JP2015081310A - Method for estimating temperature of carbonized product in chamber type coke oven - Google Patents

Method for estimating temperature of carbonized product in chamber type coke oven Download PDF

Info

Publication number
JP2015081310A
JP2015081310A JP2013220386A JP2013220386A JP2015081310A JP 2015081310 A JP2015081310 A JP 2015081310A JP 2013220386 A JP2013220386 A JP 2013220386A JP 2013220386 A JP2013220386 A JP 2013220386A JP 2015081310 A JP2015081310 A JP 2015081310A
Authority
JP
Japan
Prior art keywords
temperature
flue
combustion
chamber
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013220386A
Other languages
Japanese (ja)
Other versions
JP6241195B2 (en
Inventor
中川 朝之
Asayuki Nakagawa
朝之 中川
孝 有馬
Takashi Arima
孝 有馬
杉浦 雅人
Masahito Sugiura
雅人 杉浦
隆 新納
Takashi Niino
隆 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013220386A priority Critical patent/JP6241195B2/en
Publication of JP2015081310A publication Critical patent/JP2015081310A/en
Application granted granted Critical
Publication of JP6241195B2 publication Critical patent/JP6241195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for accurately estimating the temperature of a carbonized product at the center part in the width direction of a chamber type coke oven, at the site corresponding to a flue with combustion failure.SOLUTION: The method for estimating the temperature of a carbonized product in a chamber type coke oven includes steps of: measuring the flue temperature and the oven wall temperature when cokes are extruded; obtaining the relation between the flue temperature of a flue with combustion failure and a plurality of carbonization chambers adjacent to the flue and the oven wall temperature on the carbonization chamber side at the flue position in advance; estimating the oven temperature on the carbonization chamber side at the flue position from the measured flue temperature of the flue with combustion failure in the actual coke oven based on the relation; obtaining the oven wall temperature on the combustion chamber side at the flue position from the estimated oven wall temperature on the carbonization chamber side; estimating the temperature at the central part in the width direction of the carbonization chamber at the region from the obtained oven wall temperature on the combustion chamber side based on the one-dimensional heat transfer calculation; and obtaining the relation based on the contribution ratio of the heat sneaking from the flue with combustion failure and the neighboring sound flues to the oven wall temperature at the position of the flue with combustion failure.

Description

本発明は、水平室式コークス炉において、炉長方向に燃焼不良がある燃焼室に隣接する部位の乾留生成物温度を推定する方法に関するものである。ここで、乾留生成物とは、乾留が健全な域では全てコークスであるが、炭化室に未乾留域がある場合は、未乾留の石炭層を含む。   The present invention relates to a method for estimating a dry distillation product temperature in a portion adjacent to a combustion chamber having a combustion failure in the furnace length direction in a horizontal chamber coke oven. Here, the dry distillation product is all coke in a region where the dry distillation is healthy, but includes an undry distillation coal layer when the carbonization chamber has an undry distillation region.

近年のコークス炉操業では、コークスの生産性や品質の向上等を狙って炭化室内へ装入する石炭の水分を低減させる方法が多く取り入れられており、石炭の装入(充填)密度が上昇する傾向にある。その結果、コークスケーキを押出す際に炭化室の側壁(炉壁)にかかる荷重が上昇し、これにともないコークスケーキの押出しに必要な力も増加する傾向にある。
さらに、長期間稼動して炉体の老朽化が進展しているコークス炉の数も増えており、コークス押出し力が押出し機の能力を上回って押詰まりが発生したり、押出し中に炉壁煉瓦が破孔する可能性が増大している。
In recent coke oven operations, many methods of reducing the moisture content of coal charged into the carbonization chamber with the aim of improving coke productivity and quality have been incorporated, and the coal charging (packing) density has increased. There is a tendency. As a result, when the coke cake is extruded, the load applied to the side wall (furnace wall) of the carbonization chamber increases, and the force required for the coke cake extrusion tends to increase accordingly.
In addition, the number of coke ovens that have been operating for a long period of time and the aging of the furnace bodies is increasing, and the coke extrusion force exceeds the capacity of the extruder, resulting in clogging, and furnace wall bricks during extrusion There is an increased possibility of piercing.

また、長期稼動のコークス炉では、使用年数の増加につれて、燃焼室内に燃料ガスを吹き込むガスポートが石炭粉の蓄積などの様々な理由により閉塞し、燃焼不良となる燃焼室が発生する頻度が増加している。
炭化室内の石炭は、炭化室両側の炉壁を介して隣接する燃焼室からの燃焼熱の伝熱により、炉壁側から炉幅方向中央に向かって加熱される。燃焼室は、炭化室の炉長方向に沿って細分された30室前後の燃焼室(以降、「フリュー」と記載する場合がある。)からなっており、特定のフリューで燃焼不良が発生すると、その箇所で、炭化室内の炉幅方向への伝熱量が低下し、石炭の昇温が遅れるため、コークス押出し時にコークスケーキ炉幅方向中心部の温度が十分に昇温されていない領域が発生する。
Also, in coke ovens that operate for a long time, as the years of service increase, the frequency of occurrence of combustion chambers that result in poor combustion due to blockage of gas ports that inject fuel gas into the combustion chamber for various reasons such as accumulation of coal powder increases. doing.
The coal in the carbonization chamber is heated from the furnace wall side toward the center in the furnace width direction by heat transfer of combustion heat from the adjacent combustion chamber via the furnace walls on both sides of the carbonization chamber. Combustion chambers are composed of about 30 combustion chambers (hereinafter sometimes referred to as “flues”) subdivided along the furnace length direction of the carbonization chamber. At that point, the amount of heat transfer in the furnace width direction in the carbonization chamber decreases and the temperature rise of the coal is delayed, so there is a region where the temperature at the center of the coke cake furnace width direction is not sufficiently raised during coke extrusion. To do.

石炭は加熱されて温度が上昇するにつれて、順次、石炭層、軟化溶融層、コークス層と変化するが、炭中温度が十分に昇温しない場合には、石炭層のままの未乾留域を含むコークスケーキを押出すことになる。この未乾留域は、正常に乾留されたコークス層に比べて圧縮挙動が異なり、未乾留域を含むコークスケーキを押出す場合は、正常に乾留されたコークスケーキに比べて押出し力が高くなるという問題がある。   As coal is heated and the temperature rises, it sequentially changes to a coal bed, a softened and melted bed, and a coke bed. Coke cake will be extruded. This undistilled area has a different compression behavior compared to a normally coke layer, and when extruding a coke cake containing an undistilled area, the extruding force is higher than that of a normally coke cake. There's a problem.

