JP2015080353A - Motor driving device and motor driving method - Google Patents

Motor driving device and motor driving method Download PDF

Info

Publication number
JP2015080353A
JP2015080353A JP2013216954A JP2013216954A JP2015080353A JP 2015080353 A JP2015080353 A JP 2015080353A JP 2013216954 A JP2013216954 A JP 2013216954A JP 2013216954 A JP2013216954 A JP 2013216954A JP 2015080353 A JP2015080353 A JP 2015080353A
Authority
JP
Japan
Prior art keywords
current
axis
motor
value
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013216954A
Other languages
Japanese (ja)
Other versions
JP5744151B2 (en
Inventor
貴彦 小林
Takahiko Kobayashi
貴彦 小林
史朗 高木
Shiro Takagi
史朗 高木
大樹 松浦
Daiki Matsuura
大樹 松浦
和田 典之
Noriyuki Wada
典之 和田
安西 清治
Kiyoharu Anzai
清治 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013216954A priority Critical patent/JP5744151B2/en
Publication of JP2015080353A publication Critical patent/JP2015080353A/en
Application granted granted Critical
Publication of JP5744151B2 publication Critical patent/JP5744151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a motor driving device and a motor driving method capable of variably controlling currents flowing through a motor under a wide range of operating conditions, and stably driving the motor without individually compensating various control errors.SOLUTION: The driving device of a motor for controlling a voltage value to be applied to a motor (10), and for controlling the driving of the motor by allowing currents flowing through the motor to follow up a current command value includes: a current detector (5) for detecting currents flowing through the motor as a current detection value; a current deviation calculation unit for calculating a difference between the current command value and the current detection value as a current deviation; a magnetic flux estimation unit (1) for estimating a motor interlinkage magnetic flux interlinking the armature of the motor on the basis of the current deviation; and a current control unit (2) for determining a voltage value to be applied to the motor on the basis of the estimation value of the motor interlinkage magnetic flux, the current deviation and the rotational speed of the motor.

Description

この発明は、電動機に印加する電圧により電動機に流れる電流を制御する電動機の駆動装置に関するものであって、特に、電動機に流れる電流を広範囲の運転条件にわたって可変制御することができる電動機の駆動装置および電動機の駆動方法に関するものである。   The present invention relates to an electric motor drive device that controls a current flowing through an electric motor by a voltage applied to the electric motor, and in particular, an electric motor drive device capable of variably controlling the electric current flowing through the electric motor over a wide range of operating conditions, and The present invention relates to a method for driving an electric motor.

広範囲の運転領域で安定かつ高性能に交流電動機を駆動するために、様々な工夫がなされている。例えば、電動機の回転子が高速回転している際には、回転速度に略比例して増大する誘起電圧を補償するために、非干渉化制御が実施されている。   Various ideas have been made to drive an AC motor stably and with high performance in a wide range of operation. For example, when the rotor of the electric motor is rotating at high speed, non-interference control is performed in order to compensate for an induced voltage that increases substantially in proportion to the rotation speed.

電動機に対する非干渉化制御では、電動機に流れる電流(および、永久磁石を備える電動機においては永久磁石磁束)と回転速度とに基づいて補償すべき電圧が決定されるのが一般的である。   In the non-interference control for the electric motor, the voltage to be compensated is generally determined based on the current flowing through the electric motor (and the permanent magnet magnetic flux in an electric motor including a permanent magnet) and the rotation speed.

従来の電動機の駆動装置における非干渉化制御としては、電動機に流れる電流を検出した電流検出値に基づくもの(例えば、特許文献1参照)や、電流指令値に基づくものや、両者を併用するもの(例えば、特許文献2参照)や、電流偏差に基づくもの(例えば、特許文献3/特許文献4参照)がある。   Non-interference control in a conventional motor drive device is based on a current detection value obtained by detecting a current flowing in the motor (for example, see Patent Document 1), based on a current command value, or a combination of both. (For example, refer to Patent Document 2) and those based on current deviation (for example, refer to Patent Document 3 / Patent Document 4).

特開平6−153567号公報JP-A-6-153567 特許第4128891号公報Japanese Patent No. 4128891 特許第1641300号公報Japanese Patent No. 1641300 特許第3321356号公報Japanese Patent No. 3321356 特許第3683304号公報Japanese Patent No. 3683304 特許第3527207号公報Japanese Patent No. 3527207

しかしながら、従来技術には、以下のような課題がある。
従来の電動機の駆動装置では、駆動対象とする電動機を広い運転範囲で駆動しようとすれば、電動機が高速で回転する時や電動機に流れる電流が大きい時といった限界運転時において、電動機に流れる電流を適切に制御できなくなるといった問題点があった。
However, the prior art has the following problems.
In a conventional motor drive device, if the motor to be driven is driven in a wide operating range, the current flowing to the motor is limited during critical operation such as when the motor rotates at high speed or when the current flowing through the motor is large. There was a problem that proper control could not be achieved.

例えば、電流検出値と回転速度に基づいて非干渉化を行なう方式においては、これをデジタル実装した場合、遅れのために、制御周期からその数倍程度の周期で振動したり、著しくは電流制御が成り立たなくなったりする問題があった。なお、制御周期を短くすることでこのような問題を解決できる場合もあるが、使用するマイコンの性能やPWMによる制約のために、制御周期を充分に短くすることができない場合があった。   For example, in the method of performing non-interference based on the current detection value and the rotation speed, if this is digitally mounted, it may vibrate at a frequency several times that of the control cycle due to delay, or remarkably current control There was a problem that became impossible. Although there are cases where such a problem can be solved by shortening the control cycle, there are cases where the control cycle cannot be shortened sufficiently due to the performance of the microcomputer used and restrictions due to PWM.

あるいは、電流指令値と回転速度に基づいて非干渉化を行なう方式においては、実際の電流に比べて、通常は、電流指令値の位相が進んでいる。このため、非干渉化電圧が適切とならず、電流制御系の設計応答付近の周波数帯、もしくは、設計応答より高い周波数帯で電流の振動が見受けられる場合があった。また、電流検出や電圧印加に際して、位相誤差を含む場合、前述の周波数帯よりも低い周波数で電流脈動が生じる場合があった。   Alternatively, in the method of performing non-interference based on the current command value and the rotation speed, the phase of the current command value is usually advanced as compared with the actual current. For this reason, the non-interacting voltage is not appropriate, and there is a case where current oscillation is observed in a frequency band near the design response of the current control system or in a frequency band higher than the design response. In addition, when current detection or voltage application includes a phase error, current pulsation may occur at a frequency lower than the above-described frequency band.

あるいは、電流検出値と電流指令値を併用する方式においては、検出値と指令値との間の重み付けを調整することにより、上述した問題点の幾つかを解決できる場合もある。しかしながら、全てを同時に解決することができない場合もある。特に、電流検出や電圧印加の位相誤差に起因して生じる低周波の電流脈動を解決できない場合が多い。   Alternatively, in the method using the current detection value and the current command value in combination, some of the above-described problems may be solved by adjusting the weighting between the detection value and the command value. However, there are cases where all cannot be solved simultaneously. In particular, low frequency current pulsations caused by current detection and voltage application phase errors are often not solved.

なお、電流検出や電圧印加の位相誤差については、その補正方法が公知である(例えば、電圧印加の誤差については特許文献5)。しかしながら、その誤差量が未知である場合には、適切な補正量もまた未知となる。このため、適切に補正ができないという別の課題が発生する。   Note that a correction method for a current detection or voltage application phase error is known (for example, Patent Document 5 describes a voltage application error). However, when the error amount is unknown, an appropriate correction amount is also unknown. For this reason, another problem that correction cannot be performed properly occurs.

あるいは、電流偏差と回転速度とに基づく方式では、既存の方式は、回転速度の急変時に非干渉化の補償電圧が回転速度の急変に対応できずに電流波形が乱れるといった課題を抱えていた。   Alternatively, in the method based on the current deviation and the rotation speed, the existing method has a problem that the non-interference compensation voltage cannot cope with the sudden change in the rotation speed and the current waveform is disturbed when the rotation speed changes suddenly.

