JP2015081233A - Antibacterial treatment method, and antibacterial treatment agent - Google Patents

Antibacterial treatment method, and antibacterial treatment agent Download PDF

Info

Publication number
JP2015081233A
JP2015081233A JP2013218519A JP2013218519A JP2015081233A JP 2015081233 A JP2015081233 A JP 2015081233A JP 2013218519 A JP2013218519 A JP 2013218519A JP 2013218519 A JP2013218519 A JP 2013218519A JP 2015081233 A JP2015081233 A JP 2015081233A
Authority
JP
Japan
Prior art keywords
antibacterial
base
agent
antibacterial treatment
mercaptopyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013218519A
Other languages
Japanese (ja)
Other versions
JP6125400B2 (en
Inventor
秀行 関
Hideyuki Seki
秀行 関
佐々木 正人
Masato Sasaki
正人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PURESON CORP
Original Assignee
PURESON CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PURESON CORP filed Critical PURESON CORP
Priority to JP2013218519A priority Critical patent/JP6125400B2/en
Publication of JP2015081233A publication Critical patent/JP2015081233A/en
Application granted granted Critical
Publication of JP6125400B2 publication Critical patent/JP6125400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To deactivate a microorganism such as a bacterium, a fungus, and algae on a surface of a hard material of housing, furniture, equipment or the like, or to modify a receptor, a carrier and an enzyme that protrude from a cell membrane and a cell wall of the microorganism to inhibit each function.SOLUTION: An antibacterial treatment agent includes as an antibacterial base agent a 2-mercaptopyridine-N-oxide salt, a homologous derivative formed by substituting/modifying another group for hydrogen of a 3-6 position of the pyridine ring of the 2-mercaptopyridine-N-oxide salt, or a homologous derivative formed by substituting a pyrimidine ring for the pyridine ring. The antibacterial treatment agent is added to, impregnated in, or coated on an antibacterial treatment target by uniformly distributing so as to be 1 mg or more per 1 mof a surface area of the antibacterial treatment target.

Description

本発明は、住宅・家具・備品等の硬質材表面における微生物を不活性化したり、硬質材表面に増殖の可能性がある細菌、真菌(カビ)並びに藻類の、細胞膜・細胞壁外に突出した受容体・輸送体・酵素と結合して変性させることで各機能を阻害する抗菌処理方法及び抗菌処理薬剤に関する。   The present invention is intended to inactivate microorganisms on the surface of hard materials such as houses, furniture, and fixtures, and to accept bacteria, fungi and algae that protrude on the surface of hard materials that protrude outside the cell membrane / cell wall. The present invention relates to an antibacterial treatment method and an antibacterial treatment drug that inhibit each function by binding to a body / transporter / enzyme and denatured.

細菌は進化的に見て古い原核生物に分類され、細胞壁を構成するリポ多糖の違いでグラム染色法により陽性と陰性とに分類されている。一方のカビは、細胞の外から細胞壁、細胞膜、核膜及び核からなる真核生物であり、微生物学上はキノコとともに「真菌」に分類されている。従って、真菌のなかでキノコを生じない糸状菌を一般的に「カビ(黴)」と称している。
本発明では、藻類、真菌及び細菌の別なく、押し並べて発藻防止・抗菌作用を発揮する薬剤を「基剤」と、該基剤より作用部位は限定されるが相乗効果を発揮する薬剤を「副剤」と称する。又、一連の「含硫化合物」を医薬同様に「サルファ剤」と総称する。
Bacteria are evolutionarily classified as old prokaryotes, and are classified into positive and negative by the Gram staining method due to the difference in lipopolysaccharide that constitutes the cell wall. One mold is a eukaryote composed of a cell wall, a cell membrane, a nuclear membrane and a nucleus from the outside of the cell, and is classified as a “fungus” together with mushrooms in microbiology. Therefore, filamentous fungi that do not produce mushrooms among fungi are generally referred to as “mold”.
In the present invention, a drug that exerts algae prevention and antibacterial action by pushing it side by side, regardless of whether it is algae, fungi, or bacteria, and a drug that exerts a synergistic effect although its action site is limited by the base. This is referred to as “secondary agent”. In addition, a series of “sulfur-containing compounds” are collectively referred to as “sulfa drugs” like medicines.

身近な衣及び住環境の硬質材表面には、往々にしてカビが生え、細菌が増殖する。又、プールや浴室等のガラス窓が高湿度に伴い結露し、レール溝に溜まった結露水がその構造から外壁を伝わって垂れ流れるから、垂れ流れの道筋には日照に伴い藻が増殖し緑色の汚れになることが頻繁に見られる。
通常、これら真菌・細菌や藻の汚染源は、環境の空気や施設の用水である。
Molds often grow on the surfaces of familiar clothing and hard materials in the living environment, and bacteria multiply. Also, glass windows in pools and bathrooms are condensed with high humidity, and the condensed water that has accumulated in the rail grooves flows down from the structure through the outer wall, so the algae grows along the sluice path along with sunlight and grows green. Often seen to become dirty.
Usually, the source of contamination of these fungi, bacteria and algae is environmental air and facility water.

こうした微生物増殖を解消するために、従来は対症療法的に、次亜塩素酸ナトリウムを水で希釈した消毒液いわゆる「塩素系消毒液」を用いて分解・漂白してきた。該処理後の菌類を顕微鏡観察すると、例えば桿菌は大半が細胞液を漏出して溶菌状態になっており、生存時の形状を止めていない。又、「抗カビ・抗菌剤」と称する薬剤で洗浄又は拭き取り、或いは微生物汚染を受ける物体そのものに該薬剤を塗付・噴霧又は含浸等の表面処理をする方法も採られてきた。   In order to eliminate such microbial growth, conventionally, as a symptomatic treatment, decomposition and bleaching have been performed using a so-called “chlorine-based disinfectant” obtained by diluting sodium hypochlorite with water. When the treated fungi are observed with a microscope, for example, most of the koji molds are in a lysed state by leaking cell fluid, and the shape at the time of survival is not stopped. In addition, a method of cleaning or wiping with a drug called “antifungal / antibacterial agent” or applying a surface treatment such as applying, spraying, or impregnating the drug itself to an object subjected to microbial contamination has been adopted.

ところが、従来法、例えば上述の「塩素系消毒液」では、時により清掃対象物の硬質材表面も漂白、或いは変質させる弊害を生じる。別系統の「抗カビ・抗菌剤」では、化学構造が著しく異なる複数の薬剤を組み合わせた複合型にして多種の細菌に対して薬効を発揮させることを狙いとしてきた。しかし、狙いとする相乗効果を実際に発揮しているかは、該複合剤の微生物不活性化機構を詳細に解明していないため、総じて疑わしい。   However, the conventional method, for example, the above-mentioned “chlorine-based disinfectant” sometimes causes a problem that the surface of the hard material to be cleaned is also bleached or altered. Another type of “antifungal / antibacterial agent” has been aimed at combining a plurality of drugs with significantly different chemical structures to exert a medicinal effect against various bacteria. However, it is generally questionable whether the target synergistic effect is actually exhibited because the microbial inactivation mechanism of the composite agent has not been elucidated in detail.

一方、人畜に対して、該抗菌剤と類似の抗感染症内服薬として、スルファニルアミド(示性式H2NC65SO2NH2)等を基本骨格に持つ化合物が通称「サルファ剤」と呼ばれ公知である。
これは文字通りサルファ(硫黄:S)を含む製剤の総称で、これまで数千種のサルファ剤が合成され、感染症治療に多大な効果を挙げてきたが、近年は耐性菌が出現し、治療時のサルファ剤種選択に医師等は苦慮している。
更に、該スルファニルアミドの利尿と代謝性アシドーシスの薬理作用機構が研究され、化学構造中にスルファミド基(−SO2NH2)を有すると炭酸脱水酵素の働きを阻害し、末端アミノ基の水素がメチル基(−CH3)等と置換し「−SO2NH(CH3)」等になると該阻害作用を消失することが今では定説になっている。その理由は、該末端基(基質)の構造がメチル基になると酵素の活性部位の構造と嵌合しないから、と考えられている。
On the other hand, a compound having a basic skeleton such as sulfanilamide (the formula H 2 NC 6 H 5 SO 2 NH 2 ) as an anti-infective internal medicine similar to the antibacterial agent is commonly called “sulfa drug” for human animals. It is publicly known.
This is literally a generic name for preparations containing sulfa (sulfur: S). Thousands of sulfa drugs have been synthesized so far, and they have been very effective in treating infections. Doctors are struggling to select sulfa drugs.
Furthermore, the pharmacological mechanism of diuresis and metabolic acidosis of the sulfanilamide has been studied. If the sulfamide group (—SO 2 NH 2 ) is contained in the chemical structure, the action of carbonic anhydrase is inhibited, and the hydrogen of the terminal amino group is reduced. It is now accepted that the inhibitory action disappears when a methyl group (—CH 3 ) or the like is substituted to become “—SO 2 NH (CH 3 )” or the like. The reason is considered that when the structure of the terminal group (substrate) becomes a methyl group, it does not fit with the structure of the active site of the enzyme.

用途ごとに流通する殺菌・抗菌・抗真菌剤の薬効成分が著しく異なるのは、細胞表面にある水やグリセリンを始めとする低分子量物質の出入、タンパク質種検出および酵素作用を発揮する構造体の詳細を解明できなかったためである。
即ち、上述の塩素系消毒剤では、次亜塩素酸がアクアポリン等の輸送体を通過するとき非解離からイオンの形態に変化することによって、貫通孔が押し広げられる可能性が多分にあると判った。従来、こうした想定はなされなかった。
このような現象が起きれば、細胞内外の物質濃度平衡は破れ、浸透圧差により壊れた輸送体から水が入り過ぎて、細胞膜は破裂する。又は、逆に脱水が起きて収縮することになる。「溶菌」という現象は、こうして起きると考えられる。
エチルアルコールに代表されるアルコール系消毒剤は、脱水特性及び輸送体の貫通路閉塞による効果を狙ったものと見ることができる。
一方、サルファ剤や抗生物質は、タンパク質を検出する受容体(レセプター)や酵素に作用・嵌合し、代謝物質の取り込みを阻害、又は酵素の活性を失わせる効能を発揮するとみてよい。従って、耐性菌の出現を事実上避けられない。
更に、第四級アンモニウム塩、即ち陽イオン界面活性剤は、微生物全体を覆って物質移動を阻害し、代謝障害による自滅を待つ種類に分類できる。
The medicinal components of disinfectant, antibacterial and antifungal agents distributed for each use are significantly different from those of structures that demonstrate the entry / exit of low molecular weight substances such as water and glycerin on the cell surface, protein species detection and enzymatic action. This is because the details could not be clarified.
That is, in the above-mentioned chlorinated disinfectant, it has been found that there is a possibility that through-holes are likely to be expanded by changing hypochlorous acid from non-dissociated to ionic form when passing through a transporter such as aquaporin. It was. Traditionally, this assumption has not been made.
If such a phenomenon occurs, the substance concentration equilibrium inside and outside the cell is broken, and water enters too much from the transporter broken by the osmotic pressure difference, and the cell membrane is ruptured. Or, conversely, dehydration occurs and contracts. The phenomenon of “lysis” is thought to occur in this way.
Alcohol-based disinfectants typified by ethyl alcohol can be regarded as aiming at dehydration characteristics and effects due to blockage of transporter passageways.
On the other hand, sulfa drugs and antibiotics may be regarded as acting on or engaging with receptors (receptors) or enzymes that detect proteins, thereby inhibiting the uptake of metabolites or losing the activity of enzymes. Therefore, the emergence of resistant bacteria is unavoidable.
Furthermore, quaternary ammonium salts, that is, cationic surfactants, can be classified as a type that covers the entire microorganism, inhibits mass transfer, and waits for self-destruction due to metabolic disorders.