このような状況の中で、コークスケーキを低い力で押出すことは、操業を安定化してコークスの生産量が確保できるだけでなく、炭化室の炉壁に対する負荷を低減して炉体寿命を長くする観点からも非常に重要となっており、炭化室からコークスケーキを押出すのに必要な押出し力を事前に推定し、押出し機や炭化室の炉壁に過度の力が付加されないように操業することがより重要になっている。   Under such circumstances, extruding the coke cake with a low force not only stabilizes the operation and secures the amount of coke produced, but also reduces the load on the furnace wall of the carbonization chamber and prolongs the furnace body life. It is also very important from the standpoint of the operation, and the extrusion force required to extrude the coke cake from the carbonization chamber is estimated in advance, and operation is performed so that excessive force is not applied to the furnace wall of the extruder or carbonization chamber. It has become more important to do.

乾留後のコークスケーキを炭化室から押出す際の押出し力の推定には、例えば、特許文献1、2に開示された方法のように、押出し時点における炭化室炉幅方向の温度を用いる方法が多く用いられており、この温度を精度良く推算する必要がある。また、炭化室の炉温を管理して未乾留域の発生を抑制するためにも、炭化室炉幅方向の温度を正確に推算することが重要となる。   For the estimation of the extrusion force when extruding the coke cake after carbonization from the carbonization chamber, for example, as in the methods disclosed in Patent Documents 1 and 2, a method using the temperature in the carbonization chamber furnace width direction at the time of extrusion is used. It is often used, and it is necessary to accurately estimate this temperature. It is also important to accurately estimate the temperature in the width direction of the coking chamber furnace in order to control the furnace temperature of the coking chamber and suppress the generation of an uncoiled zone.

室式コークス炉炭化室内の石炭層またはコークス層の炉幅方向温度を推算する方法として、特許文献3に開示されているような伝熱計算で推算する方法が一般的に用いられている。   As a method of estimating the temperature in the furnace width direction of the coal layer or coke layer in the chamber coke oven carbonization chamber, a method of estimating by heat transfer calculation as disclosed in Patent Document 3 is generally used.

特開平8−283730号公報JP-A-8-283730 特開2008−255299号公報JP 2008-255299 A 特開昭58−29883号公報JP 58-29883 A

室式コークス炉の燃焼室は、炭化室の炉長方向に沿った多数のフリューからなっており、特定のフリューで燃焼不良が発生すると、その箇所で、炭化室内の炉幅方向への伝熱量が低下する。   The combustion chamber of a chamber-type coke oven consists of a large number of flues along the length of the carbonization chamber. When a combustion failure occurs at a specific flue, the amount of heat transfer in the width direction of the furnace inside the carbonization chamber. Decreases.

従来の炭化室炉幅方向の温度の推算は、フリュー温度(通常はフリュー底部の温度)の測定値、あるいは、その測定値に補正係数を乗じた温度を、フリュー側の炉壁温度として用い、その温度に基づいて、特許文献3に示されているような一次元の伝熱計算で炭化室内の炉幅方向の温度を推算し、その結果に基づいて炭化室からコークスケーキを押し出すのに必要な力(押出し力)を推定していた。   The estimation of the temperature in the conventional coking chamber furnace width direction uses the measured value of the flue temperature (usually the temperature at the bottom of the flue) or the temperature obtained by multiplying the measured value by a correction factor as the furnace wall temperature on the flue side. Necessary for estimating the temperature in the furnace width direction in the carbonization chamber by one-dimensional heat transfer calculation as shown in Patent Document 3 based on the temperature, and for extruding the coke cake from the carbonization chamber based on the result. Force (extrusion force) was estimated.

しかし、この方法で推定した炉幅方向の温度を用いて燃焼不良フリューを有する炭化室からのコークスケーキの押出し力を推定した場合、実際の押出し力よりも推定値が著しく大きくなってしまうという問題点があることが判明した。
前述のように、長期稼動のコークス炉では燃焼不良のフリューが増えており、そのような場合に、燃焼不良のフリューに隣接する炭化室内の炉幅方向の乾留生成物温度を精度良く推算する必要が生じてきているが、従来、燃焼不良のフリューが生じた場合の炭化室内の炉幅方向の温度を推定する技術は開示されていない。
However, when the extrusion force of the coke cake from the carbonization chamber having a poor combustion flue is estimated using the temperature in the furnace width direction estimated by this method, the estimated value becomes significantly larger than the actual extrusion force. It turns out that there is a point.
As described above, in the coke oven that operates for a long time, the flue of poor combustion is increasing, and in such a case, it is necessary to accurately estimate the dry distillation product temperature in the furnace width direction in the carbonization chamber adjacent to the flue with poor combustion. However, conventionally, a technique for estimating the temperature in the furnace width direction in the carbonization chamber when a flue with poor combustion occurs has not been disclosed.

そこで、本発明は、複数の炭化室および燃焼室が水平方向に交互に配列された室式コークス炉において、燃焼室の特定のフリューに燃焼不良がある場合であっても、そのフリューに対応する箇所の炭化室内の炉幅方向の温度を精度良く推算する方法を提供することを課題とする。   In view of this, the present invention deals with a flue in a chamber-type coke oven in which a plurality of carbonization chambers and combustion chambers are alternately arranged in the horizontal direction, even when a specific flue in the combustion chamber has poor combustion. It is an object of the present invention to provide a method for accurately estimating the temperature in the furnace width direction in the carbonization chamber at a location.

本発明者らは、燃焼不良フリューに起因して生成するコークスで中心部に未乾留域を有する乾留生成物の炭化室炉幅方向の温度を正しく推算する方法について鋭意検討した結果、燃焼不良フリューへの隣接する健全フリューからの熱の廻り込みに着目し、この熱量を考慮して伝熱計算することで、フリューに対応する箇所の炭化室内の炉幅方向の温度の推算の精度が向上することを見出し、この知見に基づいて本発明を完成するに到った。   As a result of earnest study on the method of correctly estimating the temperature in the width direction of the carbonization chamber furnace of the carbonized product having a non-distilled region at the center by coke produced due to the defective combustion flue, Paying attention to the heat circulated from the adjacent healthy flue, and calculating the heat transfer in consideration of this heat quantity, the accuracy of estimating the temperature in the furnace width direction in the carbonization chamber at the location corresponding to the flue is improved. Based on this finding, the present invention has been completed.

すなわち、本発明では、実測が可能な、フリュー温度とコークスケーキ押出し時の炭化室側の炉壁温度に基づいて、実測したフリュー温度から燃焼不良フリューの炭化室側の炉壁温度を推算できるようにし、その炭化室側の炉壁温度から熱の廻り込み量を考慮したフリュー側の炉壁温度を求めることができるようにした。   That is, in the present invention, based on the flue temperature that can be measured and the furnace wall temperature on the carbonization chamber side during coke cake extrusion, the furnace wall temperature on the carbonization chamber side of the poor combustion flue can be estimated from the measured flue temperature. The furnace wall temperature on the flue side can be obtained from the furnace wall temperature on the carbonization chamber side in consideration of the amount of heat circulated.