特許文献3に開示された方式では、角周波数を乗じた量を積分するため、高速回転時においては、積分器が大きな値を保持することになる。しかしながら、回転速度が急に低下した場合、低速回転時の適正量に比して著しく過大な値が積分器に残留することとなる。この結果、出力電圧値が過大となり、電流波形が過渡的に乱れるといった問題がある。   In the method disclosed in Patent Document 3, since the amount multiplied by the angular frequency is integrated, the integrator holds a large value during high-speed rotation. However, when the rotational speed is suddenly reduced, a value that is significantly larger than the appropriate amount during low-speed rotation remains in the integrator. As a result, there is a problem that the output voltage value becomes excessive and the current waveform is transiently disturbed.

特許文献4に開示された方式では、積分される値に対して回転速度相当量が乗じられていない。このため、一見すると、回転速度の急変の影響がないように見えるが、実際には回転速度急変の影響を受ける。なぜなら、物理法則上、必要な非干渉化電圧は、回転速度に比例する一方で、積分値は、回転数の変化に応じて瞬時には変わらずに、遅れを伴うため、電流波形が過渡的に乱れることに変わりはないからである。   In the method disclosed in Patent Document 4, the value corresponding to the integral is not multiplied by the rotation speed equivalent amount. For this reason, at first glance, it seems that there is no influence of a sudden change in the rotational speed, but in reality it is affected by a sudden change in the rotational speed. This is because the necessary decoupling voltage is proportional to the rotation speed, but the integral value does not change instantaneously according to the change in the rotation speed, but includes a delay, so that the current waveform is transient. It is because there is no change in being disturbed.

特許文献6に開示された方式では、積分される電流偏差値に乗じられる積分ゲインに関して、その具体的な値の設定について、高い自由度を有することが記述されている。しかしながら、電流偏差値に乗じるゲインをどのような値に設定したとしても、前述と同様に、物理法則上、電流波形に過渡的な乱れが生じることに変わりはない。   In the method disclosed in Patent Document 6, it is described that the integration gain multiplied by the integrated current deviation value has a high degree of freedom in setting a specific value thereof. However, no matter what value is set to the gain multiplied by the current deviation value, a transient disturbance occurs in the current waveform in accordance with the physical law, as described above.

以上のように、従来の電動機の駆動装置にあっては、電動機を広範囲の運転条件で駆動しようとすれば、高速回転時や大電流時を始めとする限界運転時において、電流に脈動が重畳したり電流の制御応答が著しく低下したりするなど、電流を適切に制御できず、不安定化する場合があった。   As described above, in the conventional motor drive device, if the motor is driven in a wide range of operating conditions, the pulsation is superimposed on the current at the limit operation such as at high speed rotation or at high current. In some cases, the current cannot be properly controlled and becomes unstable, for example, the control response of the current significantly decreases.

この発明は、上記のような課題を解決するためになされたものであり、電動機に流れる電流を広範囲の運転条件にわたって可変制御することができ、種々の制御誤差を個別に補償することなく、電動機を安定に駆動することができる電動機の駆動装置および電動機の駆動方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and can variably control the current flowing through the motor over a wide range of operating conditions, and can compensate the motor without individually compensating for various control errors. An object of the present invention is to obtain an electric motor drive device and an electric motor drive method capable of stably driving the motor.

この発明に係る電動機の駆動装置は、電動機に印加する電圧値を制御して、電動機に流れる電流を電流指令値に追従させることにより電動機を駆動制御する電動機の駆動装置であって、電動機に流れる電流を電流検出値として検出する電流検出器と、電流指令値と電流検出値との差を電流偏差として演算する電流偏差演算器と、電流偏差に基づいて電動機の電機子を鎖交する電機子鎖交磁束を推定する磁束推定器と、電機子鎖交磁束の推定値、電流偏差、および電動機の回転速度に基づいて電動機に印加する電圧値を決定する電流制御器とを備えるものである。   An electric motor drive apparatus according to the present invention is an electric motor drive apparatus that controls the voltage value applied to the electric motor and controls the electric motor by causing the current flowing through the electric motor to follow the current command value. A current detector that detects current as a current detection value, a current deviation calculator that calculates a difference between the current command value and the current detection value as a current deviation, and an armature that links the armatures of the motor based on the current deviation A magnetic flux estimator for estimating the linkage flux and a current controller for determining a voltage value to be applied to the motor based on the estimated value of the armature linkage flux, the current deviation, and the rotation speed of the motor.

また、この発明に係る電動機の駆動方法は、電動機に印加する電圧値を制御して、電動機に流れる電流を電流指令値に追従させることにより電動機を駆動制御する制御部を備えた電動機の駆動装置で実行される電動機の駆動方法であって、制御部は、電動機の回転速度を読み取る回転速度読み取りステップと、電流検出器により電動機に流れる電流を電流検出値として検出する電流検出ステップと、電流指令値と電流検出値との差を電流偏差として演算する電流偏差演算ステップと、電流偏差に基づいて電動機の電機子を鎖交する電機子鎖交磁束を推定する磁束推定ステップと、電機子鎖交磁束の推定値、電流偏差、および電動機の回転速度に基づいて電動機に印加する電圧値を決定する電流制御ステップとを有するものである。   In addition, the motor driving method according to the present invention includes a control unit that controls a voltage value applied to the motor and controls the driving of the motor by causing the current flowing through the motor to follow the current command value. The motor drive method is executed by the control unit, wherein the control unit reads the rotation speed of the motor, a current detection step of detecting a current flowing through the motor as a current detection value by a current detector, and a current command A current deviation calculating step for calculating a difference between the current value and the detected current value as a current deviation, a magnetic flux estimating step for estimating an armature linkage flux that links the armatures of the motor based on the current deviation, and an armature linkage And a current control step for determining a voltage value to be applied to the electric motor based on the estimated value of the magnetic flux, the current deviation, and the rotational speed of the electric motor.

この発明によれば、電流指令値と電流検出値との差である電流偏差に基づいて電機子鎖交磁束を推定し、電機子鎖交磁束の推定値、電流偏差、および電動機の回転速度に基づいて電動機に印加する電圧値を決定している。この結果、電動機に流れる電流を広範囲の運転条件にわたって可変制御することができ、種々の制御誤差を個別に補償することなく、電動機を安定に駆動することができる電動機の駆動装置および電動機の駆動方法を得ることができる。   According to the present invention, the armature linkage flux is estimated based on the current deviation that is the difference between the current command value and the current detection value, and the estimated value of the armature linkage flux, the current deviation, and the rotation speed of the motor are calculated. Based on this, the voltage value to be applied to the electric motor is determined. As a result, it is possible to variably control the current flowing through the motor over a wide range of operating conditions, and to stably drive the motor without individually compensating for various control errors. Can be obtained.

本発明の実施の形態1に係る電動機の駆動装置の構成を示す例示図である。It is an illustration figure which shows the structure of the drive device of the electric motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る磁束推定器の構成を示す例示図である。It is an illustration figure which shows the structure of the magnetic flux estimator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電流制御器の構成を示す例示図である。It is an illustration figure which shows the structure of the current controller which concerns on Embodiment 1 of this invention. 本発明の実施の形態3に係る電動機の駆動装置の構成を示す例示図である。It is an illustration figure which shows the structure of the drive device of the electric motor which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る磁束推定器の構成を示す例示図である。It is an illustration figure which shows the structure of the magnetic flux estimator which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る電流制御器の構成を示す例示図である。It is an illustration figure which shows the structure of the current controller which concerns on Embodiment 3 of this invention.

以下、本発明における電動機の駆動装置および電動機の駆動方法の好適な実施の形態について図面を用いて説明する。なお、各図において同一、または相当する部分については、同一符号を付して説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an electric motor drive device and an electric motor drive method according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and demonstrated about the part which is the same or it corresponds in each figure.

実施の形態1.
図1は、本発明の実施の形態1に係る電動機の駆動装置の構成を示す例示図である。図1に示す電動機の駆動装置は、磁束推定器1、電流制御器2、dq/uvw変換器3、電圧出力器4、電流検出器5、uvw/dq変換器6、および微分器7を備えて構成される。
Embodiment 1 FIG.
FIG. 1 is an exemplary diagram showing a configuration of a drive device for an electric motor according to Embodiment 1 of the present invention. 1 includes a magnetic flux estimator 1, a current controller 2, a dq / uvw converter 3, a voltage output unit 4, a current detector 5, a uvw / dq converter 6, and a differentiator 7. Configured.

