JP2015079807A - Projection exposure device and projection condition calculation device - Google Patents

Projection exposure device and projection condition calculation device Download PDF

Info

Publication number
JP2015079807A
JP2015079807A JP2013215182A JP2013215182A JP2015079807A JP 2015079807 A JP2015079807 A JP 2015079807A JP 2013215182 A JP2013215182 A JP 2013215182A JP 2013215182 A JP2013215182 A JP 2013215182A JP 2015079807 A JP2015079807 A JP 2015079807A
Authority
JP
Japan
Prior art keywords
light
mask
light intensity
intensity distribution
line width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013215182A
Other languages
Japanese (ja)
Inventor
弘已 兼目
Hiroki Kaneme
弘已 兼目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013215182A priority Critical patent/JP2015079807A/en
Publication of JP2015079807A publication Critical patent/JP2015079807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To apply an exposure device that controls a longitudinal/lateral error (line width HV difference) in printing line width of an exposure substrate due to a process factor outside the exposure device, especially, a pattern line width drawing error of a mask to within a proper range according to the mask.SOLUTION: Horizontal and vertical line width errors (line width HV differences) of a printing pattern of a photosensitive substrate are measured for each mask according to a pattern drawing region in the mask. According to the pattern drawing region in the mask, a light intensity distribution value of illumination light for correcting the line width HV differences to within a proper range is measured, and the light intensity distribution value is set as a correction parameter to the exposure device. When the photosensitive substrate is exposed by the exposure device, the light intensity distribution value is controlled according to the set correction parameter once the illumination light reaches a pattern drawing region in each mask during scanning exposure so as to control line width HV differences corresponding to the pattern drawing region in the mask to within the proper range.

Description

本発明は、ICやLSIなどの半導体素子、液晶基板、CCD、薄膜磁気ヘッド等のマイクロデバイスを製造するための投影露光装置に関するものであり、特にこのような投影露光装置におけるデバイスの線幅制御または照明光の光強度分布調整(補正)に係わる技術に関するものである。   The present invention relates to a projection exposure apparatus for manufacturing microdevices such as semiconductor elements such as ICs and LSIs, liquid crystal substrates, CCDs, thin film magnetic heads, and in particular, device line width control in such projection exposure apparatuses. Alternatively, the present invention relates to a technique related to light intensity distribution adjustment (correction) of illumination light.

従来、LSIあるいは超LSIなどの極微細パターンから形成される半導体素子の製造工程において、マスクに描かれた回路パターンを感光剤が塗布された基板(以下『ウェハ』と称す)上に縮小露光して焼き付け成形する縮小投影露光装置が使用されている(特許文献1、2参照)。半導体素子の実装密度の向上に伴いパターンのより一層の微細化が要求され、解像力をより高めることが要求されている。解像力を高める技術の一つに、マスクを斜入射で照明する斜入射照明と呼ばれる超解像結像技術が提案されている。このような照明法では、輪帯形状や四重極形状のような特殊な形状の2次光源分布(以下『有効光源分布』と称す)を形成するものである。   Conventionally, in the manufacturing process of semiconductor elements formed from ultrafine patterns such as LSI or VLSI, a circuit pattern drawn on a mask is reduced and exposed on a substrate coated with a photosensitive agent (hereinafter referred to as “wafer”). Reduction projection exposure apparatuses that perform printing and baking are used (see Patent Documents 1 and 2). As the mounting density of semiconductor elements increases, further miniaturization of patterns is required, and higher resolution is required. As one of the techniques for increasing the resolving power, a super-resolution imaging technique called oblique incidence illumination for illuminating a mask with oblique incidence has been proposed. In such an illumination method, a secondary light source distribution (hereinafter referred to as “effective light source distribution”) having a special shape such as an annular shape or a quadrupole shape is formed.

特殊な形状の有効光源分布を形成する場合は特に、光学部材の製造誤差などに起因して発生する有効光源分布の光強度が不均一(非対称)となる影響で、ウェハに転写されるパターンの線幅が水平方向(H方向)と垂直方向(V方向)で設計線幅と異なる方向誤差(線幅HV差)が発生し、歩留まりが低下するという不都合を招く可能性がある。このような不都合を低減させるため、マスクの回路パターンに応じて良好な有効光源分布を形成することが求められており、有効光源分布の光強度が均一(対称)となるよう調整する必要がある。従来の有効光源分布の光強度不均一(非対称)を調整する方法は、ウェハステージに配置した有効光源測定器で有効光源分布の光強度を測定し、光軸に垂直な面に独立駆動可能な複数枚の遮光板を使用し、有効光源分布外形の一部の光強度を遮光することで対称性を調整する方法が提案されている。   Especially when forming an effective light source distribution of a special shape, the pattern of the pattern transferred to the wafer is affected by the non-uniform (asymmetric) light intensity of the effective light source distribution caused by the manufacturing error of the optical member. A direction error (line width HV difference) different from the design line width occurs in the horizontal direction (H direction) and the vertical direction (V direction), which may cause a disadvantage that the yield is lowered. In order to reduce such inconvenience, it is required to form a good effective light source distribution according to the circuit pattern of the mask, and it is necessary to adjust the light intensity of the effective light source distribution to be uniform (symmetric). . The conventional method for adjusting the light intensity non-uniformity (asymmetrical) of the effective light source distribution is to measure the light intensity of the effective light source distribution with an effective light source measuring device arranged on the wafer stage, and can be independently driven on a plane perpendicular to the optical axis. There has been proposed a method for adjusting symmetry by using a plurality of light shielding plates and shielding a part of the light intensity of the effective light source distribution outline.

また、有効光源分布の光強度が均一(対称)となるよう良好に調整しても、マスクに描画される回路パターン線幅の製造誤差等によって、ウェハに転写するパターンの縦横方向誤差(線幅HV差)が生じる課題がある。線幅HV差の変動を補償する従来技術に、特許文献3が提案されており、照明光学系にアパーチャデバイスを配置し、アパーチャデバイスにより照明光の角度分布を制御する方法が開示されている。この方法によると、ウェハに転写されたパターン線幅の検出された変動に基づいてアパーチャデバイスの形状を調整する方法である。   Even if the light intensity of the effective light source distribution is adjusted to be uniform (symmetric), the vertical and horizontal errors (line width) of the pattern transferred to the wafer due to manufacturing errors in the circuit pattern line width drawn on the mask, etc. There is a problem that HV difference) occurs. Patent Document 3 has been proposed as a conventional technique for compensating for fluctuations in the line width HV difference, and discloses a method in which an aperture device is disposed in an illumination optical system and the angular distribution of illumination light is controlled by the aperture device. According to this method, the shape of the aperture device is adjusted based on the detected variation of the pattern line width transferred to the wafer.

特開2004-247527号公報Japanese Unexamined Patent Publication No. 2004-247527 特開2006-19702号公報Japanese Unexamined Patent Publication No. 2006-19702 特開2003-338459号公報Japanese Patent Laid-Open No. 2003-338459

しかしながら、マスクのパターン描画誤差はランダムに発生する傾向にある為、マスク内のパターン描画領域(パターン描画位置)に応じて、より高精度に線幅HV差を適正範囲に制御する必要がある。また、マスク毎にパターン描画誤差が異なる為、使用するマスクに応じて短時間に、マスク毎の補正パラメータを算出する課題がある。   However, since the mask pattern drawing error tends to occur at random, it is necessary to control the line width HV difference to an appropriate range with higher accuracy in accordance with the pattern drawing region (pattern drawing position) in the mask. Further, since the pattern drawing error differs for each mask, there is a problem of calculating correction parameters for each mask in a short time according to the mask to be used.

本発明は前記の従来技術における問題点に鑑み、露光装置外のプロセス要因、特にマスクのパターン線幅描画誤差に起因した、感光基板の焼き付けパターン線幅の縦横方向誤差(線幅HV差)を低減させるため、マスク毎に、マスク内のパターン描画領域(パターン描画位置)に応じて、短時間に且つ高精度に照明光の光強度分布値を調整・制御し、線幅HV差を適正範囲に制御する投影露光装置及びそれを用いたデバイスの製造方法を提供することである。   In view of the above-mentioned problems in the prior art, the present invention eliminates vertical and horizontal errors (line width HV difference) in the printing pattern line width of the photosensitive substrate caused by process factors outside the exposure apparatus, particularly mask pattern line width drawing errors. In order to reduce, for each mask, according to the pattern drawing area (pattern drawing position) in the mask, the light intensity distribution value of the illumination light is adjusted and controlled in a short time and with high accuracy, and the line width HV difference is in an appropriate range. The present invention provides a projection exposure apparatus that controls the above and a device manufacturing method using the same.

上記の目的を達成するため本発明の投影露光装置は、マスクのパターン描画領域に応じた照明光の光強度分布値を設定する光強度分布設定手段と、照明光の光強度分布を調整する光強度分布調整手段とを具備し、感光基板の走査露光中に照明光がマスクを照射する位置を監視し、照明光が設定されたパターン描画領域に照射する直前に、前記光強度分布値に基づき光強度分布調整手段で光強度分布値を制御し、パターン線幅HV差を適正範囲内に制御することを特徴としている。   In order to achieve the above object, a projection exposure apparatus of the present invention comprises a light intensity distribution setting means for setting a light intensity distribution value of illumination light corresponding to a mask pattern drawing region, and light for adjusting the light intensity distribution of illumination light. An intensity distribution adjusting means, monitoring a position where the illumination light irradiates the mask during scanning exposure of the photosensitive substrate, and based on the light intensity distribution value immediately before irradiating the pattern drawing region with the illumination light. The light intensity distribution adjusting means controls the light intensity distribution value, and the pattern line width HV difference is controlled within an appropriate range.

