method and scribing apparatus
JP7172016B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
CN104097402A (en) Laser marking machine and marking method thereof
JP6907011B2 (en) Laser processing equipment and laser processing method
JP2017013092A (en) Device for manufacturing printed wiring board and method of manufacturing printed wiring board
JP5907819B2 (en) Lens unit and laser processing apparatus
US20170236738A1 (en) Method and device for grooving wafers
WO2008047675A1 (en) Laser working apparatus
JP5213783B2 (en) Laser processing apparatus and laser processing method
KR101026356B1 (en) Laser scanning device
JP2015082551A (en) Laser irradiation device
WO2016147273A1 (en) Laser processing device, calibration data generation method, and program
KR102108403B1 (en) Multi-axis Laser Manufacturing Machine
KR101451007B1 (en) Laser processing apparatus and laser processing method
US20210028071A1 (en) Comparing method and laser processing apparatus
JP4801634B2 (en) Laser processing apparatus and laser processing method
KR102076790B1 (en) Apparatus for 3D laser cutting
JP5713634B2 (en) Component position measurement method
KR101511645B1 (en) Method for calibrating irradiation position of laser beam
JP2008260043A (en) Welding method, and apparatus for detecting stepped portion
TWI511821B (en) Laser processing machine
JP2004330221A (en) Laser beam machining method and laser beam machining device
KR101637974B1 (en) Laser vision system capable of varying measurement domain and measurement precision
JP2012204470A (en) Laser radiation device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150520