また、図1には、電動機の駆動装置の他にも、電動機の駆動装置によって駆動される電動機10と、電動機10の回転子の電気角を検出する電気角検出器31が示されている。そして、電気角検出器31により検出される回転角検出値は、θとして図示されており、この回転角検出値θは、dq/uvw変換器3、uvw/dq変換器6、および微分器7に与えられる。   In addition to the electric motor driving device, FIG. 1 shows an electric motor 10 driven by the electric motor driving device and an electric angle detector 31 for detecting the electric angle of the rotor of the electric motor 10. The rotation angle detection value detected by the electrical angle detector 31 is illustrated as θ, and this rotation angle detection value θ is represented by the dq / uvw converter 3, the uvw / dq converter 6, and the differentiator 7. Given to.

以下、図1を参照しながら、本発明の実施の形態1に係る電動機の駆動装置の各構成要素の機能について説明する。   Hereinafter, the function of each component of the electric motor drive device according to Embodiment 1 of the present invention will be described with reference to FIG.

電流検出器5は、駆動対象となる電動機10を流れる三相電流を検出する。これらの3相分の検出値をまとめて三相電流検出値とよび、またuvwの各相の検出値をそれぞれ、u相電流検出値(i)、v相電流検出値(i)、w相電流検出値(i)として図1に示す。 The current detector 5 detects a three-phase current flowing through the electric motor 10 to be driven. The detection values for these three phases are collectively referred to as a three-phase current detection value, and the detection values for each phase of uvw are respectively represented as u-phase current detection value (i u ), v-phase current detection value (i v ), The w-phase current detection value (i w ) is shown in FIG.

uvw/dq変換器6は、三相電流検出値を電動機10の回転に同期したdq座標系に変換する。本実施の形態1では、d軸方向を電動機10の回転子の磁束の方向とし、q軸をd軸の直交方向(電動機の回転軸に沿って反時計回りに90度進めた方向)とする。uvw/dq変換器6によるこれらの変換値を、それぞれd軸電流検出値(i)とq軸電流検出値(i)として図に示す。 The uvw / dq converter 6 converts the three-phase current detection value into a dq coordinate system synchronized with the rotation of the electric motor 10. In the first embodiment, the d-axis direction is the direction of the magnetic flux of the rotor of the electric motor 10, and the q-axis is the orthogonal direction of the d-axis (the direction advanced 90 degrees counterclockwise along the rotation axis of the electric motor). . These converted values by uvw / dq converter 6, shown in the figure as respectively d-axis current detection value (i d) and the q-axis current detection value (i q).

uvw/dq変換器6は、具体的には、下式(1)の変換を行なう。   Specifically, the uvw / dq converter 6 performs the conversion of the following expression (1).

Figure 2015080353
Figure 2015080353

外部より与えられるd軸電流指令値(i )とd軸電流検出値(i)との偏差が、下式(2)によって計算され、これをd軸電流偏差(i )と呼ぶ。同様に、外部より与えられるq軸電流指令値(i )とq軸電流検出値(i)との偏差も、下式(2)によって計算され、これをq軸電流偏差(i )と呼ぶ。 D-axis current command value given from the outside (i d *) and the d-axis current detection value (i d) and the deviation of is calculated by the following equation (2), which with the d-axis current deviation (i d ~) Call. Similarly, the deviation between the q-axis current command value (i q * ) given from the outside and the q-axis current detection value (i q ) is also calculated by the following equation (2), which is calculated as the q-axis current deviation (i q ~ )

Figure 2015080353
Figure 2015080353

図2は、本発明の実施の形態1に係る磁束推定器1の構成を示す例示図である。磁束推定器1は、d軸電流偏差とq軸電流偏差とから、d軸およびq軸のそれぞれの電機子鎖交磁束を推定する。この推定値のうち、d軸成分をd軸電機子鎖交磁束推定値(φ^)として、図1および図2に示す。また、q軸成分をq軸電機子鎖交磁束推定値(φ^)として、図1および図2に示す。 FIG. 2 is an exemplary diagram showing a configuration of the magnetic flux estimator 1 according to the first embodiment of the present invention. The magnetic flux estimator 1 estimates the armature linkage magnetic flux of each of the d axis and the q axis from the d axis current deviation and the q axis current deviation. FIG. 1 and FIG. 2 show the d-axis component of this estimated value as the d-axis armature flux linkage estimated value (φ d ^). Further, the q-axis component is shown in FIG. 1 and FIG. 2 as the q-axis armature flux linkage estimated value (φ q ^).

磁束推定器1は、具体的には、下式(3)の演算を行なう。   Specifically, the magnetic flux estimator 1 performs the calculation of the following expression (3).

Figure 2015080353
Figure 2015080353

ここで、Kはd軸電機子鎖交磁束推定ゲイン、Kはq軸電機子鎖交磁束推定ゲインを示す。 Here, Kd represents a d-axis armature linkage flux estimation gain, and Kq represents a q-axis armature linkage flux estimation gain.

微分器7は、電気角検出器31から回転角検出値θを入力して微分し、回転速度(ω)として電流制御器2に出力している。   The differentiator 7 receives and differentiates the rotation angle detection value θ from the electrical angle detector 31 and outputs it to the current controller 2 as the rotation speed (ω).

図3は、本発明の実施の形態1に係る電流制御器2の構成を示す例示図である。電流制御器2は、電流偏差と電機子鎖交磁束推定値と回転速度(ω)から、電圧指令値を演算する。本実施の形態1においては、電流偏差は、前記のd軸電流偏差とq軸電流偏差を指し、電機子鎖交磁束推定値は、前記のd軸電機子鎖交磁束推定値とq軸電機子鎖交磁束推定値を指す。回転速度は、微分器7が出力する値である。また、電圧指令値とは、電機子に流れる電流をその指令値に向けて収束させるために好適な電圧を意味し、本実施の形態1では、d軸成分とq軸成分の各成分ごとに計算される。これらをそれぞれd軸電圧指令値(v )およびq軸電圧指令値(v )として図1および図3に示す。 FIG. 3 is an exemplary diagram showing a configuration of the current controller 2 according to the first embodiment of the present invention. The current controller 2 calculates a voltage command value from the current deviation, the armature flux linkage estimated value, and the rotation speed (ω). In the first embodiment, the current deviation indicates the d-axis current deviation and the q-axis current deviation, and the armature linkage flux estimated value is the d-axis armature linkage flux estimate and the q-axis electrical machine. Refers to the estimated value of flux linkage. The rotation speed is a value output from the differentiator 7. The voltage command value means a voltage suitable for converging the current flowing through the armature toward the command value, and in the first embodiment, for each component of the d-axis component and the q-axis component. Calculated. These are respectively shown in FIG. 1 and FIG. 3 as a d-axis voltage command value (v d * ) and a q-axis voltage command value (v q * ).

電流制御器2は、具体的には、下式(4)の演算を行なう。   Specifically, the current controller 2 performs the calculation of the following expression (4).

Figure 2015080353
Figure 2015080353

ここで、KPdはd軸比例ゲイン、KIdはd軸積分ゲイン、KPqはq軸比例ゲイン、KIqはq軸積分ゲインを示す。 Here, K Pd is a d-axis proportional gain, K Id is a d-axis integral gain, K Pq is a q-axis proportional gain, and K Iq is a q-axis integral gain.

図3および上式(4)の示すところは、次のとおりである。d軸電圧指令値は、d軸電流偏差による比例積分制御から、q軸電機子鎖交磁束推定値と回転速度との積が減算されて決定されるということを意味している。また、q軸電圧指令値は、q軸電流偏差による比例積分制御から、d軸電機子鎖交磁束推定値と回転速度との積が加算されて決定されるということを意味している。   The place shown in FIG. 3 and the above equation (4) is as follows. The d-axis voltage command value means that the product of the q-axis armature flux linkage estimated value and the rotation speed is subtracted from the proportional-integral control based on the d-axis current deviation. Further, the q-axis voltage command value means that the product of the d-axis armature flux linkage estimated value and the rotational speed is determined by proportional integral control based on the q-axis current deviation.

dq/uvw変換器3は、d軸電圧指令値とq軸電圧指令値を三相座標上の電圧指令値に変換する。これらの3相分の指令値をまとめて三相電圧指令値と呼ぶ。また、これらの3相の電圧指令値をそれぞれu相電圧指令値(v )、v相電圧指令値(v )、w相電圧指令値(v )として図1に示す。 The dq / uvw converter 3 converts the d-axis voltage command value and the q-axis voltage command value into voltage command values on three-phase coordinates. These command values for three phases are collectively referred to as a three-phase voltage command value. These three-phase voltage command values are shown in FIG. 1 as a u-phase voltage command value (v u * ), a v-phase voltage command value (v v * ), and a w-phase voltage command value (v w * ), respectively.

dq/uvw変換器3は、具体的には、下式(5)の変換を行う。   Specifically, the dq / uvw converter 3 performs the conversion of the following equation (5).