さらに、炭化室側の炉壁温度の推算に当たっては、燃焼不良フリューに隣接する健全フリューから熱の廻り込み割合(寄与率)を、燃焼不良フリューを中央として、隣接するフリュー位置に対する正規分布で与えると、より精度よく推算できることを見出した。   Furthermore, when estimating the furnace wall temperature on the side of the carbonization chamber, the ratio of the heat circulated (contribution rate) from the sound flue adjacent to the defective flue is given by a normal distribution with respect to the adjacent flue position with the defective flue as the center. And found that it can be estimated more accurately.

そのようになされた本発明の要旨は以下のとおりである。
[1]室式コークス炉におけるコークス押出し時の炭化室炉幅方向の乾留生成物温度を推算する方法であって、
燃焼室のフリュー温度とコークス押出し時の炭化室側の炉壁温度を実測し、燃焼不良の燃焼室のフリュー温度及びその燃焼室に隣接する複数の健全な燃焼室のフリュー温度と、燃焼不良の燃焼室に対応する炭化室側の炉壁温度との関係を予め求めておき、
実コークス炉の燃焼不良の燃焼室のフリュー温度及びその燃焼室に隣接する複数の健全な燃焼室のフリュー温度の実測値から前記関係に基づいて、当該フリューに対応する炭化室側の炉壁温度を推算し、
推算された炭化室側の炉壁温度から、燃焼不良の燃焼室側の炉壁温度を求め、求められた燃焼室側の炉壁温度から一次元の伝熱計算で当該燃焼室に対応する炭化室の乾留生成物の炉幅方向の温度を推算するようにし、
さらに、前記関係として、燃焼不良の燃焼室に対応する炭化室側の炉壁温度を、燃焼不良の燃焼室及び隣接の健全な燃焼室からの熱の寄与率に基づいて求めることを特徴とする室式コークス炉における乾留生成物温度の推算方法。
The gist of the present invention thus made is as follows.
[1] A method of estimating a dry distillation product temperature in a carbonization chamber furnace width direction at the time of coke extrusion in a chamber type coke oven,
Measure the flue temperature of the combustion chamber and the furnace wall temperature on the carbonization chamber side during coke extrusion, and the flue temperature of the combustion chamber with poor combustion, the flue temperatures of the multiple healthy combustion chambers adjacent to the combustion chamber, and The relationship with the furnace wall temperature on the carbonization chamber side corresponding to the combustion chamber is obtained in advance,
Based on the relationship from the measured values of the flue temperature of the combustion chamber of the actual coke oven where combustion is poor and the flue temperatures of a plurality of healthy combustion chambers adjacent to the combustion chamber, the furnace wall temperature on the side of the carbonization chamber corresponding to the flue To estimate
From the estimated furnace wall temperature on the carbonization chamber side, the furnace wall temperature on the combustion chamber side with poor combustion is obtained, and the carbonization corresponding to the combustion chamber is calculated by one-dimensional heat transfer calculation from the obtained furnace wall temperature on the combustion chamber side. Estimate the temperature in the furnace width direction of the dry distillation product of the chamber,
Further, as the relation, the furnace wall temperature on the carbonization chamber side corresponding to the combustion chamber with poor combustion is obtained based on the contribution ratio of heat from the combustion chamber with poor combustion and the adjacent healthy combustion chamber. Estimation method of dry distillation product temperature in a room type coke oven.

[2]前記関係を下記の(1)式として求めることを特徴とする上記[1]に記載の室式コークス炉における乾留生成物温度の推算方法。
Tt(n)=a×Tf(n)+b×[Tf(n+1)+Tf(n-1)]+c×[Tf(n+2)+Tf(n-2)]+d×[Tf(n+3)+
Tf(n-3)]−[全フリュー温度(実績)の平均−全炉壁温度(実績)の平均]
・・・(1)
ここで、炭化室の炉壁を燃焼室単位で炉長方向に分割し、燃焼不良の燃焼室をnとして、その燃焼室に隣接する健全な燃焼室を、そこからPS方向に向かって順にn−1、n−2・・・、CS方向に向かって順にn+1、n+2・・・とし、Tt(n)は燃焼室nに対応する炭化室側炉壁温度、Tf(n)、Tf(n-x)、Tf(n+x)は、隣接する健全な各燃焼室(Xは1〜3)の温度であり、a、b、c、dは燃焼不良の燃焼室及び隣接する健全な燃焼室からの熱の寄与率(%)を示す係数であり、a+2b+2c+2d=100%で、a>b>c>d>0である。
[3]前記a、b、c、dは、正規分布で与えられることを特徴とする上記[2]に記載の室式コークス炉における乾留生成物温度の推算方法。
[2] The method for estimating a dry distillation product temperature in a chamber coke oven according to [1], wherein the relationship is obtained as the following equation (1).
Tt (n) = a * Tf (n) + b * [Tf (n + 1) + Tf (n-1)] + c * [Tf (n + 2) + Tf (n-2)] + d * [Tf (n + 3) +
Tf (n-3)]-[Average of all flue temperatures (actual)-Average of all furnace wall temperatures (actual)]
... (1)
Here, the furnace wall of the carbonization chamber is divided in the furnace length direction in units of combustion chambers, and a combustion chamber having poor combustion is defined as n, and a healthy combustion chamber adjacent to the combustion chamber is sequentially separated from the combustion chamber toward the PS direction. −1, n−2,..., N + 1, n + 2,... In order toward the CS direction, and Tt (n) is the carbonization chamber side furnace wall temperature corresponding to the combustion chamber n, Tf (n), Tf (nx ), Tf (n + x) is the temperature of each adjacent healthy combustion chamber (X is 1 to 3), and a, b, c, d are from the combustion chamber with poor combustion and the adjacent healthy combustion chamber. Is a coefficient indicating the contribution ratio (%) of heat, a + 2b + 2c + 2d = 100%, and a>b>c>d> 0.
[3] The method for estimating a dry distillation product temperature in a chamber coke oven according to [2], wherein a, b, c, and d are given in a normal distribution.

ここで、燃焼不良フリューとは、フリュー温度が1100℃未満のフリューをいい、健全フリューとは、1100℃以上のフリューをいう。フリュー温度が1100℃以上では、乾留終了後に、炭化室からコークスケーキを排出する際に、押出し力を増加させるような未乾留域がほとんど発生しない。   Here, the incomplete combustion flue means a flue having a flue temperature of less than 1100 ° C., and the healthy flue means a flue having a temperature of 1100 ° C. or higher. When the flue temperature is 1100 ° C. or higher, there is hardly any non-dry distillation zone that increases the extrusion force when the coke cake is discharged from the carbonization chamber after the dry distillation.

本発明によれば、室式コークス炉の燃焼室で燃焼不良が起こった場合でも、乾留生成物の炭化室炉幅方向の温度が精度良く推定できる。
その結果、熱の過剰投与などのオーバーアクションが防止されるとともに、コークス押出に必要な力の推定精度が向上するため、コークス炉の操業条件や装入炭の性状をより適切に管理できるようになり、押し詰りの発生を防止できるとともにコークス炉の延命にも効果が大きい。
According to the present invention, even when a combustion failure occurs in the combustion chamber of the chamber coke oven, the temperature in the carbonization chamber furnace width direction of the dry distillation product can be accurately estimated.
As a result, over-action such as overdose of heat is prevented and the accuracy of estimating the force required for coke extrusion is improved, so that the operating conditions of the coke oven and the properties of the charging coal can be managed more appropriately. Therefore, the occurrence of clogging can be prevented and the life of the coke oven can be extended.