本発明は、従来法の上述欠点をなくすため、先ず、微生物の構造的共通性を鮮明にし、メルカプトピリジンオキシド系の作用機構を解明して考案した。即ち、細胞壁及び細胞膜の内部に存在する核膜や染色体まで作用しなくても、細胞壁及び膜表面に共通して存在するタンパク質と確実に結合しやすい化学物質を、無数にある化学種の中から該作用機構に基づき選抜した。
別の表現をすれば、死骸の形状が消失する溶菌までは狙わず、輸送体の入口程度に作用する基剤であれば、上述の耐性菌出現の可能性は極限まで小さくできる筈、という根拠に基づく。
In order to eliminate the above-mentioned drawbacks of the conventional method, the present invention has been devised by clarifying the structural commonality of microorganisms and elucidating the action mechanism of the mercaptopyridine oxide system. That is, chemical substances that can easily bind to proteins that are commonly present on the cell wall and membrane surface, without affecting the nuclear membrane and chromosomes existing inside the cell wall and cell membrane, can be selected from a myriad of chemical species. Selected based on the mechanism of action.
In other words, it is not aimed at lysis where the shape of the carcass disappears, and if it is a base that acts at the entrance level of the transporter, the grounds that the possibility of appearance of the above-mentioned resistant bacteria should be minimized based on.

ベンゼンと同じ六員環物質で炭素(C)一つが窒素(N)に置換したのがピリジンであり、同二つ置換したのがピリミジンである。該系統は古くからその誘導体が合成され、薬理作用や毒性が調査されてきた。又、過酸化ベンゾイル[分子式(CCO)]とナトリウムメトキシド[同CH3ONa]を反応させ、中和後に有機溶媒で抽出して得られる過安息香酸等でピリジンを酸化すると、ピリジン−N−オキシドpyridine-N-oxideになることが周知である。 In the same 6-membered ring material as benzene, one carbon (C) is substituted with nitrogen (N) is pyridine, and the two are substituted with pyrimidine. The derivatives have been synthesized for a long time, and their pharmacological action and toxicity have been investigated. Also, benzoyl peroxide [molecular formula (C 6 H 5 CO) 2 O 2 ] and sodium methoxide [same CH 3 ONa] are reacted, and neutralized and extracted with an organic solvent, and then pyridine is added with perbenzoic acid. It is well known that oxidation results in pyridine-N-oxide pyridine-N-oxide.

又、ピリジン環のオルト(o−)位即ち2位の水素(H)がメルカプト基(−SH)に置換した2−メルカプトピリジン[分子式(C54N)SH]をアルカリ金属であるナトリウムの塩とし、上述同様に酸化すると、2−メルカプトピリジン−N−オキシドナトリウム一水和物[分子式C54NaNOS・H2O]結晶が得られ、これも周知である。 Further, sodium which is an alkali metal is 2-mercaptopyridine [molecular formula (C 5 H 4 N) SH] in which hydrogen (H) at the ortho (o-) position of the pyridine ring, ie, 2-position hydrogen (H) is substituted with a mercapto group (—SH). When the salt is oxidized in the same manner as described above, 2-mercaptopyridine-N-oxide sodium monohydrate [molecular formula C 5 H 4 NaNOS · H 2 O] crystals are obtained, which is also well known.

一方、酵素は細胞内の小胞内に限定された存在ではない。上述の通り、微生物の細胞膜及び細胞壁の外側に、受容体・輸送体と共に酵素として働くタンパク質の鎖も突出している。
例えば、消化酵素の一種であるキモトリプシンは、ロイシン(略号Leu)、バリン(同Val)及びシステイン(同Cys)がペプチド結合したものであり、当然、システインの枝に活性基としてメルカプト基(−SH)を有する。
近年、急速に研究が進んだ輸送体であるイオンチャネル、アクアポリン及びアクアグリセロポリンの貫通孔構造は、前掲システイン、アルギニン(略号Arg)、フェニルアラニン(同Phe)及びヒスチジン(同His)等から成る筒状鎖のタンパク質であることが判明している。即ち、これにもシステインが含まれており、上述の酵素と同様に結合鎖の枝にメルカプト基(−SH)を有する。
On the other hand, enzymes are not limited to vesicles in cells. As described above, protein chains acting as enzymes together with receptors and transporters also protrude outside the cell membrane and cell wall of microorganisms.
For example, chymotrypsin, which is a kind of digestive enzyme, is a peptide in which leucine (abbreviation Leu), valine (valid) and cysteine (cys) are peptide-bound, and naturally, a mercapto group (—SH) as an active group on the cysteine branch. ).
The through-hole structure of ion channels, aquaporins and aquaglyceroporins, which have been studied rapidly in recent years, is a cylinder composed of cysteine, arginine (abbreviated Arg), phenylalanine (same Phe) and histidine (same His). It has been found to be a chain protein. That is, this also contains cysteine and has a mercapto group (-SH) in the branch of the bond chain as in the above-described enzyme.

更に、人体内では、システイン枝基のメルカプト基同士が近接すると比較的容易に酸化されてジスルフィド結合(−S−S−)ができやすいとされる。実際に、ポリペプチドが並列又は折れ曲がったムチンや抗体及びT細胞のα−β鎖定常部も該結合で架橋している。
因みに、毛髪中に多いとされる「シスチン」も、ジスルフィド結合でシステインが二量体化したものである。又、ホルモンの一種であるインスリンにも、ジスルフィド結合部分とメルカプト基のままの部分とがある。
Furthermore, in the human body, when mercapto groups of cysteine branch groups are close to each other, they are relatively easily oxidized to form a disulfide bond (-SS-). Actually, mucins and antibodies in which polypeptides are aligned or bent and α-β chain constant parts of T cells are also cross-linked by the bonds.
Incidentally, “cystine”, which is often found in hair, is a dimerized cysteine dimer with a disulfide bond. Insulin, a kind of hormone, also has a disulfide bond portion and a portion that remains a mercapto group.

然しながら、近代薬理学の教科書ともいえる非特許文献1等には、システイン枝基のメルカプト基と抗菌剤との化学反応に言及した記述は全くない。
体内反応は糖質・脂質・タンパク質及び電解質を含む体液、即ち水溶液内の反応であるから、生成物の単離分析や反応の再現は難しく、解説できなかったのであろう。これらの理由からか、殺菌学関連の他・非特許文献に、酵素タンパク或いは核タンパクのSH基酸化に言及した部分が僅かにあるにすぎない。
However, Non-Patent Document 1, which can be said to be a textbook of modern pharmacology, has no description referring to a chemical reaction between a mercapto group of a cysteine branch group and an antibacterial agent.
The reaction in the body is a reaction in a body fluid containing carbohydrates, lipids, proteins and electrolytes, that is, an aqueous solution. Therefore, it was difficult to isolate and analyze the product and reproduce the reaction, which could not be explained. For these reasons, there are only a few parts in other microbiology-related non-patent literatures that mention the SH group oxidation of enzyme proteins or nucleoproteins.

従って、柑橘類やバナナの防カビ・防腐剤として開発されたo−フェニルフェノール[OPP;示性式C64(OH)C65]の抗菌性は、従来からあるフェノールやクレゾールとの構造類似性を根拠にした拡大解釈の説明で済まされている。因って、受容体・輸送体・酵素への作用で説明されたことはない。
用途が同じチアベンダゾール[TBZ;分子式C10S]も公知の物質であるが、前掲OPPより構造が複雑で作用機構は尚更明らかになっていない。それにも拘らず、該化合物を更に複合型薬剤にしたものが多数商品化され、特許出願も少なくない。
Therefore, the antibacterial property of o-phenylphenol [OPP; formula C 6 H 4 (OH) C 6 H 5 ], which was developed as a fungicide and preservative for citrus fruits and bananas, is different from that of conventional phenols and cresols. The explanation of the extended interpretation based on structural similarity has been completed. Therefore, it has never been explained by its action on receptors, transporters and enzymes.
Thiabendazole [TBZ; molecular formula C 10 H 7 N 3 S], which has the same application, is also a known substance, but its structure is more complicated than that of the above-mentioned OPP, and the mechanism of action is still not clear. In spite of this, many compounds in which the compound is further made into a complex-type drug have been commercialized, and there are many patent applications.

尚、アゾール系抗真菌薬の多くは、酵素(例えばチトクロムP450)の機能を阻害する。TBZも属する該アゾール系はイミダゾール系とトリアゾール系に更に分類され、各系抗真菌薬が非特許文献1にも載るが、殆どが外用薬である。イミダゾール系での経口又は静注投与例は、ミコナゾールだけである。
当然、TBZに医薬認可はない。従って、化合物の作用機構に基づく抗菌剤組成を絞り込めないから、この種の創薬は抗菌性試験を重視、結果優先で薬効を示す物質を拾い出し、複合型の創薬処方を確立することに専念してきた傾向がみられる。
Many azole antifungal agents inhibit the function of enzymes (for example, cytochrome P450). The azole series to which TBZ also belongs is further classified into imidazole series and triazole series, and each antifungal drug is listed in Non-Patent Document 1, but most are external drugs. The only oral or intravenous administration example in the imidazole system is miconazole.
Of course, TBZ has no pharmaceutical approval. Therefore, since the antibacterial composition based on the action mechanism of the compound cannot be narrowed down, this type of drug discovery places emphasis on antibacterial testing, picks up substances that show medicinal effects with priority on results, and establishes a compound drug formulation. There is a tendency to concentrate on.

一方、上述の受容体・輸送体・酵素を形成するタンパク質が、種類と順番が異なるアミノ酸のペプチド結合で構築されていても、各アミノ酸残基の量や種類に大きな差異は見当たらない。況や、全くシステインを持たない微生物は現実として存在しえない。
従って、システインのメルカプト基に作用する化合物であれば、殆どの微生物に対して薬効を示す筈である。何故なら、輸送体に結合すれば貫通孔に蓋をすることになり、受容体や酵素に結合すれば活性部位の形状及び大きさが改変されるからである。
逆説的には、該抗菌剤で薬効がない場合、システインへの結合を阻害する要因がその微生物に限定して備わっていると解釈される。
On the other hand, even if the above-mentioned proteins forming the receptor / transporter / enzyme are constructed with peptide bonds of amino acids whose order is different from the type, there is no significant difference in the amount or type of each amino acid residue. The situation and microorganisms that have no cysteine cannot exist in reality.
Therefore, any compound that acts on the mercapto group of cysteine should be effective against most microorganisms. This is because, when bound to a transporter, the through hole is capped, and when bound to a receptor or an enzyme, the shape and size of the active site are modified.
Paradoxically, when the antibacterial agent has no medicinal effect, it is interpreted that the microorganism is limited to a factor that inhibits binding to cysteine.

特許文献1及び特許文献2には、要約すると、2−メルカプトピリジン−N−オキシド塩以外に、ニトリル系、ピリジン系、ハロアルキルチオ系、有機ヨード系及びチアゾール系の5系統を含め6系統から各1種以上の化合物を選抜することを必須条件とする複合型抗菌剤の処方が記載されている。
しかし、メルカプトピリジンオキシド類は独立系統にすべきもので、ピリジン系或いはサルファ剤の1種に含めてしまうのは上述の理由で好ましくない。メルカプトピリジンとメルカプトピリジンオキシドでは、全く作用機構が異なってくるからである。従って、大まかな系統別に同等の薬効評価はできない。
更に、複合剤とする場合は基剤と副剤が反応を起こせば作用・効果はまったく別になるのが一般的であるから、錯体形成等への配慮が不可欠になる。
具体例を挙げると、非特許文献2に本願発明の基材に関して数種の金属錯体が例示されており、複合剤としての効果を狙った特許文献1の効果に疑問を提起する。接液材質が金属製であっても薬効消失の可能性が高くなり、相乗効果どころか相殺効果を生じかねない。
In summary, Patent Document 1 and Patent Document 2 each include 6 systems including 5 systems of nitrile, pyridine, haloalkylthio, organic iodo, and thiazole, in addition to 2-mercaptopyridine-N-oxide salt. A prescription for a composite antibacterial agent is described that requires selection of one or more compounds.
However, mercaptopyridine oxides should be an independent system, and it is not preferable to include them in one kind of pyridine or sulfa drugs for the reasons described above. This is because mercaptopyridine and mercaptopyridine oxide have completely different mechanisms of action. Therefore, it is not possible to perform an equivalent drug efficacy evaluation for each rough strain.
Furthermore, in the case of a composite agent, since the action and effect are generally completely different if the base and the secondary agent react, consideration for complex formation becomes indispensable.
As specific examples, Non-Patent Document 2 exemplifies several types of metal complexes with respect to the substrate of the present invention, and raises a question about the effect of Patent Document 1 aimed at the effect as a composite agent. Even if the wetted material is made of metal, there is a high possibility that the medicinal effect will be lost, which may cause a synergistic effect as well as an offset effect.