Figure 2015080353
Figure 2015080353

電圧出力器4は、三相電圧指令値に略一致する電圧を、駆動対象である電動機10に印加する。当該部分のハードウェア構成は、三相電圧形インバータに準じた構成であり、電圧出力器4は、パルス幅変調された電圧を電動機10に対して印加することとなる。   The voltage output unit 4 applies a voltage that substantially matches the three-phase voltage command value to the electric motor 10 that is the drive target. The hardware configuration of this part is a configuration according to a three-phase voltage source inverter, and the voltage output unit 4 applies a pulse-width modulated voltage to the electric motor 10.

なお、本実施の形態1における各種ゲインの設定の一例について、下式(6)にまとめて示す。   An example of setting various gains in the first embodiment is collectively shown in the following formula (6).

Figure 2015080353
Figure 2015080353

ここで、ωcc,dはd軸電流応答の設計パラメータ、ωcc,qはq軸電流応答の設計パラメータ、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Rは巻線の抵抗値を示す。 Here, ω cc, d is a d-axis current response design parameter, ω cc, q is a q-axis current response design parameter, Ld is a d-axis inductance, Lq is a q-axis inductance, and R is a winding resistance value. .

このように、本実施の形態1における電動機の駆動装置は、電流指令値と電流検出値との差である電流偏差に基づいて推定される磁束推定値を、電動機10への印加電圧に反映させている。これにより、電動機10の安定性に与える悪影響を抑制することができ、種々の誤差を個別に補償することなく、電動機10を広範囲の運転領域で安定に駆動することができる。さらに、回転数の急変時であっても、電流の乱れを生じないといった従来技術では得ることのできない優れた効果を得ることができる。   As described above, the motor drive apparatus according to the first embodiment reflects the estimated magnetic flux value based on the current deviation, which is the difference between the current command value and the detected current value, in the applied voltage to the motor 10. ing. As a result, adverse effects on the stability of the electric motor 10 can be suppressed, and the electric motor 10 can be stably driven in a wide range of operation without individually compensating for various errors. Furthermore, even when the rotational speed changes suddenly, it is possible to obtain an excellent effect that cannot be obtained by the conventional technique, such as no current disturbance.

また、図1に示すように、三相座標をdq軸に座標変換してd軸q軸のそれぞれについて、電流指令値と電流検出値との偏差を積分することで、簡易な構成でd軸q軸それぞれの電機子鎖交磁束を推定することが可能となる。   In addition, as shown in FIG. 1, by converting the three-phase coordinates to the dq axis and integrating the deviation between the current command value and the detected current value for each of the d axis and the q axis, the d axis can be obtained with a simple configuration. It becomes possible to estimate the armature linkage magnetic flux of each q axis.

ただし、本発明自体は、任意の座標軸上で実施可能であり、その実施をdq座標系だけに限定するものではない。   However, the present invention itself can be implemented on arbitrary coordinate axes, and the implementation is not limited only to the dq coordinate system.

以上のように、実施の形態1によれば、電流指令値と電流検出値との差である電流偏差に基づいて電機子鎖交磁束を推定し、電機子鎖交磁束の推定値、電流偏差、および電動機の回転速度に基づいて電動機に印加する電圧値を決定している。この結果、電動機に流れる電流を広範囲の運転条件にわたって可変制御することができ、種々の制御誤差を個別に補償することなく、電動機を安定に駆動することができる電動機の駆動装置および電動機の駆動方法を得ることができる。   As described above, according to the first embodiment, the armature linkage flux is estimated based on the current deviation which is the difference between the current command value and the current detection value, and the estimated value of the armature linkage flux, the current deviation The voltage value to be applied to the motor is determined based on the rotation speed of the motor. As a result, it is possible to variably control the current flowing through the motor over a wide range of operating conditions, and to stably drive the motor without individually compensating for various control errors. Can be obtained.

実施の形態2.
本実施の形態2では、電動機の駆動装置の駆動対象となる電動機10として、永久磁石を有する永久磁石式同期電動機を対象とする場合に好適な形態ついて説明する。本実施の形態2に係る電動機の駆動装置の構成は、図1に示す先の実施の形態1に係る電動機の駆動装置の構成と同じである。
Embodiment 2. FIG.
In the second embodiment, a mode suitable for a case where a permanent magnet type synchronous motor having a permanent magnet is targeted as the motor 10 to be driven by the driving device of the motor will be described. The configuration of the motor driving device according to the second embodiment is the same as the configuration of the motor driving device according to the first embodiment shown in FIG.

先の実施の形態1における駆動対象である電動機10として、永久磁石を有する永久磁石式同期電動機を用いた場合には、その始動時において、電機子鎖交磁束の推定値と実際の値との間に差異を生じる。なぜなら、先の実施の形態1における磁束推定器1は、積分器の初期値がゼロであるため、電機子鎖交磁束推定値もまたゼロであった。これに対して、電動機10が永久磁石式同期電動機10の場合には、駆動を始める以前に(電動機に電流が流れる以前に)永久磁石が作る磁束が電機子に鎖交しており、電機子鎖交磁束が非ゼロであるためである。   When a permanent magnet type synchronous motor having a permanent magnet is used as the electric motor 10 to be driven in the first embodiment, the estimated value of the armature flux linkage and the actual value are calculated at the time of starting. Make a difference. This is because, in the magnetic flux estimator 1 in the first embodiment, the initial value of the integrator is zero, so that the armature flux linkage estimated value is also zero. On the other hand, when the electric motor 10 is a permanent magnet type synchronous motor 10, the magnetic flux generated by the permanent magnet is linked to the armature before starting driving (before the electric current flows through the electric motor). This is because the flux linkage is non-zero.

そこで、本実施の形態2では、磁束推定器1内の積分器の初期値として、永久磁石磁束の電機子鎖交成分に相当する値を予め設定する。具体的な設定例としては、d軸電機子鎖交成分側の積分器の初期値として、トルク定数もしくは逆起電圧定数の測定値を極対数で除したもの設定し、q軸電機子鎖交成分側の初期値として、ゼロを設定する。あるいは、電動機10の設計値を用いてもよく、この場合、d軸成分が非ゼロの有限値、q軸側がゼロとなる。なお、q軸側の初期値であるゼロは、必ずしも完全にゼロである必要はなく、略ゼロであってもよい。   Therefore, in the second embodiment, a value corresponding to the armature linkage component of the permanent magnet magnetic flux is set in advance as the initial value of the integrator in the magnetic flux estimator 1. As a specific setting example, the measured value of the torque constant or counter electromotive voltage constant divided by the number of pole pairs is set as the initial value of the integrator on the d-axis armature linkage component side, and the q-axis armature linkage is set. Zero is set as the initial value on the component side. Alternatively, the design value of the electric motor 10 may be used. In this case, the d-axis component is a non-zero finite value and the q-axis side is zero. Note that the initial value on the q-axis side of zero is not necessarily completely zero, and may be substantially zero.

以上のように、実施の形態2によれば、電動機の駆動装置の駆動対象となる電動機として、永久磁石を有する永久磁石式同期電動機を対象とする場合には、磁束推定器1内の積分器の初期値として、適切な値を予め設定する構成を備えている。これにより、電動機の始動時における制御特性が良好となる電動機の駆動装置および電動機の駆動方法を得ることができる。   As described above, according to the second embodiment, when a permanent magnet type synchronous motor having a permanent magnet is targeted as an electric motor to be driven by an electric motor drive device, an integrator in the magnetic flux estimator 1 is used. As an initial value, an appropriate value is set in advance. As a result, it is possible to obtain an electric motor drive device and an electric motor drive method that provide good control characteristics when the electric motor is started.