コークス炉における炉長方向の温度分布の1例を示す図である。It is a figure which shows an example of the temperature distribution of the furnace length direction in a coke oven. 燃焼不良部位への健全フリューからの熱の廻り込み寄与率を説明するための概念図である。It is a conceptual diagram for demonstrating the contribution ratio of the heat | fever surrounding from the healthy flue to a combustion failure site | part. 健全フリューからの熱の廻り込み寄与率を求めるための正規分布の一例を示す図である。It is a figure which shows an example of the normal distribution for calculating | requiring the wraparound contribution rate of the heat from a healthy flue. 健全フリューからの熱の廻り込み寄与率の計算過程を説明するための図である。It is a figure for demonstrating the calculation process of the heat wraparound contribution rate from a healthy flue. 乾留後の置き時間と燃焼不良フリューに隣接する健全フリューから熱の廻り込み割合(寄与率)の関係を示す図である。It is a figure which shows the relationship between the setting time after dry distillation, and the heat | fever wraparound ratio (contribution rate) from the healthy flue adjacent to a combustion failure flue. 熱の廻り込み量を考慮して求めた炭化室側の炉壁温度に基づいて推算した乾留生成物温度用いて推定した押出し力を、実コークス炉における押出し力の実測値と比較した結果を示す図である。The following shows the result of comparing the extrusion force estimated using the carbonization product temperature estimated based on the furnace wall temperature on the carbonization chamber side, considering the amount of heat circulated, with the actual value of the extrusion force in the actual coke oven. FIG. 実測したフリュー温度に対し、熱の廻り込み量を考慮して求めた炭化室側の炉壁温度に基づいて推算した乾留生成物の炉幅方向中心温度と、熱の廻り込み量を考慮せずに推算した乾留生成物の炉幅方向中心温度とを比較して示す図である。For the measured flue temperature, the center temperature in the furnace width direction of the dry distillation product estimated based on the furnace wall temperature on the side of the carbonization chamber obtained by considering the amount of heat circulated and the amount of heat circulated are not considered. It is a figure which compares and shows the furnace width direction center temperature of the dry distillation product estimated in (2).

以下、添付の図面を参照して本発明の実施の形態を説明する。
[燃焼不良部位への健全フリューからの熱の廻り込みの検討]
室式コークス炉の炭化室に装入された石炭は、燃焼室からの熱の供給を受けて、炭化室の炉壁側の石炭より順次温度が上昇して行く。もし、燃焼室が燃焼不良状態にあった場合でも、隣接する健全フリューに位置する炉壁から廻り込む熱伝導の影響を受けると考えた。
そこで、燃焼不良フリューによる炉壁温度の落ち込みの程度を知るために、燃焼不良フリューのあるコークス炉において、各フリューの温度と炭化室側の炉壁表面の温度を実測した。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[Examination of heat circulated from the healthy flue to the defective combustion site]
The coal charged into the carbonization chamber of the chamber coke oven is supplied with heat from the combustion chamber, and the temperature rises sequentially from the coal on the furnace wall side of the carbonization chamber. Even if the combustion chamber was in a poorly burned state, it was considered that it would be affected by the heat conduction around the furnace wall located in the adjacent healthy flue.
Therefore, in order to know the degree of the fall of the furnace wall temperature due to the defective combustion flue, in the coke oven with the defective combustion flue, the temperature of each flue and the temperature of the furnace wall surface on the carbonization chamber side were measured.

コークス炉の操業では、通常、炭化室の炉幅方向の中心温度が1000℃以上の温度に到達して、火落ちした後、所定の置き時間が経過してから押出し機のラムでコークスケーキを押出す。そこで、押出し時のフリュー温度と、押出し時の炭化室の炉壁表面の温度を測定した。この炉壁表面の温度の測定は、ラムビームに取り付けた温度測定装置により行った。   In the operation of the coke oven, the center temperature in the width direction of the coking chamber reaches a temperature of 1000 ° C or higher, and after the fire has dropped, the coke cake is put on the ram of the extruder after a predetermined time has elapsed. Extrude. Therefore, the flue temperature during extrusion and the temperature of the furnace wall surface of the carbonization chamber during extrusion were measured. The temperature of the furnace wall surface was measured by a temperature measuring device attached to the ram beam.

コークス炉の炉長方向に温度を測定した結果を図1に示す。燃焼不良フリューでのフリュー温度の落込み量(約200℃)に対し、炭化室の炉壁温度の落込み量(約100℃)が小さいことが確認された。
すなわち、フリュー温度と炉壁温度との落込み量の差は、フリュー温度が低いほど縮小する傾向にあった。これは健全部からの熱の廻り込み(炉長方向の伝熱)の影響と考えられる。
The results of measuring the temperature in the length direction of the coke oven are shown in FIG. It was confirmed that the amount of dropping of the furnace wall temperature (about 100 ° C.) in the coking chamber was smaller than the amount of dropping of the flue temperature (about 200 ° C.) in the case of the defective combustion flue.
That is, the difference in the drop amount between the flue temperature and the furnace wall temperature tended to decrease as the flue temperature was lower. This is thought to be due to the influence of heat from the healthy part (heat transfer in the furnace length direction).

[隣接する健全フリューからの熱の廻り込みを考慮した炭化室側の炉壁温度の推算]
次に、燃焼不良フリューの炭化室側の炉壁温度における、燃焼不良フリューと隣接する健全フリューからの熱の影響について検討した。
図2に示すように、炭化室の炉壁を1フリュー単位で炉長方向に分割し、燃焼不良フリューをnとして、そのフリューに隣接する健全な燃焼のフリューを、そこからPS(押出し機側)に向かって順にn−1、n−2・・・、CS(ガイド車側)に向かって順にn+1、n+2・・・とした時、燃焼不良フリューnに位置する炉壁は、燃焼不良フリューnからの直接の熱の伝導に加え、温度が高い隣接の健全フリューn+3〜n−3からの熱の廻り込みを受けて炉壁温度が上昇すると考えた。
[Estimation of the furnace wall temperature on the side of the carbonization chamber taking into account the heat flow from the adjacent healthy flue]
Next, the effect of the heat from the unsuccessful flue and the sound flue adjacent to the unsatisfactory flue on the furnace wall temperature on the carbonization chamber side of the unsatisfactory flue was examined.
As shown in FIG. 2, the furnace wall of the carbonization chamber is divided in the direction of the furnace length in units of one flue, and the combustion defective flue is defined as n, and the healthy flue adjacent to the flue is taken from there PS (extruder side). ) In the order toward n), n-2,..., And CS (guide vehicle side) in the order n + 1, n + 2,. In addition to direct heat conduction from n, it is considered that the furnace wall temperature rises due to heat circulated from adjacent healthy flues n + 3 to n-3 having a high temperature.

