JP2008214379A - Method for operating chamber type coke oven - Google Patents

Method for operating chamber type coke oven Download PDF

Info

Publication number
JP2008214379A
JP2008214379A JP2007049601A JP2007049601A JP2008214379A JP 2008214379 A JP2008214379 A JP 2008214379A JP 2007049601 A JP2007049601 A JP 2007049601A JP 2007049601 A JP2007049601 A JP 2007049601A JP 2008214379 A JP2008214379 A JP 2008214379A
Authority
JP
Japan
Prior art keywords
coal
furnace wall
coke
displacement
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007049601A
Other languages
Japanese (ja)
Other versions
JP4980098B2 (en
Inventor
Asayuki Nakagawa
朝之 中川
Kenji Kato
健次 加藤
Takashi Arima
孝 有馬
Koichi Fukuda
耕一 福田
Masahiro Kubota
征弘 窪田
Yasuhiko Anami
靖彦 阿波
Masahito Sugiura
雅人 杉浦
Isao Sugiyama
勇夫 杉山
Kenji Miki
賢治 三樹
Yoshiji Hojo
由二 北条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007049601A priority Critical patent/JP4980098B2/en
Publication of JP2008214379A publication Critical patent/JP2008214379A/en
Application granted granted Critical
Publication of JP4980098B2 publication Critical patent/JP4980098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which pushing force can accurately be estimated in pushing of coke in a chamber type coke oven. <P>SOLUTION: The method for operating the chamber type coke oven is carried out as follows: the pushing force required when discharging the coke from a carbonization chamber of the chamber type coke oven with a pusher is estimated by using the amount of gap (clearance) between the oven wall and the coke produced during coal carbonization and the pushing of the coke is performed on the basis of the pushing force. In the method, the amount of gap is determined by considering the extent of deformation of the oven wall of the carbonization chamber during the coal carbonation. The extent of the deformation of the oven wall produced during the coal carbonization is estimated from the vertical crack width of oven wall bricks and the swelling pressure of the coal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化室で石炭を乾留して得られるコークスを、炭化室から適切な負荷で排出し、コークス炉の安定操業を可能とする方法に関する。   The present invention relates to a method for discharging coke obtained by dry distillation of coal in a carbonization chamber at an appropriate load from the carbonization chamber to enable stable operation of the coke oven.

石炭乾留後のコークスを低負荷で押し出すことは、操業を安定化して製骸量が確保できるだけでなく、炭化室の炉壁に対する負荷を低減して炉体寿命を長くする観点から非常に重要である。炭化室からコークスを排出する際の抵抗は、コークスと炉底面、あるいは、コークスと炉壁面の摩擦によって生じる反力が原因である。この反力を低下するために、一般的に、炉壁面や炉底面の平滑化、あるいは、炉壁とコークス間の隙間量(以下、クリアランスとも記載する)を大きくする等の対策が有効とされている。ここで、クリアランスはコークスの水平焼減り量に依存しており、水平焼減り量は石炭性状(揮発分など)やコークス炉の操業条件(炉温や置時間など)に依存している。   Extruding coke after carbonization with low load is very important from the viewpoint of not only stabilizing the operation and securing the amount of wreckage, but also reducing the load on the furnace wall of the carbonization chamber and extending the furnace life. is there. The resistance at the time of discharging coke from the carbonization chamber is caused by a reaction force generated by friction between the coke and the bottom of the furnace or between the coke and the furnace wall. In order to reduce this reaction force, generally, measures such as smoothing the furnace wall surface and furnace bottom, or increasing the amount of gap between the furnace wall and coke (hereinafter also referred to as clearance) are effective. ing. Here, the clearance depends on the horizontal burn-out amount of the coke, and the horizontal burn-out amount depends on the coal properties (volatile matter, etc.) and the operating conditions of the coke oven (furnace temperature, setting time, etc.).

上述のクリアランスに着目してコークス炉の操業を安定化する方法が数多く提案されている。
例えば、特許文献1では、水平焼減り量とコークスケーキ必要押し出し圧力との関係から、コークスケーキ必要押し出し圧力の管理値に対応する水平焼減り量を算出し、予め試験炉により乾留時間と水平焼減り量との関係を求めることにより、室式コークス炉において、水平焼減り量が管理値となる乾留時間を下限値として設定する方法が述べられている。
また、特許文献2では、炉壁損傷が発生していない場合に、炉壁表面温度、石炭性状、コークス炉稼働率、窯補修経過日数、およびコークス炉への装炭量をパラメーターとし、これらの線形一次結合によって押出し力を推定し、この推定した押出し力と実測した押出し力との差に基づいて炉壁の損傷状況を推定する方法が述べられている。
Many methods for stabilizing the operation of the coke oven have been proposed focusing on the above clearance.
For example, in Patent Document 1, a horizontal burn-out amount corresponding to a control value of the coke cake required extrusion pressure is calculated from the relationship between the horizontal burn-out amount and the coke cake required extrusion pressure, and the carbonization time and the horizontal firing in a test furnace are calculated in advance. A method is described in which, by determining the relationship with the amount of reduction, in the chamber coke oven, the carbonization time at which the amount of horizontal burning is the control value is set as the lower limit value.
Moreover, in patent document 2, when the furnace wall damage has not occurred, the furnace wall surface temperature, the coal properties, the coke oven operation rate, the number of days of kiln repair, and the amount of coal charged into the coke oven are used as parameters. A method is described in which an extrusion force is estimated by linear linear combination and a damage state of a furnace wall is estimated based on a difference between the estimated extrusion force and an actually measured extrusion force.

また、特許文献3では、配合炭の膨張圧、含有水分、乾留コークスの置時間、コークス炉の炉温などの条件から押出負荷を推定し、この推定した押出負荷推定値が予め設定した押出負荷管理値の範囲内となるように、上記の条件を調整する操業方法が提案されている。
また、特許文献4では、炭化室毎に作成された操業データ、配合炭データ、コークスデータ、補修データ、及び損傷データからなるデータベースの数値を統計処理し、多重変数として重回帰分析し、コークス押出し力を炭化室毎に計算する方法が開示されており、この計算によって得られた押出力に基づいて、炉壁煉瓦が破孔する可能性を予測する炉体の診断システムが提案されている。
Further, in Patent Document 3, the extrusion load is estimated from conditions such as the expansion pressure of the blended coal, the moisture content, the setting time of the dry distillation coke, the furnace temperature of the coke oven, and the estimated extrusion load estimated value is set in advance. An operation method for adjusting the above-described conditions so as to be within the range of the control value has been proposed.
Moreover, in patent document 4, the numerical value of the database which consists of the operation data created for every carbonization chamber, coal blend data, coke data, repair data, and damage data is statistically processed, and multiple regression analysis is performed as multiple variables, and coke extrusion is performed. A method for calculating the force for each carbonization chamber has been disclosed, and a furnace body diagnosis system that predicts the possibility of furnace wall brick breaking based on the pushing force obtained by this calculation has been proposed.

また、特許文献5では、石炭性状と炉の操業条件から推算した炉壁カーボン量と炉頂空間カーボン量から求めたカーボン抵抗指数を定義し、このカーボン抵抗指数と押出し機のラム駆動モーターにかかる負荷との対応関係から、押出し時に掛かる負荷を推定し、石炭性状あるいは操業条件を調整することによって負荷を低減し、押し詰まりを防止する方法が開示されている。
また、特許文献6では、コークス炉の操業条件情報、石炭の性状情報、及び炉体プロフィール情報を基にしてコークス押出し時の負荷波形を計算で求める一方、押出し時に実測された負荷波形との比較により、コークス炉の操業条件を解析する方法が開示されている。
Moreover, in patent document 5, the carbon resistance index calculated | required from the furnace wall carbon amount estimated from coal properties and the furnace operating condition and the furnace top space carbon amount is defined, and this carbon resistance index and the ram drive motor of the extruder are applied. A method is disclosed in which the load applied during extrusion is estimated from the correspondence with the load, the load is reduced by adjusting the coal properties or operating conditions, and clogging is prevented.
Moreover, in patent document 6, while calculating | requiring the load waveform at the time of coke extrusion based on the operating condition information of a coke oven, the property information of coal, and furnace body profile information by calculation, it compares with the load waveform measured at the time of extrusion. Discloses a method for analyzing the operating conditions of a coke oven.