実施の形態3.
本実施の形態3では、電動機の駆動装置の駆動対象となる電動機10として、界磁巻線を有する回転界磁型同期電動機と呼ばれる種類の電動機10を対象とする場合に好適な形態について説明する。
Embodiment 3 FIG.
In the present third embodiment, a mode suitable for a case where the electric motor 10 to be driven by the electric motor drive device is a type of electric motor 10 called a rotary field type synchronous motor having field windings will be described. .

図4は、本発明の実施の形態3に係る電動機の駆動装置の構成を示す例示図である。図4に示す電動機の駆動装置は、磁束推定器1a、電流制御器2a、dq/uvw変換器3、電圧出力器4、電流検出器5、uvw/dq変換器6、微分器7、界磁巻線電圧出力器8、および界磁巻線電流検出器9を備えて構成される。   FIG. 4 is an exemplary diagram showing a configuration of a motor drive device according to Embodiment 3 of the present invention. 4 includes a magnetic flux estimator 1a, a current controller 2a, a dq / uvw converter 3, a voltage output unit 4, a current detector 5, a uvw / dq converter 6, a differentiator 7, a field magnet. A winding voltage output device 8 and a field winding current detector 9 are provided.

また、図4には、電動機の駆動装置の他にも、電動機の駆動装置によって駆動される回転界磁型同期電動機10aと、回転界磁型同期電動機10aの回転子の電気角を検出する電気角検出器31が示されている。そして、電気角検出器31により検出される回転角検出値は、θとして図示されており、この回転角検出値θは、dq/uvw変換器3、uvw/dq変換器6、および微分器7に与えられる。   In addition to the electric motor driving device, FIG. 4 shows a rotating field type synchronous motor 10a driven by the electric motor driving device and an electric angle for detecting the electric angle of the rotor of the rotating field type synchronous motor 10a. An angle detector 31 is shown. The rotation angle detection value detected by the electrical angle detector 31 is illustrated as θ, and this rotation angle detection value θ is represented by the dq / uvw converter 3, the uvw / dq converter 6, and the differentiator 7. Given to.

以下、図4を参照しながら、本発明の実施の形態3に係る電動機の駆動装置の各構成要素の機能について、特に、先の実施の形態1と異なる部分を中心に説明する。   Hereinafter, the function of each component of the electric motor drive device according to Embodiment 3 of the present invention will be described with reference to FIG. 4, particularly focusing on the differences from the previous Embodiment 1.

駆動の対象となる回転界磁型同期電動機10aは、固定子の三相巻線に加えて、回転子にも回転界磁用の巻線が存在している。そして、この回転界磁用の巻線は、通常、スリップリング等を介して回転界磁型同期電動機10aの外部に接続されている。   In the rotating field type synchronous motor 10a to be driven, in addition to the three-phase winding of the stator, the rotor also has a winding for the rotating field. The winding for the rotating field is usually connected to the outside of the rotating field type synchronous motor 10a via a slip ring or the like.

界磁巻線電流検出器9は、回転界磁用の巻線に流れる電流を検出する。この検出値を界磁巻線電流検出値(i)とし、図4に示す。また、界磁巻線に相当する座標軸を便宜上f軸と呼ぶ。 The field winding current detector 9 detects a current flowing in the rotating field winding. This detected value is a field winding current detected value ( if ) and is shown in FIG. In addition, the coordinate axis corresponding to the field winding is referred to as f-axis for convenience.

外部より与えられるf軸電流指令値(i )と、f軸電流検出値との偏差が計算され、これをf軸電流偏差(i )と呼ぶ。このf軸電流偏差(i )は、磁束推定器1a、および電流制御器2aに与えられる。 F-axis current command value given from the outside and (i f *), is calculated the deviation between the f-axis current detection value, called At the the f-axis current deviation (i f ~). This f-axis current deviation (i f ˜ ) is given to the magnetic flux estimator 1a and the current controller 2a.

図5は、本発明の実施の形態3に係る磁束推定器1aの構成を示す例示図である。図5に示す磁束推定器1aは、先の実施の形態1の磁束推定器1に加えて、界磁巻線が作る磁束のうち電機子に鎖交する成分を含めて推定を行う。すなわち、磁束推定器1aは、d軸電流偏差、q軸電流偏差、およびf軸電流偏差とから、電機子鎖交磁束を推定する。この推定値のうちd軸成分をd軸電機子鎖交磁束推定値(φ^)と称し、また、q軸成分をq軸電機子鎖交磁束推定値(φ^)称することは、先の実施の形態1の場合と同様である。 FIG. 5 is an exemplary diagram showing a configuration of a magnetic flux estimator 1a according to the third embodiment of the present invention. The magnetic flux estimator 1a shown in FIG. 5 performs estimation including a component interlinked with the armature in the magnetic flux generated by the field winding in addition to the magnetic flux estimator 1 of the first embodiment. That is, the magnetic flux estimator 1a estimates the armature linkage magnetic flux from the d-axis current deviation, the q-axis current deviation, and the f-axis current deviation. Of the estimated values, the d-axis component is referred to as a d-axis armature flux linkage estimated value (φ d ^), and the q-axis component is referred to as a q-axis armature flux linkage estimated value (φ q ^) This is the same as in the first embodiment.

磁束推定器1aは、具体的には、下式(7)の演算により磁束の推定を行なう。   Specifically, the magnetic flux estimator 1a estimates the magnetic flux by the calculation of the following equation (7).

Figure 2015080353
Figure 2015080353

ここで、Kはf軸電機子鎖交磁束推定ゲインを示す。 Here, K f denotes the f-axis armature flux linkage estimation gain.

電流制御器2aは、電流偏差と電機子鎖交磁束推定値と回転速度(ω)から、電圧指令値を演算する。本実施の形態3においては、電流偏差は、前記のd軸電流偏差とq軸電流偏差とf軸電流偏差を指し、電機子鎖交磁束推定値は、前記のd軸電機子鎖交磁束推定値とq軸電機子鎖交磁束推定値を指す。また、回転速度は、前記の回転角検出値θを微分器7により微分した微分値に相当する値である。また、電圧指令値とは、電機子に流れる電流をその指令値に向けて収束させるために好適な電圧を意味し、本実施の形態3ではd軸成分とq軸成分および界磁巻線を示すf軸成分の各成分ごとに計算される。これらをそれぞれd軸電圧指令値(v )、q軸電圧指令値(v )およびf軸電圧指令値(v )として図4に示す。 The current controller 2a calculates a voltage command value from the current deviation, the armature flux linkage estimated value, and the rotation speed (ω). In the third embodiment, the current deviation indicates the d-axis current deviation, the q-axis current deviation, and the f-axis current deviation, and the armature linkage flux estimated value is the d-axis armature linkage flux estimation. Value and q-axis armature flux linkage estimated value. The rotation speed is a value corresponding to a differential value obtained by differentiating the rotation angle detection value θ with the differentiator 7. The voltage command value means a voltage suitable for converging the current flowing through the armature toward the command value. In the third embodiment, the d-axis component, the q-axis component, and the field winding are It is calculated for each component of the f-axis component shown. These are shown in FIG. 4 as a d-axis voltage command value (v d * ), a q-axis voltage command value (v q * ), and an f-axis voltage command value (v f * ), respectively.

電流制御器2aは、具体的には、下式(8)の演算を行なう。   Specifically, the current controller 2a performs the calculation of the following formula (8).

Figure 2015080353
Figure 2015080353

ここで、KPfはf軸比例ゲイン、KIfはf軸積分ゲイン、KPdfはd軸f軸交叉比例ゲイン、KPfdはf軸d軸交叉比例ゲインを示す。 Here, K Pf is the f-axis proportional gain, K If is the f-axis integral gain, K Pdf is the d-axis f-axis cross proportional gain, and K Pfd is the f-axis d-axis cross proportional gain.

図6は、本発明の実施の形態3に係る電流制御器2aの構成を示す例示図である。図6は、電流制御器2aの演算を図示している。図6中でPは比例制御を、Pは比例積分制御を示している。 FIG. 6 is an exemplary diagram showing a configuration of a current controller 2a according to Embodiment 3 of the present invention. FIG. 6 illustrates the calculation of the current controller 2a. The P is proportional control in FIG. 6, P I represents a proportional integral control.