このため、燃焼不良フリュー位置での炭化室側の炉壁温度は、燃焼不良フリューnからの熱と隣接の健全フリューn+3〜n−3からの熱を加算して求める必要がある。
そこで、燃焼不良フリュー位置での炭化室側の炉壁温度に対し、燃焼不良フリューからの熱の寄与率と隣接の健全フリューからの熱の寄与率をそれぞれ設定し、それぞれの寄与率に基づいて、各フリューに基づく温度をそれぞれ求め、それらの温度を加算して炭化室側の炉壁温度を求めるようにした。
For this reason, it is necessary to obtain the furnace wall temperature on the carbonization chamber side at the defective combustion flue position by adding the heat from the defective combustion flue n and the heat from the adjacent healthy flues n + 3 to n-3.
Therefore, set the contribution ratio of heat from the defective combustion flue and the contribution ratio of heat from the adjacent healthy flue to the furnace wall temperature on the carbonization chamber side at the defective combustion flue position, and based on each contribution ratio The temperature based on each flue was obtained, and the temperatures were added to obtain the furnace wall temperature on the carbonization chamber side.

すなわち、各フリューの温度をTf(n-3)、・・、Tf(n)、・・、Tf(n+3)とし、燃焼不良フリューに位置する炉壁の温度に対する熱の寄与率(%)を、図2に示すように、燃焼不良フリューをaとし、それに近いフリュー順に、b、c、dとした。
そして、燃焼不良があるフリュー位置での炭化室側の炉壁温度Tt(n)を、次の式(1)で表記するようにした。
Tt(n)=a×Tf(n)+b×[Tf(n+1)+Tf(n-1)]+c×[Tf(n+2)+Tf(n-2)]+d×[Tf(n+3)+
Tf(n-3)]−[全フリュー温度(実績)の平均−全炉壁温度(実績)の平均]
・・・(1)
なお、a+2b+2c+2d=100%とし、燃焼不良フリューに近いフリューほど、熱の廻り込みの寄与率が大きい(すなわち、a>b>c>d>0)ものとした。
That is, the temperature of each flue is defined as Tf (n-3),..., Tf (n),..., Tf (n + 3), and the contribution ratio of heat to the temperature of the furnace wall located at the defective flue (%) 2), as shown in FIG. 2, the defective combustion flue was set as a, and b, c, and d were set in order of flues close to it.
Then, the furnace wall temperature Tt (n) on the carbonization chamber side at the flue position where there is a combustion failure is expressed by the following equation (1).
Tt (n) = a * Tf (n) + b * [Tf (n + 1) + Tf (n-1)] + c * [Tf (n + 2) + Tf (n-2)] + d * [Tf (n + 3) +
Tf (n-3)]-[Average of all flue temperatures (actual)-Average of all furnace wall temperatures (actual)]
... (1)
Note that a + 2b + 2c + 2d = 100%, and the flue closer to the incomplete combustion flue has a larger contribution ratio of heat circulation (that is, a>b>c>d> 0).

ここで、寄与率a、b、c、dは、次のようにして求める。
前記のように測定したフリュー温度に基づいて燃焼不良フリューnを特定し、フリューnとそれに隣接するフリューn+3〜n−3の仮の寄与率a〜dを設定する。なお、寄与率は、図3に示すように燃焼不良フリューnを中心とした正規分布に従うものとし、その標準偏差(σ値)を任意の値に設定して仮の寄与率a〜dを求め、各フリュー温度及び寄与率の値を上記(1)式に入力して炭化室側炉壁温度の仮の推定値Ttを算出する。
次いで、前記のように測定した炭化室側の実績炉壁温度と、前記のように算出した推定炉壁温度の差を自乗し、全フリューに対して差異の自乗総和を求める。次に、標準偏差の設定値を変えてこの操作を繰り返し、差異の自乗総和が最小となる寄与率a〜dを探索する。
図4に、そのような炭化室側炉壁温度の推算の一例を表で示す。
Here, the contribution ratios a, b, c, and d are obtained as follows.
The defective combustion flue n is specified based on the flue temperature measured as described above, and provisional contribution ratios a to d of the flue n and the flues n + 3 to n-3 adjacent thereto are set. As shown in FIG. 3, the contribution rate follows a normal distribution centered on the defective combustion flue n, and the standard deviation (σ value) is set to an arbitrary value to obtain provisional contribution rates a to d. Then, each of the flue temperatures and the contribution rate values are input to the above equation (1) to calculate a temporary estimated value Tt of the coking chamber side furnace wall temperature.
Next, the difference between the actual furnace wall temperature measured on the carbonization chamber as described above and the estimated furnace wall temperature calculated as described above is squared, and the sum of squares of the differences is obtained for all the flues. Next, this operation is repeated while changing the set value of the standard deviation, and the contribution ratios a to d that minimize the square sum of the differences are searched.
FIG. 4 is a table showing an example of the estimation of the carbonization chamber side furnace wall temperature.

燃焼不良があるフリューの炉壁は、火落ち後も、隣接する健全フリューの炉壁からの熱伝導によって温度が上昇するため、寄与率a、b、c、dを求めるための正規分布の標準偏差は、置き時間によって変化する。図5に、寄与率分布の標準偏差と置き時間の関係の例を示す。   Since the temperature of a flue furnace wall with poor combustion rises due to heat conduction from the furnace wall of an adjacent healthy flue even after a fire has dropped, the standard of normal distribution for determining the contribution ratios a, b, c, d Deviation varies with placement time. FIG. 5 shows an example of the relationship between the standard deviation of the contribution rate distribution and the placement time.

ちなみに、燃焼不良フリューが連続して存在する場合は、より温度の高いフリューから低いフリューに対して熱の廻り込みが起こると考え、前記と同様な取扱いをすることができる。   By the way, when there is a continuous flue failure flue, it is considered that heat wraps from a flue with a higher temperature to a flue with a lower temperature, and the same handling as described above can be performed.

[実炉のおける熱の廻り込みを考慮した炭化室炉幅方向の温度の推算]
実コークス炉において、乾留生成物の炭化室炉幅方向の温度の推算は次の手順で行う。
1)フリュー温度Tfを測定し、その実測値を基に、上記(1)式により炭化室側の炉壁温度Ttを推算する。
2)炭化室側の炉壁温度Ttから、燃焼室側の炉壁温度Twを推算する。
3)燃焼室側の炉壁温度Twから乾留生成物の炭化室炉幅方向の温度(分布)を推算する。
[Estimation of the temperature in the width direction of the coking chamber furnace considering the heat wraparound in the actual furnace]
In the actual coke oven, the temperature in the carbonization chamber width direction of the carbonized product is estimated by the following procedure.
1) The flue temperature Tf is measured, and the furnace wall temperature Tt on the carbonization chamber side is estimated from the above equation (1) based on the actual measurement value.
2) The furnace wall temperature Tw on the combustion chamber side is estimated from the furnace wall temperature Tt on the carbonization chamber side.
3) The temperature (distribution) of the carbonization chamber in the carbonization chamber furnace width direction is estimated from the furnace wall temperature Tw on the combustion chamber side.