本発明の好ましい実施形態において、予め強度分布調整手段で光強度分布値を変化させながらテスト露光した感光基板パターンの線幅HV差を測定することで、マスクのパターン描画領域に応じて最適な光強度分布値を求め後、マスク識別子と共にマスクのパターン描画領域に応じた光強度分布値を記憶手段に記録する。感光基板を露光に使用するマスクID(識別子)から光強度分布値を検索し、検索した光強度分布値に基づきマスクのパターン描画領域に応じて光強度分布値を制御することを特徴としている。   In a preferred embodiment of the present invention, by measuring the line width HV difference of the photosensitive substrate pattern subjected to test exposure while changing the light intensity distribution value by the intensity distribution adjusting means in advance, the optimum light according to the pattern drawing area of the mask. After obtaining the intensity distribution value, the light intensity distribution value corresponding to the pattern drawing area of the mask is recorded in the storage unit together with the mask identifier. The light intensity distribution value is retrieved from a mask ID (identifier) that uses the photosensitive substrate for exposure, and the light intensity distribution value is controlled according to the pattern drawing area of the mask based on the retrieved light intensity distribution value.

本発明の好ましい実施形態において、照明光の光強度分布値を調整する光強度調整板(遮光板)は、照明光の基本形状を形成する面の近傍に配置された複数の独立に駆動可能な遮光板により構成され、複数の遮光板の中から光強度分布値に応じた遮光板を選択して位置制御することを特徴としている。   In a preferred embodiment of the present invention, the light intensity adjustment plate (light-shielding plate) for adjusting the light intensity distribution value of the illumination light can be independently driven in a plurality of positions arranged in the vicinity of the surface forming the basic shape of the illumination light. It is constituted by a light shielding plate, and is characterized in that a light shielding plate corresponding to a light intensity distribution value is selected from a plurality of light shielding plates and position control is performed.

本発明の好ましい実施形態において、マスクのパターン描画領域に応じた照明光の光強度分布値を計算する露光条件計算装置は、複数の露光装置と複数の線幅測定器にネットワークで接続されて構成さている。露光条件計算装置は、テスト露光した光強度分布値のデータと、線幅測定器で測定した感光基板パターンの線幅HVデータを受信し、マスクのパターン描画領域に応じて最適な線幅HV差となる光強度分布値の自動計算し、人手による煩雑作業を簡素化することを特徴としている。   In a preferred embodiment of the present invention, an exposure condition calculation device that calculates a light intensity distribution value of illumination light corresponding to a pattern drawing region of a mask is configured to be connected to a plurality of exposure devices and a plurality of line width measuring devices via a network. It is. The exposure condition calculation device receives the light intensity distribution value data subjected to the test exposure and the line width HV data of the photosensitive substrate pattern measured by the line width measuring device, and the optimum line width HV difference according to the pattern drawing area of the mask. The light intensity distribution value is automatically calculated to simplify complicated work by manpower.

本発明によれば、露光装置外のプロセス要因で焼き付けパターン線幅の縦横差(線幅HV差)が発生した場合にでも、マスク毎に照明光の光強度分布値を良好に調整することで線幅HV差を低減することができ、特に極微細パターンの解像力を高める効果がある。   According to the present invention, it is possible to satisfactorily adjust the light intensity distribution value of illumination light for each mask even when a vertical / horizontal difference (line width HV difference) in the printing pattern line width occurs due to a process factor outside the exposure apparatus. The difference in line width HV can be reduced, and in particular, there is an effect of increasing the resolution of a very fine pattern.

また、マスク内のパターン描画領域(パターン描画位置)に応じて照明光の光強度分布値を制御することで、線幅HV差を高精度で低減することができ、特に極微細パターンの解像力を高める効果がある。   Also, by controlling the light intensity distribution value of the illumination light according to the pattern drawing area (pattern drawing position) in the mask, the line width HV difference can be reduced with high accuracy, and in particular, the resolving power of extremely fine patterns can be reduced. There is an effect to increase.

更に、マスクに応じた光強度分布値(補正パラメータ)の算出を自動化することで、人手による煩雑な作業を簡略化でき、短時間にパターン描画領域に応じた線幅HV差を高精度で適正範囲に制御することができる。   Furthermore, by automating the calculation of the light intensity distribution value (correction parameter) according to the mask, it is possible to simplify complicated manual operations and to accurately and accurately adjust the line width HV difference according to the pattern drawing area in a short time. The range can be controlled.

露光装置の概略構成図Schematic block diagram of exposure equipment 図1の実施例の部分説明図Partial explanatory diagram of the embodiment of FIG. 有効光源分布を形成する説明図Explanatory diagram forming effective light source distribution 有効光源測定器の概略構成Schematic configuration of effective light source measuring instrument 光強度調整板による光強度分布量変化と線幅HV差変化を示す説明図Explanatory drawing showing light intensity distribution amount change and line width HV difference change by light intensity adjustment plate 有効光源分布のX/Y光量比と線幅HV差の関係を示す説明図Explanatory diagram showing the relationship between X / Y light quantity ratio of effective light source distribution and line width HV difference マスク領域のX/Y光量比と線幅HV差の関係を示す説明図Explanatory drawing showing the relationship between X / Y light quantity ratio of mask area and line width HV difference マスク領域の補正パラメータ設定を示す説明図Explanatory drawing which shows the correction parameter setting of a mask area | region マスク露光する際の露光方向を示す説明図Explanatory drawing which shows the exposure direction at the time of mask exposure マスク領域の補正パラメータに応じた露光動作を説明するフローFlow explaining the exposure operation according to the mask area correction parameter 露光条件計算装置のシステム構成図System configuration diagram of exposure condition calculator

[実施例]
第一の実施例
図1は本発明の実施例に係わるステップ・アンド・スキャン型露光装置の概略構成を示す。同図においてパルスレーザー光源101は、例えばArF等のガスが封入され、レーザー光を発光する。この光源は遠紫外領域の波長193nmの光を発光する。また、レーザー光源には、共振器を構成するフロントミラー、露光波長を狭帯化するための回折格子、プリズム等からなる狭帯化モジュール、波長の安定性、スペクトル幅をモニタするための分光器やディテクタ等からなるモニタモジュール、及びシャッター等が設けられている。レーザー光源のガス交換動作、あるいは波長安定化のための制御、放電印加電圧の制御等は、インタフェースケーブルで接続した露光装置の主制御装置130からの命令で制御できるようにしてある。
[Example]
First Embodiment FIG. 1 shows a schematic configuration of a step-and-scan exposure apparatus according to an embodiment of the present invention. In the figure, a pulse laser light source 101 is filled with a gas such as ArF and emits laser light. This light source emits light having a wavelength of 193 nm in the far ultraviolet region. The laser light source also includes a front mirror that constitutes a resonator, a diffraction grating for narrowing the exposure wavelength, a narrowing module composed of a prism, etc., a spectrometer for monitoring wavelength stability and spectral width And a monitor module including a detector, a shutter, and the like. The gas exchange operation of the laser light source, the control for stabilizing the wavelength, the control of the discharge applied voltage, and the like can be controlled by a command from the main controller 130 of the exposure apparatus connected by the interface cable.

λ/2位相板102は、水晶、フッ化マグネシウムなどの複屈折をもつ硝材で製作され、パルスレーザー光源101より射出したビームを所定の方向に電場ベクトルが向いた偏光に変換する。λ/2位相板102を光路に移動させることにより、被照明面をX偏光で照明したりY偏光で照明したり切り替えることができる。減光フィルター103は、露光量に応じて照明光の照度を変えるために切替え可能に構成されている。マイクロレンズアレイ104は、レーザー光源101からの光が床振動や露光装置の振動によって照明光学系の光軸に対してずれたり偏心したりしても、マイクロレンズアレイ104以降の光学系に入射する光の特性が変化しないように、特定の角度分布で光を射出する。   The λ / 2 phase plate 102 is made of a glass material having birefringence such as quartz or magnesium fluoride, and converts the beam emitted from the pulse laser light source 101 into polarized light whose electric field vector is directed in a predetermined direction. By moving the λ / 2 phase plate 102 to the optical path, the surface to be illuminated can be switched between illumination with X-polarized light and illumination with Y-polarized light. The neutral density filter 103 is configured to be switchable in order to change the illuminance of the illumination light in accordance with the exposure amount. The microlens array 104 is incident on the optical system after the microlens array 104 even if the light from the laser light source 101 is shifted or decentered with respect to the optical axis of the illumination optical system due to floor vibration or exposure apparatus vibration. Light is emitted with a specific angular distribution so that the characteristics of the light do not change.

第1コンデンサーレンズ105は、マイクロレンズアレイ104からの光を回折光学素子106に導く。回折光学素子106は複数のスロットを有するターレット107に搭載されており、アクチュエータによって任意の素子を光軸上に移動することが可能である。回折光学素子106の射出光は、第2コンデンサーレンズ108によって集光され、回折パターン面Aに回折パターンを形成する。ターレット107に搭載してある回折光学素子106を光軸上に移動すれば回折光パターンの形状を変えることができる。   The first condenser lens 105 guides the light from the microlens array 104 to the diffractive optical element 106. The diffractive optical element 106 is mounted on a turret 107 having a plurality of slots, and an arbitrary element can be moved on the optical axis by an actuator. The light emitted from the diffractive optical element 106 is collected by the second condenser lens 108 and forms a diffraction pattern on the diffraction pattern surface A. If the diffractive optical element 106 mounted on the turret 107 is moved on the optical axis, the shape of the diffracted light pattern can be changed.

回折パターン面Aに形成された回折パターンは、プリズム109、第1ズームレンズ111によって輪帯率やσ値など照明光の有効光源分布のパラメータが調整される。有効光源分布とは、投影光学系121の瞳面における非光強度分布である。有効光源分布の形状を形成するプリズム109は、複数のスロットを有するターレット110に搭載されており、アクチュエータによって任意のプリズムを光軸上に移動することが可能である。σ値とは、投影レンズ121開口数に対する照明光学系開口数(有効光源分布の径)の比の値であり、第1ズームレンズ111を制御することで有効光源分布の径を拡大縮小し、σ値を所望の値に制御する。   In the diffraction pattern formed on the diffraction pattern surface A, the prism 109 and the first zoom lens 111 adjust the parameters of the effective light source distribution of illumination light such as the annular ratio and the σ value. The effective light source distribution is a non-light intensity distribution on the pupil plane of the projection optical system 121. The prism 109 forming the effective light source distribution shape is mounted on the turret 110 having a plurality of slots, and an arbitrary prism can be moved on the optical axis by an actuator. The σ value is the value of the ratio of the illumination optical system numerical aperture (effective light source distribution diameter) to the projection lens 121 numerical aperture, and the first zoom lens 111 is controlled to enlarge or reduce the effective light source distribution diameter. The σ value is controlled to a desired value.

図3にプリズムによって有効光源の形状を形成する模式図を示す。図3(a)は輪帯状の有効光源分布を形成させる場合であり、矢印で示す入射側に凹の円錐面(もしくは平面)301を設け、射出側に凸の円錐面302を設けたプリズムにより輪帯状の有効光源分布を形成する。また、図3(b)は四重極状の有効光源分布を形成させる場合であり、矢印で示す入射側に凹四角錐面(もしくは平面)303を設け、射出側に凸四角錐面304を設けたプリズムにより有効光源分布を形成する。更に、図3の(c)(d)に示すような一対のプリズムで構成し、ブリズムの間隔を光軸方向に相対移動可能とすれば、より多様な有効光源分布の形成が可能となる。図3(c)(d)は輪帯状の有効光源分布を形成する一対のプリズムであり、図3(c)のようにプリズムの間隔305が小さいときは発光部の幅306が太い輪帯形状の有効光源分布が形成でき、図3(d)のようにプリズムの間隔307が大きいときは発光部の幅308が細い輪帯形状の有効光源分布が形成できる。   FIG. 3 shows a schematic diagram for forming the shape of the effective light source by the prism. FIG. 3 (a) shows a case where a ring-shaped effective light source distribution is formed. A prism having a concave conical surface (or plane) 301 on the incident side indicated by an arrow and a convex conical surface 302 on the exit side is shown. A ring-shaped effective light source distribution is formed. FIG. 3B shows a case where a quadrupole effective light source distribution is formed. A concave quadrangular pyramid surface (or plane) 303 is provided on the incident side indicated by an arrow, and a convex quadrangular pyramid surface 304 is provided on the exit side. An effective light source distribution is formed by the provided prism. Furthermore, if it is configured by a pair of prisms as shown in FIGS. 3C and 3D and the interval of the prism can be moved relative to the optical axis direction, a wider variety of effective light source distributions can be formed. 3 (c) and 3 (d) show a pair of prisms that form a ring-shaped effective light source distribution. When the prism interval 305 is small as shown in FIG. 3 (c), the width of the light emitting part 306 is wide. When the prism interval 307 is large as shown in FIG. 3D, an annular effective light source distribution with a narrow width 308 of the light emitting portion can be formed.

図1に戻り、回折パターン面Aの回折パターンは、ほぼ相似形状を保ちながら第1ズームレンズ111の拡大縮小により有効光源分布のσ値が調整される。偏光光学素子112で偏光状態を所望の方向へ成形した後、ハエの目レンズ114の入射面に結像する。第2ズームレンズ115はハエの目レンズ114で波面分割された光束を重畳的に重ね合わせ、略均一な光分布をB面形成する。光路上のハーフミラー116は、マスク(または『レチクル』)120を照射する露光光の一部を取り出し、光量検出器117へ分岐している。リレー光学系119は、B面に形成された略均一な有効光源分布をマスク120に投影する。   Returning to FIG. 1, the σ value of the effective light source distribution is adjusted by enlarging / reducing the first zoom lens 111 while the diffraction pattern on the diffraction pattern surface A is maintained in a substantially similar shape. After the polarization state is shaped in a desired direction by the polarization optical element 112, an image is formed on the incident surface of the fly-eye lens 114. The second zoom lens 115 superimposes and superimposes the light beams divided by the fly-eye lens 114 and forms a substantially uniform light distribution on the B surface. The half mirror 116 on the optical path extracts a part of the exposure light that irradiates the mask (or “reticle”) 120 and branches it to the light amount detector 117. The relay optical system 119 projects a substantially uniform effective light source distribution formed on the B surface onto the mask 120.

マスク120には焼き付けを行う半導体素子の回路パターンが形成されている。可変ブラインド118は、光軸に直交方向の面に遮光板を配置し、マスク120の回路パターン面の照射領域を任意に設定可能にしている。図2にマスク120を照明している状態を示す。マスク201の回路パターン202の一部をスリット状光束203によってスリット照明しており、図1に示す投影レンズ121によってフォトレジストが塗布されたウェハ122上に回路パターン202の一部を縮小倍率β(βは例えば1/4)で縮小露光する。この時、図1に示す矢印のように、マスク120及びウェハ122を投影レンズ121とスリット状光束203に対し、投影レンズ121の縮小比率βと同じ速度比率で互いに逆方向にスキャンさせながら、パルスレーザー光源101からのパルス発光による多パルス露光を繰り返すことにより、マスク全面201の回路パターン202をウェハ122上の1チップ領域または複数チップ領域に転写する。   The mask 120 is formed with a circuit pattern of a semiconductor element to be baked. In the variable blind 118, a light shielding plate is disposed on a surface orthogonal to the optical axis, and an irradiation area on the circuit pattern surface of the mask 120 can be arbitrarily set. FIG. 2 shows a state where the mask 120 is illuminated. A part of the circuit pattern 202 of the mask 201 is slit-lit with a slit-shaped light beam 203, and a part of the circuit pattern 202 is reduced on the wafer 122 coated with the photoresist by the projection lens 121 shown in FIG. β is reduced exposure by 1/4), for example. At this time, as shown by the arrows in FIG. 1, the mask 120 and the wafer 122 are scanned in opposite directions at the same speed ratio as the reduction ratio β of the projection lens 121 with respect to the projection lens 121 and the slit-shaped light beam 203. By repeating multi-pulse exposure by pulse light emission from the laser light source 101, the circuit pattern 202 on the entire mask surface 201 is transferred to one chip region or a plurality of chip regions on the wafer 122.

光量検出器117は、露光光の強度(露光エネルギー)に対応した出力を発生する。光量検出器117の出力は、パルスレーザー光源101のパルス発光毎に積分を行う積分回路(不図示)によって1パルスあたりの露光エネルギーに変換され、露光装置を制御する主制御装置130に入力されている。主制御装置130は、ウェハ122に塗布された感光材により定められた適正露光量に一致するよう光量検出器117で露光光を逐次計測しながら、パルスレーザー光源101の発光光量をフィードバッグ制御することにより露光量制御を行っている。   The light quantity detector 117 generates an output corresponding to the intensity (exposure energy) of the exposure light. The output of the light amount detector 117 is converted into exposure energy per pulse by an integration circuit (not shown) that performs integration for each pulse emission of the pulse laser light source 101, and is input to the main controller 130 that controls the exposure apparatus. Yes. The main controller 130 feedback-controls the amount of light emitted from the pulse laser light source 101 while sequentially measuring the exposure light with the light amount detector 117 so as to match the appropriate exposure amount determined by the photosensitive material applied to the wafer 122. Thus, the exposure amount is controlled.

投影レンズ121の瞳面(マスクに対するフーリエ変換面)上には、開口部がほぼ円形である投影レンズの開口絞り(不図示)が配置され、モータ等の駆動手段によって開口部の直径を制御することで、所望の値に設定できる。また、のフィールドレンズ123は、投影レンズ121中のレンズ系の一部を構成しており、空気圧や圧電素子などを利用して投影レンズの光軸上に移動させるものであり、投影レンズの諸収差の低下を防止しつつ、投影倍率や歪曲誤差を良好にしている。   On the pupil plane of the projection lens 121 (Fourier transform plane with respect to the mask), an aperture stop (not shown) of the projection lens having a substantially circular aperture is disposed, and the diameter of the aperture is controlled by driving means such as a motor. Thus, it can be set to a desired value. The field lens 123 constitutes a part of the lens system in the projection lens 121, and is moved on the optical axis of the projection lens by using air pressure or a piezoelectric element. The projection magnification and the distortion error are improved while preventing the aberration from decreasing.

ウェハステージ125は3次元方向に移動可能であり、投影レンズ121の光軸方向(Z方向)及び、この方向に直交する面内(X-Y面)を移動できる。ウェハステージに固定された移動鏡との間の距離をレーザー干渉計126で計測することで、ウェハステージ125のX-Y面位置が検出される。露光装置の主制御装置は、レーザー干渉計126によりウェハステージ125の位置を検出し、モータ等の駆動手段を制御することで、ウェハステージを所定のX-Y面位置へ移動させる。   The wafer stage 125 can move in a three-dimensional direction, and can move in the optical axis direction (Z direction) of the projection lens 121 and in a plane (XY plane) orthogonal to this direction. By measuring the distance between the moving mirror fixed to the wafer stage and the laser interferometer 126, the position of the XY plane of the wafer stage 125 is detected. The main controller of the exposure apparatus detects the position of the wafer stage 125 with the laser interferometer 126 and controls the driving means such as a motor to move the wafer stage to a predetermined XY plane position.

本実施例ではマスク120とウェハ122を所定の関係となるように位置決めした後、主制御装置130からの同期信号に基づいてパルスレーザー光源101、ウェハステージ125および、マスクステージ124を同期制御することで、203全面の回路パターン202をウェハ122のチップ領域へ転写するスキャン露光を行う。その後、ウェハ122をウェハステージ125により所定量X-Y平面内に駆動させ、ウェハ122の他の領域を順次同じように投影露光するようにした、所謂ステップ・アンド・スキャン方式を採用している。   In this embodiment, after positioning the mask 120 and the wafer 122 so as to have a predetermined relationship, the pulse laser light source 101, the wafer stage 125, and the mask stage 124 are synchronously controlled based on a synchronization signal from the main controller 130. Then, scan exposure is performed to transfer the circuit pattern 202 on the entire surface 203 to the chip area of the wafer 122. Thereafter, a so-called step-and-scan method is adopted in which the wafer 122 is driven in the XY plane by a predetermined amount by the wafer stage 125 and the other areas of the wafer 122 are sequentially projected and exposed in the same manner. .

ウェハステージ125に配置した照度検出器128はウェハ面(像面)に達する露光光(照明光)の照度を検出する。投影レンズ121を通過した露光光(照明光)は照度検出器128内部に配置した直径数百μmピンホール(不図示)を通過し、照度検出器128の受光部に落射する。受光部には例えばフォトダイオードを用い、露光光の強度(露光エネルギー)に応じた電流量が出力され、ウェハ面(像面)の露光エネルギーを測定することができる。ウェハ露光に先立ちウェハ面(像面)の照度を計測することで、ウェハの適正露光量を高精度に制御することができる。   An illuminance detector 128 disposed on the wafer stage 125 detects the illuminance of exposure light (illumination light) reaching the wafer surface (image surface). The exposure light (illumination light) that has passed through the projection lens 121 passes through a pinhole (not shown) having a diameter of several hundreds μm disposed inside the illuminance detector 128 and is incident on the light receiving portion of the illuminance detector 128. For example, a photodiode is used as the light receiving portion, and a current amount corresponding to the intensity (exposure energy) of the exposure light is output, so that the exposure energy on the wafer surface (image surface) can be measured. By measuring the illuminance on the wafer surface (image surface) prior to wafer exposure, the appropriate exposure amount of the wafer can be controlled with high accuracy.

ウェハステージ125に配置した有効光源測定器129は露光光(照明光)の有効光源分布を測定する。図4を用いて有効光源測定器129の構成と計測方法について説明する。図4(a)は有効光源測定器129で有効光源分布を測定する際の結像状態の説明図である。有効光源測定器129は、投影レンズ121の瞳有効光源分布401の結像面402に直径数十μmの極小ピンホール403を配置し、投影レンズ121を通過した露光光(照明光)は極小ピンホール403を通過した後、有効光源分布401と等価な光強度分布で受光部405に落射される。受光部405には例えば2次元のCCDセンサーを用い、光源強度の明暗に応じた光電変換されて出力され、露光光(照明光)の有効光源分布404を測定することができる。本発明の実施例では、図4(b)の406に示すような格子状に配置された512×512の2次元CCDイメージセンサーを用いる。407は有効光源分布を2次元CCD画素(微小な点光源)の位置関数(マップ)で表現しており、任意座標(x,y)の光強度をA(x,y)で表している。A(x,y)の値が0の場合は露光光(照明光)が無いことを意味する。ウェハ露光に先立ちウェハ面(像面)の有効光源分布を計測・調整することで、ウェハに転写するデバイスパターンの線幅を高精度に制御することができる。   The effective light source measuring device 129 arranged on the wafer stage 125 measures the effective light source distribution of the exposure light (illumination light). The configuration and measuring method of the effective light source measuring device 129 will be described with reference to FIG. FIG. 4A is an explanatory diagram of an imaging state when the effective light source distribution is measured by the effective light source measuring device 129. FIG. The effective light source measuring device 129 arranges a minimal pinhole 403 having a diameter of several tens of μm on the imaging surface 402 of the pupil effective light source distribution 401 of the projection lens 121, and exposure light (illumination light) that has passed through the projection lens 121 is a minimal pin. After passing through the hole 403, the light is incident on the light receiving unit 405 with a light intensity distribution equivalent to the effective light source distribution 401. For example, a two-dimensional CCD sensor is used for the light receiving unit 405, and the effective light source distribution 404 of the exposure light (illumination light) can be measured by photoelectric conversion according to the light intensity of the light source and output. In the embodiment of the present invention, a 512 × 512 two-dimensional CCD image sensor arranged in a lattice pattern as shown by 406 in FIG. 4B is used. Reference numeral 407 represents the effective light source distribution by a position function (map) of a two-dimensional CCD pixel (a minute point light source), and the light intensity at an arbitrary coordinate (x, y) is represented by A (x, y). A (x, y) value of 0 means no exposure light (illumination light). By measuring and adjusting the effective light source distribution on the wafer surface (image surface) prior to wafer exposure, the line width of the device pattern transferred onto the wafer can be controlled with high accuracy.

以上説明した露光装置の概略構成に基づき、ウェハに転写する焼き付けパターン線幅が水平方向と垂直方向で方向誤差(線幅HV差)が生じた場合に、照明光の有効光源分布の光強度分布値を調整し、線幅HV差を低減する実施例について説明する。有効光源分布の光強度分布値を制御するには、図1の回折パターン面Aの付近に配置した光強度調整板131を用いる。図5(a)-(1)は、光軸505に垂直な面(X-Y平面)で光強度調整板131の概略構成を示したものである。XR501,XL502,YU503,YD504の4枚の遮光板が不図示のアクチュエータに連結されており、主制御装置130の指令によって矢印で示す方向に独立に駆動できる機構である。   Based on the schematic configuration of the exposure apparatus described above, the light intensity distribution of the effective light source distribution of the illumination light when the line pattern transferred onto the wafer has a direction error (line width HV difference) in the horizontal and vertical directions. An embodiment in which the value is adjusted to reduce the line width HV difference will be described. In order to control the light intensity distribution value of the effective light source distribution, the light intensity adjusting plate 131 disposed in the vicinity of the diffraction pattern surface A in FIG. 1 is used. FIGS. 5A to 5A show a schematic configuration of the light intensity adjustment plate 131 on a plane (X-Y plane) perpendicular to the optical axis 505. FIG. Four light shielding plates XR501, XL502, YU503, and YD504 are connected to an actuator (not shown), and can be driven independently in the direction indicated by the arrow in response to a command from the main controller 130.

図5(a)-(1)の4枚の遮光板501〜504は、有効光源分布506の外形を遮光していない初期状態を示したものであり、この状態のとき図5(a)-(2)で示す有効光源の光強度分布となる。図5(a)-(2)の上図が有効光源X断面を、下図が有効光源Y断面の光強度分布を模式化したものである。横軸は光軸505を中心に有効光源分布の半径方向の大きさ(σ値)を、縦軸は有効光源の光強度を示している。遮光板を開口した初期状態においては、X断面の光強度面積507とY断面の光強度面積508が等しく、XY断面の光強度が均一に調整されている。   The four light shielding plates 501 to 504 in FIGS. 5 (a) to (1) show an initial state where the outer shape of the effective light source distribution 506 is not shielded. In this state, FIG. 5 (a)- The light intensity distribution of the effective light source shown in (2). The upper diagram in FIGS. 5A to 5B schematically illustrates the light intensity distribution of the effective light source X section, and the lower diagram illustrates the effective light source Y section. The horizontal axis indicates the radial size (σ value) of the effective light source distribution around the optical axis 505, and the vertical axis indicates the light intensity of the effective light source. In the initial state where the light shielding plate is opened, the light intensity area 507 of the X section and the light intensity area 508 of the Y section are equal, and the light intensity of the XY section is adjusted uniformly.

図5(b)-(1)は、X方向の遮光板(XR,XL)を光軸方向に移動させ、有効光源分布のX方向の外形一部509を左右等しく遮光した場合である。この時の光強度分布を図5(b)-(2)に示す。X断面の光強度分布510は開口状態の光強度分布507に対し、X遮光量に応じて光強度が低下する。一方、遮光していないY断面の光強度分布511は開口状態508と同じ光強度が得られる。   5 (b)-(1) shows a case where the X-direction light shielding plate (XR, XL) is moved in the optical axis direction, and the X-direction outer shape part 509 of the effective light source distribution is equally shielded from the left and right. The light intensity distribution at this time is shown in Fig. 5 (b)-(2). The light intensity distribution 510 in the X section is lower than the light intensity distribution 507 in the open state in accordance with the X light shielding amount. On the other hand, the light intensity distribution 511 of the Y cross section that is not shielded from light has the same light intensity as that in the opening state 508.

図5(c)-(1)は、Y方向の遮光板(YU,YD)を光軸方向に移動させ、有効光源分布のY方向の外形一部512を左右等しく遮光した場合である。この時の光強度分布を図5(c)-(2)に示す。Y断面の光強度分布514は開口状態の光強度分布508に対し、Y遮光量に応じて光強度が低下する。一方、遮光していないX断面の光強度分布513は開口状態507と同じ光強度が得られる。図5(1)では説明の関係上、輪帯形状の有効光源分布506の外形一部が欠損するよう図示しているが、図1のA面では、有効光源分布は輪帯形状を維持した状態で光強度(エネルギー)が制御されて形成される。   FIG. 5 (c)-(1) shows a case where the Y-direction light shielding plate (YU, YD) is moved in the optical axis direction and the Y-direction outer shape part 512 of the effective light source distribution is equally shielded from the left and right. The light intensity distribution at this time is shown in Fig. 5 (c)-(2). The light intensity distribution 514 in the Y cross section is lower than the light intensity distribution 508 in the open state in accordance with the Y light shielding amount. On the other hand, the light intensity distribution 513 of the X cross section that is not shielded can obtain the same light intensity as that of the aperture state 507. In FIG. 5 (1), for the sake of explanation, a part of the outer shape of the effective light source distribution 506 having a ring shape is shown to be missing, but the effective light source distribution maintained the ring shape in the A plane of FIG. The light intensity (energy) is controlled in the state.

図5(3)を用いて有効光源分布の光強度変化と、ウェハに転写する焼き付けパターン線幅の水平方向(H方向)と垂直方向(V方向)の変化について説明する。図5(a)-(3)は有効光源分布の光強度507,508がXY方向で均一に調整されており、H方向パターン515とV方向パターン516の線幅は等しく転写されている。図5(b)-(3)はX方向の遮光板(XR,XL)でX光強度510を低下させたことにより、ウェハへ照射される露光エネルギーがX方向で一様に低下するため、V方向パターン518が光強度均一な状態516に対して太く転写される。図5(c)-(3)に示すY方向の遮光板(YU,YD)でY光強度514を低下させた場合も同様に、H方向パターン線幅519が、光強度均一な状態515に対して太く転写される。以上のように光強度調整板131でX方向又はY方向の有効光源分布の外形一部を遮光することにより、有効光源分布に光強度分布値(偏り量)を発生させ、ウェハへの露光エネルギーのHV方向差を制御してパターン線幅を調整することができる。   The change in the light intensity of the effective light source distribution and the change in the horizontal direction (H direction) and the vertical direction (V direction) of the printing pattern line width transferred to the wafer will be described with reference to FIG. 5A to 5C, the light intensities 507 and 508 of the effective light source distribution are uniformly adjusted in the XY directions, and the line widths of the H direction pattern 515 and the V direction pattern 516 are transferred equally. Figures 5 (b)-(3) show that the exposure energy irradiated to the wafer is uniformly reduced in the X direction by reducing the X light intensity 510 with the light shielding plates (XR, XL) in the X direction. The V direction pattern 518 is transferred thickly with respect to the state 516 of uniform light intensity. Similarly, when the Y-light intensity 514 is reduced by the Y-direction light shielding plates (YU, YD) shown in FIGS. 5 (c) to (3), the H-direction pattern line width 519 is changed to the state 515 in which the light intensity is uniform. On the other hand, it is transcribed thickly. As described above, the light intensity adjusting plate 131 shields a portion of the effective light source distribution in the X direction or the Y direction, thereby generating a light intensity distribution value (bias amount) in the effective light source distribution, and exposure energy to the wafer. The pattern line width can be adjusted by controlling the HV direction difference.

次に実際のウェハ焼き付けパターン線幅の線幅HV差と、有効光源分布の光強度分布値(偏り量)の関係を定量化する方法について図6を用いて説明する。図6(1)の縦軸は実パターン線幅の水平方向(H方向)と垂直方向(V方向)の線幅差(H−V)を示し、横軸は有効光源分布の光強度分布値(X/Y光量比)を示している。図6(1)の原点は、有効光源分布のX/Y光強度の偏りが無く且つ、ウェハ焼き付けパターン線幅を測定した際に線幅HV差が無いことを示している。横軸の光強度分布値(X/Y光量比)は、前述したウェハステージ125に配置した有効光源測定器129で測定する。図6(2)は輪帯形状照明の光源強度分布を、有効光源測定器129の2次元CCD601で計測した模式図である。光軸(AX)を中心に対角線で分割したAXL(602),AXR(603),AYU(604),AYD(605)の4領域毎にCCD画素(微小な点光源)の光強度を積算し、(式1)でXY方向の光強度分布値(X/Y光量比)を求める。   Next, a method for quantifying the relationship between the line width HV difference of the actual wafer printing pattern line width and the light intensity distribution value (bias amount) of the effective light source distribution will be described with reference to FIG. The vertical axis in Fig. 6 (1) shows the line width difference (H-V) between the horizontal direction (H direction) and vertical direction (V direction) of the actual pattern line width, and the horizontal axis shows the light intensity distribution value of the effective light source distribution. (X / Y light quantity ratio). The origin in FIG. 6 (1) indicates that there is no deviation in the X / Y light intensity of the effective light source distribution, and there is no difference in line width HV when the wafer printing pattern line width is measured. The light intensity distribution value (X / Y light quantity ratio) on the horizontal axis is measured by the effective light source measuring device 129 arranged on the wafer stage 125 described above. FIG. 6 (2) is a schematic diagram in which the light source intensity distribution of the annular illumination is measured by the two-dimensional CCD 601 of the effective light source measuring device 129. The light intensity of the CCD pixel (small point light source) is integrated for each of the four areas AXL (602), AXR (603), AYU (604), and AYD (605) divided diagonally around the optical axis (AX). , (Expression 1) to obtain the light intensity distribution value (X / Y light quantity ratio) in the XY direction.

X/Y光量比[%]=(AXL光量+AXR光量)/(AYU光量+AYD光量) ‥(式1)
X方向の光強度を低下させた場合は100%より小さくなり、H方向の線幅が太くなる(又は細くなる)。逆にY方向の光強度を低下させた場合は100%より大きくなり、V方向の線幅が太くなる(又は細くなる)。
X / Y light intensity ratio [%] = (AXL light intensity + AXR light intensity) / (AYU light intensity + AYD light intensity) (Formula 1)
When the light intensity in the X direction is lowered, it becomes smaller than 100%, and the line width in the H direction becomes thicker (or thinner). On the other hand, when the light intensity in the Y direction is lowered, it becomes larger than 100%, and the line width in the V direction becomes thicker (or thinner).

図6(1)に示した線幅HV差の変化とX/Y光量比(光強度分布値)の関係は、テスト露光によって定量化(係数化)して露光装置へ保存する。最初に、光強度調整板131の遮光板位置を特定位置に位置決めした状態でX/Y光量比(式1)を計測する。遮光板位置を所定ピッチで所定範囲を変化させながら繰り返しX/Y光量比(式1)を計測することで、遮光板位置に応じたX/Y光量比(式1)の関係を定量化(係数化)し、露光装置に保存する。   The relationship between the change in the line width HV difference and the X / Y light quantity ratio (light intensity distribution value) shown in FIG. 6 (1) is quantified (coefficientized) by test exposure and stored in the exposure apparatus. First, the X / Y light quantity ratio (Formula 1) is measured in a state where the light shielding plate position of the light intensity adjustment plate 131 is positioned at a specific position. By repeatedly measuring the X / Y light amount ratio (Equation 1) while changing the predetermined range of the light shielding plate position at a predetermined pitch, the relationship of the X / Y light amount ratio (Equation 1) corresponding to the light shielding plate position is quantified ( Coefficient) and store it in the exposure apparatus.

次に、X/Y光量比100%を中心に、前述した遮光板位置に応じたX/Y光量比(式1)の係数を基に、X/Y光量比を所定ピッチで所定範囲を変化さながらウェハをテスト露光する。X/Y光量比(光強度分布値)毎に焼き付けパターンの線幅HV差を線幅計測機器で測定してプロットした図が線608で示すグラフである。この場合、線幅HV差が0近傍となるX/Y光量比98%(607)で露光すれば、線幅HV差を均一に焼き付けすることが可能となる。以上、有効光源測定器(129)で測定した遮光板位置とX/Y光量比の関係(係数)と、テスト露光で測定したX/Y光量比と線幅HV差の関係(係数)を予め記憶することで、線幅HV差と有効光源分布の光強度分布値(X/Y光量比)の関係を定量化でき、線幅HV差を均一化する遮光板位置を求めることができる。   Next, with the X / Y light amount ratio of 100% as the center, the X / Y light amount ratio changes within a predetermined range at a predetermined pitch based on the coefficient of the X / Y light amount ratio (Equation 1) according to the light shielding plate position described above. The wafer is test-exposed. A line 608 is a graph obtained by measuring and plotting the line width HV difference of the printing pattern for each X / Y light quantity ratio (light intensity distribution value) with a line width measuring device. In this case, if exposure is performed with an X / Y light quantity ratio of 98% (607) at which the line width HV difference is close to 0, the line width HV difference can be uniformly printed. As described above, the relationship (coefficient) between the light shielding plate position and the X / Y light quantity ratio measured by the effective light source measuring device (129) and the relation (coefficient) between the X / Y light quantity ratio and the line width HV difference measured by the test exposure are previously determined. By memorizing, the relationship between the line width HV difference and the light intensity distribution value (X / Y light quantity ratio) of the effective light source distribution can be quantified, and the light shielding plate position that makes the line width HV difference uniform can be obtained.

次に本発明の特徴の一つである、マスクに応じて線幅HV差を適正範囲内に制御する方法について説明する。図7はマスク内パターン描画領域のX/Y光量比とHV線幅差の関係を示す説明図である。図7(1)は露光光を照射する方向(上面)から見たマスクの模式図であり、1枚のマスクのパターン描画領域(回路パターン面)を4領域(701,702,703,704)に分割した例を示している。本実施例では、マスクの回路パターン面を走査方向Yの座標に応じて領域分割し、マスク領域701〜704に応じた線幅HV差を補正する方法を例示する。   Next, a method of controlling the line width HV difference within an appropriate range according to the mask, which is one of the features of the present invention, will be described. FIG. 7 is an explanatory diagram showing the relationship between the X / Y light quantity ratio and the HV line width difference in the pattern drawing area in the mask. FIG. 7 (1) is a schematic view of the mask as seen from the direction of irradiation of exposure light (upper surface). The pattern drawing area (circuit pattern surface) of one mask is divided into four areas (701, 702, 703, 704). The example divided into is shown. In the present embodiment, a method of dividing the circuit pattern surface of the mask into regions according to the coordinates in the scanning direction Y and correcting the line width HV difference according to the mask regions 701 to 704 is illustrated.

図7(2)にマスク領域別に、実際のウェハ焼き付けパターン線幅の線幅HV差と、有効光源分布の光強度分布値(X/Y光量比)の関係を定量化(係数化)した模式図を示す。前述した図6と同じ手順で、マスク領域701〜704個々に、有効光源測定器129で測定した遮光板位置とX/Y光量比(光強度分布値)の関係を保存し、テスト露光後に線幅測定器で測定した線幅HV差とその時のX/Y光量比(光強度分布値)との関係を保存する。   Figure 7 (2) is a schematic diagram quantifying (coefficientizing) the relationship between the line width HV of the actual wafer printing pattern line width and the light intensity distribution value (X / Y light intensity ratio) of the effective light source distribution for each mask area. The figure is shown. In the same procedure as in FIG. 6 described above, the relationship between the light shielding plate position measured by the effective light source measuring device 129 and the X / Y light quantity ratio (light intensity distribution value) is stored for each of the mask areas 701 to 704, and a line is obtained after the test exposure. Stores the relationship between the line width HV difference measured by the width measuring instrument and the X / Y light quantity ratio (light intensity distribution value) at that time.

図7(2)の線L701は、マスク領域701をテスト露光して得た相関関係を示すものであり、線幅HV差が0近傍となるX/Y光量比95%の点P701で露光すれば、パターン線幅HV差を均一に焼き付けすることが可能となる。同様に、マスク領域702は線L702、マスク領域703は線L703、マスク領域704は線L704で相関関係を図示している。マスク領域702及び703は線幅HV差が0近傍となるX/Y光量比100%の点P702及びP703で、マスク領域704は線幅HV差が0近傍となるX/Y光量比97%の点P704で露光すればパターン線幅HV差を均一に焼き付けすることが可能となる。以上、マスク毎にランダムに発生する焼き付け線幅HV差を、マスク内のパターン描画領域(701〜704)に応じてX/Y光量比(光強度分布値)を補正パラメータとして求めることで、高精度にパターン線幅HV差を抑えることが可能となる。   A line L701 in FIG. 7 (2) shows a correlation obtained by performing test exposure on the mask area 701. The line L701 is exposed at a point P701 with an X / Y light quantity ratio of 95% at which the line width HV difference is close to zero. For example, the pattern line width HV difference can be burned uniformly. Similarly, the correlation is illustrated with the mask area 702 as a line L702, the mask area 703 as a line L703, and the mask area 704 as a line L704. The mask regions 702 and 703 are points P702 and P703 having an X / Y light amount ratio of 100% at which the line width HV difference is close to 0, and the mask region 704 is an X / Y light amount ratio of 97% at which the line width HV difference is near 0. If exposure is performed at point P704, the pattern line width HV difference can be uniformly printed. As described above, the burn-in line width HV difference that occurs randomly for each mask is obtained by calculating the X / Y light quantity ratio (light intensity distribution value) as a correction parameter according to the pattern drawing area (701 to 704) in the mask. The pattern line width HV difference can be suppressed with high accuracy.

図7で得たマスク領域701〜704に応じたX/Y光量比(光強度分布値)を補正パラメータとし露光装置に入力する。図8にマスク領域701〜704に応じた補正パラメータを露光装置へ設定する例を示す。マスク領域701のX/Y光量比95%を補正パラメータ801へ、マスク領域702及び702のX/Y光量比100%を補正パラメータ802及び803へ、マスク領域704のX/Y光量比97%を補正パラメータ804へ各々設定し、記憶装置(不図示)へ記録する。露光装置は設定されたX/Y光量比(光強度分布値)の補正パラメータに従い、ウェハ露光時に光強度調整板131の遮光板位置を制御することで線幅HV差を適正範囲に制御することが可能となる。   The X / Y light quantity ratio (light intensity distribution value) corresponding to the mask areas 701 to 704 obtained in FIG. 7 is input to the exposure apparatus as a correction parameter. FIG. 8 shows an example in which correction parameters corresponding to the mask areas 701 to 704 are set in the exposure apparatus. Set 95% of the X / Y light quantity ratio of the mask area 701 to the correction parameter 801, 100% of the X / Y light quantity ratio of the mask areas 702 and 702 to the correction parameter 802 and 803, and 97% of the X / Y light quantity ratio of the mask area 704 The correction parameters 804 are respectively set and recorded in a storage device (not shown). The exposure apparatus controls the line width HV difference to an appropriate range by controlling the position of the light shielding plate of the light intensity adjusting plate 131 during wafer exposure according to the set X / Y light quantity ratio (light intensity distribution value) correction parameter. Is possible.

次に、露光装置の露光動作を図10のフローを用いて詳細に説明する。露光装置のウェハ露光動作が開始されると、ステップS1001では、露光に用いるマスクのID(マスク識別子)に対応したX/Y光量比パラメータを(図8で前述)、記憶装置(不図示)から読み出す。ステップS1002でマスク回路パターンの照明光の照明条件を制御する。例えば、輪帯形状の有効光源分布でレチクルを照明する場合、所望のσ値を第1ズームレンズ111で、輪帯幅をプリズムレンズ109の間隔で制御して形成する。この時、光強度調整板131の遮光板4枚を開口状態に位置決め制御する。   Next, the exposure operation of the exposure apparatus will be described in detail using the flow of FIG. When the wafer exposure operation of the exposure apparatus is started, in step S1001, the X / Y light quantity ratio parameter corresponding to the mask ID (mask identifier) used for exposure (described above with reference to FIG. 8) is stored from the storage device (not shown). read out. In step S1002, the illumination condition of the illumination light of the mask circuit pattern is controlled. For example, when illuminating a reticle with an annular-shaped effective light source distribution, a desired σ value is controlled by the first zoom lens 111 and the annular width is controlled by the interval of the prism lens 109. At this time, the four light shielding plates of the light intensity adjusting plate 131 are controlled to be opened.

ステップS1003では、露光装置に搬入されたウェハを1チップ領域(露光ショット)の開始位置へウェハステージ125で移動する。ステップS1004では、露光に先立ち露光方向を判定する。露光方向とはステップ・アンド・スキャン方式でスキャン露光する際、スリット状の露光光がマスク面をスキャンする方向を指す。   In step S1003, the wafer carried in the exposure apparatus is moved on the wafer stage 125 to the start position of one chip area (exposure shot). In step S1004, the exposure direction is determined prior to exposure. The exposure direction refers to the direction in which slit-shaped exposure light scans the mask surface when performing scan exposure by the step-and-scan method.

図9にマスク面に露光光を照射する際の露光方向の模式図を示す。図9(1)に示すスリット状露光光203が上向きに走査する場合をUp方向、図9(2)に示すスリット状露光光203が下向きに走査する場合をDown方向とする。ステップ・アンド・スキャン方式の場合は通常、Up方向とDown方向のショット露光を交互に繰り返しながらウェハ全面を露光する。図9(1)の露光方向がUpの場合はマスク領域704,703,702,701の順番で露光し、図9(2)の露光方向がDownの場合はマスク領域701,702,703,704の順番で露光する。図1のフローへ戻り、本実施例の第1露光ショットの露光方向はDownとしステップS1005の露光開始へと進む。   FIG. 9 shows a schematic diagram of the exposure direction when irradiating the mask surface with exposure light. The case where the slit exposure light 203 shown in FIG. 9 (1) scans upward is the Up direction, and the case where the slit exposure light 203 shown in FIG. 9 (2) scans downward is the Down direction. In the case of the step-and-scan method, the entire wafer surface is usually exposed while alternately repeating shot exposure in the Up direction and Down direction. When the exposure direction in FIG. 9 (1) is Up, the mask areas 704, 703, 702, and 701 are exposed in the order, and when the exposure direction in FIG. 9 (2) is Down, the mask areas 701, 702, 703, and 704 are exposed. The exposure is performed in the order of. Returning to the flow of FIG. 1, the exposure direction of the first exposure shot of this embodiment is set to Down, and the process proceeds to the start of exposure in step S1005.

次にステップS1006に進みマスク領域に応じた有効光源の光強度分布値(X/Y光量比)を制御しスキャン露光を開始する。露光方向がDownの場合、マスク領域701の露光光がX/Y光量比95%(801)となるよう光強度調整板131の遮光板位置決めする。この時の光軸AXに垂直な面(X-Y平面)で見た光強度調整板(131)の遮光板の模式図を図10(a)に示す。X遮光板(XL、XR)を光軸AXに向かう方向に駆動させ、X光量をY光量に対して5%減光している。X/Y光量比95%となるX遮光板(XL、XR)の位置は、図6及び図7のテスト露光で記憶した係数に基づき決定する。遮光板を位置決めすると直ぐにステップS1007へ進み、マスク領域701の露光が終了したかを監視する。スキャン露光しているマスクの位置は、マスクステージレーザー干渉計(127)で移動するマスクステージ124の位置を常時測定し、主制御装置130でマスク領域の位置に換算して判定する。   In step S1006, the light intensity distribution value (X / Y light amount ratio) of the effective light source corresponding to the mask area is controlled to start scanning exposure. When the exposure direction is Down, the light shielding plate of the light intensity adjusting plate 131 is positioned so that the exposure light in the mask area 701 has an X / Y light quantity ratio of 95% (801). FIG. 10 (a) shows a schematic diagram of the light shielding plate of the light intensity adjusting plate (131) viewed on a plane (XY plane) perpendicular to the optical axis AX at this time. The X light shielding plate (XL, XR) is driven in the direction toward the optical axis AX, and the X light quantity is reduced by 5% with respect to the Y light quantity. The position of the X light shielding plate (XL, XR) at which the X / Y light quantity ratio is 95% is determined based on the coefficients stored in the test exposure of FIGS. As soon as the light shielding plate is positioned, the process proceeds to step S1007 to monitor whether the exposure of the mask area 701 is completed. The position of the mask subjected to scanning exposure is determined by constantly measuring the position of the mask stage 124 that is moved by the mask stage laser interferometer (127) and converting it to the position of the mask area by the main controller 130.

マスク領域701の露光が終了するとステップS1008へ進み、マスク領域702の露光光がX/Y光量比100%(802)となるよう光強度調整板131の遮光板を位置決めする。図10(b)は図10(a)と同様に、マスク領域702をX/Y光量比100%で露光する遮光板状態を示した模式図である。   When the exposure of the mask area 701 is completed, the process proceeds to step S1008, and the light shielding plate of the light intensity adjusting plate 131 is positioned so that the exposure light of the mask area 702 has an X / Y light quantity ratio of 100% (802). FIG. 10B is a schematic diagram showing a light shielding plate state in which the mask region 702 is exposed with an X / Y light quantity ratio of 100%, as in FIG. 10A.

図10(a)の状態からX遮光板(XL、XR)を光軸AXと反対方向に駆動し、X光量とY光量の比が等しくなるように位置決めしている。遮光板を位置決めすると直ぐにマスク領域702の露光が終了したかを監視し、露光終了したらマスク領域703を露光するステップS1009へ進む。マスク領域703はマスク領域702と同様にX/Y光量比100%(803)であり、露光光がX/Y光量比100%(803)となるよう光強度調整板131の遮光板を位置決めする。   From the state of FIG. 10 (a), the X light shielding plates (XL, XR) are driven in the direction opposite to the optical axis AX and positioned so that the ratio of the X light quantity and the Y light quantity is equal. As soon as the light shielding plate is positioned, it is monitored whether or not the exposure of the mask area 702 has been completed. Like the mask area 702, the mask area 703 has an X / Y light quantity ratio of 100% (803), and the light intensity adjusting plate 131 is positioned so that the exposure light has an X / Y light quantity ratio of 100% (803). .

この場合は図10(b)と図10(c)とで遮光板の位置は変らない。マスク領域703が終了するとステップS1010へ進み、マスク領域704の露光光がX/Y光量比97%(804)となるよう光強度調整板131の遮光板を位置決めする。図10(d)は図10(c)の開口状態からX遮光板(XL、XR)を光軸AXに向かう方向に駆動させ、X光量をY光量に対して3%減光している。X/Y光量比97%となるX遮光板(XL、XR)の位置は、図6及び図7のテスト露光で記憶した係数に基づき決定する。遮光板を位置決めすると直ぐにマスク領域704の露光が終了したかを監視し、露光終了したら露光ショット(1チップ領域の露光)が終了する。   In this case, the position of the light shielding plate does not change between FIG. 10 (b) and FIG. 10 (c). When the mask region 703 ends, the process proceeds to step S1010, and the light shielding plate of the light intensity adjustment plate 131 is positioned so that the exposure light in the mask region 704 has an X / Y light amount ratio of 97% (804). In FIG. 10D, the X light shielding plate (XL, XR) is driven in the direction toward the optical axis AX from the opening state of FIG. 10C, and the X light amount is reduced by 3% with respect to the Y light amount. The position of the X light shielding plate (XL, XR) at which the X / Y light quantity ratio is 97% is determined based on the coefficients stored in the test exposure of FIGS. As soon as the light shielding plate is positioned, it is monitored whether the exposure of the mask area 704 has been completed. When the exposure is completed, the exposure shot (exposure of one chip area) is completed.

ステップS1012でウェハの全ショットが終了したかを判定し、終了していなければステップS1003へと戻り、第2露光ショットの開始位置へウェハステージ125を移動する。第2露光ショットの露光方向はUp方向へと切替わり、ステップS1004ではUp方向へと進む。露光方向がUpの場合、図9(1)に示すようにマスク領域は704,703,702,701の順番で露光するため、前述したDown方向のマスク領域とは逆の順番で、マスク領域に応じたX/Y光量比を制御して露光ショットを制御する。以降、Up方向とDown方向のショット露光を交互に繰り返しながらウェハ全面を露光する。ウェハ全面の露光が終了するとステップS1013へと進み、所定のウェハ枚数が終了するまで、ステップS1014でウェハを搬入してウェハ露光を繰り返す。   In step S1012, it is determined whether all shots of the wafer have been completed. If not, the process returns to step S1003, and the wafer stage 125 is moved to the start position of the second exposure shot. The exposure direction of the second exposure shot is switched to the Up direction, and in step S1004, the process proceeds to the Up direction. When the exposure direction is Up, the mask areas are exposed in the order of 704, 703, 702, and 701 as shown in FIG. 9 (1). The exposure shot is controlled by controlling the corresponding X / Y light quantity ratio. Thereafter, the entire wafer surface is exposed while alternately repeating shot exposure in the Up direction and Down direction. When the exposure of the entire wafer surface is completed, the process proceeds to step S1013. In step S1014, the wafer is loaded and the wafer exposure is repeated until the predetermined number of wafers is completed.

以上説明したように、マスク毎にマスク内のパターン描画領域に応じて、線幅HV差を適正範囲に抑える光強度分布値(X/Y光量比)を補正パラメータとして定量化し、露光装置で感光基板を露光する際、走査露光中に、マスク内のパターン描画領域に照明光が達した時点で、設定した光強度分布値に従い照明光の光強度分布値を制御することで、マスク毎にマスク内のパターン描画領域に応じた線幅HV差を適正範囲に制御することができる。   As described above, the light intensity distribution value (X / Y light amount ratio) that suppresses the line width HV difference to an appropriate range is quantified as a correction parameter for each mask according to the pattern drawing area in the mask, and is exposed by the exposure device. When exposing the substrate, when the illumination light reaches the pattern drawing area in the mask during scanning exposure, the light intensity distribution value of the illumination light is controlled according to the set light intensity distribution value. The line width HV difference according to the pattern drawing area can be controlled within an appropriate range.

第二の実施例
第一の実施例では、マスク内のパターン領域に応じ、線幅HV差を光強度分布値(X/Y光量比)で適正範囲に制御する露光装置の補正方法について例示した。第二の実施例では、マスク毎に異なる光強度分布値(補正パラメータ)の算出を自動化し、使用するマスクに応じて短時間に求める方法について説明する。図11にマスク毎に光強度分布値(補正パラメータ)の算出を自動化するシステム構成を示す。
Second Embodiment In the first embodiment, an exposure apparatus correction method for controlling the line width HV difference to an appropriate range by the light intensity distribution value (X / Y light amount ratio) according to the pattern area in the mask is exemplified. . In the second embodiment, a method of automating the calculation of different light intensity distribution values (correction parameters) for each mask and obtaining it in a short time according to the mask to be used will be described. FIG. 11 shows a system configuration for automating the calculation of the light intensity distribution value (correction parameter) for each mask.

光強度分布値を算出する露光条件計算装置1101は、N台の露光装置1103とM台の複数の線幅測定器1106と双方向に通信可能なネットワークで接続されており、所望データの送受信が可能になっている。また、露光条件計算装置1101にはマスク毎の補正パラメータ等を記録する記憶装置1102が接続されており、マスク固体を識別する数値化・記号化されたマスク識別子(マスクID)に応じて補正マラメータを格納することができる。   The exposure condition calculation device 1101 for calculating the light intensity distribution value is connected to N exposure devices 1103 and a plurality of M line width measuring instruments 1106 via a network capable of bidirectional communication, and can transmit and receive desired data. It is possible. Further, a storage device 1102 for recording correction parameters for each mask is connected to the exposure condition calculation device 1101, and a correction parameter is obtained according to a numerically / symbolized mask identifier (mask ID) for identifying a mask solid. Can be stored.

露光条件計算装置1101で光強度分布値(補正パラメータ)を自動的に算出する流れを、図11を用いて説明する。露光装置1103で新しいマスク1104を用いたデバイス生産が計画されると一般的に、露光量・フォーカス量等の露光条件出しを目的としたテスト露光を実施する。   The flow of automatically calculating the light intensity distribution value (correction parameter) by the exposure condition calculation device 1101 will be described with reference to FIG. When device production using a new mask 1104 is planned by the exposure apparatus 1103, test exposure is generally performed for the purpose of determining exposure conditions such as exposure amount and focus amount.

その際、図6及び図7で説明した光強度分布値(X/Y光量比)を所定ピッチで所定範囲を変化させながら繰り返すテスト露光もあわせて実施する。露光装置1101のテスト露光が終了すると、露光条件計算装置1101はテスト露光条件であるデータ1105、有効光源測定器で測定した光強度分布値(X/Y光量比)とマスク識別子を受信する。マスク識別子は例えば、個々のマスクに異なるバーコードを取付け、露光装置1101がバーコード情報を読み取り、露光条件計算装置1101がバーコード情報を受信する方法がある。   At that time, test exposure is also performed in which the light intensity distribution value (X / Y light quantity ratio) described in FIGS. 6 and 7 is repeated at a predetermined pitch while changing a predetermined range. When the test exposure of the exposure apparatus 1101 is completed, the exposure condition calculation apparatus 1101 receives the test exposure condition data 1105, the light intensity distribution value (X / Y light quantity ratio) measured by the effective light source measuring instrument, and the mask identifier. As the mask identifier, for example, there is a method in which a different barcode is attached to each mask, the exposure apparatus 1101 reads the barcode information, and the exposure condition calculation apparatus 1101 receives the barcode information.

テスト露光したウェハ1105は、露光装置1103から線幅測定機器1106へ搬送され、線幅測定機器1106でウェハに転写した焼き付け線幅HVを測定される。線幅測定機器1106で線幅測定が終了すると、露光条件計算装置1101は測定結果データ1107、水平方向(H方向)と垂直方向(V方向)の線幅測定結果を受信する。   The test-exposed wafer 1105 is transferred from the exposure apparatus 1103 to the line width measuring device 1106, and the printing line width HV transferred to the wafer by the line width measuring device 1106 is measured. When the line width measurement is completed by the line width measuring device 1106, the exposure condition calculation apparatus 1101 receives the measurement result data 1107 and the line width measurement results in the horizontal direction (H direction) and the vertical direction (V direction).

露光条件計算装置1101は、図6及び図7で説明したマスク領域701〜704に応じて、線幅HV差の変化とX/Y光量比(光強度分布値)の関係を関数近似し、記録装置1102にマスク識別子と共に保存する。露光装置1103で新しいマスク1104を用いたデバイスの量産が開始されると、露光装置1103は露光条件計算装置1101の記憶装置1102からマスク識別子に応じた光強度分布値1108を受信し、図10で説明した露光動作により補正露光を実施する。   The exposure condition calculation device 1101 performs function approximation on the relationship between the change in the line width HV difference and the X / Y light quantity ratio (light intensity distribution value) in accordance with the mask areas 701 to 704 described in FIGS. Stored in device 1102 along with the mask identifier. When mass production of a device using the new mask 1104 is started in the exposure apparatus 1103, the exposure apparatus 1103 receives the light intensity distribution value 1108 corresponding to the mask identifier from the storage device 1102 of the exposure condition calculation apparatus 1101, and in FIG. Corrected exposure is performed by the described exposure operation.

以上、マスク毎にランダムに発生するパターン描画誤差に対して光強度分布値(補正パラメータ)の算出を自動化することで、人手による煩雑な作業を簡略化でき、短時間にパターン描画領域(パターン描画位置)に応じた線幅HV差を高精度に適正範囲に制御することができる。   As described above, by automating the calculation of light intensity distribution values (correction parameters) for pattern drawing errors that occur randomly for each mask, it is possible to simplify manual operations and to shorten the pattern drawing area (pattern drawing) in a short time. The line width HV difference according to the position) can be controlled within an appropriate range with high accuracy.

101…パルスレーザー光源 102…λ/2位相板
103…減光フィルター 104…マイクロレンズアレイ
105…第1コンデンサーレンズ 106…回折光学素子
107…ターレット 108…第2コンデンサーレンズ
109…プリズム 110…ターレット
111…第1ズームレンズ 112…偏光光学素子
113…ターレット 114…ハエの目レンズ
115…第2ズームレンズ 116…ハーフミラー
117…光量検出器 118…可変ブラインド
119…リレー光学系 120…マスク(レチクル)
121…投影レンズ 122…基板(ウェハ)
123…フィールドレンズ 124…マスクステージ
125…ウェハステージ 126…ウェハステージレーザー干渉計
127…マスクステージレーザー干渉計 128…照度検出器
129‥有効光源測定器 130…主制御装置
131…光強度調整板
201…マスク(レチクル) 202…回路パターン
203…スリット状光束
101 ... Pulse laser light source 102 ... λ / 2 phase plate
103 ... Needing filter 104 ... Micro lens array
105 ... 1st condenser lens 106 ... Diffractive optical element
107 ... Turret 108 ... Second condenser lens
109 ... Prism 110 ... Turret
111 ... first zoom lens 112 ... polarizing optical element
113 ... Turret 114 ... Fly Eye Lens
115 ... second zoom lens 116 ... half mirror
117 ... Light intensity detector 118 ... Variable blind
119 ... Relay optical system 120 ... Mask (reticle)
121 ... Projection lens 122 ... Substrate (wafer)
123 ... Field lens 124 ... Mask stage
125 ... Wafer stage 126 ... Wafer stage laser interferometer
127 ... Mask stage laser interferometer 128 ... Illuminance detector
129 ... Effective light source measuring instrument 130 ... Main controller
131… Light intensity adjustment plate
201 ... Mask (reticle) 202 ... Circuit pattern
203 ... Slit beam

Claims (7)

光源からの照明光でマスクを照明する照明光学系と、前記マスクのパターンを所定の結像面に投影する投影光学系と、前記照明光の光強度分布を調整する光強度分布調整手段と、前記マスクのパターン描画領域に応じた前記照明光の光強度分布値を設定する光強度分布設定手段とを具備し、
前記投影光学系を介して前記マスクと共役位置にある感光基板上に露光する投影露光装置において、前記感光基板の走査露光中に、前記マスクのパターン描画領域に応じた前記照明光の光強度分布値に基づき、前記光強度分布調整手段によって光強度分布値を制御することを特徴とする投影露光装置。
An illumination optical system that illuminates a mask with illumination light from a light source, a projection optical system that projects a pattern of the mask onto a predetermined imaging plane, and a light intensity distribution adjustment unit that adjusts the light intensity distribution of the illumination light; A light intensity distribution setting means for setting a light intensity distribution value of the illumination light according to the pattern drawing region of the mask,
In a projection exposure apparatus that exposes a photosensitive substrate at a conjugate position with the mask via the projection optical system, the light intensity distribution of the illumination light according to the pattern drawing area of the mask during scanning exposure of the photosensitive substrate A projection exposure apparatus, wherein the light intensity distribution value is controlled by the light intensity distribution adjusting means based on the value.
前記マスクのパターン描画領域に応じた前記照明光の光強度分布値は、前記感光基板上の水平方向のパターン線幅と垂直方向のパターン線幅の方向差による線幅誤差を補正することを特徴とする請求項1に記載の投影露光装置。   The light intensity distribution value of the illumination light corresponding to the pattern drawing region of the mask corrects a line width error due to a direction difference between a horizontal pattern line width and a vertical pattern line width on the photosensitive substrate. The projection exposure apparatus according to claim 1. 前記マスクのパターン描画領域に応じた前記照明光の光強度分布値は、前記マスクの2次元座標位置に応じて記録することを特徴とする請求項1又は請求項2に記載の投影露光装置。   The projection exposure apparatus according to claim 1, wherein a light intensity distribution value of the illumination light corresponding to a pattern drawing region of the mask is recorded according to a two-dimensional coordinate position of the mask. 前記マスクのパターン描画領域に応じた前記照明光の光強度分布値は、マスク識別子によりマスク毎に記録しておき、露光に使用するマスク識別子に応じた値を検索して用いることを特徴とする請求項1乃至請求項3のいずれか一項に記載の投影露光装置。   The light intensity distribution value of the illumination light corresponding to the pattern drawing area of the mask is recorded for each mask using a mask identifier, and a value corresponding to the mask identifier used for exposure is searched and used. The projection exposure apparatus according to any one of claims 1 to 3. 前記光強度分布調整手段は、前記照明光の基本形状を形成する面の近傍に配置された複数の独立に駆動可能な遮光板により構成され、複数の遮光板の中から光強度分布量に応じた遮光板を選択して位置制御することを特徴とする請求項1乃至請求項4のいずれか一項に記載の投影露光装置。   The light intensity distribution adjusting means is composed of a plurality of independently driveable light shielding plates arranged in the vicinity of the surface forming the basic shape of the illumination light, and according to the light intensity distribution amount from the plurality of light shielding plates. 5. The projection exposure apparatus according to claim 1, wherein the position is controlled by selecting a light shielding plate. 複数の照明光の光強度分布測定値と、前記光強度分布で感光した感光基板の水平方向と垂直方向のパターン線幅の測定値から、前記感光基板上の水平方向と垂直方向のパターン線幅の方向差による線幅誤差を最小化する前記照明光の光強度分布値を計算することを特徴とする露光条件計算装置。   The horizontal and vertical pattern line widths on the photosensitive substrate from the measured values of the light intensity distribution of the plurality of illumination lights and the measured values of the horizontal and vertical pattern line widths of the photosensitive substrate exposed with the light intensity distribution. An exposure condition calculation apparatus for calculating a light intensity distribution value of the illumination light that minimizes a line width error due to a difference in direction of the illumination light. 前記光強度分布値は、パターン描画領域に応じた前記照明光の光強度分布値であることを特徴とする請求項6記載の露光条件計算装置。   The exposure condition calculation apparatus according to claim 6, wherein the light intensity distribution value is a light intensity distribution value of the illumination light corresponding to a pattern drawing region.
JP2013215182A 2013-10-16 2013-10-16 Projection exposure device and projection condition calculation device Pending JP2015079807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013215182A JP2015079807A (en) 2013-10-16 2013-10-16 Projection exposure device and projection condition calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215182A JP2015079807A (en) 2013-10-16 2013-10-16 Projection exposure device and projection condition calculation device

Publications (1)

Publication Number Publication Date
JP2015079807A true JP2015079807A (en) 2015-04-23

Family

ID=53011016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215182A Pending JP2015079807A (en) 2013-10-16 2013-10-16 Projection exposure device and projection condition calculation device

Country Status (1)

Country Link
JP (1) JP2015079807A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180138154A (en) * 2017-06-19 2018-12-28 캐논 가부시끼가이샤 Exposure method, exposure apparatus and method of manufacturing article
CN109872382A (en) * 2017-12-01 2019-06-11 欧姆龙株式会社 Image processing system and image processing method
JP2020076822A (en) * 2018-11-06 2020-05-21 旭化成株式会社 Plate making system, plate making method and program
CN114303101A (en) * 2019-09-03 2022-04-08 佳能株式会社 Exposure apparatus and method for manufacturing article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180138154A (en) * 2017-06-19 2018-12-28 캐논 가부시끼가이샤 Exposure method, exposure apparatus and method of manufacturing article
KR102417815B1 (en) 2017-06-19 2022-07-06 캐논 가부시끼가이샤 Exposure method, exposure apparatus and method of manufacturing article
CN109872382A (en) * 2017-12-01 2019-06-11 欧姆龙株式会社 Image processing system and image processing method
CN109872382B (en) * 2017-12-01 2023-06-20 欧姆龙株式会社 Image processing system and image processing method
JP2020076822A (en) * 2018-11-06 2020-05-21 旭化成株式会社 Plate making system, plate making method and program
CN114303101A (en) * 2019-09-03 2022-04-08 佳能株式会社 Exposure apparatus and method for manufacturing article
CN114303101B (en) * 2019-09-03 2023-07-07 佳能株式会社 Exposure apparatus and method for manufacturing article

Similar Documents

Publication Publication Date Title
JP7271628B2 (en) Inspection device illumination source, inspection device and inspection method
KR100871505B1 (en) Exposure apparatus and method
JP4073735B2 (en) Method for measuring aberrations of a projection system of a lithographic apparatus and device manufacturing method
KR100733123B1 (en) Lithographic apparatus and device manufacturing method
JP3631094B2 (en) Projection exposure apparatus and device manufacturing method
US20190049861A1 (en) Methods and Apparatus for Determining the Position of a Spot of Radiation, Inspection Apparatus, Device Manufacturing Method
KR20190120809A (en) Radiation source
KR20040086313A (en) Exposure device and exposure method
US20050190350A1 (en) Exposure apparatus and method
JP2015079807A (en) Projection exposure device and projection condition calculation device
JPH10284368A (en) Aberration measuring method of projection lens
JP5739837B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2009194107A (en) Generation method for database of effective light-source shape, optical-image calculation method, program, exposure method, and device manufacturing method
JP2006108597A (en) Exposure equipment having interferometer and its method, and device manufacturing method
JP5094517B2 (en) Exposure apparatus, measurement method, stabilization method, and device manufacturing method
KR20180129625A (en) Determination method, exposure method, information processing apparatus, program, and article manufacturing method
JP4921512B2 (en) Exposure method, exposure apparatus, and device manufacturing method
US20050219532A1 (en) System and method for verifying and controlling the performance of a maskless lithography tool
JP2010123755A (en) Exposure apparatus, and device manufacturing method
JP4208532B2 (en) Method for measuring the transmittance of an optical element
JP7459115B2 (en) Wavefront sensors and related metrology equipment
JP2007533128A (en) Substrate patterning method using multiple exposure
JP2001244182A (en) Method of measuring variations in image formation characteristics of projection optical system due to exposure heat and aligner
JP2009016612A (en) Measuring instrument, exposure apparatus, and device manufacturing method
JP2009038271A (en) Aligner, aligning method, and manufacturing method of device