この図6および上式(8)の示すところは、次のとおりである。f軸電圧指令値は、f軸電流偏差による比例積分制御とd軸電流偏差による比例制御との和によって決定されるということを意味している。また、d軸電圧指令値は、d軸電流偏差による比例積分制御とf軸電流偏差による比例制御の和から、q軸電機子鎖交磁束推定値と回転速度との積が減算されて決定されるということを意味している。また、q軸電圧指令値は、q軸電流偏差による比例積分制御から、d軸電機子鎖交磁束推定値と回転速度との積が加算されて決定されるということを意味している。   The place shown in FIG. 6 and the above equation (8) is as follows. The f-axis voltage command value means that it is determined by the sum of proportional-integral control based on f-axis current deviation and proportional control based on d-axis current deviation. The d-axis voltage command value is determined by subtracting the product of the q-axis armature flux linkage estimated value and the rotational speed from the sum of the proportional integral control based on the d-axis current deviation and the proportional control based on the f-axis current deviation. It means that. Further, the q-axis voltage command value means that the product of the d-axis armature flux linkage estimated value and the rotational speed is determined by proportional integral control based on the q-axis current deviation.

電圧出力器4は、実施の形態1と同様に、三相電圧指令値に略一致する電圧を、駆動対象である回転界磁型同期電動機10aに印加する。当該部分のハードウェア構成は、三相電圧形インバータに準じた構成であり、電圧出力器4は、パルス幅変調された電圧を回転界磁型同期電動機10aの三相に対して印加するものである。   As in the first embodiment, the voltage output device 4 applies a voltage that substantially matches the three-phase voltage command value to the rotating field synchronous motor 10a that is the drive target. The hardware configuration of this part is a configuration according to a three-phase voltage source inverter, and the voltage output unit 4 applies a pulse-width modulated voltage to the three phases of the rotating field type synchronous motor 10a. is there.

一方、界磁巻線に電圧を印加する部分のハードウェア構成である界磁巻線電圧出力器8は、単相インバータ回路が好適である。そして、この界磁巻線電圧出力器8は、電圧出力器4と同様に、パルス幅変調された電圧を回転界磁型同期電動機10aの界磁巻線に印加する。   On the other hand, the field winding voltage output device 8 which is a hardware configuration of a portion for applying a voltage to the field winding is preferably a single-phase inverter circuit. The field winding voltage output unit 8 applies a pulse-width modulated voltage to the field winding of the rotating field type synchronous motor 10a in the same manner as the voltage output unit 4.

なお、本実施の形態3における各種ゲインの設定の一例について、下式(9)にまとめて示す。   An example of setting various gains in the third embodiment is collectively shown in the following equation (9).

Figure 2015080353
Figure 2015080353

ここで、ωcc,fはf軸電流応答の設計パラメータ、Mdfはd軸とf軸の相互インダクタンス、Lはf軸のインダクタンス、Rはf軸の抵抗を示す。記載のないそれ以外のゲインは、先の実施の形態1において示した上式(6)と同様の設定である。 Here, ω cc, f is a design parameter of the f-axis current response, M df is a mutual inductance between the d-axis and the f-axis, L f is an inductance of the f-axis, and R f is a resistance of the f-axis. Other gains not described are the same settings as in the above equation (6) shown in the first embodiment.

以上のように、実施の形態3によれば、電動機の駆動装置の駆動対象となる電動機として、界磁巻線を有する回転界磁型同期電動機を対象とする場合には、回転界磁用の巻線をさらに考慮して、界磁巻線電流偏差に基づいて、界磁巻線に印加する電圧値を決定している。この結果、回転界磁型同期電動機に流れる電流を広範囲の運転条件にわたって可変制御することができ、種々の制御誤差を個別に補償することなく、回転界磁型同期電動機を安定に駆動することができる電動機の駆動装置および電動機の駆動方法を得ることができる。   As described above, according to the third embodiment, when a rotating field type synchronous motor having a field winding is targeted as an electric motor to be driven by an electric motor drive device, the rotating field Further considering the winding, the voltage value to be applied to the field winding is determined based on the field winding current deviation. As a result, the current flowing through the rotating field synchronous motor can be variably controlled over a wide range of operating conditions, and the rotating field synchronous motor can be stably driven without individually compensating for various control errors. An electric motor drive device and an electric motor drive method can be obtained.

1、1a 磁束推定器、2、2a 電流制御器、3 dq/uvw変換器、4 電圧出力器、5 電流検出器、6 uvw/dq変換器、7 微分器、8 界磁巻線電圧出力器、9 界磁巻線電流検出器、10 電動機、10a 回転界磁型同期電動機、11 d軸インダクタンス乗算器、12 d軸電流設計応答乗算器、13 d軸積分器、14 q軸インダクタンス乗算器、15 q軸電流設計応答乗算器、16 q軸積分器、17 相互インダクタンス乗算器、18 f軸電流設計応答乗算器、21 d軸電流比例積分制御器、22 q軸磁束推定値に対する回転速度乗算器、23 q軸電流比例積分制御器、24 d軸磁束推定値に対する回転速度乗算器、25 f軸電流比例積分制御器、26 d軸f軸交叉比例制御器、27 f軸d軸交叉比例制御器、31 電気角検出器。   1, 1a magnetic flux estimator, 2, 2a current controller, 3 dq / uvw converter, 4 voltage output device, 5 current detector, 6 uvw / dq converter, 7 differentiator, 8 field winding voltage output device , 9 Field winding current detector, 10 electric motor, 10a rotating field synchronous motor, 11 d-axis inductance multiplier, 12 d-axis current design response multiplier, 13 d-axis integrator, 14 q-axis inductance multiplier, 15 q-axis current design response multiplier, 16 q-axis integrator, 17 mutual inductance multiplier, 18 f-axis current design response multiplier, 21 d-axis current proportional integration controller, 22 rotational speed multiplier for q-axis flux estimate , 23 q-axis current proportional integration controller, 24 d-axis flux estimated rotation speed multiplier, 25 f-axis current proportional integration controller, 26 d-axis f-axis cross-proportional controller, 27 f-axis d-axis cross-proportional control , 31 Electrical angle detector.

この発明に係る電動機の駆動装置は、電動機として界磁巻線を有する回転界磁型同期電動機を適用し、電動機に印加する電圧値を制御して、電動機に流れる電流を電流指令値に追従させることにより電動機を駆動制御する電動機の駆動装置であって、電動機に流れる電流を電流検出値として検出する電流検出器と、電流指令値と電流検出値との差を電流偏差として演算する電流偏差演算器と、電流偏差に基づいて電動機の電機子を鎖交する電機子鎖交磁束を推定する磁束推定器と、電機子鎖交磁束の推定値、電流偏差、および電動機の回転速度に基づいて電動機に印加する電圧値を決定する電流制御器と、電流検出器が出力する電流検出値を、三相座標系からdq座標系に変換するuvw/dq変換器と、電流制御器が出力する電圧値を、dq座標系から三相座標系に変換するdq/uvw変換器と、界磁巻線に流れる電流であるf軸電流検出値を検出する界磁巻線電流検出器と、外部から与えられるf軸電流指令値とf軸電流検出値との差をf軸電流偏差として演算するf軸電流偏差演算器とを備え、電流偏差演算器は、dq/uvw変換器が出力するdq座標系の電流検出値と、dq座標系として与えられる電流指令値との差をd軸電流偏差およびq軸電流偏差として演算し、磁束推定器は、d軸電流偏差とf軸電流偏差の和を積分することで電機子鎖交磁束のd軸成分を推定するd軸積分器と、q軸電流偏差を積分することで電機子鎖交磁束のq軸成分を推定するq軸積分器とを有し、電流制御器は、電機子鎖交磁束のd軸成分およびq軸成分の推定値と、d軸電流偏差およびq軸電流偏差と、f軸電流偏差と、電動機の回転速度とに基づいて電動機に印加する電圧値をdq座標系として決定するとともに、界磁巻線に印加する電圧値を決定するものである。 The electric motor drive device according to the present invention employs a rotating field type synchronous motor having a field winding as the electric motor, controls the voltage value applied to the electric motor, and causes the current flowing through the electric motor to follow the current command value. An electric motor drive device that controls the electric motor by a current detector that detects a current flowing through the electric motor as a current detection value, and a current deviation calculation that calculates a difference between the current command value and the current detection value as a current deviation A magnetic flux estimator that estimates the armature interlinkage magnetic flux that links the armature of the motor based on the current deviation, and the motor based on the estimated value of the armature interlinkage magnetic flux, the current deviation, and the rotation speed of the motor. A current controller for determining a voltage value to be applied to the current, a uvw / dq converter for converting a current detection value output from the current detector from a three-phase coordinate system to a dq coordinate system, and a voltage value output from the current controller D Dq / uvw converter for converting from a coordinate system to a three-phase coordinate system, a field winding current detector for detecting an f-axis current detection value that is a current flowing in the field winding, and an f-axis current applied from the outside An f-axis current deviation calculator that calculates a difference between the command value and the detected f-axis current value as an f-axis current deviation. The current deviation calculator is a current detection value in the dq coordinate system output by the dq / uvw converter. And the current command value given as the dq coordinate system are calculated as a d-axis current deviation and a q-axis current deviation, and the magnetic flux estimator integrates the sum of the d-axis current deviation and the f-axis current deviation. A d-axis integrator for estimating the d-axis component of the interlinkage magnetic flux and a q-axis integrator for estimating the q-axis component of the armature interlinkage flux by integrating the q-axis current deviation; Are the estimated values of the d-axis component and q-axis component of the armature flux linkage, and the d-axis current deviation and and the q-axis current deviation, and f-axis current deviation, and determines the value of the voltage applied to the motor as a dq coordinate system on the basis of the rotational speed of the electric motor, is what determines the value of the voltage applied to the field winding .