また、特許文献7では、試験コークス炉で製造したコークスの炉幅方向の透過放射線像を撮影し、この透過放射線像から求まるコークスケーキの収縮量と亀裂量に基づいてコークスケーキの押出し性を推定する方法が開示されている。
また、特許文献8では、コークスケーキの幅方向膨張性指数とコークスケーキ側面と炉壁内面との間隙量を用いて押出し力を推定し、この推定した押出し力が許容限界値以下となるように石炭性状、石炭配合率、炉の操業条件を調整するコークス炉の操業方法が開示されている。
また、特許文献9では、炭化室内のコークスの押出し可否を判断するステップと、押し出し可能と判断された場合のコークス押出し力を推定する押出し力推定ステップと、推定された押出し力に基づいて押出しを指示する押出し指示ステップを有するコークス炉の操業プログラムが提案されており、上記押出し力を、該炭化室における至近の押出力の値、石炭装入後の経過時間、炉団平均押出力、装入石炭量、燃焼室温度などデータを重回帰分析することにより推定する方法が開示されている。
Further, in Patent Document 7, a transmission radiation image in the furnace width direction of coke produced in a test coke oven is taken, and the extrudability of the coke cake is estimated based on the shrinkage amount and crack amount of the coke cake obtained from the transmission radiation image. A method is disclosed.
Moreover, in patent document 8, extrusion force is estimated using the width direction expansibility index | exponent of a coke cake, the amount of gaps between a coke cake side surface, and a furnace wall inner surface, so that this estimated extrusion force may become below an allowable limit value. A method of operating a coke oven that adjusts coal properties, coal blending ratio, and furnace operating conditions is disclosed.
Further, in Patent Document 9, a step of determining whether or not coke can be extruded in the carbonization chamber, an extrusion force estimation step of estimating coke extrusion force when it is determined that extrusion is possible, and extrusion based on the estimated extrusion force are performed. An operation program for a coke oven having an instruction for instructing extrusion has been proposed, and the extrusion force is calculated based on the value of the nearest pushing force in the carbonization chamber, the elapsed time after charging the coal, the average pushing force of the furnace group, A method of estimating data such as coal amount and combustion chamber temperature by performing multiple regression analysis is disclosed.

また、これらの技術に関連し、コークスの収縮率、すなわち水平焼減り、を求める方法として、特許文献10には、容器に収容した石炭を再固化温度以上の温度T(℃)まで加熱し、再固化温度と温度Tにおける容積差又は長さの差に基づいてコークス収縮率を求める方法が、或いは、特許文献11には、単味炭のビトリニット組織の反射率分布と配合率とから、配合炭のビトリニット組織の反射率分布を推定し、配合炭のコークス収縮率を推定する方法が、或いは、特許文献12には、配合炭を両面加熱式試験コークス炉にて乾留し、焼減り量の経時変化を測定する方法が提案されている。
また、石炭膨張圧を推定する方法として、特許文献13には、軟化溶融状態にある石炭層のガス透過係数を測定し、或いは、石炭性状、或いは乾留条件から推定する方法に基づいてガス透過係数を推算し、このガス透過係数、軟化溶融状態の石炭層の炉幅方向厚み、及び軟化溶融層からの熱分解ガスの発生速度を用いて石炭膨張圧の経時変化を推定する方法が、また、特許文献14、15には、配合炭を構成する各石炭の最大膨張圧の加成平均値、非微粘結炭の配合率などから配合炭の膨張圧を算出する方法が提案されている。
In addition, in connection with these techniques, as a method for obtaining the shrinkage rate of coke, that is, horizontal burning, Patent Document 10 includes heating coal to a temperature T (° C.) equal to or higher than a resolidification temperature, A method for obtaining the coke shrinkage based on the difference in volume or length between the resolidification temperature and the temperature T, or in Patent Document 11, the reflectance distribution and the blending ratio of the vitrinite structure of simple coal is blended. The method of estimating the reflectance distribution of the vitrinite structure of charcoal and estimating the coke shrinkage of the blended coal, or Patent Document 12, includes dry-blending the blended coal in a double-sided heating type test coke oven, A method for measuring the change with time has been proposed.
Further, as a method for estimating the coal expansion pressure, Patent Document 13 discloses a gas permeability coefficient based on a method of measuring a gas permeability coefficient of a coal bed in a softened and melted state, or estimating from a coal property or dry distillation conditions. And estimating the change over time in the coal expansion pressure using the gas permeability coefficient, the thickness in the furnace width direction of the coal layer in the softened and melted state, and the generation rate of the pyrolysis gas from the softened and melted layer, Patent Documents 14 and 15 propose a method of calculating the expansion pressure of coal blend from the additive average value of the maximum expansion pressure of each coal constituting the coal blend, the blending ratio of non-slightly caking coal, and the like.

特開平8−283730号公報JP-A-8-283730 特開平11−131069号公報Japanese Patent Application Laid-Open No. 11-131069 特開2000−73067号公報JP 2000-73067 A 特開2002−121556号公報JP 2002-121556 A 特開2002−173687号公報JP 2002-173687 A 特開2003−277759号公報JP 2003-277759 A 特開2005−68296号公報JP 2005-68296 A 特開2005−350610号公報JP 2005-350610 A 特開2005−307168号公報JP 2005-307168 A 特開2005−232349号公報JP-A-2005-232349 特開2006−249174号公報JP 2006-249174 A 特許第3254004号Japanese Patent No. 3254004 特許第3142637号Japanese Patent No. 3142737 特開平11−302661号公報JP-A-11-302661 特開2001−214171号公報JP 2001-214171 A

上述の方法においては、コークス炉からのコークスの押出し力を推定するに際して、石炭の性状やコークス炉の操業条件、炉壁の損傷状態などを考慮しており、いずれの場合においてもコークス炉を管理する上で重要な情報を用いており、精度の高い推定値が得られると考えられる。
しかしながら、出願人が先に出願した特願平2006−297274号において記載しているように、コークス炉の炭化室の炉壁が時間とともに炉幅方向に変位する。このことは、コークスの押出し力を推定する際に、この壁の変位を考慮することが必要であることを示唆しているものである。しかしながら、上記出願では、この壁の変位を押出し力の推定においてどのように考慮すべきであるかについては開示されていない。
上述のように室式コークス炉からのコークスの押出し力の低減には、炉壁とコークス間のクリアランス(隙間量)を大きくすることが有効とされているが、このクリアランスを推定するためには、乾留生成ガスの熱分解で炉壁煉瓦の表面に生成するカーボンの厚み量に加えて、石炭の溶融軟化に伴なう膨張圧やコークスの収縮に伴なう水平焼減りによる炉壁の変位量を考慮しなければならない。
しかしながら、従来、石炭膨張圧やコークス収縮量、カーボン厚み量を取り入れた推定式は提案されていたが、炉壁の変位量が適切に考慮されたものではなく、実際のコークス炉では炉壁が変位するため、炉壁とコークス間の隙間量を精度良く推定することはできなかった。
本発明は、炉壁の変位量を適切に考慮することによって、炉壁とコークス間の隙間量を精度良く求める方法を提供し、これに基づいて必要な押出し力を推定し、適正な押出し力でコークスの押出しを行うことを可能とするものである。
In the above method, when estimating the coke extrusion force from the coke oven, the properties of the coal, the operating conditions of the coke oven, the damaged state of the furnace wall, etc. are taken into consideration, and the coke oven is managed in any case. Important information is used, and it is considered that a highly accurate estimated value can be obtained.
However, as described in Japanese Patent Application No. 2006-297274 filed earlier by the applicant, the furnace wall of the coking furnace is displaced in the furnace width direction with time. This suggests that it is necessary to take this wall displacement into account when estimating the coke extrusion force. However, the above application does not disclose how this wall displacement should be taken into account in the estimation of the pushing force.
As described above, increasing the clearance (gap amount) between the furnace wall and coke is effective for reducing the coke extrusion force from the chamber coke oven. To estimate this clearance, In addition to the amount of carbon thickness generated on the surface of the furnace wall bricks by pyrolysis of the dry distillation product gas, the furnace wall displacement due to expansion pressure accompanying melt softening of coal and horizontal burning due to coke shrinkage The amount must be taken into account.
However, although estimation formulas that incorporate coal expansion pressure, coke shrinkage, and carbon thickness have been proposed in the past, the amount of furnace wall displacement has not been properly considered, and in an actual coke oven, Due to the displacement, the amount of gap between the furnace wall and coke could not be estimated accurately.
The present invention provides a method for accurately determining the amount of gap between the furnace wall and coke by appropriately considering the amount of displacement of the furnace wall, and based on this, the necessary extrusion force is estimated and the proper extrusion force is obtained. This makes it possible to extrude coke.

本発明者らは、石炭乾留中に発生する石炭膨張圧による炉壁の変位を実際のコークス炉で測定し、この炉壁の変位量を考慮して求めた炉壁とコークス間の隙間量と押出し力とが良好な対応関係を示すことを見出し、本発明を完成するに至ったものである。
すなわち、本発明の要旨とするところは以下の通りである。
(1) 室式コークス炉の炭化室から押出し機でコークスを排出する際に必要な押出力を、石炭乾留時に発生する炉壁とコークス間の隙間量を用いて推定し、この押出し力に基づいてコークスの押出しを行う室式コークス炉の操業方法において、この隙間量を、炭化室の炉壁の変位量を考慮して求めることを特徴とする、室式コークス炉の操業方法。
(2) 前記石炭乾留中に発生する炉壁の変位量を、炉壁煉瓦の縦亀裂幅と石炭の膨張圧から推定することを特徴とする(1)に記載の室式コークス炉の操業方法。
(3) 前記炉壁煉瓦の縦亀裂幅を、当該窯の炉長方向の炉体の膨張量と縦亀裂の本数とから求めることを特徴とする(2)に記載の室式コークス炉の操業方法。
(4) 前記炉壁の変位量を推定するための石炭膨張圧として、当該炭化室とその両隣にある炭化室の石炭膨張圧を用いることを特徴とする(2)または(3)に記載の室式コークス炉の操業方法。
The inventors measured the displacement of the furnace wall due to the coal expansion pressure generated during coal carbonization in an actual coke oven, and determined the amount of gap between the furnace wall and coke determined in consideration of the amount of displacement of the furnace wall. The inventors have found that the extrusion force shows a good correspondence, and have completed the present invention.
That is, the gist of the present invention is as follows.
(1) Estimate the pushing force required to discharge coke from the coking chamber of a chamber coke oven using an extruder using the gap between the furnace wall and coke generated during coal dry distillation, and based on this extrusion force A method for operating a coke oven, wherein the amount of the gap is determined in consideration of the amount of displacement of the furnace wall of the carbonization chamber.
(2) The method of operating a coke oven according to (1), wherein a displacement amount of the furnace wall generated during the carbonization is estimated from a vertical crack width of the furnace wall brick and an expansion pressure of the coal. .
(3) The operation of the chamber coke oven according to (2), wherein the width of the vertical crack of the furnace wall brick is obtained from the amount of expansion of the furnace body in the furnace length direction of the furnace and the number of vertical cracks. Method.
(4) As described in (2) or (3), the coal expansion pressure for estimating the amount of displacement of the furnace wall is the coal expansion pressure of the carbonization chamber and the adjacent carbonization chamber on both sides thereof. How to operate a room type coke oven.

本発明により、コークス炉の炭化室に装入する石炭(以下、装入炭とも記載する)の配合条件とコークス炉の操業条件及び、炉体の稼働年数などを考慮し、炉壁の変位量を考慮して求めた炉壁とコークス間のクリアランスを用いてコークスの押出し力を簡便かつ精度良く推定することが可能となり、適正な押出し力によりコークスを押し出すことができ、効率的なコークス炉操業が可能となった。   According to the present invention, the amount of displacement of the furnace wall in consideration of the blending conditions of the coal (hereinafter also referred to as charging coal), the operating conditions of the coke oven, the operating years of the furnace body, etc. The coke extrusion force can be estimated easily and accurately using the clearance between the furnace wall and coke determined in consideration of the coke, and the coke can be extruded with an appropriate extrusion force. Became possible.

コークス炉の炉壁の変位を考慮して押出し力を推定するに当たり、炉壁の変位の実態を試験により調査した。発明者らは、炭化室(以下、当該炭化室、当該窯または自窯とも記載する)に石炭を装入すると共に、隣接する炭化室(以下、隣接窯とも記載する)を空室とし、これに後述する炉壁の変位測定装置を配置して、石炭を装入した炭化室の石炭を加熱乾留すると共に、この炭化室の炉壁の変位を、隣接する炭化室の炉壁の変位によって測定した。この隣接窯は空室としているので、測定すべき当該窯の炉壁の変位量は、隣接窯の炉壁の変位量と同等と見なすことができる。なお、当該窯の石炭層中に炉蓋よりガス圧測定装置(炭化室の石炭層内に挿入する金属製の細管、圧力指示計、これらを連結する細管および、記録装置により構成される)および温度測定装置(熱電対)を挿入し、石炭膨張圧として装入炭の軟化溶融層内のガス圧を測定し、また、炭化室の装入炭層の温度を測定した。   In estimating the extrusion force in consideration of the displacement of the coke oven wall, the actual state of the displacement of the furnace wall was investigated by tests. The inventors charged coal into the carbonization chamber (hereinafter also referred to as the carbonization chamber, the kiln or the self-fired kiln) and made the adjacent carbonization chamber (hereinafter also referred to as the adjacent kiln) an empty room. A furnace wall displacement measuring device, which will be described later, is arranged to heat and distill the coal in the carbonization chamber charged with coal, and the displacement of the furnace wall in this carbonization chamber is measured by the displacement of the furnace wall in the adjacent carbonization chamber. did. Since this adjacent kiln is vacant, the displacement amount of the furnace wall of the kiln to be measured can be regarded as equivalent to the displacement amount of the furnace wall of the adjacent kiln. Gas pressure measuring device from the furnace lid in the coal bed of the kiln (consisting of a metal thin tube inserted into the coal bed of the carbonization chamber, a pressure indicator, a thin tube connecting them, and a recording device) and A temperature measuring device (thermocouple) was inserted, the gas pressure in the softened and molten layer of the charged coal was measured as the coal expansion pressure, and the temperature of the charged coal layer in the carbonization chamber was measured.

ここで、炉壁の変位測定装置について説明する。図8は、変位測定装置を炭化室内に配置した状況を示すコークス炉の炉幅方向の断面概略図である。
炭化室1a,1bが、燃焼室2を挟んで炉幅方向の両側に、炉壁3で区画されて設けられており、燃焼室2のガスポート4から供給された燃料ガスの燃焼により炉壁を介して炭化室1aに装入された石炭5が乾留され、コークスケーキ6が形成される。炭化室1bには石炭が装入されておらず空室であり、これに炉壁の変位測定装置7が配置される。
炉壁の変位測定装置7は、コークス炉の炭化室1bの炉頂部に装入口8を覆うように配置された支持板9と、この支持板9の開口部10から炉内に挿入され、炉壁3の表面に向かって屈曲した形状の下端部を有する水冷式の金属製プローブ11と、この金属製プローブ11の下端部が炉壁3に接触した状態で炉幅方向に揺動可能となるように金属製プローブ11の上端部を懸垂支持し、且つ支持板9上に固定するためのプローブ支持部12と、プローブの傾動量を測定する傾動量検出器13を有する。プローブ支持部12は、金属製プローブ11の上端部に固定され、他端に炉幅方向にナイフエッジを有する保持金具(図示せず)と、支持板9に固定され、この保持金具のナイフエッジを炉幅方向に線接触で支持するV字溝を有する揺動軸受け(図示せず)とからなり、金属製プローブをピボット支持する。プローブ傾動量検出器13は金属製プローブ11の上端部に固定されたレーザー発振器14とこのレーザー発振器14から炉幅方向に離隔して炉頂部に設けられた受光板15とから構成された非接触型の検出器となっている。
Here, a furnace wall displacement measuring apparatus will be described. FIG. 8 is a schematic cross-sectional view in the furnace width direction of the coke oven showing a state in which the displacement measuring device is disposed in the carbonization chamber.
The carbonization chambers 1a and 1b are provided on both sides in the furnace width direction with the combustion chamber 2 therebetween, and are partitioned by a furnace wall 3, and the furnace wall is formed by combustion of fuel gas supplied from the gas port 4 of the combustion chamber 2. Then, the coal 5 charged into the carbonization chamber 1a is dry-distilled to form a coke cake 6. The carbonization chamber 1b is not filled with coal and is empty, and a furnace wall displacement measuring device 7 is disposed in the chamber.
The furnace wall displacement measuring device 7 is inserted into the furnace through a support plate 9 disposed so as to cover the charging port 8 at the top of the coking chamber 1b of the coke oven, and through an opening 10 of the support plate 9. A water-cooled metal probe 11 having a lower end portion bent toward the surface of the wall 3, and can swing in the furnace width direction with the lower end portion of the metal probe 11 in contact with the furnace wall 3. In this manner, the upper end portion of the metal probe 11 is suspended and supported, and the probe support portion 12 is fixed to the support plate 9, and the tilt amount detector 13 is used to measure the tilt amount of the probe. The probe support portion 12 is fixed to the upper end portion of the metal probe 11, a holding metal fitting (not shown) having a knife edge in the furnace width direction at the other end, and fixed to the support plate 9, the knife edge of this holding metal fitting And a rocking bearing (not shown) having a V-shaped groove for supporting the metal probe in a line contact manner in the furnace width direction, and pivotally supporting the metal probe. The probe tilt amount detector 13 is a non-contact made up of a laser oscillator 14 fixed to the upper end of the metal probe 11 and a light receiving plate 15 provided at the top of the furnace spaced from the laser oscillator 14 in the furnace width direction. It is a type detector.

水冷式の金属製プローブ11を装入口8から炉内に挿入し、その下端部を変位を測定する炉壁面3に接触させる。このプローブが炉壁の変位に追随して炉幅方向に傾動すると、プローブ傾動量検出器により、すなわちレーザー発振器の傾動によるレーザー光17の受光板上での光点の位置変化を読みとることにより、これらの光学系における幾何的な関係から、金属製プローブの傾斜角を求め、炉壁の変位量を求めることができる(特願平2006−297274号参照)。   A water-cooled metal probe 11 is inserted into the furnace from the inlet 8 and its lower end is brought into contact with the furnace wall surface 3 for measuring displacement. When this probe is tilted in the furnace width direction following the furnace wall displacement, by reading the position change of the light spot on the light receiving plate of the laser beam 17 by the probe tilt amount detector, that is, by tilting the laser oscillator, From the geometric relationship in these optical systems, the inclination angle of the metal probe can be obtained, and the amount of displacement of the furnace wall can be obtained (see Japanese Patent Application No. 2006-297274).

上記調査の測定結果として、図7の(a)に当該窯の炉壁変位(上述のように隣接窯で測定)と、図7の(b)に当該窯(炭化室)の炉幅方向中央部で測定した石炭膨張圧及び石炭膨張圧の測定と同じ位置で測定した石炭層の温度(以下、炭中温度とも記載する)の変化を石炭装入後の経過時間に対して示す。図7の(a)から判るように、石炭装入直後に炉壁が大きく膨張側(隣接窯の方向)に変位しているが、時間の経過と共に小さくなり、ほぼ元の状態に復元していることが判る。
すなわち、石炭装入直後に炉壁が膨張側に変位しているが、これは石炭の粉体圧や炉壁煉瓦表面の急激な温度低下に伴なう炉壁の一時的な膨張によるものと考えられる。また、炭中温度が400℃未満の状態ではガス圧に顕著な変化は認められないが、装入後8〜10時間を経過し、炭中温度が400〜500℃となる時点で、炉幅方向中央部における石炭膨張圧が急激に増大し、これに伴って、炉壁が膨張側に大きく変位している。その後石炭膨張圧は減少しているが、これに同調して炉壁の変位も減少し、ほぼ元の位置に近い状態に戻っている。この炉壁の大きな変位は、石炭が軟化溶融している間に発生したガスによる圧力(石炭膨張圧)によるものと考えられる。炉壁とコークス間のクリアランスは数mm程度であることを考慮すると、炭化室への石炭装入直後の炉壁変位量、及び石炭膨張圧による炉壁変位量は、決して無視できない量であることがわかる。
As a measurement result of the investigation, FIG. 7A shows the furnace wall displacement of the kiln (measured in the adjacent kiln as described above), and FIG. 7B shows the furnace width direction center of the kiln (carbonization chamber). The change of the temperature of the coal bed measured in the same position as the measurement of the coal expansion pressure and the coal expansion pressure measured in the section (hereinafter also referred to as the temperature in the coal) is shown with respect to the elapsed time after charging the coal. As can be seen from (a) of FIG. 7, the furnace wall is greatly displaced toward the expansion side (the direction of the adjacent kiln) immediately after the coal is charged, but it becomes smaller with the passage of time and is almost restored to the original state. I know that.
That is, the furnace wall is displaced to the expansion side immediately after charging the coal. This is due to the temporary expansion of the furnace wall due to the powder pressure of coal and the rapid temperature drop of the furnace wall brick surface. Conceivable. In addition, when the temperature in the coal is less than 400 ° C, no significant change is observed in the gas pressure, but when the temperature in the coal reaches 400 to 500 ° C after 8 to 10 hours after charging, the furnace width The coal expansion pressure at the center in the direction increases rapidly, and the furnace wall is greatly displaced toward the expansion side. After that, although the coal expansion pressure has decreased, the displacement of the furnace wall has also decreased in synchronization with this, and it has returned to a state almost close to the original position. This large displacement of the furnace wall is considered to be due to the pressure (coal expansion pressure) caused by the gas generated while the coal is softening and melting. Considering that the clearance between the furnace wall and coke is about a few millimeters, the furnace wall displacement immediately after charging the coal into the carbonization chamber and the furnace wall displacement due to the coal expansion pressure are never negligible. I understand.

発明者らは、前述した石炭膨張圧による炉壁の変位がコークス押出し力の推定に当たって重要な因子となるクリアランスの形成に大きく影響することに想到し、炉壁の変位を反映させたクリアランス形成モデルを想定した。図1は、石炭乾留過程における炉壁とコークスの挙動を説明する模式図であり、炉壁の変位を考慮したクリアランス形成を説明するものである。
なお、図1には、炉壁の変位を考慮しない従来の場合についても併せて示している。以下、このモデルについて説明する。
The inventors have conceived that the displacement of the furnace wall due to the coal expansion pressure described above greatly affects the formation of clearance, which is an important factor in estimating the coke extrusion force, and a clearance formation model that reflects the displacement of the furnace wall. Was assumed. FIG. 1 is a schematic diagram for explaining the behavior of the furnace wall and coke in the coal carbonization process, and explains the clearance formation considering the displacement of the furnace wall.
FIG. 1 also shows a conventional case that does not consider the displacement of the furnace wall. Hereinafter, this model will be described.

1)石炭装入時:上述のように石炭装入時の粉体圧や、煉瓦表面の急激な温度低下などにより一時的に炉壁が膨張側に変位することはあるが、これらは、時間が経過して炉壁煉瓦表面の温度が回復するとともに減少し、元に位置に戻るものであり、これを炉壁の位置の原点とする。   1) During coal charging: As mentioned above, the furnace wall may be temporarily displaced to the expansion side due to the powder pressure during coal charging or the rapid temperature drop of the brick surface. As the temperature of the furnace wall brick recovers, the temperature decreases and returns to the original position. This is the origin of the furnace wall position.

2)石炭膨張圧による炉壁変位:炉壁に接する側から順次石炭が高温に加熱されて軟化溶融し、次いで再固化してコークスとなるが、軟化溶融状態は非常に粘調であり、石炭から発生したガスは軟化溶融層内に気泡の形で存在する。気泡内のガスの圧力は、軟化溶融層と炉壁間に生成したコークス(固体)を介して炉壁に力を及ぼし、炉壁を変位させる。軟化溶融層は、炭化室の両炉壁側から炉幅方向中央部に向って進展し、最終的に炉幅方向中央部において会合する段階で石炭膨張圧がピーク(以下、最大膨張圧とも記載する)となり、このときに炉壁はコークスと共に最大の位置まで膨張変位する。この変位を炉壁膨張変位量Bとする。   2) Furnace wall displacement due to coal expansion pressure: Coal is heated to high temperature sequentially from the side in contact with the furnace wall and softened and melted, then re-solidified into coke, but the softened and melted state is very viscous. The gas generated from is present in the form of bubbles in the softened molten layer. The pressure of the gas in the bubbles exerts a force on the furnace wall through coke (solid) generated between the softened molten layer and the furnace wall, and displaces the furnace wall. The softened molten layer progresses from the both furnace wall sides of the carbonization chamber toward the center in the furnace width direction, and finally reaches the peak in the stage where the coal expansion pressure meets at the center in the furnace width direction (hereinafter also referred to as the maximum expansion pressure). At this time, the furnace wall is expanded and displaced to the maximum position together with the coke. This displacement is defined as a furnace wall expansion displacement amount B.

3)軟化溶融に引き続いて、コークス化(再固化)が進行し、揮発成分の離脱や縮重合反応などによりコークスの容積が減少するいわゆる焼減りが生じる。この焼減りは3次元的に生じるが、その水平方向(炭化室の炉幅方向)の焼減り(以下、水平焼減りとも記載する)によって、炉壁とコークス間にクリアランスLが形成される。この水平焼減り量をAとする。
この水平焼減り量Aは、装入された石炭の性状、乾留条件などによって左右されるがこれらの条件が一定であれば、一定量である。
ところで、装入した石炭の全てがコークス化した段階で石炭膨張圧は消滅するので、石炭膨張圧によって膨張変位していた炉壁は、元の位置に戻るものと考えられる。
また、コークスの水平焼減りは、上記2)の炉壁の位置、すなわち石炭膨張圧が最大となったときの炉壁の位置から開始されるので、炉壁膨張変位量Bを元の炉壁位置に対して考慮した場合、形成されたクリアランスL1は、L1=A−Bとなる。
3) Subsequent to softening and melting, coking (re-solidification) proceeds, and so-called burn-out occurs in which the volume of the coke is reduced due to separation of volatile components, condensation polymerization reaction, and the like. Although this burning occurs three-dimensionally, a clearance L is formed between the furnace wall and the coke by the horizontal burning (hereinafter also referred to as horizontal burning). Let this horizontal burn-out amount be A.
The horizontal burn-out amount A depends on the properties of the charged coal, the dry distillation conditions, etc., but if these conditions are constant, it is a constant amount.
By the way, since the coal expansion pressure disappears when all the charged coal is coke, it is considered that the furnace wall that has been expanded and displaced by the coal expansion pressure returns to the original position.
Further, the horizontal burning of the coke is started from the position of the furnace wall in the above 2), that is, the position of the furnace wall when the coal expansion pressure becomes maximum, so that the furnace wall expansion displacement amount B is set to the original furnace wall. When considering the position, the formed clearance L1 is L1 = A−B.

4)上記のように、石炭膨張圧によって炉壁が大きく膨張変位することが判明したが、同じことが隣接の炭化室(隣接窯)にも生じているので、この炭化室(自窯)の炉壁の変位のみならず、この炭化室に隣接する炭化室(隣接窯)の炉壁の変位の影響を考慮することも重要である。
この隣接窯の炉壁の膨張変位量は、隣接窯に装入される石炭の性状、操業条件などにより変化するが、それらの条件に応じて把握することができる。
この隣接窯の炉壁の膨張変位による自窯の炉壁の変位量をC(自窯に向かう方向を正とする)とし、この隣接窯による自窯の炉壁変位Cを自窯の元の炉壁位置に対して考慮した場合のクリアランスL2は、L2=A−B−Cとなる。
4) As described above, it was found that the furnace wall was greatly expanded and displaced by the coal expansion pressure, but the same occurred in the adjacent carbonization chamber (adjacent kiln). It is important to consider not only the displacement of the furnace wall but also the influence of the displacement of the furnace wall of the carbonization chamber (adjacent kiln) adjacent to this carbonization chamber.
The expansion displacement amount of the furnace wall of the adjacent kiln varies depending on the properties of the coal charged in the adjacent kiln, operating conditions, etc., but can be grasped according to those conditions.
The amount of displacement of the furnace wall of the own furnace due to the expansion displacement of the furnace wall of the adjacent furnace is C (the direction toward the own furnace is positive), and the furnace wall displacement C of the adjacent furnace is the original The clearance L2 when considering the furnace wall position is L2 = A-B-C.

図1の従来の炉壁の変位を考慮しない場合と比べれば明らかなように、本発明においては、押出し力を推定する際に最も重要な要素とされるクリアランスを求める際に、コークスの水平方向の焼減り量Aに関して、炉壁のi)石炭膨張圧による膨張変位量Bおよび/または、ii)隣接窯の膨張変位よる自窯の炉壁変位量Cを考慮して得られたクリアランスに基づいて押出し力を推定するものである。   As apparent from the case where the displacement of the conventional furnace wall in FIG. 1 is not taken into consideration, in the present invention, the horizontal direction of the coke is determined when obtaining the clearance, which is the most important factor in estimating the pushing force. Based on the clearance obtained in consideration of i) expansion displacement amount B due to coal expansion pressure and / or ii) furnace wall displacement amount C of the own furnace due to expansion displacement of the adjacent kiln. Thus, the extrusion force is estimated.

なお、上記のクリアランスL1,L2を求める際に、さらに、炉壁に形成される堆積カーボンの厚さ、あるいは炉壁の凹凸の影響を公知の方法で考慮することができることは云うまでもない。
例えば、炉壁への堆積カーボンの厚さをD(図示しない)とすれば、これを考慮したクリアランスをL3とすれば、L3=A−B−C−Dとなる。
Needless to say, when the clearances L1 and L2 are obtained, the thickness of the deposited carbon formed on the furnace wall or the influence of the unevenness of the furnace wall can be taken into consideration by a known method.
For example, if the thickness of carbon deposited on the furnace wall is D (not shown), and L3 is a clearance considering this, L3 = ABCD.

焼減り量Aは、炭化室に装入される石炭の性状(例えば、揮発性成分の含有量など)や乾留条件(例えば乾留温度)などの条件を考慮して、例えば特許文献10〜12に記載された方法により求めることができる。
一方、炉壁の膨張変位量Bや、隣接する炭化室(隣接窯)の膨張変位による当該炭化室(自窯)の炉壁変位量Cは、上述の炉壁変位測定装置を用い、装入する石炭の性状や炉の操業条件に対応してその都度求めても良いが、発明者らはこれらを、より効率的に得る方法についてさらに検討した。
The amount of quenching A is, for example, disclosed in Patent Documents 10 to 12 in consideration of conditions such as the properties of the coal charged into the carbonization chamber (for example, the content of volatile components) and the carbonization conditions (for example, carbonization temperature). It can be determined by the method described.
On the other hand, the expansion displacement amount B of the furnace wall and the furnace wall displacement amount C of the carbonization chamber (own kiln) due to the expansion displacement of the adjacent carbonization chamber (adjacent kiln) are charged using the furnace wall displacement measuring device described above. Depending on the properties of the coal to be used and the operating conditions of the furnace, it may be obtained each time, but the inventors further examined a method for obtaining these more efficiently.

まず、当該炭化室(自窯)の炉壁の変位量Bについて説明する。
発明者らは、上記の炉壁変位測定装置を用いて、炭化室に装入する石炭の性状や炉の状況に対応して、最大膨張時のガス圧と、そのときの炉壁変位量との関係を調査した。なお、炉壁の変位は、炭化室の炉壁の状況(老朽度)、例えば、炉壁の亀裂の有無、亀裂の程度(縦亀裂の幅)、炉壁煉瓦の補修の程度など、の影響を考慮し、実際にコークスを製造しているコークス炉において炭化室の状況の異なるX,Y,Zの3つの炭化室(窯)について調査した。ここで、X窯は、局部的な補修にとどめた窯、すなわち老朽窯であり、Z窯は炭化室の炉壁煉瓦を全面的に積み替え補修した窯(更新窯)であり、Y窯はこれらの中間程度に補修した窯である。
また、特許文献13〜15で開示された方法に従って最大膨張圧の異なる装入炭を準備し、これらを炭化室に装入し、乾留を行った。そして各炭化室の炉壁の変位を上記と同様の方法で炉壁変位測定装置を用い測定すると共に、上記ガス圧測定装置により石炭の最大膨張圧を測定した。
First, the displacement amount B of the furnace wall of the carbonization chamber (own kiln) will be described.
The inventors use the furnace wall displacement measuring device described above, and in accordance with the properties of the coal charged into the carbonization chamber and the state of the furnace, the gas pressure at the maximum expansion, the furnace wall displacement amount at that time, The relationship was investigated. The displacement of the furnace wall is affected by the condition of the furnace wall in the coking chamber (degree of aging), such as the presence or absence of cracks in the furnace wall, the degree of cracks (width of longitudinal cracks), and the degree of repair of furnace wall bricks. In consideration of the above, three coke chambers (kilns) of X, Y, and Z in different coke chamber conditions were investigated in a coke oven that actually produces coke. Here, the X kiln is a kiln that has only been repaired locally, that is, an old kiln, the Z kiln is a kiln (renewed kiln) that has been completely repaired by reloading the furnace wall bricks of the carbonization chamber, and the Y kiln is these It is a kiln that has been repaired to a middle level.
Moreover, according to the method disclosed by patent documents 13-15, the charging coal from which a maximum expansion pressure differs was prepared, these were charged into the carbonization chamber, and dry distillation was performed. And the displacement of the furnace wall of each carbonization chamber was measured by the furnace wall displacement measuring apparatus by the same method as the above, and the maximum expansion pressure of coal was measured by the gas pressure measuring apparatus.

図2は、実測した石炭の最大膨張圧(kPa)と炉壁の変位量(mm)との関係を示したものである。図2の関係から判るように、炉壁の変位量は、最大膨張圧にほぼ比例して増加しており、また、その傾き、すなわち炭化室の炉壁変位量の最大膨張圧に対する変化率(mm/kPa)は、X窯(老朽窯)の方がZ窯(更新窯)に比べてきわめて大きい。これは、X窯では炭化室の炉壁に残存する大きな縦亀裂のため、水平荷重に対する耐力が低下しているためと考えられる。
このようなことから、炭化室の炉壁の変位量を、炭化室に発生する石炭の最大膨張圧との関係に基づいて求めることができる。
この場合、炭化室毎に石炭の最大膨張圧と炉壁の変位量の関係を求めておいても良いし、或いは、各炭化室を炉壁の状況(老朽度)、例えば炉壁煉瓦の亀裂の数、亀裂の幅、長さなどの状況をファクターとしてランク付けし、各ランク毎に図2のような炉壁の変位量と最大膨張圧との関係を求め、各炭化室のランクに応じて炉壁の変位量を求めるようにしてもよい。
FIG. 2 shows the relationship between the actually measured maximum expansion pressure (kPa) of coal and the furnace wall displacement (mm). As can be seen from the relationship in FIG. 2, the amount of displacement of the furnace wall increases almost in proportion to the maximum expansion pressure, and the inclination, that is, the rate of change of the furnace wall displacement amount of the carbonization chamber with respect to the maximum expansion pressure ( mm / kPa) is much larger in the X kiln (aged kiln) than in the Z kiln (renewal kiln). This is considered to be because the proof stress against the horizontal load is reduced due to a large vertical crack remaining on the furnace wall of the carbonization chamber in the X kiln.
For this reason, the amount of displacement of the furnace wall of the carbonization chamber can be determined based on the relationship with the maximum expansion pressure of coal generated in the carbonization chamber.
In this case, the relationship between the maximum expansion pressure of coal and the amount of displacement of the furnace wall may be obtained for each carbonization chamber, or each carbonization chamber is subjected to the status of the furnace wall (degree of aging), for example, cracks in the furnace wall bricks. The number of cracks, crack width, length, etc. are ranked as factors, and for each rank, the relationship between the amount of furnace wall displacement and maximum expansion pressure as shown in Fig. 2 is obtained. Then, the amount of displacement of the furnace wall may be obtained.

発明者らは、最大膨張圧による炉壁の変位量を更に効率的に求めるために、炭化室の状況を表わす指標として炉壁の縦亀裂の幅に着目し、炉壁の縦亀裂の平均幅と上記の炉壁変位量の変化率との関係について調査した。すなわち、縦亀裂の平均幅は、炉体の炉長方向(コークスの押出し方向)への膨張変位量を炉壁に存在する縦亀裂の本数で除して求めたものである。なお、炉体の炉長方向への膨張量は炉体膨張測定法(ピアノ線測量法)により測定した。すなわち、コークス炉の押出し機側とガイド車側にそれぞれ基準となるピアノ線を張り、ピアノ線からコークス炉本体の特定位置までの距離を、コークス炉の稼動時(熱間)において定期的に測定し、得られた距離値の経年比較から求めることができる。また、縦亀裂の本数は装入口や炭化室両端部の窯口からの目視観察により数えた。
上述のX〜Z窯の炭化室の縦亀裂の平均幅を表1に示す。表1から判るように、X窯(老朽窯)では3.6mm/本、Z(更新窯)では0.29mm/本であり、老朽窯では縦亀裂の平均幅が大きくなっている。
In order to more efficiently determine the amount of displacement of the furnace wall due to the maximum expansion pressure, the inventors focused on the width of the vertical crack in the furnace wall as an index representing the condition of the carbonization chamber, and the average width of the vertical crack in the furnace wall. And the relationship between the change rate of the furnace wall displacement and the above. That is, the average width of the longitudinal cracks is obtained by dividing the amount of expansion displacement in the furnace length direction (coke extrusion direction) of the furnace body by the number of longitudinal cracks existing on the furnace wall. The expansion amount of the furnace body in the furnace length direction was measured by a furnace body expansion measurement method (piano wire survey method). In other words, a standard piano wire is placed on each side of the coke oven extruder and guide wheel, and the distance from the piano wire to a specific position of the coke oven body is measured periodically when the coke oven is in operation (hot). The distance value obtained can be obtained from a comparison over time. Further, the number of vertical cracks was counted by visual observation from the inlet and the kiln opening at both ends of the carbonization chamber.
Table 1 shows the average width of the vertical cracks in the carbonization chamber of the above-described XZ furnace. As can be seen from Table 1, the average width of longitudinal cracks is large in the old kiln, which is 3.6 mm / bar in the X kiln (old kiln) and 0.29 mm / bar in the Z kiln (renewed kiln).

Figure 2008214379
Figure 2008214379

また、表1には、図2から求めたX〜Z窯の炭化室の炉壁の変位量の最大膨張圧に対する変化率(炉壁変位量の変化率)も記載している。次に、これらの結果から、炭化室の縦亀裂の平均幅(mm)と炉壁変位量の変化率(mm/kPa)との関係を求めた。その結果を図3に示す。
図3から判るように、炉壁の縦亀裂の平均幅(平均縦亀裂幅)と炉壁変位量の変化率とは、極めて明瞭な比例関係があり、下式<1>のような関係式として表せる。
[炉壁変位量の変位率 (mm/kPa)]= 0.144[平均縦亀裂幅(mm)] + 0.102 ----<1>
ここで、最大膨張圧は、上述のように、炭化室に装入する石炭の性状や乾留温度などにより推定することができ、また、縦亀裂の平均幅は、上述の方法により、予め測定して求めておくことができる。
従って、石炭の最大膨張圧による炉壁変位量(mm)は、炉壁の平均縦亀裂幅(mm)と、当該炭化室における石炭の最大膨張圧(kPa)により求めることができることが判る。
Table 1 also shows the rate of change (the rate of change of the furnace wall displacement) of the displacement amount of the furnace wall of the carbonization chamber of the XZ furnace obtained from FIG. 2 with respect to the maximum expansion pressure. Next, from these results, the relationship between the average width (mm) of the vertical cracks in the carbonization chamber and the rate of change of the furnace wall displacement (mm / kPa) was determined. The result is shown in FIG.
As can be seen from FIG. 3, the average width of the vertical cracks in the furnace wall (average vertical crack width) and the rate of change of the furnace wall displacement have a very clear proportional relationship. It can be expressed as
[Displacement rate of furnace wall displacement (mm / kPa)] = 0.144 [Average longitudinal crack width (mm)] + 0.102 ---- <1>
Here, as described above, the maximum expansion pressure can be estimated from the properties of coal charged in the carbonization chamber, the carbonization temperature, and the like, and the average width of longitudinal cracks is measured in advance by the above-described method. Can be obtained.
Therefore, it can be seen that the furnace wall displacement (mm) due to the maximum expansion pressure of coal can be obtained from the average vertical crack width (mm) of the furnace wall and the maximum expansion pressure (kPa) of coal in the carbonization chamber.

次に、隣接する炭化室(隣接窯)の炉壁の変位による当該炭化室(自窯)の炉壁の変位量Cについて説明する。
炉壁の変位挙動が明らかとなったので、次に、コークスの押出し性に対する隣接窯の影響を調査した。すなわち、上述の変位測定試験においては隣接の窯は空窯なので、装入炭の石炭膨張圧が高くても押出し負荷は上昇しなかった。そこで、炭化室の炉壁煉瓦を全面的に積み替えた隣合う3つの炭化室(N−1,N,N+1)に、高い膨張圧を有する装入炭(以下、高膨張圧炭とも記載する)と通常の膨張圧を有する装入炭とを表2に示すような組み合わせで装入して乾留し、コークスの押出し力との関係を調査する試験を行った。高膨張圧炭は、最大膨張圧が通常炭の約20倍のレベルとなっている。
なお、表2に示した各炭化室に装入した石炭の最大膨張圧は、上述の方法により推定したものである。
Next, the displacement amount C of the furnace wall of the carbonization chamber (own kiln) due to the displacement of the furnace wall of the adjacent carbonization chamber (adjacent kiln) will be described.
Since the displacement behavior of the furnace wall became clear, the influence of the adjacent kiln on the extrudability of coke was investigated next. That is, in the above displacement measurement test, the adjacent kiln was an empty kiln, so the extrusion load did not increase even when the coal expansion pressure of the charged coal was high. Therefore, charging coal having high expansion pressure (hereinafter also referred to as high expansion pressure coal) in the three adjacent carbonization chambers (N−1, N, N + 1) in which the furnace wall bricks of the carbonization chamber are completely replaced. And charging coal having a normal expansion pressure were charged in a combination as shown in Table 2, dry-distilled, and a test was conducted to investigate the relationship with the coke extrusion force. High expansion pressure coal has a maximum expansion pressure of about 20 times that of normal coal.
In addition, the maximum expansion pressure of coal charged in each carbonization chamber shown in Table 2 is estimated by the above-described method.

Figure 2008214379
Figure 2008214379

なお、試験においては、両隣接窯(N−1,N+1)の石炭膨張圧による自窯(N)の炉壁変位への影響を求めるために、まず、自窯(N)に石炭を装入し、その後、約8時間程の時間を開けて両隣接窯に石炭を装入し、両隣接窯における石炭膨張圧が最大となるタイミングで、自窯からコークスを押出した。なお、図4は高膨張圧炭装入試験の石炭の装入とコークス押出しのタイミング(イメージ)を示す図である。各窯における石炭膨張圧の時間変化を示しており、両窯への石炭の装入は、自窯(N)よりも遅らされており、自窯の押出しは、両窯の石炭膨張圧が最大となるタイミングとしている。そして、このときの押出し装置のラム駆動モーターの電流値の最大値を測定し、評価した。その結果を図5に示す。   In the test, in order to determine the influence of the coal expansion pressure of both adjacent kilns (N-1, N + 1) on the furnace wall displacement of the own kiln (N), first, coal is charged into the own kiln (N). Then, after about 8 hours, coal was charged into both adjacent kilns, and coke was extruded from the own kiln at the timing when the coal expansion pressure in both adjacent kilns became maximum. FIG. 4 is a diagram showing the timing (image) of coal charging and coke extrusion in the high expansion pressure coal charging test. The time change of the coal expansion pressure in each kiln is shown, and the charging of the coal into both kilns is delayed more than that of the own kiln (N). The timing is the maximum. And the maximum value of the electric current value of the ram drive motor of the extrusion apparatus at this time was measured and evaluated. The result is shown in FIG.

図5から判るように、自窯および両隣接窯に高膨張圧炭を装入した場合(水準4)に押出し時の電流値が最も高いが、隣接窯のいずれかに高膨張圧炭を装入した場合(水準2)および自窯のみに高膨張圧炭を装入した場合(水準3)も、自窯および両隣接窯に通常の石炭を装入した場合(水準1)に比べて、押出し時の電流値が7〜10%程度高くなっている。
このように、隣接窯に装入された石炭の膨張圧による炉壁の変位が、自窯の炉壁に変位にも大きな影響を与えていることが確認された。
As can be seen from FIG. 5, when high expansion pressure coal is charged into the own kiln and both adjacent kilns (level 4), the current value during extrusion is the highest, but either one of the adjacent kilns is loaded with high expansion pressure coal. When entering (level 2) and when charging high expansion pressure coal only in its own kiln (level 3), compared to when normal coal is charged in its own kiln and both adjacent kilns (level 1), The current value during extrusion is about 7 to 10% higher.
In this way, it was confirmed that the displacement of the furnace wall due to the expansion pressure of the coal charged in the adjacent kiln has a great influence on the displacement of the furnace wall of the own kiln.

この隣接窯の炉壁変位量Cについては、自窯の場合と同様に、図2に示したような、炭化室の炉壁の変位量と石炭膨張圧との関係、あるいは、図3に示した炭化室の平均縦亀裂幅と炉壁変位量の変化率との関係、すなわち、上述の<1>式の関係などを用いて求めることができる。   About the furnace wall displacement amount C of this adjacent kiln, as in the case of the own kiln, as shown in FIG. 2, the relationship between the displacement amount of the furnace wall of the carbonization chamber and the coal expansion pressure, or shown in FIG. The relationship between the average longitudinal crack width of the carbonization chamber and the rate of change of the furnace wall displacement amount, that is, the relationship of the above-described <1> equation can be used.