以下それぞれのステップについて説明する。
1)炭化室側の炉壁温度Ttの推算
実コークス炉の燃焼室の各フリューの温度Tfを放射温度計などで測定し、その実測値を基に、前述のように、上記(1)式により熱の廻り込みを考慮した炭化室側の炉壁温度Ttを推算する。
Each step will be described below.
1) Estimation of the furnace wall temperature Tt on the side of the carbonization chamber Measure the temperature Tf of each flue in the combustion chamber of the actual coke oven with a radiation thermometer, and based on the actual measurement, Thus, the furnace wall temperature Tt on the carbonization chamber side in consideration of heat wraparound is estimated.

2)燃焼室側の炉壁温度Twの推算
炭化室側の炉壁温度Ttから燃焼室側の炉壁温度Twの推算にあたり、実際の操業データを解析したところ、燃焼室側の炉壁温度Twは、炭化室側の炉壁温度Ttに加えて、炭化時間tの影響が大きいことや、さらには、装入炭の条件として装入炭水分、装入炭温度も影響することが判った。
そこで、炭化室側の炉壁温度Ttから燃焼室側の炉壁温度Twを推算するためには、燃焼室側の炉壁温度Twに対する各因子(炭化室側の炉壁温度Tt、装入炭水分、装入炭温度)のそれぞれの影響度を実験的に求めてデーターベース化しておき、これに基き推算しても良い。あるいは、燃焼室側の炉壁温度Twと各因子(炭化室側の炉壁温度Tt、装入炭水分、装入炭温度)との関係性を、相関式として構築しておき、この相関式に基き推算しても良い。
2) Estimation of the combustion chamber side furnace wall temperature Tw In the estimation of the combustion chamber side furnace wall temperature Tw from the carbonization chamber side furnace wall temperature Tt, actual operation data was analyzed. It was found that in addition to the furnace wall temperature Tt on the carbonization chamber side, the influence of the carbonization time t is large, and further, the charging water content and the charging coal temperature also affect the charging coal conditions.
Therefore, in order to estimate the furnace wall temperature Tw on the combustion chamber side from the furnace wall temperature Tt on the carbonization chamber side, factors for the furnace wall temperature Tw on the combustion chamber side (the furnace wall temperature Tt on the carbonization chamber side, the charging coal) The degree of influence of each of the water content and the charging coal temperature) may be experimentally obtained and converted into a database, and estimation may be made based on this database. Alternatively, the correlation between the furnace wall temperature Tw on the combustion chamber side and each factor (the furnace wall temperature Tt on the carbonization chamber side, the charging coal moisture, the charging coal temperature) is constructed as a correlation equation, and this correlation equation You may estimate based on.

3)乾留生成物温度(分布)の推算
この3)の推算は、燃焼室側の炉壁温度Twから、コークス炉の炉体条件(炉壁煉瓦の厚み、熱伝導率、等)及び石炭装入条件(装入密度、水分、等)等を用いて伝熱計算を行って算出することができる(例えば、富士製鐵技報、17,353頁,1968年発行、参照)。
3) Estimation of dry distillation product temperature (distribution) The estimation in 3) is based on the furnace wall temperature Tw on the combustion chamber side, the furnace body conditions of the coke oven (thickness of furnace wall brick, thermal conductivity, etc.) It can be calculated by performing heat transfer calculation using charging conditions (charging density, moisture, etc.) (see, for example, Fuji Steel Technical Report, 17, 353, issued in 1968).

[熱の廻り込みを考慮した押出負荷の推定]
以上のようにして求めた乾留生成物の温度に基づいて、炭化室から乾留後のコークスケーキを押出すのに必要な力を推算するには、次のように行う。
(i)まず、使用する配合炭ごとに、特許文献1、2に記載されているようなコークスケーキの押出し試験を実施して、押出し機でコークスを押出す圧力が炉壁を押す圧力に転換する割合(炉壁押し圧/押出し圧)で定義されるランキン係数kをコークスケーキと炭化室炉壁との隙間量Xとの関係で予め求めておく。
[Estimation of extrusion load considering heat wraparound]
Based on the temperature of the carbonized product obtained as described above, the force required to extrude the coke cake after carbonization from the carbonization chamber is estimated as follows.
(I) First, for each blended coal to be used, a coke cake extrusion test as described in Patent Documents 1 and 2 is performed, and the pressure at which the coke is extruded by the extruder is converted to a pressure that pushes the furnace wall. The Rankine coefficient k defined by the ratio (furnace wall pressing pressure / extrusion pressure) is determined in advance in relation to the gap amount X between the coke cake and the carbonization chamber furnace wall.

(ii)実炉の各フリューの温度を放射温度計などで測定する。炭化室の炉壁を炉長方向に1フリュー単位に分割して、フリュー温度の実測値から、分割された炉壁ごとに上記(1)式を用いて炭化室側の炉壁温度Tt(n)を求め、炉壁温度Tt(n)と炭化時間tから、そのフリュー側の炉壁温度Tw(n)を求め、炉壁温度Tw(n)から、分割単位ごとの乾留生成物の温度分布を一次元の伝熱計算で求める。   (Ii) Measure the temperature of each flue in the actual furnace with a radiation thermometer. The furnace wall of the carbonization chamber is divided into units of 1 flue in the furnace length direction, and the furnace wall temperature Tt (n) on the carbonization chamber side is calculated from the measured value of the flue temperature for each of the divided furnace walls using the above equation (1). ), The furnace wall temperature Tw (n) on the flue side is obtained from the furnace wall temperature Tt (n) and the carbonization time t, and the temperature distribution of the dry distillation product for each divided unit is obtained from the furnace wall temperature Tw (n). Is obtained by one-dimensional heat transfer calculation.

(iii)特許文献1、2に記載された方法に基づいて乾留生成物の炉幅方向温度分布からコークス収縮率(焼減り量)を求め、求めたコークス収縮率に基づいて、乾留後のコークスケーキと炉壁間の間隙Xを算出し、分割領域ごとに、上記(i)の方法で予め求めておいた前記ランキン係数kとXの関係を用いてランキン係数k(n)を求める。
(iv)それぞれの領域に対して求めたランキン係数k(n)を用いて、それぞれの領域の押出し圧力P(n)を特許文献1や学術文献(Year-Book of the coke oven manager’s association、1979年、213頁)方法によって求め、それを加算して全体の押出し圧力Ptを求める。そして、Ptにコークスケーキの断面積(W×H)を乗じて、コークスケーキの押出し力(F)を求めるようにする。
(Iii) Coke shrinkage (burn-out amount) is determined from the furnace width direction temperature distribution of the dry distillation product based on the methods described in Patent Documents 1 and 2, and the coke after dry distillation is calculated based on the obtained coke shrinkage. The gap X between the cake and the furnace wall is calculated, and the Rankine coefficient k (n) is obtained for each divided region by using the relationship between the Rankine coefficient k and X previously obtained by the method (i).
(Iv) Using the Rankine coefficient k (n) obtained for each region, the extrusion pressure P (n) of each region is determined in Patent Literature 1 and academic literature (Year-Book of the coke oven manager's association, 1979). (Year, page 213), and the total extrusion pressure Pt is obtained by adding them. Then, Pt is multiplied by the cross-sectional area (W × H) of the coke cake to obtain the extrusion force (F) of the coke cake.