また、この発明に係る電動機の駆動方法は、電動機として界磁巻線を有する回転界磁型同期電動機を適用し、電動機に印加する電圧値を制御して、電動機に流れる電流を電流指令値に追従させることにより電動機を駆動制御する制御部を備えた電動機の駆動装置で実行される電動機の駆動方法であって、制御部は、電動機の回転速度を読み取る回転速度読み取りステップと、電流検出器により電動機に流れる電流を電流検出値として検出する電流検出ステップと、電流指令値と電流検出値との差を電流偏差として演算する電流偏差演算ステップと、電流偏差に基づいて電動機の電機子を鎖交する電機子鎖交磁束を推定する磁束推定ステップと、電機子鎖交磁束の推定値、電流偏差、および電動機の回転速度に基づいて電動機に印加する電圧値を決定する電流制御ステップと、電流検出ステップで出力される電流検出値を、三相座標系からdq座標系に変換するuvw/dq変換ステップと、電流制御ステップで出力される電圧値を、dq座標系から三相座標系に変換するdq/uvw変換ステップと、界磁巻線に流れる電流であるf軸電流検出値を検出する界磁巻線電流検出ステップと、外部から与えられるf軸電流指令値とf軸電流検出値との差をf軸電流偏差として演算するf軸電流偏差演算ステップとを有し、電流偏差演算ステップは、dq/uvw変換ステップで出力されるdq座標系の電流検出値と、dq座標系として与えられる電流指令値との差をd軸電流偏差およびq軸電流偏差として演算し、磁束推定ステップは、d軸電流偏差とf軸電流偏差の和を積分することで電機子鎖交磁束のd軸成分を推定し、q軸電流偏差を積分することで電機子鎖交磁束のq軸成分を推定し、電流制御ステップは、電機子鎖交磁束のd軸成分およびq軸成分の推定値と、d軸電流偏差およびq軸電流偏差と、f軸電流偏差と、電動機の回転速度とに基づいて電動機に印加する電圧値をdq座標系として決定するとともに、界磁巻線に印加する電圧値を決定するものである。 The electric motor driving method according to the present invention applies a rotating field type synchronous motor having a field winding as the electric motor, controls the voltage value applied to the electric motor, and sets the current flowing through the electric motor to the current command value. An electric motor driving method executed by an electric motor drive device including a control unit that controls driving of the electric motor by following the electric motor. The control unit includes a rotation speed reading step for reading the rotation speed of the electric motor, and a current detector. A current detection step for detecting a current flowing through the motor as a current detection value, a current deviation calculation step for calculating a difference between the current command value and the current detection value as a current deviation, and linkage of the armature of the motor based on the current deviation. Voltage estimation step for estimating the armature interlinkage magnetic flux to be applied, and the voltage value to be applied to the motor based on the estimated value of the armature interlinkage magnetic flux, the current deviation, and the rotation speed of the motor A current control step determining, the current detection value output by the current detection step, the uvw / dq conversion step of converting the dq coordinate system from the three-phase coordinate system, the voltage value output from the current control step, dq coordinates A dq / uvw conversion step for converting the system into a three-phase coordinate system, a field winding current detection step for detecting an f-axis current detection value that is a current flowing in the field winding, and an f-axis current command given from the outside And an f-axis current deviation calculation step for calculating a difference between the value and the detected f-axis current value as an f-axis current deviation. The current deviation calculation step is a current detection in the dq coordinate system output in the dq / uvw conversion step. The difference between the value and the current command value given as the dq coordinate system is calculated as the d-axis current deviation and the q-axis current deviation, and the magnetic flux estimation step integrates the sum of the d-axis current deviation and the f-axis current deviation. The d-axis component of the armature linkage flux is estimated, and the q-axis component of the armature linkage flux is estimated by integrating the q-axis current deviation, and the current control step includes the d-axis component of the armature linkage flux and Based on the estimated value of the q-axis component, the d-axis current deviation and the q-axis current deviation, the f-axis current deviation, and the rotation speed of the motor, the voltage value applied to the motor is determined as the dq coordinate system, and the field The voltage value to be applied to the winding is determined .

Claims (5)