塩素系消毒剤とタンパク質との反応は、次亜塩素酸と唾液中のタンパク質(例えばムチン)について、ある程度解明されている。例えば、本願発明者の研究では、該反応は上述のジスルフィド結合の反応と同等に速い。一方、塩素化され有機クロラミンとなった場合、窒素と塩素との結合は強固で、ヨウ化又は臭化カリウム(KI、KBr)を添加しても、該結合が逆解離しヨウ素(I)や臭素(Br)を遊離するのに30分程度の長時間を要すことも判明している。
更に、超音波による殺菌の研究では、死菌率99%でも桿菌の殆どは形状をそのまま残し、線毛状部分のみ超音波により乱されることが判明している。
即ち、微生物を不活性化するのに、本体(菌体等)を破壊し細胞液を漏出させることは必須条件とはならないのである。
The reaction between chlorinated disinfectants and proteins has been elucidated to some extent for hypochlorous acid and proteins in saliva (eg mucins). For example, in the present inventors' research, the reaction is as fast as the disulfide bond reaction described above. On the other hand, when chlorinated to form organic chloramine, the bond between nitrogen and chlorine is strong, and even when iodide or potassium bromide (KI, KBr) is added, the bond is reversely dissociated and iodine (I 2 ). It has also been found that it takes a long time of about 30 minutes to liberate bromine (Br 2 ).
Furthermore, in the study of sterilization by ultrasonic waves, it has been found that even when the killing rate is 99%, most of the koji molds remain in the shape, and only the ciliated portions are disturbed by the ultrasonic waves.
That is, in order to inactivate microorganisms, it is not an essential condition to destroy the main body (such as bacterial cells) and to leak cell fluid.

特開2006−52205号公報JP 2006-52205 A 特許第3526919号(平成16年2月27日登録)公報Japanese Patent No. 3526919 (registered on February 27, 2004)

NEW薬理学(第3版)、株式会社南江堂(1996年)NEW Pharmacology (3rd edition), Nanedo Co., Ltd. (1996) C.A.Doose etal.,J.Chhromatogr.1052(2004)103-110C.A.Doose etal., J.Chhromatogr.1052 (2004) 103-110

微生物が持つ受容体・輸送体・酵素の構造を特定することなくタンパク質を変性、或いは酵素活性を発揮する、タンパク構造の溝や貫通孔を塞ぐ作用をする化合物であれば、これに接する微生物の数が多くても比較的低濃度の薬剤で薬効を発揮する筈である。
本発明は、これまでのサルファ剤等の創薬過程で漠然と認識していた「酵素及び受容体の活性部位に該薬効成分を吸着させて塞ぎ、双方の機能を阻害して微生物の不活性化を図る」という概念の評価を「基剤に対する副剤としての効能」に格下げした。
即ち、本発明の独創性は、「幅広い微生物種の不活性化には、酵素及び受容体のみならず輸送体とも、吸着より強固なジスルフィド(共有)結合が可能な薬効成分を基剤とすべきである」というまったく新しい概念の導入にある。
従って、殆どの微生物に対し発育阻止最小濃度(MIC値)が25mg/L以下になる化合物即ち抗菌性基剤の捜索及び複合処方設計が課題となった。
Any compound that denatures a protein without blocking the structure of the receptor / transporter / enzyme that the microorganism has, or exerts an enzyme activity, and that acts to block the groove or through-hole of the protein structure. Even if the number is large, it should be effective with a relatively low concentration of the drug.
The present invention has been vaguely recognized in the drug discovery process of sulfa drugs and the like so far, "the active ingredient of the enzyme and the receptor is adsorbed and blocked, and the function of both is inhibited to inactivate the microorganism. The evaluation of the concept of “plan” was downgraded to “efficacy as an adjunct to the base”.
That is, the originality of the present invention is that “inactivation of a wide range of microbial species is based on a medicinal component capable of forming a disulfide (covalent) bond stronger than adsorption, not only for enzymes and receptors but also for transporters. The introduction of a completely new concept of “should be”.
Therefore, searching for compounds that have a minimum growth inhibitory concentration (MIC value) of 25 mg / L or less for most microorganisms, that is, antibacterial bases, and composite prescription design have become problems.

尚、システイン以外の含硫アミノ酸にメチオニンもあるが、枝の末端はメルカプト基ではなくメチルチオ基(−SCH)であるから、この基の反応性は極端に低下する。従って、メチルチオ基との結合を狙った抗菌剤組成は、当初から選択肢外とした。
又、システインのメルカプト基と結合しやすいのは、同じメルカプト基をもつ有機化合物であり、メルカプト基双方から脱水素してジスルフィド結合を促進するのは至近に存在する酸化性の活性基である。従って、N−ピリジンオキシドが持つ酸素は、必然的に該酸化活性基の候補筆頭になる。
即ち、次亜塩素酸(HOCl)や過酸化水素(H)のような強力な酸化剤の共存下では、メルカプト基以外の活性基まで酸化されて消費量が増大するから、溶菌までは狙わないという所期の目的を達成できない。
Although some methionine in sulfur-containing amino acids other than cysteine, since the end of the branch is a methylthio group rather than a mercapto group (-SCH 3), the reactivity of this group is extremely reduced. Therefore, the antibacterial agent composition aiming at coupling | bonding with a methylthio group was excluded from the choice from the beginning.
Moreover, it is an organic compound having the same mercapto group that easily binds to the mercapto group of cysteine, and it is an oxidizing active group present in the vicinity that promotes disulfide bonds by dehydrogenating from both mercapto groups. Accordingly, the oxygen possessed by N-pyridine oxide inevitably becomes the top candidate for the oxidation active group.
That is, in the presence of a strong oxidizing agent such as hypochlorous acid (HOCl) or hydrogen peroxide (H 2 O 2 ), the active group other than the mercapto group is oxidized to increase the consumption amount. Cannot achieve its intended purpose of not aiming.

尚、衣及び住環境の硬質材表面を抗菌処理した場合でも、落下細菌や真菌の胞子と抗菌剤とが結合するには水分即ち水の存在が不可欠となる。従って、抗菌剤が大半の菌種とジスルフィド結合を起こすには自身が水溶性であることが望ましく、脂溶性では薬効を発揮する菌種が極めて狭まることになる。
建材等に該薬剤を添加する場合は露出しない量が多くなるから、吸着比表面積を大きくし、添加量の削減を図る必要も生じる。即ち、意図的に湿りやすくする。このような条件設定も課題の一つになる。
Even when antibacterial treatment is performed on the surface of the hard material in clothing and living environment, the presence of water, that is, water, is indispensable for the combination of falling bacteria and fungal spores and the antibacterial agent. Therefore, it is desirable that the antibacterial agent is water-soluble in order to cause disulfide bonds with most of the bacterial species, and the bacterial species exhibiting a medicinal effect is extremely narrow when it is fat-soluble.
When the chemical is added to a building material or the like, the amount that is not exposed increases, so that it is necessary to increase the adsorption specific surface area and to reduce the addition amount. That is, it is intentionally easy to get wet. Such condition setting is one of the problems.

更に、含浸や塗付等の抗菌処理を施した場合、水に溶けたままでは未反応の抗菌基剤が自然界に流出して二次的な薬害を起こすおそれを生じる。そこで、身近に存在する微生物タンパク質中のシステインと強固に結合させ、流出させない工夫も課題の一つになる。
抗菌処理対象物への過剰添加、含浸及び塗付は、未反応物の残留濃度を高めることに繋がるから、添加量・率等の上限が本発明の請求項に設定されていなくても、流出量・率の実験結果から処方時には自ずと制限される。又、抗菌処理対象物の本来の特性を損なうことも避けなければならないから、この面でも添加量・率は自ずと制限される。
Furthermore, when an antibacterial treatment such as impregnation or coating is performed, an unreacted antibacterial base may flow out to the natural world and cause secondary phytotoxicity if dissolved in water. Therefore, one of the challenges is to bind firmly to cysteine in microbial proteins that are close to each other and prevent them from flowing out.
Excessive addition, impregnation and application to an antibacterial treatment object lead to an increase in the residual concentration of unreacted substances, so even if the upper limit of the addition amount / rate is not set in the claims of the present invention, the outflow Based on the results of volume and rate experiments, there is a natural restriction when prescribing. Further, since it is necessary to avoid damaging the original characteristics of the antibacterial object, the amount and rate of addition are naturally limited in this respect as well.

上述の課題を解決するための手段は以下のとおりである。
(1)2−メルカプトピリジン−N−オキシド塩、又は、前記2−メルカプトピリジン−N−オキシド塩のピリジン環の3〜6位にある水素が他基に置換・修飾された同族誘導体、又は、前記ピリジン環がピリミジン環に置換された同族誘導体を抗菌基剤として含む抗菌処理薬剤を、抗菌処理対象物の表面積1m当たり1mg以上になるように均一に分布させて抗菌処理対象物へ添加、含浸又は塗付を行うことを特徴とする抗菌処理方法。
(2)前記抗菌処理薬剤は、細菌・真菌・藻類の細胞壁・細胞膜上の酵素及び受容体の機能を阻害して相乗的抗菌効果をもたらすサルファ剤化合物を更に第一の副剤として前記抗菌基剤と等量を上限に含むものであることを特徴とする(1)に記載の抗菌処理方法。
(3)前記抗菌処理薬剤は、酸化力が次亜塩素酸より弱いヨウ素と有機高分子との錯体を第二の副剤として前記抗菌基剤と等量を上限に更に含むものであることを特徴とする(2)に記載の抗菌処理方法。
(4)2−メルカプトピリジン−N−オキシド塩、又は、前記2−メルカプトピリジン−N−オキシド塩のピリジン環の3〜6位にある水素が他基に置換・修飾された同族誘導体、又は、前記ピリジン環がピリミジン環に置換された同族誘導体を抗菌基剤として含む抗菌処理薬剤。
(5)前記抗菌処理薬剤は、細菌・真菌・藻類の細胞壁・細胞膜上の酵素及び受容体の機能を阻害して相乗的抗菌効果をもたらすサルファ剤化合物を更に第一の副剤として前記抗菌基剤と等量を上限に含むものであることを特徴とする(4)に記載の抗菌処理薬剤。
(6)前記抗菌処理薬剤は、酸化力が次亜塩素酸より弱いヨウ素と有機高分子との錯体を第二の副剤として前記抗菌基剤と等量を上限に更に含むものであることを特徴とする(5)に記載の抗菌処理薬剤。
Means for solving the above-described problems are as follows.
(1) 2-mercaptopyridine-N-oxide salt, or a homologous derivative in which hydrogen at the 3-6 position of the pyridine ring of the 2-mercaptopyridine-N-oxide salt is substituted or modified with another group, or An antibacterial treatment agent containing a homologous derivative in which the pyridine ring is substituted with a pyrimidine ring as an antibacterial base is uniformly distributed so as to be 1 mg or more per 1 m 2 of the surface area of the antibacterial treatment target, and added to the antibacterial treatment target. An antibacterial treatment method characterized by performing impregnation or coating.
(2) The antibacterial agent is a sulfa drug compound that inhibits the functions of enzymes and receptors on cell walls and cell membranes of bacteria, fungi, and algae to produce a synergistic antibacterial effect. The antibacterial treatment method according to (1), wherein the upper limit of an equivalent amount is included.
(3) The antibacterial treatment agent is characterized by further containing an equivalent amount of the antibacterial base as an upper limit with a complex of iodine and an organic polymer having a weaker oxidizing power than hypochlorous acid as a second adjunct. The antibacterial treatment method according to (2).
(4) 2-mercaptopyridine-N-oxide salt, or a homologous derivative in which hydrogen at the 3-6 position of the pyridine ring of the 2-mercaptopyridine-N-oxide salt is substituted or modified with another group, or An antibacterial treatment agent comprising, as an antibacterial base, a homologous derivative in which the pyridine ring is substituted with a pyrimidine ring.
(5) The antibacterial agent is a sulfa compound that inhibits the functions of enzymes and receptors on the cell walls and cell membranes of bacteria, fungi, and algae to produce a synergistic antibacterial effect. The antibacterial treatment agent according to (4), characterized in that it contains an upper limit of an equivalent amount.
(6) The antibacterial treatment agent is characterized by further containing an equivalent amount of the antibacterial base as an upper limit with a complex of iodine and an organic polymer having a weaker oxidizing power than hypochlorous acid as a second adjunct. The antibacterial treatment agent according to (5).