以上のような本発明の乾留生成物温度の求め方の有効性を確認するために、実コークス炉の操業において、コークス押出し力の実測値と推定値との比較を行った。
コークス押出し力の実測値は、押出し機モーターに取り付けられたトルクメーターの指示値から算出した。また、コークス押出し力の推定値は、燃焼不良フリューへの熱の廻り込みを考慮して求めた乾留生成物温度を用い、上記(ii)、(iii)の方法に基づいて決定されたランキン係数を用いて、上記(iv)の方法によって推算した。
結果を図6に◇印で示すが、◇印の位置は、実績押出し力と推定押出し力との一致を示す線上、あるいはその近傍に多く分布しており、本発明法による乾留生成物温度を用いて推算した押出し力と実コークス炉で実測した押出し力の間には良好な対応関係があることが確認できた。
In order to confirm the effectiveness of the method of obtaining the carbonization product temperature of the present invention as described above, the actual value and the estimated value of the coke extrusion force were compared in the operation of the actual coke oven.
The actual value of the coke pushing force was calculated from the indicated value of the torque meter attached to the extruder motor. The estimated value of the coke extrusion force is the Rankine coefficient determined based on the above-mentioned methods (ii) and (iii), using the temperature of the dry distillation product obtained in consideration of the heat wrapping around the defective combustion flue. Was estimated by the above method (iv).
The results are indicated by ◇ in FIG. 6. The positions of ◇ are distributed in a large amount on or near the line indicating the coincidence between the actual extrusion force and the estimated extrusion force. It was confirmed that there was a good correspondence between the extrusion force estimated by using and the extrusion force actually measured in the actual coke oven.

さらに、フリュー温度の落ち込みが大きい箇所がある炭化室における、本発明法による乾留生成物温度の推定値(熱の廻り込みの考慮あり)と、従来法として特許文献3に開示されている一次元の伝熱計算(熱の廻り込みを考慮しない方法)による乾留生成物温度の推定値(熱の廻り込みmの考慮なし)を図7に示し、本発明法による乾留生成物温度を用いて推算した押出力を●で、従来法による乾留生成物温度を用いて推算した押出力を○で、図6に併せて示した。
健全フリューからの熱の廻り込みを考慮しない場合、燃焼不良箇所では乾留生成物温度が実際よりも低く評価されるため、押出負荷推定値が実測値よりも高くなる。
これに対し、本発明に基づき、熱の廻り込みを考慮して推算した乾留生成物温度から、押出負荷を推定した場合には、このような問題点が解消されるため、押出負荷推定精度が向上することが確認できた。
Further, in the carbonization chamber where there is a large drop in the flue temperature, an estimated value of the dry distillation product temperature by the method of the present invention (with consideration of heat wraparound) and a one-dimensional method disclosed in Patent Document 3 as a conventional method Fig. 7 shows the estimated value of dry distillation product temperature (without consideration of heat wraparound m) by heat transfer calculation (method not considering heat wraparound), and is estimated using the dry distillation product temperature according to the method of the present invention. The pushing force that was calculated using ● and the pushing force that was estimated using the temperature of the dry distillation product according to the conventional method was shown by ○, and is also shown in FIG.
When heat circulation from the healthy flue is not taken into account, the dry distillation product temperature is evaluated to be lower than the actual value at the defective combustion point, and thus the estimated extrusion load is higher than the actual measurement value.
On the other hand, in the case where the extrusion load is estimated from the dry distillation product temperature estimated in consideration of the wraparound of heat based on the present invention, such problems are eliminated, and the extrusion load estimation accuracy is high. It was confirmed that it improved.

Claims (3)

室式コークス炉におけるコークス押出し時の炭化室炉幅方向の乾留生成物温度を推算する方法であって、
燃焼室のフリュー温度とコークス押出し時の炭化室側の炉壁温度を実測し、燃焼不良の燃焼室のフリュー温度及びその燃焼室に隣接する複数の健全な燃焼室のフリュー温度と、燃焼不良の燃焼室に対応する炭化室側の炉壁温度との関係を予め求めておき、
実コークス炉の燃焼不良の燃焼室のフリュー温度及びその燃焼室に隣接する複数の健全な燃焼室のフリュー温度の実測値から前記関係に基づいて、当該フリューに対応する炭化室側の炉壁温度を推算し、
推算された炭化室側の炉壁温度から、燃焼不良の燃焼室側の炉壁温度を求め、求められた燃焼室側の炉壁温度から一次元の伝熱計算で当該燃焼室に対応する炭化室の乾留生成物の炉幅方向の温度を推算するようにし、
さらに、前記関係として、燃焼不良の燃焼室に対応する炭化室側の炉壁温度を、燃焼不良の燃焼室及び隣接の健全な燃焼室からの熱の寄与率に基づいて求めることを特徴とする室式コークス炉における乾留生成物温度の推算方法。
A method of estimating a carbonization product temperature in the width direction of a carbonization chamber at the time of coke extrusion in a chamber type coke oven,
Measure the flue temperature of the combustion chamber and the furnace wall temperature on the carbonization chamber side during coke extrusion, and the flue temperature of the combustion chamber with poor combustion, the flue temperatures of the multiple healthy combustion chambers adjacent to the combustion chamber, and The relationship with the furnace wall temperature on the carbonization chamber side corresponding to the combustion chamber is obtained in advance,
Based on the relationship from the measured values of the flue temperature of the combustion chamber of the actual coke oven where combustion is poor and the flue temperatures of a plurality of healthy combustion chambers adjacent to the combustion chamber, the furnace wall temperature on the side of the carbonization chamber corresponding to the flue To estimate
From the estimated furnace wall temperature on the carbonization chamber side, the furnace wall temperature on the combustion chamber side with poor combustion is obtained, and the carbonization corresponding to the combustion chamber is calculated by one-dimensional heat transfer calculation from the obtained furnace wall temperature on the combustion chamber side. Estimate the temperature in the furnace width direction of the dry distillation product of the chamber,
Further, as the relation, the furnace wall temperature on the carbonization chamber side corresponding to the combustion chamber with poor combustion is obtained based on the contribution ratio of heat from the combustion chamber with poor combustion and the adjacent healthy combustion chamber. Estimation method of dry distillation product temperature in a room type coke oven.
前記関係を下記の(1)式として求めることを特徴とする請求項1に記載の室式コークス炉における乾留生成物温度の推算方法。
Tt(n)=a×Tf(n)+b×[Tf(n+1)+Tf(n-1)]+c×[Tf(n+2)+Tf(n-2)]+d×[Tf(n+3)+
Tf(n-3)]−[全フリュー温度(実績)の平均−全炉壁温度(実績)の平均]
・・・(1)
ここで、炭化室の炉壁を燃焼室単位で炉長方向に分割し、燃焼不良の燃焼室をnとして、その燃焼室に隣接する健全な燃焼室を、そこからPS方向に向かって順にn−1、n−2・・・、CS方向に向かって順にn+1、n+2・・・とし、Tt(n)は燃焼室nに対応する炭化室側炉壁温度、Tf(n)、Tf(n-x)、Tf(n+x)は、隣接する健全な各燃焼室(Xは1〜3)の温度であり、a、b、c、dは燃焼不良の燃焼室及び隣接する健全な燃焼室からの熱の寄与率(%)を示す係数であり、a+2b+2c+2d=100%で、a>b>c>d>0である。
The said relationship is calculated | required as following (1) Formula, The estimation method of the dry distillation product temperature in the chamber type coke oven of Claim 1 characterized by the above-mentioned.
Tt (n) = a * Tf (n) + b * [Tf (n + 1) + Tf (n-1)] + c * [Tf (n + 2) + Tf (n-2)] + d * [Tf (n + 3) +
Tf (n-3)]-[Average of all flue temperatures (actual)-Average of all furnace wall temperatures (actual)]
... (1)
Here, the furnace wall of the carbonization chamber is divided in the furnace length direction in units of combustion chambers, and a combustion chamber having poor combustion is defined as n, and a healthy combustion chamber adjacent to the combustion chamber is sequentially separated from the combustion chamber toward the PS direction. −1, n−2,..., N + 1, n + 2,... In order toward the CS direction, and Tt (n) is the carbonization chamber side furnace wall temperature corresponding to the combustion chamber n, Tf (n), Tf (nx ), Tf (n + x) is the temperature of each adjacent healthy combustion chamber (X is 1 to 3), and a, b, c, d are from the combustion chamber with poor combustion and the adjacent healthy combustion chamber. Is a coefficient indicating the contribution ratio (%) of heat, a + 2b + 2c + 2d = 100%, and a>b>c>d> 0.
前記寄与率a、b、c、dは、正規分布で与えられることを特徴とする請求項2に記載の室式コークス炉における乾留生成物温度の推算方法。   3. The method for estimating a dry distillation product temperature in a chamber coke oven according to claim 2, wherein the contribution ratios a, b, c, and d are given in a normal distribution.
JP2013220386A 2013-10-23 2013-10-23 Method for Estimating Carbonization Product Temperature in a Laboratory Coke Oven Active JP6241195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220386A JP6241195B2 (en) 2013-10-23 2013-10-23 Method for Estimating Carbonization Product Temperature in a Laboratory Coke Oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220386A JP6241195B2 (en) 2013-10-23 2013-10-23 Method for Estimating Carbonization Product Temperature in a Laboratory Coke Oven

Publications (2)

Publication Number Publication Date
JP2015081310A true JP2015081310A (en) 2015-04-27
JP6241195B2 JP6241195B2 (en) 2017-12-06

Family

ID=53012107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220386A Active JP6241195B2 (en) 2013-10-23 2013-10-23 Method for Estimating Carbonization Product Temperature in a Laboratory Coke Oven

Country Status (1)

Country Link
JP (1) JP6241195B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110377938A (en) * 2019-06-10 2019-10-25 南京科瑞节能环保科技有限公司 A kind of coke oven vertical flame path temperature field analysis method
JP2020158742A (en) * 2019-03-28 2020-10-01 日本製鉄株式会社 Method for operating coke oven

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270042A (en) * 2008-05-09 2009-11-19 Jfe Steel Corp Estimation method of temperature distribution inside coke oven carbonization chamber and operation method of coke oven

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270042A (en) * 2008-05-09 2009-11-19 Jfe Steel Corp Estimation method of temperature distribution inside coke oven carbonization chamber and operation method of coke oven

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158742A (en) * 2019-03-28 2020-10-01 日本製鉄株式会社 Method for operating coke oven
CN110377938A (en) * 2019-06-10 2019-10-25 南京科瑞节能环保科技有限公司 A kind of coke oven vertical flame path temperature field analysis method
CN110377938B (en) * 2019-06-10 2023-06-16 南京智宝节能环保科技有限公司 Coke oven vertical flame path temperature field analysis method

Also Published As

Publication number Publication date
JP6241195B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6241195B2 (en) Method for Estimating Carbonization Product Temperature in a Laboratory Coke Oven
WO2010050236A1 (en) Method for estimation of coke oven load generated during coke extrusion
JP4538097B2 (en) Method for estimating the load generated during coke extrusion in a coke oven.
JP5052944B2 (en) Coke oven operation method
JP6308157B2 (en) Method for preparing blended coal and method for producing coke
JP5182006B2 (en) Method for estimating side load during coke extrusion in chamber coke oven and method for operating chamber coke oven based on estimated side load
JP6197568B2 (en) Estimation Method of Coke Pushing Force in Chamber Type Coke Oven
JP5182005B2 (en) Method for estimating coke extrusion force in chamber coke oven and method for operating chamber coke oven based on estimated extrusion force
JP5966845B2 (en) Estimation method of coke pushing force in coke oven
JP5581630B2 (en) Coke cake extrudability estimation method
JPH0737618B2 (en) A method for determining the horizontal shrinkage coefficient of coke oven charges.
JP2019006940A (en) Method for diagnosing furnace wall of coke oven
JP4096537B2 (en) Coke shrinkage measurement method
JP5919774B2 (en) Coke oven operation method and operation management device
JP2013216813A (en) Estimation method of amount of coke shrinkage, and estimation device of amount of coke shrinkage
JP5935493B2 (en) Method for estimating coke force output and method for operating coke oven
JP2012062363A (en) Method for estimating extrusion clogging probability of coke, and method for operation of coke oven
JP5369489B2 (en) Method for estimating temperature distribution in coke oven carbonization chamber, method for operating coke oven, and method for producing coke
JP2008214379A (en) Method for operating chamber type coke oven
JPH061981A (en) Method for predicting volume of produced gas in coke oven
JP6724738B2 (en) Judging completion method for coke oven
JPH061980A (en) Method for predicting volume of produced gas in coke oven
JP5838993B2 (en) Coke oven fire detection method
JP2014074163A (en) Gas cock opening calculation method, operation method of coke oven, and manufacturing method of coke
JP2017171791A (en) Method for detecting deterioration of coke extrusion in carbonization chamber of coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R151 Written notification of patent or utility model registration

Ref document number: 6241195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350