以上のような方法で、当該炭化室の炉壁の膨張変位量B、及び/または隣接の炭化室の炉壁の膨張変位による当該炭化室の変位量C、を考慮して炉壁とコークス間のクリアランスを求めることができる。
このクリアランスに基づいて、公知の方法、例えば特許文献1、7、8あるいは12などに記載された方法など、によって、コークス押出し時の押出し力を推定することができる。
ところで、これまで説明した炉壁の変位量Bについては、変位量Bに対する隣接窯の膨張挙動の影響は考慮していない。しかしながら、図4に示したように、自窯において石炭の膨張圧が最大となる時点で、隣接窯においても石炭の膨張圧が発生しているので、自窯における実際の炉壁の変位量は、これら自窯の膨張圧と、隣接窯の膨張圧の差によって決まることになる。
ここで、自窯において石炭の膨張圧が最大となる時点で、隣接窯においてどの程度の膨張圧が発生しているかは、隣接窯において前述のガス圧測定装置で実測しても良いが、石炭装入のたびに一々膨張圧を測定することは現実的ではなく、例えば、特許文献13において開示されている方法によって、軟化溶融状態にある石炭層のガス透過係数を石炭性状(石炭組織中の不活性成分量と最高流動度)から、あるいは乾留条件から推定するための関係線図を予め求めておき、この線図からガス透過係数を推算し、該ガス透過係数、軟化溶融状態にある石炭層の炉幅方向厚み、および該石炭層からの単位体積当たりの熱分解ガス発生速度から、石炭乾留過程における膨張圧の経時変化を推定するのが現実的である。
In the above-described method, considering the expansion displacement amount B of the carbonization chamber furnace wall and / or the carbonization chamber displacement amount C due to the expansion displacement of the adjacent carbonization chamber furnace wall, between the furnace wall and the coke. The clearance can be obtained.
Based on this clearance, the extrusion force at the time of coke extrusion can be estimated by a known method, for example, the method described in Patent Document 1, 7, 8, or 12 or the like.
By the way, about the displacement amount B of the furnace wall demonstrated so far, the influence of the expansion behavior of the adjacent kiln on the displacement amount B is not considered. However, as shown in FIG. 4, when the expansion pressure of coal is maximum in the own kiln, since the expansion pressure of coal is generated in the adjacent kiln, the actual amount of displacement of the furnace wall in the own kiln is These are determined by the difference between the expansion pressure of the own kiln and the expansion pressure of the adjacent kiln.
Here, when the expansion pressure of coal in the own kiln becomes the maximum, how much expansion pressure is generated in the adjacent kiln may be measured by the gas pressure measuring device described above in the adjacent kiln, It is not realistic to measure the expansion pressure at every charge. For example, by the method disclosed in Patent Document 13, the gas permeability coefficient of a coal bed in a softened and melted state is determined as a coal property (in the coal structure). Inactive component amount and maximum fluidity) or a relationship diagram for estimation from dry distillation conditions is obtained in advance, the gas permeability coefficient is estimated from this diagram, and the gas permeability coefficient and coal in the softened and molten state It is realistic to estimate the change over time in the expansion pressure during the coal dry distillation process from the thickness of the layer in the furnace width direction and the rate of generation of pyrolysis gas per unit volume from the coal bed.

以下、実施例によりさらに具体的に説明する。
炭化室の炉壁煉瓦を全面的に積み替えた連続する3つの炭化室(更新窯)の炭化室(N−1、N、N+1)に、通常炭と高膨張圧炭を前記表2に示したような4水準で組み合わせて装入し、乾留を行った。乾留後にコークスを押出し、そのときの押出し装置のラム駆動モーターの最大電流値を測定した。なお、石炭の装入のタイミング、乾留条件などを調整し、乾留後に当該窯のコークスを押出す時点は、図4に示したように、両隣接窯の炭化室がほぼ最大膨張ガス圧に達している時点となるようにした。
コークスの水平焼減り量Aは、コークス炉装入用配合炭を、特許第3254004号に記載の水平方向焼減りが測定可能な両面加熱式の試験コークス炉を用い、実炉と同じ条件で乾留し、乾留中における水平方向焼減りの経時変化を連続的に測定して求めた。
Hereinafter, the present invention will be described in more detail with reference to examples.
Table 2 shows normal coal and high expansion pressure coal in the carbonization chambers (N-1, N, N + 1) of three consecutive carbonization chambers (renewal kilns) in which the furnace wall bricks of the carbonization chamber are completely transposed. Charged in combination at such 4 levels, dry distillation was performed. Coke was extruded after dry distillation, and the maximum current value of the ram drive motor of the extrusion apparatus at that time was measured. In addition, as shown in FIG. 4, the carbonization chamber of both adjacent kilns reaches the maximum expansion gas pressure as shown in FIG. 4 when the timing of coal charging, the carbonization conditions, etc. are adjusted and the coke of the kiln is extruded after the carbonization. To be at that point.
The coke horizontal burn-off amount A is a dry-cooking of the blended coal for coke oven charging using the double-sided heating type test coke oven capable of measuring horizontal burn-out described in Japanese Patent No. 3254004 under the same conditions as the actual furnace. The change over time in horizontal burning during dry distillation was measured continuously.

炉壁の変位量Bは、上述のように、<1>式により当該窯の炉壁の平均縦亀裂幅と、装入した石炭の性状から求めた石炭膨張圧とから求めた。なお、炉壁の平均縦亀裂幅は、上述のピアノ線を用いる方法で測定したところ0.29mm/本であった。また、石炭の膨張圧は、前述の特許文献13において開示された方法により求めた。
さらに、図4に示したように、当該窯において石炭膨張圧が最大となる時点では、隣接窯においても膨張圧が発生しているので、その分、自窯の膨張圧による炉壁の変位量が相殺されることになる。そこで、自窯の膨張圧が最大となる時点における隣接窯の石炭膨張圧は、隣接窯に装入した石炭の最大膨張圧の70%と仮定した。すなわち、炉壁膨張変位量Bは以下の<2>式で求めた。
B=(自窯の最大膨張圧−0.7×隣接窯の最大膨張圧)
×(0.144×平均縦亀裂幅+0.102) -----<2>
As described above, the displacement amount B of the furnace wall was obtained from the average vertical crack width of the furnace wall of the kiln and the coal expansion pressure obtained from the properties of the charged coal according to the formula <1>. In addition, when the average vertical crack width of the furnace wall was measured by the method using the above-mentioned piano wire, it was 0.29 mm / piece. Moreover, the expansion pressure of coal was calculated | required by the method disclosed in the above-mentioned patent document 13.
Furthermore, as shown in FIG. 4, when the coal expansion pressure reaches the maximum in the kiln, the expansion pressure is also generated in the adjacent kiln, and accordingly, the amount of displacement of the furnace wall due to the expansion pressure of the own kiln. Will be offset. Therefore, the coal expansion pressure of the adjacent kiln at the time when the expansion pressure of the own kiln becomes maximum is assumed to be 70% of the maximum expansion pressure of the coal charged in the adjacent kiln. That is, the furnace wall expansion displacement amount B was obtained by the following formula <2>.
B = (maximum expansion pressure of own kiln−0.7 × maximum expansion pressure of adjacent kiln)
× (0.144 × average longitudinal crack width + 0.102) ----- <2>

また、変位量Cは、上述のように、隣接窯に装入される石炭の性状から上記と同様に特許文献13において開示された方法に基づいて推定された最大膨張圧、および炉壁の平均縦亀裂幅(0.29mm/本)に基づいて、<1>式により求めた。なお、図4に示すように、隣接窯の石炭膨張圧が最大となる時点では、自窯の膨張圧は消滅していることから、<2>式で用いているような相殺項を考慮する必要はない。
また、炉壁とコークス間に生成する堆積カーボンの厚みについては、前記特許文献5に開示された方法に従って計算した。
これらの結果を表3に示す。表3では、炉壁の変位を考慮しない場合(水平焼減りA)、自窯の炉壁変位を考慮した場合(L1)、自窯及び隣接窯による炉壁変位を考慮した場合(L2)、及び堆積カーボンの厚みを考慮した場合(L3)のクリアランスをそれぞれ示した。また、表3のそれぞれの場合における押出し電流値(最大値)とクリアランスとの関係を図6に示す。
Further, as described above, the displacement amount C is the maximum expansion pressure estimated based on the method disclosed in Patent Document 13 from the properties of the coal charged in the adjacent kiln and the average of the furnace wall. Based on the longitudinal crack width (0.29 mm / piece), it was determined by the formula <1>. In addition, as shown in FIG. 4, when the coal expansion pressure of the adjacent kiln becomes maximum, the expansion pressure of the own kiln disappears, so the offset term used in the <2> formula is considered. There is no need.
Further, the thickness of the deposited carbon generated between the furnace wall and the coke was calculated according to the method disclosed in Patent Document 5.
These results are shown in Table 3. In Table 3, when the furnace wall displacement is not considered (horizontal burnout A), when the furnace wall displacement of the own kiln is considered (L1), when considering the furnace wall displacement due to the own kiln and the adjacent kiln (L2), And the clearance when the thickness of the deposited carbon is taken into account (L3). Moreover, the relationship between the extrusion current value (maximum value) and the clearance in each case of Table 3 is shown in FIG.

Figure 2008214379
Figure 2008214379

表3及び図6の結果から、炉壁の変位を考慮しない場合(図6の△)や、自窯の炉壁変位のみを考慮した場合(図6◇)に比べて、自窯及び隣接窯による炉壁変位を考慮した場合(図6の*)や、自窯及び隣接窯による炉壁変位に加えて、さらに炉壁の堆積カーボン厚みを考慮した場合(図6の●)は、押出し時の最大電流値との関係がより明確になっていることが判る。
すなわち、炉壁の変位を考慮することにより、クリアランスを実炉の状況に近い形でより適切に評価することができ、精度良く押出し力を推定することができる。
これによって、コークス押出し時において適切な押出し力を設定することが可能となり、また、適切な押出し力となるように石炭の配合条件やコークス炉の操業条件を制御することができる。
From the results in Table 3 and FIG. 6, compared to the case where the furnace wall displacement is not taken into account (Δ in FIG. 6), or the case where only the furnace wall displacement of the own furnace is taken into account (FIG. 6 ◇), When the furnace wall displacement due to (Fig. 6 in Fig. 6) is considered, or when the thickness of the deposited carbon on the furnace wall is further taken into account in addition to the furnace wall displacement due to the own and adjacent kilns (● in Fig. 6) It can be seen that the relationship with the maximum current value is more clear.
That is, by considering the displacement of the furnace wall, the clearance can be more appropriately evaluated in a form close to the actual furnace condition, and the pushing force can be estimated with high accuracy.
Accordingly, it is possible to set an appropriate extrusion force at the time of coke extrusion, and it is possible to control coal blending conditions and coke oven operating conditions so as to achieve an appropriate extrusion force.

石炭乾留過程における炉壁とコークスの挙動を説明する模式図である。It is a schematic diagram explaining the behavior of a furnace wall and coke in a coal carbonization process. 石炭乾留時の石炭膨張圧と炉壁変位量との関係を示す図である。It is a figure which shows the relationship between the coal expansion pressure at the time of coal dry distillation, and a furnace wall displacement. 炉壁の平均縦亀裂幅と炉壁変位量の変化率の関係を示す図である。It is a figure which shows the relationship between the average longitudinal crack width of a furnace wall, and the change rate of a furnace wall displacement amount. 高膨張力炭装入試験における石炭の装入とコークス押出しのタイミング(イメージ)を示す図である。It is a figure which shows the timing (image) of the charging of coal and coke extrusion in a high expansion power coal charging test. 高膨張圧炭を配合した場合のコークス押出し時の押出し装置の最大電流値を示す図である。It is a figure which shows the maximum electric current value of the extrusion apparatus at the time of coke extrusion at the time of mix | blending high expansion pressure coal. 炉壁とコークス間のクリアランス量とコークス押出し時の押出し装置の最大電流値の関係を示す図である。It is a figure which shows the relationship between the clearance amount between a furnace wall and coke, and the maximum electric current value of the extrusion apparatus at the time of coke extrusion. 石炭乾留過程における炭化室の状況の時間変化を示す図であり、(a)は、炭化室の炉壁の変位、(b)は石炭層の温度及び石炭膨張圧の変化を示す。It is a figure which shows the time change of the condition of the carbonization chamber in a coal carbonization process, (a) shows the displacement of the furnace wall of a carbonization chamber, (b) shows the change of the temperature of a coal bed, and a coal expansion pressure. 炉壁変位量の測定装置の概要および使用状況を説明する断面概要図である。It is a cross-sectional schematic diagram explaining the outline | summary and the use condition of the measuring apparatus of a furnace wall displacement amount.

符号の説明Explanation of symbols

1a、1b 炭化室
2 燃焼室
3 炉壁
4 ガスポート
5 石炭
6 コークスケーキ
7 炉壁変位量の測定装置
8 装入口(装入蓋)
9 支持板
10 開口部
11 金属製プローブ
12 プローブ支持部
13 傾動量検出器
14 レーザー発振器
15 受光板
16 炉壁と変位測定プローブとの接触点
17 レーザー光
DESCRIPTION OF SYMBOLS 1a, 1b Carbonization chamber 2 Combustion chamber 3 Furnace wall 4 Gas port 5 Coal 6 Coke cake 7 Measuring device of furnace wall displacement amount 8 Charging inlet (charging lid)
DESCRIPTION OF SYMBOLS 9 Support plate 10 Opening part 11 Metal probe 12 Probe support part 13 Tilt amount detector 14 Laser oscillator 15 Light receiving plate 16 Contact point of a furnace wall and a displacement measurement probe 17 Laser beam

Claims (4)

室式コークス炉の炭化室から押出し機でコークスを排出する際に必要な押出力を、石炭乾留時に発生する炉壁とコークス間の隙間量を用いて推定し、この推定した押出し力に基づいてコークスの押出しを行う室式コークスの操業方法において、この隙間量を石炭乾留中に発生する炭化室の炉壁の変位量を考慮して求めることを特徴とする、室式コークス炉の操業方法。   The pushing force required to discharge coke from the coking chamber of the chamber coke oven with the extruder is estimated using the amount of gap between the furnace wall and coke generated during coal dry distillation, and based on this estimated extrusion force A method for operating a coke oven in a coke oven, wherein the amount of the gap is determined in consideration of the amount of displacement of the furnace wall of the carbonization chamber generated during coal carbonization. 石炭乾留中に発生する前記炉壁の変位量を、炉壁煉瓦の縦亀裂幅と石炭の膨張圧から推定することを特徴とする、請求項1に記載の室式コークス炉の操業方法。   The method of operating a coke oven according to claim 1, wherein the amount of displacement of the furnace wall that occurs during coal carbonization is estimated from the vertical crack width of the furnace wall brick and the expansion pressure of the coal. 前記炉壁煉瓦の縦亀裂幅を、当該窯の炉長方向の炉体の膨張量と縦亀裂の本数とから求めることを特徴とする、請求項2に記載の室式コークス炉の操業方法。   The method for operating a coke oven according to claim 2, wherein the vertical crack width of the furnace wall brick is determined from the amount of expansion of the furnace body in the furnace length direction of the furnace and the number of vertical cracks. 前記炉壁の変位量を推定するための石炭の膨張圧として、当該炭化室とその両隣にある炭化室の膨張圧を用いることを特徴とする、請求項2または3に記載の室式コークス炉の操業方法。   The chamber coke oven according to claim 2 or 3, wherein the expansion pressure of the coal for estimating the displacement of the furnace wall is the expansion pressure of the carbonization chamber and the adjacent carbonization chamber. Operating method.
JP2007049601A 2007-02-28 2007-02-28 Operation method of the room type coke oven Active JP4980098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049601A JP4980098B2 (en) 2007-02-28 2007-02-28 Operation method of the room type coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049601A JP4980098B2 (en) 2007-02-28 2007-02-28 Operation method of the room type coke oven

Publications (2)

Publication Number Publication Date
JP2008214379A true JP2008214379A (en) 2008-09-18
JP4980098B2 JP4980098B2 (en) 2012-07-18

Family

ID=39834827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049601A Active JP4980098B2 (en) 2007-02-28 2007-02-28 Operation method of the room type coke oven

Country Status (1)

Country Link
JP (1) JP4980098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264141B2 (en) * 2014-03-27 2018-01-24 新日鐵住金株式会社 Coke cake pushing force estimation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310776A (en) * 1997-05-14 1998-11-24 Nippon Steel Corp Operation of coke oven
JP2000073067A (en) * 1998-08-27 2000-03-07 Nippon Steel Corp Operation of coke oven
JP2000290658A (en) * 1999-04-05 2000-10-17 Nippon Steel Corp Method for operating coke oven

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310776A (en) * 1997-05-14 1998-11-24 Nippon Steel Corp Operation of coke oven
JP2000073067A (en) * 1998-08-27 2000-03-07 Nippon Steel Corp Operation of coke oven
JP2000290658A (en) * 1999-04-05 2000-10-17 Nippon Steel Corp Method for operating coke oven

Also Published As

Publication number Publication date
JP4980098B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
CN102197110B (en) Method for estimation of coke oven load generated during coke extrusion
JP4980098B2 (en) Operation method of the room type coke oven
JP5461768B2 (en) Coke oven carbonization chamber diagnostic method
JP5052944B2 (en) Coke oven operation method
JP4538097B2 (en) Method for estimating the load generated during coke extrusion in a coke oven.
JP4994931B2 (en) Method for Estimating Coke Pushing Force in Chamber Type Coke Oven and Method for Judging Extrudability of Coke Oven
JP4899326B2 (en) Method for estimating coke shrinkage of blended coal and method for producing coke
JP4321369B2 (en) Coke oven operation method
JP5182006B2 (en) Method for estimating side load during coke extrusion in chamber coke oven and method for operating chamber coke oven based on estimated side load
JP6241195B2 (en) Method for Estimating Carbonization Product Temperature in a Laboratory Coke Oven
JP5581630B2 (en) Coke cake extrudability estimation method
JP4259234B2 (en) Method for selecting raw materials for horizontal chamber type coke oven
JP3603741B2 (en) Coke oven wall management method
JP6197568B2 (en) Estimation Method of Coke Pushing Force in Chamber Type Coke Oven
JP4142333B2 (en) Coke oven coking chamber diagnostic method
JP5505221B2 (en) Estimation method of coke extrusion load in coke oven.
JP7485246B1 (en) Method for predicting usable life of carbonization chamber and method for repairing carbonization chamber
JP4444764B2 (en) Selection method of carbon adhesion chamber and operation method of coke oven
JP6724738B2 (en) Judging completion method for coke oven
JP5966845B2 (en) Estimation method of coke pushing force in coke oven
JP6260254B2 (en) Estimation method of coke extrusion load in coke oven.
JP2003064378A (en) Method for coke oven operation
JP2004359901A (en) Measuring method of coke cake width and operation method of coke oven
JPH0343490A (en) Abnormality inspection of furnace wall of coke oven
JP2005162987A (en) Method for discriminating carbonizing chamber state in coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4980098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350