上述の手段(1)によれば、2−メルカプトピリジン−N−オキシド塩は化学構造内の窒素N(1位)に対しオルト位(2位)にメルカプト基を有するので、細菌・真菌及び藻類の細胞壁外に突出する酵素・受容体・輸送体の全ての機能を阻害する。
該タンパク質構造を構成するアミノ酸の内、システインの枝基であるメルカプト基と近接して、ジスルフィド結合する。この時の酸化(脱水素)を促すのがピリジン環の窒素原子に配位した酸素原子である。
According to the above means (1), the 2-mercaptopyridine-N-oxide salt has a mercapto group at the ortho position (2 position) with respect to the nitrogen N (1 position) in the chemical structure. Inhibits all functions of enzymes, receptors and transporters that protrude outside the cell wall.
Among the amino acids constituting the protein structure, a disulfide bond is formed in the vicinity of a mercapto group which is a branch group of cysteine. The oxygen atom coordinated to the nitrogen atom of the pyridine ring promotes oxidation (dehydrogenation) at this time.

従って、酸化されていない、或いはナトリウムやカリウムとの塩になっていない2−メルカプトピリジンでは素早いジスルフィド結合を期待できない。即ち、オキシドであることと、水溶性を持たせるためアルカリ金属との塩であることの二つの化学構造的条件が不可欠になる。従って、同族誘導体を単に「ピリジン系」と括るのは好ましくない。
上述の発育阻止最小濃度(MIC値)は、培地中の薬剤濃度単位「mg/L」で示される。一方、本願の抗菌処理は対象物へ添加、含浸又は塗付である。この場合、細菌・真菌等の微生物と接触する薬剤は硬質材表面であるから、培養する場合と異なり表面の薄層に薬剤が含まれてさえいれば、深層における薬剤濃度は考慮の必要がない。
培地試験によるMIC値と表面処理における薬剤濃度との整合性を持たせるための想定を以下に示す。
抗菌処理基剤の密度25mg/mは、処理物体の表面に比重1の水溶液を1mmの膜厚で張った仮定では、略25mg/kgに、水溶液濃度としては25mg/Lに相当する。不活性化したい微生物の寸法を若干大きめの10μmと仮定すれば、この4倍の膜厚0.04mm=40μmにおける薄膜容積は40cm/mとなる。薬剤濃度が25mg/Lの液1Lを液の膜厚40μmで広げたとすれば、該液1L=1000cmであるから、広がった液の表面積は1000/40m=25m、因って薬剤密度は1mg/mになる。
対象物へ添加、含浸又は塗付の処理を行った後の溶媒は、略蒸発している。硬質材表面が均一に濡れる厚みの下限は、硬質材の表面および溶媒の表面張力・吸収速度等に当然のことながら影響される。そこで本願では、乾燥前の含浸又は塗付膜の厚みは40μm程度とみなし、薬剤密度が1mg/m以上であれば、「硬質材表面に薬剤が付着しない空白」はできないものとし、「抗菌処理対象物の表面積1m当たり1mg」を薬剤密度の下限とした。即ち、該数値は、溶液のように薬剤濃度を均一にできない場合に、「均一に分布させる」ための指標であって、抗菌・抗真菌等の処理をする薬液における実質濃度は25mg/Lより確度の余裕をみて若干高くする。
従って、塗付と浸漬とでは処理できる表面積は当然異なってくる。又、現場における効果の判定はスタンプ法や拭き取り法による培養法若しくはATP(アデノシン三リン酸)測定により行う。但し、この判定法は国際的にまだ標準化されていない。
尚、入手可能なV79細胞を用い、該基剤単独で行った細胞毒性試験では、IC50値(コロニー形成50%阻害濃度)は約0.05mg/mL=50mg/Lであった。微生物が有する酵素以外とも該基剤は反応し、細胞の由来を問わず増殖を阻害することをこの結果は意味する。但し、該IC50値は、試験対照としたサルファ剤(ジ−n−ブチルチオカルバメイトの亜鉛錯体)におけるそれ(2.5mg/L)の20倍濃度になり、対照よりは阻害力は弱い。
なお、抗菌基剤は、化学構造上、メルカプトピリジン(2−Mercaptopyridine)又はメルカプトピリミジン(2−Mercaptopyrimidine)が酸化されたN−オキシド(-N-oxide)の塩であり、メルカプト基(−SH)は酸素原子が配位したピリジン環又はピリミジン環窒素(N)に対し2位にあるものが該当する。
又、N−オキシドは「1-Hydroxy-2-pyridinethione」或いは「1-Hydroxy-2-Pyrimidinethione」の構造をとる互変異性体が考えられ、紫外線分光スペクトルではこの互変異性に伴う単量体の特徴的吸収が330nm付近に見みられる。
尚、粉体又は顆粒状の該物質は、ナトリウムやカリウムに代表されるアルカリ金属との塩であり、液剤として調製すればイオンに解離する。
Therefore, a quick disulfide bond cannot be expected with 2-mercaptopyridine which is not oxidized or is not salted with sodium or potassium. That is, two chemical structural conditions are indispensable: being an oxide and being a salt with an alkali metal in order to impart water solubility. Therefore, it is not preferable to simply enumerate homologous derivatives as “pyridine-based”.
The above-mentioned minimum growth inhibition concentration (MIC value) is indicated by the drug concentration unit “mg / L” in the medium. On the other hand, the antibacterial treatment of the present application is addition, impregnation or application to an object. In this case, since the drug that comes into contact with microorganisms such as bacteria and fungi is the surface of the hard material, unlike the case of culturing, the drug concentration in the deep layer need not be considered as long as the drug is contained in a thin layer on the surface. .
Assumptions for ensuring consistency between the MIC value in the medium test and the drug concentration in the surface treatment are shown below.
The density of the antibacterial treatment base of 25 mg / m 2 corresponds to approximately 25 mg / kg and an aqueous solution concentration of 25 mg / L on the assumption that an aqueous solution having a specific gravity of 1 is stretched on the surface of the treatment object with a film thickness of 1 mm. Assuming that the microbe to be inactivated has a slightly larger size of 10 μm, the thin film volume at a film thickness of 0.04 mm = 40 μm, which is four times this, is 40 cm 3 / m 2 . If 1 L of a liquid with a drug concentration of 25 mg / L is spread with a film thickness of 40 μm, the liquid 1 L = 1000 cm 3 , and thus the surface area of the spread liquid is 1000/40 m 2 = 25 m 2 , and thus the drug density Becomes 1 mg / m 2 .
The solvent after adding, impregnating or applying to the object is substantially evaporated. The lower limit of the thickness at which the hard material surface is uniformly wetted is naturally affected by the surface of the hard material and the surface tension / absorption rate of the solvent. Therefore, in the present application, the thickness of the impregnated or coated film before drying is considered to be about 40 μm, and if the drug density is 1 mg / m 2 or more, “the blank where the drug does not adhere to the hard material surface” cannot be formed. The lower limit of the drug density was “1 mg per 1 m 2 of surface area of the treatment target”. That is, the numerical value is an index for “uniformly distributing” when the drug concentration cannot be made uniform as in a solution, and the actual concentration in a chemical solution for antibacterial / antifungal treatment is more than 25 mg / L Slightly increase the margin of accuracy.
Accordingly, the surface area that can be treated is naturally different between application and immersion. The on-site effect is determined by a culture method such as a stamp method or a wiping method, or ATP (adenosine triphosphate) measurement. However, this judgment method has not yet been standardized internationally.
In addition, in a cytotoxicity test conducted using the available V79 cells and the base alone, the IC 50 value (colony formation 50% inhibitory concentration) was about 0.05 mg / mL = 50 mg / L. This result means that the base reacts with the enzyme other than the enzyme of the microorganism and inhibits the growth regardless of the origin of the cell. However, the IC 50 value is 20 times the concentration (2.5 mg / L) of the sulfa drug (di-n-butylthiocarbamate zinc complex) used as a test control, and its inhibitory power is weaker than that of the control.
In addition, an antibacterial base is a salt of N-oxide (-N-oxide) in which mercaptopyridine (2-Mercaptopyridine) or mercaptopyrimidine (2-Mercaptopyrimidine) is oxidized in terms of chemical structure, and a mercapto group (-SH). Corresponds to the one in the 2-position relative to the nitrogen (N) of the pyridine ring or pyrimidine ring to which the oxygen atom is coordinated.
N-oxide may be a tautomer having the structure of “1-Hydroxy-2-pyridinethione” or “1-Hydroxy-2-Pyrimidinethione”. Characteristic absorption is seen around 330 nm.
The powder or granular substance is a salt with an alkali metal typified by sodium or potassium, and dissociates into ions when prepared as a liquid.

上述の手段(2)によれば、単一成分基剤では発育阻止最小濃度が比較的高い細菌・真菌・藻類に対して、細胞壁・細胞膜上の酵素及び受容体の機能を阻害して相乗的抗菌効果をもたらす。副剤とするサルファ剤は基剤と異なり上述の酵素及び受容体の機能を阻害する化合物を処方する。輸送体は貫通孔を有するのが特徴であり、該サルファ剤には貫通孔を塞ぐ作用を望めない点で基剤とは作用機構が異なる。
尚、ジメチルアミノスルフォニル基[−SON(CH]、ジヨードメチルスルフォン基[−SO(CHI)]或いはスルファミド基(−SONH) を化学構造中に有する化合物は、共通してイオウ(S)を含有するから、上述した「サルファ剤」と総称される化学種に入る。何れも酵素活性の阻害を狙いとしたものとして括れる。
より限定してスルファニルアミド又は同族誘導体は、微生物が持つ炭酸脱水酵素等の活性部位と嵌合し、平衡反応になる脱水等の速度を遅らせる効能を発揮する。この事実からも、上述の手段(1)の基剤とは全く作用機構が異なる。
従って、基剤と副剤との複合剤は、抗菌性に関して作用機構を異にすることで相乗効果を発揮する。基剤と副剤とが保管中に反応する組み合わせは避けなければならないから、副剤の選択肢は自ずと狭まってくる。
上述特許文献1に載る銀・銅イオン担持の無機剤は非特許文献2で推測できるように該基剤と錯体をつくり、相乗どころか相殺効果になる可能性が高い。
副剤の本来の狙いは相乗効果にある。微生物酵素の活性部位に嵌合する構造を有するサルファ剤は、上述の手段(2)における副剤の選択肢に入る。
According to the above-mentioned means (2), the single component base material synergistically inhibits the functions of enzymes and receptors on the cell wall and cell membrane with respect to bacteria, fungi, and algae having a relatively high minimum growth inhibitory concentration. Provides antibacterial effect. The sulfa drugs used as an auxiliary agent, unlike the base, formulate a compound that inhibits the functions of the above-described enzymes and receptors. The transporter is characterized by having a through-hole, and the action mechanism is different from that of the base in that the sulfa drug cannot be expected to block the through-hole.
A compound having a dimethylaminosulfonyl group [—SO 2 N (CH 3 ) 2 ], a diiodomethylsulfone group [—SO 2 (CHI 2 )] or a sulfamide group (—SO 2 NH 2 ) in the chemical structure is Since it contains sulfur (S) in common, it enters the above-mentioned chemical species generically called “sulfa drugs”. All can be summarized as those aimed at inhibiting enzyme activity.
More limitedly, sulfanilamide or a homologous derivative is effective in mating with an active site such as carbonic anhydrase possessed by a microorganism and delaying the rate of dehydration or the like that results in an equilibrium reaction. Also from this fact, the mechanism of action is completely different from the base of the above-mentioned means (1).
Therefore, the composite agent of a base and an auxiliary agent exhibits a synergistic effect by making the action mechanism different regarding antibacterial properties. Since the combination of the base and the secondary agent reacting during storage must be avoided, the choice of secondary agent is naturally narrowed.
The silver / copper ion-supported inorganic agent described in the above-mentioned Patent Document 1 is likely to form a complex with the base, as can be guessed in Non-Patent Document 2, and to have a countervailing effect.
The original aim of the supplement is synergistic effect. A sulfa drug having a structure that fits into the active site of a microbial enzyme is an option of the secondary agent in the above-mentioned means (2).

基剤以外のサルファ剤を副剤とする理由は他にもある。人体血中の脂質(コレステロール等)濃度を検知する受容体は、脂質そのものの検知はできないから、脂質タンパクの形にしてアミノ酸部分と嵌合、脂質を血管構成細胞に取り込む信号を出す。又、細胞性免疫である感作T細胞のα−β鎖、体液性免疫である抗体(B細胞)の先端可変部も、嵌合して検知するのは抗原タンパクのアミノ酸構造である。因って、一般的なサルファ剤は、酵素活性部位の溝に全体が嵌合するのではなく一部が嵌合するのであるから、酵素とは別の受容体との嵌合確率は低いとみなされる。
上述の観点から、本発明の実施例で選択したサラゾスルファピリジン(別称:スルファサラジン)は、酵素の嵌合部分やアミノ酸のトランスポーター(運搬役)タンパク質に作用して微生物の代謝を阻害すると考えられる。
メルカプトピリジンとの複合も、物質構造が共にピリジン環を有しており、相互が反応して相殺効果となって現れる心配をしなくて済む。
There are other reasons for using a sulfa drug other than the base as a secondary agent. Receptors that detect the concentration of lipids (such as cholesterol) in human blood cannot detect lipids themselves, and therefore, in the form of lipid proteins, fit with amino acid moieties and give a signal for taking lipids into vascular constituent cells. In addition, the α-β chain of sensitized T cells that are cellular immunity and the tip variable part of an antibody (B cell) that is humoral immunity are also detected by the amino acid structure of the antigen protein. Therefore, a general sulfa drug does not fit entirely in the groove of the enzyme active site, but partially fits it, so it is considered that the probability of fitting with a receptor other than the enzyme is low. It is.
From the above viewpoint, it is considered that the salazosulfapyridine (also known as sulfasalazine) selected in the examples of the present invention acts on the enzyme fitting part and amino acid transporter (transporter) protein to inhibit the metabolism of microorganisms. It is done.
The compound with mercaptopyridine also has a pyridine ring in the material structure, so that there is no need to worry about the occurrence of an offset effect when they react with each other.

上述の手段(3)によれば、例えば抗菌剤として公知のポリビニルピロリドンのヨウ素錯体(略称:ポピドン−ヨード)は、ピロリドン環窒素の非共有電子対にヨウ素が配位し付加していると考えられ、メルカプトピリジンやサルファ剤と異なった作用機構により抗菌・抗真菌の相乗効果を発揮する。
また、上述のピロリドン環は五員環、ピリジン環は六員環の違いがある。又、ピロリドン環は窒素と共有結合した炭素の一方が酸化されたカルボニルになっており、ピリジン環のような共鳴構造ではない違いがあるが、化学的作用に大きな相違はない。
According to the above-mentioned means (3), for example, an iodine complex of polyvinylpyrrolidone known as an antibacterial agent (abbreviation: popidone-iodo) is considered that iodine is coordinated and added to a lone pair of pyrrolidone ring nitrogen. It exhibits antibacterial and antifungal synergistic effects through a mechanism of action different from mercaptopyridine and sulfa drugs.
In addition, the pyrrolidone ring described above is different from a five-membered ring and a pyridine ring is a six-membered ring. In addition, the pyrrolidone ring is carbonyl in which one of carbons covalently bonded to nitrogen is oxidized, and there is a difference that is not a resonance structure like a pyridine ring, but there is no significant difference in chemical action.

一方、遊離ヨウ素の作用機構にも、次亜塩素酸等の遊離塩素と大きな相違はない。次亜塩素酸であれば溶菌に至るまでの強力な作用を発揮するが、緩慢に遊離してきたヨウ素は、それほどの作用力は持たないだけである。
そこで、ポピドン−ヨードは、手指や手術部位の消毒、粘膜の創傷部位や熱症部位の表面消毒に古くから用いられてきた。
上述の観点から、本発明の実施例で選択したポピドン−ヨードは、上述の手段(1)及び(2)の薬剤との三種複合剤にしても、薬剤間相互の反応による相殺効果は認められなかった。
On the other hand, the mechanism of action of free iodine is not significantly different from that of free chlorine such as hypochlorous acid. Hypochlorous acid exerts a powerful action up to lysis, but iodine that has been slowly released does not have much action.
Therefore, popidone-iodine has long been used for disinfection of fingers and surgical sites and surface disinfection of mucosal wound sites and fever sites.
From the above viewpoint, even if the popidone-iodide selected in the examples of the present invention is a triple complex with the drugs of the above-mentioned means (1) and (2), an offset effect due to the mutual reaction between the drugs is recognized. There wasn't.

衣及び住環境の硬質材表面における微生物は、通称「スライム」を構成する細菌群の集落(スライム都市)における先鋒(生存環境の基礎づくり) 細菌である緑膿菌と異なり、食物連鎖することが少ない。従って、真菌類、細菌又は藻類は互いに競合する関係になり、水系におけるスライムの共生社会における食物連鎖の分断を狙いとした不活性化手法を採れない。   Microorganisms on the surface of hard materials in clothing and living environment are food chain, unlike the pioneer in the colony of the bacteria group that makes up the so-called “slime” (slime city) (the basis for the living environment) Few. Therefore, fungi, bacteria or algae compete with each other, and an inactivation method aimed at breaking the food chain in a slimy symbiotic society in an aqueous system cannot be taken.

更に、該2−メルカプトピリジン−N−オキシド塩は、水垢防止用途で、例えば製造者の成分名称「ピリチオンナトリウム」等で市販の既存化学物質である。また、その急性経口毒性LD50は2000mg/kg以上(ラット)であり、危険有害成分には該当しない。
上述チアベンダゾールも広い分類であればサルファ剤であるが、催奇形性面で疑惑を払拭できていないから、本発明では当初からTBZ類似構造物は副剤の選択肢から外してある。本来、医薬として研究されてきたサルファ剤の歴史は長いから、チアベンダゾールに固執しなくても、蓄積された化学技術情報を参考にして、「急性経口毒性のLD50が大きく毒性がないか弱いもの」を選択して足りる。
Further, the 2-mercaptopyridine-N-oxide salt is an existing chemical substance commercially available under the name of a manufacturer's component “pyrithione sodium”, for example, for use in preventing scale buildup. Moreover, the acute oral toxicity The LD 50 was 2000 mg / kg or more (rat), it does not correspond to the hazardous component.
The above-mentioned thiabendazole is also a sulfa drug in a broad category, but since suspicion has not been solved in terms of teratogenicity, in the present invention, the TBZ-like structure is excluded from the choice of the secondary agent from the beginning. Originally, the history of sulfa drugs that have been studied as pharmaceuticals is long, so even if you do not stick to thiabendazole, refer to the accumulated chemical technology information and refer to “the acute oral toxicity LD 50 is large or non-toxic”. Select and suffice.

加えて、上述の手段(1)の抗菌性基剤だけでも、MIC値は大きくなるが、一般建築物から検出される57種の微生物株の全種に対し有効であると判った。
これは、微生物が必ず共通して保有するシステインの枝基にメルカプト基があり、本発明の基剤が持つメルカプト基とジスルフィド結合して微生物細胞表面の変性を行っている証左に他ならない。副剤で想定される酵素活性部位の閉塞による機能阻害作用とは機構を全く別にする特長である。
In addition, the antimicrobial base alone of the above-mentioned means (1) increases the MIC value, but is found to be effective against all 57 types of microbial strains detected from general buildings.
This is nothing other than evidence that a mercapto group is present in the cysteine branch group that is always held in common by microorganisms, and that the surface of the microorganism cell is denatured by disulfide bonding with the mercapto group of the base of the present invention. It is a feature that completely separates the mechanism from the function-inhibiting action due to the blockage of the enzyme active site assumed in the secondary agent.

本発明の実施の形態にかかる抗菌性基剤の基本的分子構造図である。1 is a basic molecular structure diagram of an antibacterial base according to an embodiment of the present invention. 本発明の実施の形態にかかるピリミジン環物質の分子構造図である。It is a molecular structure figure of the pyrimidine ring substance concerning an embodiment of the invention. 本発明の実施の形態にかかる第一副剤の一例、スルファサラジンの分子構造図である。It is a molecular structure figure of an example of the 1st auxiliary agent concerning embodiment of this invention, sulfasalazine. 本発明の実施の形態にかかる第二副剤の一例、ポピドンヨードの分子構造図である。It is a molecular structure diagram of popidone iodine, an example of the second auxiliary agent according to the embodiment of the present invention. 本発明の実施の形態にかかる基剤の単量体・二量体共存における紫外線分光スペクトル図である。It is an ultraviolet-spectroscopy spectrum figure in the monomer-dimer coexistence of the base concerning embodiment of this invention. 本発明の実施の形態にかかる塗付処理方法の説明図である。It is explanatory drawing of the coating process method concerning embodiment of this invention. 本発明の実施の形態にかかる浸漬処理方法の説明図である。It is explanatory drawing of the immersion treatment method concerning embodiment of this invention. 本発明の実施の形態にかかる微生物種の分類と学名を示す対照表である。It is a comparison table | surface which shows the classification | category and scientific name of the microorganism species concerning embodiment of this invention. 本発明の実施の形態にかかる一般建築物から検出される微生物種の一覧である。但し、一覧にはNo.と学名のみ掲載した。It is a list of microbial species detected from the general building concerning an embodiment of the invention. However, only No. and scientific name are listed.

以下、図1及至図7と図8の微生物和名/学名対照表を参考にしながら、本発明の衣及び住環境の硬質表面における微生物不活性化基剤及び処理方法を説明する。   Hereinafter, with reference to the microbial Japanese / scientific name comparison table of FIGS. 1 to 7 and FIG. 8, the microbial inactivation base and the treatment method on the hard surface of the clothes and living environment of the present invention will be described.

図1に示した本発明の抗菌性基剤の基本的分子構造は、上述のようにピリジン・オキシドの骨格(六員環中の○はベンゼンと同様にπ軌道電子の共鳴を表す)と、窒素N(位置1)に対しオルト位(2−)にメルカブト基(−SH)を有する。又、図1中記号「A」と同「B」の互変異性構造が考えられ、特に水に代表される極性溶媒中では同「C」構造の二量体が単量体と共存する。
従って、図5の紫外線分光スペクトルに於いて、単量体のみが持つ約330nmの紫外線吸光度を複数濃度で測定し検量線を作成、これに基づき基剤の濃度を測定できる。
溶解前は、ナトリウムやカリウム等のアルカリ金属との塩の形で安定な基剤とする。基剤の環構造が図2に示した構造に置換されても、作用に差異はない。
尚、第一副剤(サルファ剤)としてスルファサラジンを選択、実施例とした。液剤とする場合、スルファサラジンは極性溶媒に対する溶解度が低いため、飽和濃度に近い混合量としたが、実質的に基剤の約2%程度の濃度比率になった。
更に、第二副剤(ヨード剤)としてポピドンヨードを選択、実施例とした。この場合は基剤と同程度の溶解度であるから基剤と等量を上限とした。
The basic molecular structure of the antibacterial base of the present invention shown in FIG. 1 is a pyridine oxide skeleton (circle in the six-membered ring represents π orbital electron resonance as in benzene), as described above. It has a mercapto group (-SH) in the ortho position (2-) with respect to nitrogen N (position 1). In addition, tautomeric structures of the symbols “A” and “B” in FIG. 1 are conceivable. In particular, in a polar solvent typified by water, a dimer having the same “C” structure coexists with the monomer.
Accordingly, in the ultraviolet spectrum of FIG. 5, the absorbance at about 330 nm possessed by only the monomer is measured at a plurality of concentrations, a calibration curve is prepared, and based on this, the concentration of the base can be measured.
Before dissolution, a stable base is formed in the form of a salt with an alkali metal such as sodium or potassium. Even if the ring structure of the base is replaced with the structure shown in FIG. 2, there is no difference in action.
In addition, sulfasalazine was selected as the first adjunct (sulfa agent) and used as an example. In the case of a liquid preparation, sulfasalazine has a low solubility in a polar solvent, so the mixing amount was close to the saturation concentration, but the concentration ratio was substantially about 2% of the base.
Furthermore, popidone iodine was selected as the second adjunct (iodine agent) and used as an example. In this case, since the solubility is the same as that of the base, the equivalent amount to the base was set as the upper limit.

そこで、実施例1として、基剤の基剤たる所以の証明を目的に、予備実験を行った。
先ず、大腸菌を培養し、6.0×10CFU/mLに調製した。基剤濃度が50.14mg/Lになった水200mLに該菌株水1mLを加えた。その結果、反応・吸着前の濃度は若干希釈され、「50.14×200/201=49.89mg/L(標準偏差:0.01)」と算定された。
基剤と大腸菌を約10分間接触させたのち、基剤と反応・吸着しない材質の0.45μmフィルターでろ過したところ、基剤の濃度は49.1mg/Lと測定された。因って「49.89−49.16=0.73mg/L」の濃度低下となり(pH=7.04)、元の49.89mg/Lに対し「0.73/49.89≒0.015=1.5%」の「有意な減少」になった。
同じ要領で、大腸菌を培養し、1.0×10CFU/mLに調製した。上述と同様に基剤と大腸菌を接触させた。反応・吸着前の濃度は若干希釈され、「49.14×200/201=48.90mg/L(標準偏差:0.01)」と算定された。
また、接触後は「48.90−48.36=0.54mg/L」の濃度低下をみた。元の48.90mg/Lに対し「0.54/48.90≒0.011=1.1%」の「有意な減少」になった。
Therefore, as Example 1, a preliminary experiment was conducted for the purpose of proving the reason for the base of the base.
First, E. coli was cultured and prepared to 6.0 × 10 9 CFU / mL. 1 mL of the strain water was added to 200 mL of water having a base concentration of 50.14 mg / L. As a result, the concentration before reaction / adsorption was slightly diluted and calculated as “50.14 × 200/201 = 49.89 mg / L (standard deviation: 0.01)”.
After contacting the base and Escherichia coli for about 10 minutes and then filtering with a 0.45 μm filter made of a material that does not react and adsorb to the base, the concentration of the base was measured to be 49.1 mg / L. Therefore, the concentration decreased to “49.89−49.16 = 0.73 mg / L” (pH = 7.04), and compared to the original 49.89 mg / L, “0.73 / 49.89≈0.0. “015 = 1.5%”.
In the same manner, E. coli was cultured and adjusted to 1.0 × 10 5 CFU / mL. The base was contacted with E. coli as described above. The concentration before the reaction / adsorption was slightly diluted and calculated as “49.14 × 200/201 = 48.90 mg / L (standard deviation: 0.01)”.
Further, after the contact, the concentration decreased by “48.90−48.36 = 0.54 mg / L”. It was a “significant decrease” of “0.54 / 48.90≈0.011 = 1.1%” with respect to the original 48.90 mg / L.

この結果は、微生物が保有しジスルフィド結合していないシステインのメルカプト基と2−メルカプトピリジンとが結合し、微生物の外殻酵素との嵌合ではないから、基剤の過剰分を除いて水中に遊離してこないことの証左である。
又、基剤成分の分子径は水や次亜塩素酸より遥に大きいから、輸送体を通過して細胞内に入ることもあり得ない。従って、微生物が死んでも溶菌状態にはならず、生前の形状を略残している。
即ち、本発明の基剤は微生物の生死に関わらず、細胞表面と反応若しくは強く吸着し、抗菌・抗真菌の前提となる作用を持つことが証明された。
This result shows that the mercapto group of cysteine, which is possessed by microorganisms and not disulfide-bonded, binds to 2-mercaptopyridine and does not fit with the outer shell enzyme of the microorganism. It is a proof that it has not been liberated.
In addition, since the molecular diameter of the base component is much larger than that of water or hypochlorous acid, it cannot pass through the transporter and enter the cell. Therefore, even if the microorganism dies, it does not enter a lysed state, and the shape before life is substantially left.
That is, it has been proved that the base of the present invention reacts or strongly adsorbs on the cell surface regardless of whether microorganisms are alive or dead, and has an antimicrobial / antifungal premise.

次いで実施例2として、基剤のみの処方で抗菌性が細菌・真菌・藻類の別なく広範囲に及ぶことを証明するために、検査委託機関が所有する多種の微生物株を用い、2−メルカプトピリジン−N−オキシドナトリウムを3種の培地に各25mg/Lになるように加え、又は段階的に低い濃度にして調製、必要な個数のシャーレに分注した。
各シャーレに培地それぞれに適する種株の1種を植え付け、30℃、相対湿度95%の条件で7日間の培養を行った。そして、増殖が見られなかった場合を「生育阻止」と判定した。又、上述の段階的希釈試験で、生育阻止最小濃度(MIC値)を各微生物種毎に割り出した。こうして得た結果を纏め、表1に示す。尚、実験方法からMIC値が25mg/Lを超えるものは計数していない。
更に、第一の副剤としてサルファ剤の中からサラゾスルファピリジン、及び、第二の副剤として遊離ハロゲン剤であるポビドン−ヨード(ポリビニルピロリドンのヨウ素錯体)の2種を選択し、各等重量で粉末混合した後に、上述と同じ方法で培地に基剤に続いて各25mg/L加え、又は基剤を段階的により低い濃度にした場合は同量を加えて上述同様に培地調製及び分注を行った。
この場合、培養・判定方法及びMIC値測定も、基剤のみの場合と全く同じである。又、有効性を確認する菌種も大幅に増やした。
Next, as Example 2, in order to prove that the antibacterial property is widespread regardless of bacteria, fungi, and algae with a base-only formulation, a variety of microbial strains owned by a test contracting organization are used, and 2-mercaptopyridine is used. -Sodium N-oxide was added to 3 types of media so as to be 25 mg / L each, or the concentration was adjusted stepwise to prepare and dispensed into the required number of petri dishes.
One kind of seed strain suitable for each medium was planted in each petri dish and cultured for 7 days under the conditions of 30 ° C. and relative humidity of 95%. And the case where proliferation was not seen was determined as "growth prevention." Moreover, the growth inhibition minimum concentration (MIC value) was determined for each microbial species in the above-described stepwise dilution test. The results thus obtained are summarized and shown in Table 1. From the experimental method, the MIC value exceeding 25 mg / L is not counted.
Furthermore, two kinds of salazosulfapyridine as the first auxiliary agent and povidone-iodo (polyvinylpyrrolidone iodine complex) which is a free halogen agent are selected as the second auxiliary agent, and each is equal in weight. After mixing with powder, add 25 mg / L each of the base following the base in the same manner as described above, or add the same amount if the base is gradually reduced in concentration, and prepare and dispense the medium as described above. Went.
In this case, the culture / judgment method and the MIC value measurement are exactly the same as those for the base alone. In addition, the number of bacterial species to confirm the effectiveness has been greatly increased.

有効性を確認した微生物種の数を纏めたのが表1である。
Table 1 summarizes the number of microbial species whose effectiveness was confirmed.

該薬剤の組み合わせでメルカプトピリジンオキシド系は、単独ではMIC値が総じて高くなるものの、幅広い微生物種に対して有効であり、主成分に位置付けられ基剤に相応しい。
一方、サルファ剤を基剤とし、同種の複合剤、無機系抗菌剤若しくは非含硫のハロゲン系有機抗菌剤との複合剤にしても、得られる相乗効果は小さいことが判明した。
何故なら、上述チアベンダゾールは100mg/L以上の濃度でなければ表1掲載の数に入らず、特に藻類に対しては該濃度でも薬効を示さない。従って、弊害を考慮しなければ遊離残留塩素濃度1mg/Lで略全種の微生物に対し著効を示す塩素系消毒剤と比較してチアベンダゾールの薬効は見劣りする。
ところが、本発明のメルカプトピリジン−N−オキシド系は、サルファ剤等の1種又は2種と複合するだけで、ハロゲン系消毒剤に匹敵し、MIC値も平均して基剤単独の場合より一桁下がる。又、塩素系消毒剤より若干劣る2菌種に対しても、実用上差し支えない程度の薬効を示す。
The mercaptopyridine oxide system alone is effective in a wide range of microbial species, and is suitable as a base because it is effective against a wide range of microbial species.
On the other hand, it was found that the synergistic effect obtained was small even when a sulfa agent was used as a base and a composite agent of the same type, an inorganic antibacterial agent or a non-sulfur-containing halogen-based organic antibacterial agent.
This is because the above-mentioned thiabendazole is not included in the numbers listed in Table 1 unless the concentration is 100 mg / L or more, and especially against algae, it does not show medicinal effects even at the concentration. Therefore, thiabendazole is inferior in efficacy compared with a chlorine-based disinfectant that exhibits a remarkable effect on almost all types of microorganisms at a free residual chlorine concentration of 1 mg / L unless adverse effects are taken into consideration.
However, the mercaptopyridine-N-oxide system of the present invention is only combined with one or two kinds of sulfa drugs and is comparable to halogen-based disinfectants, and the average MIC value is one digit higher than that of the base alone. Go down. In addition, it exhibits a medicinal effect that does not interfere with practical use against two bacterial species slightly inferior to chlorine-based disinfectants.

実施例1及び実施例2の結果は、本発明品がサルファ剤のMIC値に対し1/5〜1/20で抗菌・抗カビ・発藻防止できること、その為の基剤となるのは2−メルカプトピリジン−N−オキシド塩であることを各示唆している。
該化合物は、酵素や受容体の機能阻害を狙いとするサルファ剤とは上述通り作用機構を異にするから、実際に、真菌に属するカワラタケ、緑膿菌、大腸菌、黄色ブドウ球菌及び枯草菌、加えて藻類で身近な存在であるトレンテポーリア属 、クロレラ属及びスキゾスリックス属にまで広範囲に薬効を発揮する。但し、莢膜を持ち多糖体粘液を分泌する緑膿菌、枯草菌と大腸菌に対しては塩素系消毒剤の約10倍濃度を必要とする。
The results of Example 1 and Example 2 show that the product of the present invention can prevent antibacterial / antifungal / algae generation at 1/5 to 1/20 of the MIC value of the sulfa drug, and the basis for that is 2- Each suggests a mercaptopyridine-N-oxide salt.
Since this compound has a mechanism of action different from that of sulfa drugs aimed at inhibiting the function of enzymes and receptors as described above, in fact, it belongs to fungi, Kawaratake, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Bacillus subtilis. It exhibits medicinal effects in a wide range of species, including the genus Trenteporia, Chlorella and Schizosrix, which are familiar with algae. However, for Pseudomonas aeruginosa, Bacillus subtilis, and Escherichia coli that have capsules and secrete polysaccharide mucus, about 10 times the concentration of chlorinated disinfectant is required.

図6は、衣及び住環境にある繊維、布、網、皮革、ゴム・プラスチック・フィルム等に本発明の処理を実施する方法の説明図である。
抗菌処理対象物5が布や平板状の場合、送りローラ6の間で上昇及び下降するようシステムが構築されている。該処理対象物の頂点には、噴霧塗装又は吹付処理用のノズル4が装備されている。微生物不活性化基剤又は同複合剤1を含む薬液は、貯留容器2から薬剤送液ポンプ3によって処理対象物5の表面に噴霧されるか塗付される。
FIG. 6 is an explanatory diagram of a method for carrying out the treatment of the present invention on textiles, cloths, nets, leather, rubber / plastic films, etc. in clothing and living environment.
When the antibacterial treatment object 5 is a cloth or a flat plate, the system is constructed so as to rise and fall between the feed rollers 6. A nozzle 4 for spray coating or spraying processing is provided at the apex of the processing object. The chemical solution containing the microorganism-inactivating base or the composite agent 1 is sprayed or applied from the storage container 2 to the surface of the object 5 to be processed by the drug delivery pump 3.

該基剤又は複合剤1が溶解又は懸濁していると、ノズル4から噴出した液剤は処理対象物5の表面に付着し、又、溶媒と共にある程度の深さまで浸透或いは膜を形成する。従って、薬剤吐出量は塗付の空白ができないよう表面が湿潤する程度に調節する。溶媒が自然に蒸発しある程度乾燥すると、薬剤は濃縮されて膜厚40μm以下になり、抗カビ・抗菌・発藻防止の処理は完了となる。   When the base or composite 1 is dissolved or suspended, the liquid ejected from the nozzle 4 adheres to the surface of the object 5 to be processed and forms a permeation or film to a certain depth together with the solvent. Accordingly, the amount of the medicine discharged is adjusted to such an extent that the surface is wetted so as not to leave a blank for application. When the solvent spontaneously evaporates and is dried to some extent, the drug is concentrated to a film thickness of 40 μm or less, and the antifungal, antibacterial, and algae prevention treatment is completed.

図7は、該基剤又は複合剤1が溶解又は懸濁した薬液に浸漬して処理を実施する方法の説明図である。処理対象物5が、建材・調度家具、塗装製品、家庭及び工業用品、学用品、運動具及び玩具等の基礎材料で連続した板状でない場合は、図3の処理対象物5を籠に入れた形のベルトコンベアに置き換えた処理方法になる。
何れにせよ、浸漬して抗カビ・抗菌・発藻防止の処理を行うことに変わりはない。この場合、送りローラ6の機構も、当然、処理対象物5の固体形状に見合った形で構築・編成される。液剤から引き上げられ、乾燥した時点で処理は完了となる。
処理対象物5の表面濡れ具合は表面張力・薬液浸透速度に左右されるが、乾燥時の
薬剤膜厚は概ね40μm以下で、露出する薬剤密度に不足なく処理できる。
FIG. 7 is an explanatory view of a method for performing treatment by immersing in a chemical solution in which the base or composite agent 1 is dissolved or suspended. If the object 5 is not a continuous plate made of basic materials such as building materials / furniture furniture, painted products, household and industrial products, school supplies, exercise equipment and toys, the object 5 shown in FIG. The processing method is replaced by a belt conveyor.
In any case, it is still the same that the anti-mold, antibacterial and anti-algae treatment is performed by dipping. In this case, as a matter of course, the mechanism of the feed roller 6 is also constructed and organized in a form commensurate with the solid shape of the processing object 5. The process is completed when the liquid is pulled up and dried.
Although the surface wetness of the processing object 5 depends on the surface tension and the chemical solution permeation rate, the film thickness of the drug at the time of drying is approximately 40 μm or less and can be processed without a shortage of the exposed drug density.

尚、処理対象物5が鏡面仕上げをしない為に吸着表面積を比較的大きく見込める場合、処理対象物5の製造工程において粉末状の基剤又は複合剤1を直接練り込む又は静電・粉末塗装することも可能である。但し、製品の物理的・機械的強度を損なってはならないから、添加量・率は自ずと制限される。
この場合、該基剤又は複合剤1の薬効は、湿気を吸着又は微生物の細胞内に取り込まれて、水溶液中(正確にはタンパク質等を含む電解質液中)の反応や酵素又は受容体との嵌合により発揮されると考えられる。
従って、該基剤又は複合剤1への添加量算定は、溶出速度に律速とみなし、MIC値の100倍程度(製品の厚みが1mmの場合、2500mg/kg=0.25重量%)必要になる。
In addition, when the processing target object 5 does not have a mirror finish, if the adsorption surface area is expected to be relatively large, the powdery base or composite agent 1 is directly kneaded or electrostatically / powder coated in the manufacturing process of the processing target object 5. It is also possible. However, since the physical and mechanical strength of the product must not be impaired, the amount and rate of addition are naturally limited.
In this case, the medicinal effect of the base or complex 1 is that moisture is adsorbed or taken into the cells of the microorganism, and the reaction with an enzyme or a receptor in an aqueous solution (exactly in an electrolyte solution containing protein or the like). It is thought that it is demonstrated by fitting.
Therefore, the calculation of the amount added to the base or complex 1 is considered to be rate-limiting to the dissolution rate and needs to be about 100 times the MIC value (2500 mg / kg = 0.25% by weight when the product thickness is 1 mm). Become.

抗菌性基剤として2−メルカプトピリジン−N−オキシドナトリウム一水和物を選択、副剤としてサルファ剤の中からスルファサラジン(サラゾスルファピリジン)、及び、遊離ハロゲン剤としてポピドン−ヨード(ポリビニルピロリドンのヨウ素錯体)の2種を選択して、処理対象物の硬質材表面を処理した後、拭き取り又は押し当て方法により細菌・真菌及び藻類の培養を行ったところ、一般建築物から検出される図9掲載の57種の微生物株全てについて陰性であった。   Select 2-mercaptopyridine-N-oxide sodium monohydrate as the antibacterial base, sulfasalazine (salazosulfapyridine) from sulfa drugs as an auxiliary agent, and popidone-iodo (iodine of polyvinylpyrrolidone) as a free halogen agent After selecting the two types of complex) and treating the hard material surface of the object to be treated, the bacteria, fungi, and algae were cultured by wiping or pressing methods. Of all 57 microbial strains.

陰性になった菌種等を実施例1の予備実験結果と照合して、MIC値が比較的高いものから順に示すと以下の通りであった。
緑膿菌の一種であるシュードモナス エレギノーサ、真菌に属するクリプトコッカス ラティアラス、同エルミンソスポリウム グラミニューム、同ペニシリウム イスランディカム、同ペニシリウム リラシナム、同ピッチア メンブラナエファシエンス、同ロドトルラ ガリニス、同ロドトルラ ラクトーサ及び唯一細菌に属するオートトロフィック バクテリアであった。本発明の薬剤「基剤及び複合剤2種の複合」が有効と判定された他種の真菌・細菌のMIC値は15mg/L以下であり、藻類のMIC値は総じて10mg/Lであった。
The negative bacterial species and the like were compared with the preliminary experiment results of Example 1 and shown in order from the relatively high MIC value as follows.
Pseudomonas eleginosa, a species of Pseudomonas aeruginosa, Cryptococcus latiaras belonging to fungi, Erminsosporium gramineum, Penicillium islandicam, Penicillium lilacinum, Pitcha membana efaciens, Rhodotorula gallinis, Rhodotorula lactosa and It was the only autotrophic bacterium belonging to the bacterium. The MIC value of other types of fungi / bacteria for which the drug “base and complex of two types of complex” of the present invention was determined to be effective was 15 mg / L or less, and the MIC value of algae was generally 10 mg / L. .

細菌・真菌・藻類の種別は、保有する染色体上遺伝子の違いによるが、物理的構造や形状を決定付けるのは酵素及び受容体の機能差異に依存する。この点では、輸送体の機能の関与は小さいといえる。   The types of bacteria, fungi, and algae depend on the difference in the chromosomal genes they possess, but the physical structure and shape are determined by the functional differences between the enzyme and the receptor. In this respect, it can be said that the function of the transporter is little involved.

因って、副剤単独の著効は限定され、基剤のMIC値を下げる相乗効果に目を見張るものがあった。スルファサラジンの第一副剤としての薬効は、該基剤が苦手とするアスペルギルス属、アルタルナリア属、ゲオトリカム属、ムコール属及びトリコデルマ属に対し顕著であった。又、黄色ブドウ球菌や大腸菌に対しても顕著な相乗効果が認められた。   Therefore, the remarkable effect of the secondary agent alone was limited, and there was a remarkable synergistic effect to lower the MIC value of the base. The medicinal effect of sulfasalazine as a first adjunct was remarkable for Aspergillus spp., Altarnaria spp., Geotricum spp., Mucor spp. And Trichoderma spp. A remarkable synergistic effect was also observed against S. aureus and E. coli.

又、ポピドンヨードの第二副剤としての薬効は、真菌類、前掲のアスペルギルス属及びゲオトリカム属と重複し、ボトリティス属、クラドスポリウム属、フザリウム属及びペニシリウム属に対して顕著であった。細菌に対する相乗効果は、スルファサラジンと略同程度であった。   In addition, the efficacy of popidone iodine as a second adjunct overlapped with the fungi, Aspergillus genus and Geotricum genus described above, and was remarkable for Botrytis genus, Cladosporium genus, Fusarium genus and Penicillium genus. The synergistic effect on bacteria was about the same as that of sulfasalazine.

これまでを総括すると、身近な硬質表面に存在する細菌・真菌・藻類の増殖を漏れなく阻止するには、作用機構が異なる抗菌・抗カビ・発藻防止剤を、メルカプトピリジン−N−オキシド塩を基剤とし、サルファ剤の1種及びハロゲン系錯体の1種と複合した本発明の複合型製剤で対応できる。日用品等の一般的用途では、無機系抗菌剤や4種を超える複合型の有機系抗菌剤は必要としない。   In summary, in order to prevent the growth of bacteria, fungi and algae present on familiar hard surfaces without omission, antibacterial, antifungal and anti-algae agents with different action mechanisms are combined with mercaptopyridine-N-oxide salts. It is possible to cope with the composite preparation of the present invention based on the above and combined with one kind of sulfa drugs and one kind of halogenated complex. In general uses such as daily necessities, inorganic antibacterial agents and composite organic antibacterial agents of more than four types are not required.

又、硬質材表面を抗菌処理した場合は、溶出量が危惧される。上述のように、本発明による処理後の表面残留薬剤は略乾燥した状態にあり、処理過程で該薬剤と接触した微生物は休眠体(胞子やシスト)又は死骸に化している。従って、処理後の薬剤残留量は極めて少量で、表面に吸着した水分に溶出する量も無視できる程度であるから、競合する界面活性剤系やサルファ剤系の単独又は複合型抗菌剤のように周囲環境への流出に配慮することも不要になる。   Moreover, when the hard material surface is antibacterial treated, the elution amount is a concern. As described above, the drug remaining on the surface after the treatment according to the present invention is in a substantially dry state, and microorganisms that have come into contact with the drug in the course of treatment are converted into dormant bodies (spores or cysts) or dead bodies. Therefore, the amount of residual drug after treatment is very small, and the amount eluted in the water adsorbed on the surface is negligible. Therefore, the surroundings are similar to competing surfactants and sulfa drugs alone or in combination with antibacterial agents. It is not necessary to consider the outflow to the environment.

本発明は、衣及び住環境にある繊維・布・網、皮革、ゴム・プラスチック・フィルム、建材・調度家具、塗装製品、家庭及び工業用品、学用品、運動具及び玩具等、固体表面を持つ物体であれば抗菌処理をする場合に幅広く利用できる。又、藻類に対しても有効であるので、結露しやすい窓の外壁に噴霧して処理し、藍色・緑色の汚れを防止することにも利用できる。   The present invention relates to objects having solid surfaces, such as clothes, textiles, fabrics, nets, leather, rubber, plastics, films, building materials, furniture, paint products, household and industrial products, school supplies, sports equipment, toys, etc. If so, it can be widely used for antibacterial treatment. Moreover, since it is effective against algae, it can be used by spraying on the outer wall of a window where condensation is likely to occur to prevent indigo and green stains.

Claims (6)

2−メルカプトピリジン−N−オキシド塩、又は、前記2−メルカプトピリジン−N−オキシド塩のピリジン環の3〜6位にある水素が他基に置換・修飾された同族誘導体、又は、前記ピリジン環がピリミジン環に置換された同族誘導体を抗菌基剤として含む抗菌処理薬剤を、抗菌処理対象物の表面積1m当たり1mg以上になるように均一に分布させて抗菌処理対象物へ添加、含浸又は塗付を行うことを特徴とする抗菌処理方法。 2-mercaptopyridine-N-oxide salt, or a homologous derivative in which hydrogen at the 3-6 position of the pyridine ring of the 2-mercaptopyridine-N-oxide salt is substituted or modified with another group, or the pyridine ring An antibacterial treatment agent containing a homologous derivative substituted with a pyrimidine ring as an antibacterial base is uniformly distributed so as to be 1 mg or more per 1 m 2 of the surface area of the antibacterial treatment target, and is added to, impregnated or coated on the antibacterial treatment target. An antibacterial treatment method characterized by performing attachment. 前記抗菌処理薬剤は、細菌・真菌・藻類の細胞壁・細胞膜上の酵素及び受容体の機能を阻害して相乗的抗菌効果をもたらすサルファ剤化合物を更に第一の副剤として前記抗菌基剤と等量を上限に含むものであることを特徴とする請求項1に記載の抗菌処理方法。   The antibacterial agent is equivalent to the antibacterial base with a sulfa drug compound that inhibits the functions of enzymes and receptors on the cell walls and cell membranes of bacteria, fungi, and algae to produce a synergistic antibacterial effect. The antibacterial treatment method according to claim 1, wherein the upper limit is included. 前記抗菌処理薬剤は、酸化力が次亜塩素酸より弱いヨウ素と有機高分子との錯体を第二の副剤として前記抗菌基剤と等量を上限に更に含むものであることを特徴とする請求項2に記載の抗菌処理方法。   The antibacterial treatment agent is characterized by further containing an equivalent amount of the antibacterial base as an upper limit with a complex of iodine and organic polymer having weaker oxidizing power than hypochlorous acid as a second auxiliary agent. 2. The antibacterial treatment method according to 2. 2−メルカプトピリジン−N−オキシド塩、又は、前記2−メルカプトピリジン−N−オキシド塩のピリジン環の3〜6位にある水素が他基に置換・修飾された同族誘導体、又は、前記ピリジン環がピリミジン環に置換された同族誘導体を抗菌基剤として含む抗菌処理薬剤。   2-mercaptopyridine-N-oxide salt, or a homologous derivative in which hydrogen at the 3-6 position of the pyridine ring of the 2-mercaptopyridine-N-oxide salt is substituted or modified with another group, or the pyridine ring An antibacterial agent containing a homologous derivative substituted with a pyrimidine ring as an antibacterial base. 前記抗菌処理薬剤は、細菌・真菌・藻類の細胞壁・細胞膜上の酵素及び受容体の機能を阻害して相乗的抗菌効果をもたらすサルファ剤化合物を更に第一の副剤として前記抗菌基剤と等量を上限に含むものであることを特徴とする請求項4に記載の抗菌処理薬剤。   The antibacterial agent is equivalent to the antibacterial base with a sulfa drug compound that inhibits the functions of enzymes and receptors on the cell walls and cell membranes of bacteria, fungi, and algae to produce a synergistic antibacterial effect. The antibacterial treatment agent according to claim 4, wherein 前記抗菌処理薬剤は、酸化力が次亜塩素酸より弱いヨウ素と有機高分子との錯体を第二の副剤として前記抗菌基剤と等量を上限に更に含むものであることを特徴とする請求項5に記載の抗菌処理薬剤。   The antibacterial treatment agent is characterized by further containing an equivalent amount of the antibacterial base as an upper limit with a complex of iodine and organic polymer having weaker oxidizing power than hypochlorous acid as a second auxiliary agent. 5. The antibacterial treatment agent according to 5.
JP2013218519A 2013-10-21 2013-10-21 Antibacterial treatment method and antibacterial agent Active JP6125400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013218519A JP6125400B2 (en) 2013-10-21 2013-10-21 Antibacterial treatment method and antibacterial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013218519A JP6125400B2 (en) 2013-10-21 2013-10-21 Antibacterial treatment method and antibacterial agent

Publications (2)

Publication Number Publication Date
JP2015081233A true JP2015081233A (en) 2015-04-27
JP6125400B2 JP6125400B2 (en) 2017-05-10

Family

ID=53012040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013218519A Active JP6125400B2 (en) 2013-10-21 2013-10-21 Antibacterial treatment method and antibacterial agent

Country Status (1)

Country Link
JP (1) JP6125400B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063215A (en) * 2018-10-18 2020-04-23 株式会社ピュアソン Antivirus, antibacterial, antifungal agent, and treatment method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356426A (en) * 1989-07-24 1991-03-12 Gifu Meneki Kenkyusho:Kk Bovine mastitis preventive and treating antibody-containing material
JPH0912410A (en) * 1995-06-30 1997-01-14 Paint House:Kk Antimicrobial repellent composition for harmful organism
JPH10316513A (en) * 1997-05-15 1998-12-02 Hokko Chem Ind Co Ltd Antiseptic and antifungal agent
JP2000191412A (en) * 1998-12-28 2000-07-11 Nagase Kasei Kogyo Kk Microbicidal composition
JP2001040580A (en) * 1999-07-23 2001-02-13 Mitsubishi Paper Mills Ltd Antimicrobial moisture-releasing sheet, method and device for humidification
JP2001089974A (en) * 1999-09-22 2001-04-03 Mitsubishi Paper Mills Ltd Fibrous base material
JP2002128609A (en) * 2000-10-27 2002-05-09 Nagase Kasei Kogyo Kk Antimicrobial agent composition
JP2002128608A (en) * 2000-10-27 2002-05-09 Nagase Kasei Kogyo Kk Antimicrobial agent composition
JP2002265310A (en) * 2001-03-06 2002-09-18 Nagase Chemtex Corp Antimicrobial agent composition
JP2002284612A (en) * 2001-03-29 2002-10-03 Nagase Kasei Kogyo Kk Antimicrobial composition
JP2003081713A (en) * 2001-09-12 2003-03-19 Nagase Chemtex Corp Antimicrobial agent composition
JP2003119861A (en) * 2001-10-18 2003-04-23 Nippon Soda Co Ltd Outfall cover of sink in kitchen
JP2004361632A (en) * 2003-06-04 2004-12-24 Kyocera Mita Corp Cleaning device and image forming apparatus provided with the same
JP2008512591A (en) * 2004-09-10 2008-04-24 ジョンズ マンヴィル Method for providing waterproofing to a roof structure and roof structure formed thereby
JP2010519301A (en) * 2007-02-26 2010-06-03 オーレオジェン バイオサイエンシーズ How to treat an infection
JP2012505202A (en) * 2008-10-14 2012-03-01 株式会社シクロケム Antibacterial composition

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356426A (en) * 1989-07-24 1991-03-12 Gifu Meneki Kenkyusho:Kk Bovine mastitis preventive and treating antibody-containing material
JPH0912410A (en) * 1995-06-30 1997-01-14 Paint House:Kk Antimicrobial repellent composition for harmful organism
JPH10316513A (en) * 1997-05-15 1998-12-02 Hokko Chem Ind Co Ltd Antiseptic and antifungal agent
JP2000191412A (en) * 1998-12-28 2000-07-11 Nagase Kasei Kogyo Kk Microbicidal composition
JP2001040580A (en) * 1999-07-23 2001-02-13 Mitsubishi Paper Mills Ltd Antimicrobial moisture-releasing sheet, method and device for humidification
JP2001089974A (en) * 1999-09-22 2001-04-03 Mitsubishi Paper Mills Ltd Fibrous base material
JP2002128609A (en) * 2000-10-27 2002-05-09 Nagase Kasei Kogyo Kk Antimicrobial agent composition
JP2002128608A (en) * 2000-10-27 2002-05-09 Nagase Kasei Kogyo Kk Antimicrobial agent composition
JP2002265310A (en) * 2001-03-06 2002-09-18 Nagase Chemtex Corp Antimicrobial agent composition
JP2002284612A (en) * 2001-03-29 2002-10-03 Nagase Kasei Kogyo Kk Antimicrobial composition
JP2003081713A (en) * 2001-09-12 2003-03-19 Nagase Chemtex Corp Antimicrobial agent composition
JP2003119861A (en) * 2001-10-18 2003-04-23 Nippon Soda Co Ltd Outfall cover of sink in kitchen
JP2004361632A (en) * 2003-06-04 2004-12-24 Kyocera Mita Corp Cleaning device and image forming apparatus provided with the same
JP2008512591A (en) * 2004-09-10 2008-04-24 ジョンズ マンヴィル Method for providing waterproofing to a roof structure and roof structure formed thereby
JP2010519301A (en) * 2007-02-26 2010-06-03 オーレオジェン バイオサイエンシーズ How to treat an infection
JP2012505202A (en) * 2008-10-14 2012-03-01 株式会社シクロケム Antibacterial composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063215A (en) * 2018-10-18 2020-04-23 株式会社ピュアソン Antivirus, antibacterial, antifungal agent, and treatment method
JP7104972B2 (en) 2018-10-18 2022-07-22 株式会社ピュアソン Antiviral/antibacterial/antifungal agent and treatment method

Also Published As

Publication number Publication date
JP6125400B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
US7390774B2 (en) Antibacterial composition and methods of making and using the same
Strayer et al. Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse
Gottardi et al. N-chloramines, a promising class of well-tolerated topical anti-infectives
ES2327369T3 (en) DISINFECTING COMPOUNDS THAT PROVIDE PROLONGED BIOCIDE ACTION.
US7163709B2 (en) Composition for disinfection of plants, animals, humans, byproducts of plants and animals and articles infected with pathogens and method of producing and application of same
EP0834253B1 (en) Antimicrobial composition
Tang et al. Preparation of a porphyrin metal–organic framework with desirable photodynamic antimicrobial activity for sustainable plant disease management
CA2369828A1 (en) Microbicidal formulations and methods for controlling microorganisms
WO2004003121A1 (en) Desinfecting composition
CN100540061C (en) Sterilized or disinfectant method in the surface
CN106572662A (en) Antimicrobial-antibiofilm compositions and methods of use thereof for personal care products
CN106172434A (en) A kind of QIANGYI biocide mildewcide and preparation method thereof
KR20010031831A (en) Pesticide against plant-pathogenic micro-organisms
CN111642518A (en) Iodophor compositions having improved stability in the presence of organic materials
JP5718092B2 (en) Antibacterial, bactericidal or antiviral composition
CN104746389B (en) A kind of process for sterilizing of food wrapper
JP6125400B2 (en) Antibacterial treatment method and antibacterial agent
CN113854290A (en) Long-acting lasting biguanide compound disinfectant and preparation method thereof
EP1871395B1 (en) Garlic extract and chitosan compositions, and uses thereof
WO2018164994A1 (en) Self-assembled active agents
JP5603701B2 (en) Antibacterial composition and use thereof
CN105211089A (en) A kind of Multifunctional anti-fungus antibacterial agent
JP5535702B2 (en) Silver-histidine polynuclear complex and method for producing the same
JP7104972B2 (en) Antiviral/antibacterial/antifungal agent and treatment method
KR20070083611A (en) Decal that includes synergistic antimicrobials for treating surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170405

R150 Certificate of patent or registration of utility model

Ref document number: 6125400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250