電動機に印加する電圧値を制御して、前記電動機に流れる電流を電流指令値に追従させることにより前記電動機を駆動制御する電動機の駆動装置であって、
前記電動機に流れる電流を電流検出値として検出する電流検出器と、
前記電流指令値と前記電流検出値との差を電流偏差として演算する電流偏差演算器と、
前記電流偏差に基づいて前記電動機の電機子を鎖交する電機子鎖交磁束を推定する磁束推定器と、
前記電機子鎖交磁束の推定値、前記電流偏差、および前記電動機の回転速度に基づいて前記電動機に印加する前記電圧値を決定する電流制御器と
を備える電動機の駆動装置。
A motor drive device for controlling the voltage value applied to the electric motor and controlling the electric motor by causing the current flowing through the electric motor to follow the current command value;
A current detector for detecting a current flowing through the motor as a current detection value;
A current deviation calculator for calculating a difference between the current command value and the current detection value as a current deviation;
A magnetic flux estimator for estimating an armature interlinkage magnetic flux interlinking the armature of the electric motor based on the current deviation;
A motor drive device comprising: a current controller that determines the voltage value to be applied to the motor based on the estimated value of the armature flux linkage, the current deviation, and the rotation speed of the motor.
前記電流検出器が出力する前記電流検出値を、三相座標系からdq座標系に変換するuvw/dq変換器と、
前記電流制御器が出力する前記電圧値を、前記dq座標系から前記三相座標系に変換するdq/uvw変換器と
をさらに備え、
前記電流偏差演算器は、前記dq/uvw変換器が出力する前記dq座標系の電流検出値と、dq座標系として与えられる電流指令値との差をd軸電流偏差およびq軸電流偏差として演算し、
前記磁束推定器は、前記d軸電流偏差を積分することで前記電機子鎖交磁束のd軸成分を推定するd軸積分器と、前記q軸電流偏差を積分することで前記電機子鎖交磁束のq軸成分を推定するq軸積分器とを有し、
前記電流制御器は、前記電機子鎖交磁束のd軸成分およびq軸成分の推定値と、前記d軸電流偏差および前記q軸電流偏差と、前記電動機の回転速度とに基づいて前記電動機に印加する前記電圧値を前記dq座標系として決定する
請求項1に記載の電動機の駆動装置。
A uvw / dq converter for converting the current detection value output by the current detector from a three-phase coordinate system to a dq coordinate system;
A dq / uvw converter that converts the voltage value output from the current controller from the dq coordinate system to the three-phase coordinate system;
The current deviation calculator calculates a difference between a current detection value of the dq coordinate system output from the dq / uvw converter and a current command value given as the dq coordinate system as a d-axis current deviation and a q-axis current deviation. And
The magnetic flux estimator integrates the d-axis current deviation to estimate a d-axis component of the armature linkage magnetic flux, and integrates the q-axis current deviation to integrate the armature linkage. A q-axis integrator for estimating the q-axis component of the magnetic flux,
The current controller controls the motor based on the estimated values of the d-axis component and the q-axis component of the armature flux linkage, the d-axis current deviation and the q-axis current deviation, and the rotation speed of the motor. The motor drive device according to claim 1, wherein the voltage value to be applied is determined as the dq coordinate system.
前記電動機は、永久磁石を有する永久磁石式同期電動機であり、
前記磁束推定器は、
前記d軸積分器の初期値として前記永久磁石の磁束に応じて予め規定した非ゼロの有限値が設定され、前記q軸積分器の初期値としてゼロが設定される
請求項2に記載の電動機の駆動装置。
The electric motor is a permanent magnet type synchronous motor having a permanent magnet,
The magnetic flux estimator is
The electric motor according to claim 2, wherein a non-zero finite value defined in advance according to a magnetic flux of the permanent magnet is set as an initial value of the d-axis integrator, and zero is set as an initial value of the q-axis integrator. Drive device.
前記電動機は、界磁巻線を有する回転界磁型同期電動機であり、
前記界磁巻線に流れる電流であるf軸電流検出値を検出する界磁巻線電流検出器と、
外部から与えられるf軸電流指令値と前記f軸電流検出値との差をf軸電流偏差として演算するf軸電流偏差演算器と
をさらに備え、
前記磁束推定器の前記d軸積分器は、前記d軸電流偏差と前記f軸電流偏差の和を積分することで前記電機子鎖交磁束のd軸成分を推定し、
前記電流制御器は、前記電機子鎖交磁束のd軸成分およびq軸成分の推定値と、前記d軸電流偏差および前記q軸電流偏差と、前記f軸電流偏差と、前記電動機の回転速度とに基づいて前記電動機に印加する前記電圧値を前記dq座標系として決定するとともに、前記界磁巻線に印加する電圧値を決定する
請求項2に記載の電動機の駆動装置。
The electric motor is a rotating field type synchronous motor having a field winding,
A field winding current detector for detecting an f-axis current detection value that is a current flowing through the field winding;
An f-axis current deviation calculator that calculates a difference between the f-axis current command value given from the outside and the f-axis current detection value as an f-axis current deviation;
The d-axis integrator of the magnetic flux estimator estimates a d-axis component of the armature flux linkage by integrating the sum of the d-axis current deviation and the f-axis current deviation,
The current controller includes estimated values of the d-axis component and the q-axis component of the armature flux linkage, the d-axis current deviation and the q-axis current deviation, the f-axis current deviation, and the rotation speed of the motor. The motor drive device according to claim 2, wherein the voltage value to be applied to the electric motor is determined as the dq coordinate system based on and the voltage value to be applied to the field winding is determined.
電動機に印加する電圧値を制御して、前記電動機に流れる電流を電流指令値に追従させることにより前記電動機を駆動制御する制御部を備えた電動機の駆動装置で実行される電動機の駆動方法であって、
前記制御部は、
前記電動機の回転速度を読み取る回転速度読み取りステップと、
電流検出器により前記電動機に流れる電流を電流検出値として検出する電流検出ステップと、
前記電流指令値と前記電流検出値との差を電流偏差として演算する電流偏差演算ステップと、
前記電流偏差に基づいて前記電動機の電機子を鎖交する電機子鎖交磁束を推定する磁束推定ステップと、
前記電機子鎖交磁束の推定値、前記電流偏差、および前記電動機の前記回転速度に基づいて前記電動機に印加する前記電圧値を決定する電流制御ステップと
を有する電動機の駆動方法。
An electric motor driving method executed by an electric motor driving device including a control unit that controls a drive of the electric motor by controlling a voltage value applied to the electric motor and causing a current flowing through the electric motor to follow a current command value. And
The controller is
A rotation speed reading step for reading the rotation speed of the electric motor;
A current detection step of detecting a current flowing through the motor as a current detection value by a current detector;
A current deviation calculating step of calculating a difference between the current command value and the current detection value as a current deviation;
A magnetic flux estimation step for estimating an armature interlinkage magnetic flux interlinking the armature of the electric motor based on the current deviation;
And a current control step of determining the voltage value to be applied to the motor based on the estimated value of the armature flux linkage, the current deviation, and the rotational speed of the motor.
JP2013216954A 2013-10-18 2013-10-18 Electric motor driving apparatus and electric motor driving method Expired - Fee Related JP5744151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013216954A JP5744151B2 (en) 2013-10-18 2013-10-18 Electric motor driving apparatus and electric motor driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013216954A JP5744151B2 (en) 2013-10-18 2013-10-18 Electric motor driving apparatus and electric motor driving method

Publications (2)

Publication Number Publication Date
JP2015080353A true JP2015080353A (en) 2015-04-23
JP5744151B2 JP5744151B2 (en) 2015-07-01

Family

ID=53011324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013216954A Expired - Fee Related JP5744151B2 (en) 2013-10-18 2013-10-18 Electric motor driving apparatus and electric motor driving method

Country Status (1)

Country Link
JP (1) JP5744151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100268A1 (en) * 2018-11-15 2020-05-22 日産自動車株式会社 Electric vehicle control method, and control device
JP7363219B2 (en) 2019-09-03 2023-10-18 日産自動車株式会社 Control method for a wound field type rotating electrical machine and control device for a wound field type rotating electrical machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239730A (en) * 2009-03-31 2010-10-21 Hitachi Ltd Device for controlling ac motor, and ac motor drive system
JP2012151931A (en) * 2011-01-17 2012-08-09 Nagaoka Univ Of Technology Motor controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239730A (en) * 2009-03-31 2010-10-21 Hitachi Ltd Device for controlling ac motor, and ac motor drive system
JP2012151931A (en) * 2011-01-17 2012-08-09 Nagaoka Univ Of Technology Motor controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100268A1 (en) * 2018-11-15 2020-05-22 日産自動車株式会社 Electric vehicle control method, and control device
CN113056868A (en) * 2018-11-15 2021-06-29 日产自动车株式会社 Control method and control device for electric vehicle
JPWO2020100268A1 (en) * 2018-11-15 2021-09-24 日産自動車株式会社 Electric vehicle control method and control device
US11394326B2 (en) 2018-11-15 2022-07-19 Nissan Motor Co., Ltd. Control method and control device for electric vehicle
JP7363219B2 (en) 2019-09-03 2023-10-18 日産自動車株式会社 Control method for a wound field type rotating electrical machine and control device for a wound field type rotating electrical machine

Also Published As

Publication number Publication date
JP5744151B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP3860031B2 (en) Synchronous motor control device and control method of synchronous motor
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
JP4221307B2 (en) Synchronous motor control device, electrical equipment and module
WO2016121237A1 (en) Inverter control device and motor drive system
WO2018043499A1 (en) Inverter control device and motor drive system
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
WO2015019495A1 (en) Motor drive system and motor control device
JP6166601B2 (en) Motor control device and generator control device
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP2015180130A (en) Control device of permanent magnet synchronous motor
WO2020105204A1 (en) Power conversion device
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP2013150498A (en) Controller and control method of synchronous motor
JP5744151B2 (en) Electric motor driving apparatus and electric motor driving method
JP5499594B2 (en) Control device for permanent magnet type synchronous motor
JP2018057077A (en) Motor control device and drive system
JP3818237B2 (en) Control device for synchronous motor
JP5534991B2 (en) Control device for synchronous motor
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP5106295B2 (en) Rotor position estimation device for synchronous motor
JP2009284557A (en) Controller for permanent magnet type synchronous motor
JP5228435B2 (en) Inverter control device and control method thereof
JP5807832B1 (en) Phase generator for induction motor
JP5710034B1 (en) Electric motor drive device and drive method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R150 Certificate of patent or registration of utility model

Ref document number: 5744151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees