JPH10284368A - Aberration measuring method of projection lens - Google Patents

Aberration measuring method of projection lens

Info

Publication number
JPH10284368A
JPH10284368A JP8504297A JP8504297A JPH10284368A JP H10284368 A JPH10284368 A JP H10284368A JP 8504297 A JP8504297 A JP 8504297A JP 8504297 A JP8504297 A JP 8504297A JP H10284368 A JPH10284368 A JP H10284368A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
projection lens
aberration
image
pattern
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8504297A
Other languages
Japanese (ja)
Other versions
JP3634550B2 (en )
Inventor
Hiroshi Fukuda
Murai Von Bunoo Rudolf
ムライ フォン ブノー ルドルフ
宏 福田
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70483Information management, control, testing, and wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Abstract

PROBLEM TO BE SOLVED: To simply measure distribution of wavefront aberration of a projection lens, by measuring the light intensity distribution of projected images of mask patterns in a plurality of surfaces perpendicular to an optical axis in the vicinity of an imagery surface, and using a technique of phase recovery from the obtained light intensity distribution of the projected images. SOLUTION: A mask 2 is illuminated with an illumination light 1, and the light which has passed the mask 2 is made to form an image on an imagery surface 4 with a projection lens 3. A projected image of a mask pattern in the vicinity of the imagery surface 4 is magnified with a magnification lens system 5 and made to form the image on a CCD sensor 6. Light intensity distribution of the projected image on a defocus surface 10 which is slightly isolated from the imagery surface 4 is measured by moving a projected image monitor 8 constituted of the magnification lens system 5 and the CCD sensor 6, in the direction of an optical axis 9. Wavefront aberration of the projection lens 3 is detected from the obtained light intensity distribution by using algorithm. After positions of the respective lens elements of the projection lens are adjusted on the basis of aberration data, aberration is again measured.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は投影レンズの収差測定方法に関し、詳しくは半導体集積回路、特に回路パターン形成に用いられる投影露光装置など各種光学装置の評価や調整および各種マスクパターンの補正に有用な投影レンズの収差測定方法に関する。 The present invention relates to relates to the aberration measuring method of the projection lens, and more particularly useful for the correction of the evaluation and adjustment, and various mask patterns of various optical devices such as a semiconductor integrated circuit, in particular a projection exposure apparatus used for forming circuit patterns It relates aberration measuring method Do projection lens.

【0002】 [0002]

【従来の技術】周知のように、半導体集積回路の高性能化および高集積化は、半導体集積回路を構成する各種回路パターンを微細化することによって達成され、このような微細な回路パターンは光リソグラフィを用いて形成されてきた。 As is known, high performance and high integration of a semiconductor integrated circuit is achieved by refining the various circuit patterns constituting the semiconductor integrated circuit, such a fine circuit pattern of light It has been formed using lithography. 光リソグラフィは、原画マスク(レチクル)が有する所定のパターンを、半導体基板上に形成された感光材料からなるレジスト膜に投影レンズによって投影することによって、上記パターンをレジスト膜に転写してレジストパターンを形成し、このレジストパターンから上記回路パターンを形成する技術である。 Optical lithography, a predetermined pattern having the original mask (reticle), by projecting by a projection lens to resist film made of a photosensitive material formed on a semiconductor substrate, a resist pattern by transferring the pattern on the resist film formed, it is a technique for forming the circuit pattern from the resist pattern. 光リソグラフィに用いられる光学系の解像度を向上して微細化を達成するため、露光波長を短くするとともに、投影レンズの開口数が大きくされてきた。 Because improved optical system resolution for use in an optical lithography to achieve miniaturization, the exposure wavelength while short, the numerical aperture of the projection lens has been increased. また、集積回路の大規模化にともなうチップ面積の増大に対応するため、投影レンズの露光領域も拡大されてきた。 In order to cope with the increase in chip area due to large-scale integrated circuits, the exposure region of the projection lens has also been expanded.

【0003】一方、光学の一分野として位相回復という手法が知られている。 [0003] On the other hand, technique called phase recovery has been known as one field of optics. 一般に、光(あるいは電子線)の特性のうち、直接的に測定することのできる特性は強度であるが、位相回復とは、例えば像面と瞳面における2 In general, among the characteristics of the light (or electron beam), but the characteristics that can be measured directly is the intensity, the phase recovery, for example 2 at the image plane and pupil plane
つの像の強度分布から、像の複素振幅分布そのものを求める方法の総称であり、電子顕微鏡や大きな収差が存在する天体望遠鏡等における解像度向上を目的として検討されてきた。 From the intensity distribution of the One of the image, is a general term for a method for obtaining the complex amplitude distribution itself of the image, it has been studied for the purpose of improving resolution in astronomical telescopes and the like which an electronic microscope or large aberration is present. さらに、位相回復法のアルゴリズムの一つとして、像面とデフォーカス面の像強度分布から複素振幅分布を求める方法も知られている。 Further, as one of the algorithms of the phase retrieval method has been known a method for obtaining the complex amplitude distribution of image intensity distribution of the image plane and the defocus plane. 位相回復法については、例えば、コンピューター・テクニーク・フォー・ For the phase retrieval method, for example, computer Technique FOR
イメージ・プロセシング・イン・エレクトロン・マイクロスコピー(アカデミック社、ニューヨーク、1978 Image processing-in-Electron Microscopy (Academic, New York, 1978
年)第66頁〜81頁(Image Processing and Conputer Year) No. 66, pages ~81 (Image Processing and Conputer
Aided Design in Electron Optics, Academic, New Yo Aided Design in Electron Optics, Academic, New Yo
rk, 1973, pp.66-81)などに記載されている。 rk, 1973, are described in, for example, pp.66-81).

【0004】 [0004]

【発明が解決しようとする課題】しかし、上記のように投影レンズの開口数の増大および露光領域の拡大が進むにともなって、投影レンズの設計および製造は困難さを増している。 [SUMMARY OF THE INVENTION However, with the expansion and increased exposure area of ​​the numerical aperture of the projection lens as described above advances, the design and manufacture of the projection lens is increasing difficulty.

【0005】また、半導体集積回路の高性能化および高集積化に対処するため、回路パターンは投影レンズの解像限界ぎりぎりの寸法で設計されるようになってきた。 [0005] In order to deal with high performance and high integration of a semiconductor integrated circuit, the circuit pattern has come to be designed with dimensions of resolution marginal projection lens.
この場合、投影レンズの収差によって、マスクパターンの投影像が大きな影響を受けるため、最終的な回路パターン(レジストパターン)の形状や寸法が設計値からはずれたり、露光領域内で大きく変動するなどの問題を生じている。 In this case, the aberration of the projection lens, because the projected image of the mask pattern is greatly affected, the shape and size of the final circuit pattern (resist pattern) or deviates from the design value, such as vary greatly within the exposure region It is caused the problem. これらの問題を解決するためには、レンズ製造工程において投影レンズの収差をできるだけ抑えることが必須であり、そのためには投影レンズの収差を正確に測定できることが先決である。 To solve these problems, a it is essential to suppress as much as possible the aberration of the projection lens in the lens manufacturing process. For this purpose it is top priority to be able to accurately measure the aberration of the projection lens.

【0006】光リソグラフィに使用される投影レンズは、10〜20枚程度のレンズ要素を組み合わせた複合レンズであり、個々のレンズの相対的位置関係を変えることによって収差特性を調整することができる。 [0006] projection lens used in the optical lithography is a composite lens which combines the lens elements of about 10 to 20 sheets, it is possible to adjust the aberration characteristic by changing the relative positional relationship between the individual lenses. しかし、収差を調整するためには、投影レンズの収差を正確に測定しなければならないが、収差を直接測定するのは一般に難かしい。 However, in order to adjust the aberrations must be accurately measure the aberration of the projection lens, Kashii generally flame is to measure the aberration directly. そのため、従来は特定の収差が存在したときのレジストパターンの形状や光学像のシミュレーション結果と、実際のレジストパターンの形状や投影像モニターによる光学像測定結果を比較するなどの方法によって、経験的に収差を推定してきた。 Therefore, conventionally, the simulation results of the resist pattern shape and the optical image of when a particular aberration were present, by a method such as comparing an optical image measurement result by the actual shape of the resist pattern and the projected image monitor, empirically aberration has been estimated.

【0007】しかし、この方法は、収差の傾向を間接的に予想できるに過ぎないばかりでなく、多大の時間と労力を要するなどの問題があった。 [0007] However, this method is not only not only the trend of aberration can be indirectly expected, there was a problem, such as requiring a great deal of time and effort. また、波面収差は、原理的には干渉計を用いて測定できるが、直径、長さおよび重量がいずれも極めて大きい投影レンズの波面収差をこの方法によって測定するには、巨大かつ高価な干渉計が必要であり、実用は困難である。 Further, the wavefront aberration is in principle be measured using an interferometer, in diameter, the wavefront aberration of the very large projection lens both length and weight to be measured by this method, large and expensive interferometers is necessary, practical use is difficult.

【0008】本発明の目的は、上記従来の方法よりはるかに簡便に、投影レンズの波面収差分布そのものを直接測定することができる、投影レンズの収差測定方法を提供することである。 An object of the present invention, much more convenient than the traditional method, it is possible to measure the wavefront aberration distribution itself of the projection lens directly, is to provide an aberration measuring method of the projection lens.

【0009】 [0009]

【課題を解決するための手段】上記目的は、所定のパターンを有するマスクを光で照明し、マスクを透過した光を、収差を測定しようとする投影レンズによって結像面近傍に結像させ、結像面近傍の、光軸に垂直な複数の面における、マスクパターンの投影像の光強度分布をそれぞれ測定し、得られた上記複数の面における投影像の光強度分布から上記位相回復の手法を用いて結像面付近もしくは投影レンズの瞳付近の複素振幅分布を求め、さらにこの光学像複素振幅分布から上記投影レンズの波面収差を求めることによって達成される。 Above object In order to achieve the above, and illuminated with light a mask having a predetermined pattern, the light transmitted through the mask, is focused in the vicinity of the imaging surface by the projection lens to be measured aberrations, the imaging plane near the optical axis perpendicular to a plurality of faces, the respectively measured light intensity distribution of the projection image of the mask pattern, the light intensity distribution of the projection images in the plurality of surfaces obtained in the phase retrieval method is achieved by seeking complex amplitude distribution in the vicinity of a pupil near the imaging plane or the projection lens determines the further wavefront aberration of the projection lens from the optical image complex amplitude distribution used.

【0010】結像面付近の光軸に垂直な複数の異なる平面内でそれぞれ光学像を測定し、得られた複数の光学像の分布から、結像面の複素振幅分布を求めるには、位相回復の手法を応用して次のようにすればよい。 [0010] Each the image plane in the optical axis perpendicular to a plurality of different planes in the vicinity of measuring the optical image, a distribution of a plurality of optical images obtained, to determine the complex amplitude distribution of the focal plane, the phase by applying the method of recovery may be obtained in the following manner. 簡単のため、マスクパターンを1次元パターンとし、瞳通過後の回折像の複素振幅分布をA(X)、像面回折像複素振幅分布をa(x)とすると、両者は互いにフーリエ変換Fの関係にあり、式(1)で表わされる。 For simplicity, a mask pattern is a one-dimensional pattern, the complex amplitude distribution of the diffracted image after pupil passage A (X), when the image plane diffraction images complex amplitude distribution and a (x), both of the Fourier transform F together It has a relationship, represented by the formula (1). a(x)=F(A(X)) ………(1) ただし、x、Xはそれぞれ像面上および瞳面上の規格化座標である。 a (x) = F (A (X)) ......... (1) However, x, X is normalized coordinates on each image plane and the pupil plane.

【0011】次に、瞳面において、回折像複素振幅分布にデフォーカス波面収差分布を掛ける操作を、デフォーカス収差オペレータDと定義すると、デフォーカス面複素振幅分布ad(x)は式(2)で表わされる。 [0011] Then, in the pupil plane, an operation of multiplying the defocus wavefront aberration distribution in the diffraction image complex amplitude distribution and is defined as the defocus aberration operator D, the defocus plane complex amplitude distribution ad (x) is the formula (2) in represented. ad(x)=F(D(A(X))) =F(D(Finv(a(X))) ………(2) ただし、Finvは逆フーリエ変換である。 ad (x) = F (D (A (X))) = F (D (Finv (a (X))) ......... (2) However, Finv is the inverse Fourier transform.

【0012】次に、本発明の基本となる位相回復アルゴリズムを図1を参照して説明する。 [0012] Next, the underlying phase recovery algorithm of the present invention with reference to FIG. まず、像面位相分布をf(x)とし(ステップ11)、像面上における光強度分布I(x)を測定して像面振幅絶対値分布am(x)=sqrt(I(x)) First, the image plane phase distribution and f (x) (step 11), by measuring the light intensity distribution I (x) in the image plane on the image plane amplitude absolute value distribution am (x) = sqrt (I (x))
を求める(ステップ12)と、像面複素振幅分布a0(x) The determined (step 12), the image plane complex amplitude distribution a0 (x)
は、a0(x)=am×exp(i・f(x))と表すことができる(ステップ13)。 It can be expressed as a0 (x) = am × exp (i · f (x)) (step 13).

【0013】a=a0(x)を上記式(2)に代入してデフォーカス面における複素振幅分布ad0(x)を求めると、下記式(3)が得られる。 [0013] a = a0 (x) is determined complex amplitude distribution ad0 (x) in the defocus plane is substituted into the equation (2), the following equation (3) is obtained. ad0(x)=F(D(Finv(a0(x)))) =ad0'(x)×exp(ig0(x)) ………(3) ただし、ad0'(x)はad0(x)の振幅絶対値、g0(x)は位相、iは虚数単位である(ステップ14)。 ad0 (x) = F (D (Finv (a0 (x)))) = ad0 '(x) × exp (ig0 (x)) ......... (3) However, ad0' (x) is ad0 (x) amplitude absolute value, g0 (x) is the phase, i is the imaginary unit (step 14).

【0014】次に、デフォーカス面における実際の強度分布の測定値Id(x)から振幅絶対値分布adm(x)を求め(ステップ15)、式(3)の振幅絶対値ad0'(x)を、 [0014] Next, the actual intensity distribution measurement value Id (x) from the calculated amplitude absolute value distribution adm (x) of the defocus plane (step 15), the amplitude absolute value ad0 of formula (3) '(x) the,
デフォーカス面における実際の強度分布測定Id(x)より求めた振幅絶対値分布adm(x)=sqrt(Id(x))に置き換えると、式(4)が得られる(ステップ16)。 Replacing the actual intensity distribution at a defocus level measuring Id (x) from the obtained amplitude absolute value distribution adm (x) = sqrt (Id (x)), equation (4) is obtained (step 16). adi(x)=adm(x)×exp(ig(x)) ………(4) この式(4)を、デフォーカス面の複素振幅分布と仮定し、上記式(2)より像面複素振幅分布を逆計算したものをa1(x)すると、a1(x)は下記式(5)で表わされる。 adi a (x) = adm (x) × exp (ig (x)) ......... (4) This equation (4), assuming that the complex amplitude distribution of the defocus plane, the image plane complex than the above formula (2) a material obtained by inverse calculation of the amplitude distribution result a1 (x), a1 (x) is represented by the following formula (5). a1(x)=Finv(D(F(adm(x)×exp(ig0(x))))) =a1'(x)×exp(if1(x)) ………(5) ただし、a1'(x)はa1(x)の振幅絶対値、f1(x)は位相である(ステップ17)。 a1 (x) = Finv (D (F (adm (x) × exp (ig0 (x))))) = a1 '(x) × exp (if1 (x)) ......... (5) However, a1' (x) is the amplitude absolute value of a1 (x), f1 (x) is a phase (step 17). 次に式(5)の振幅絶対値a1' Then Equation (5) of the amplitude absolute value a1 '
(x)を像面における振幅絶対値の測定値a0(x)に置き換え(ステップ13)、上記式(2)を用いて再度デフォーカス面の複素振幅分布を計算したものをad1(x)とすると、ad1(x)は下記式(6)で表わされる(ステップ1 Replacing (x) the measured value a0 of the absolute amplitude values ​​in the image plane (x) (step 13), a material obtained by calculating the complex amplitude distribution again defocused surface using the above equation (2) ad1 (x) Then, ad1 (x) is represented by the following formula (6) (step 1
4)。 4). ad1(x)=F(D(Finv(a1(x))))=ad1'×exp(ig1(x)) ………(6) このように、i番目のデフォーカス面複素振幅分布を、 ad1 (x) = F (D (Finv (a1 (x)))) = ad1 '× exp (ig1 (x)) ......... (6) Thus, the i-th defocus plane complex amplitude distribution,
i番目の像面複素振幅分布ai(x)より求めたデフォーカス面の位相分布(gi(x)=atan(Im(ai(x))/Re(ai(x))))およびデフォーカス面での振幅絶対値の測定値admを持つものとし(すなわちadi(x)=adm(x)×exp(igi(x)))、i i-th image surface complex amplitude distribution ai (x) the phase distribution of the defocus plane determined from the (gi (x) = atan (Im (ai (x)) / Re (ai (x)))) and the defocus plane amplitude absolute value of the one with the measured value adm (i.e. adi (x) = adm (x) × exp (igi (x))), i in
+1番目の像面複素振幅分布を、上で求めたi番目のデフォーカス面複素振幅分布adi(x)より求めた像面の位相分布(fi(x)=atan(Im(adi(x))/Re(adi(x))))と像面での振幅絶対値の測定値amを持つもの(すなわちai+1(x)= +1 th image surface complex amplitude distribution of the phase distribution of the image plane determined from the i-th obtained above defocused surface complex amplitude distribution adi (x) (fi (x) = atan (Im (adi (x)) / Re (adi (x)))) as having a measured value am of the amplitude absolute value of the image plane (ie ai + 1 (x) =
am×exp(ifi+1(x)))とする。 I am × and exp (ifi + 1 (x))). この過程を繰り返すことにより、複素振幅分布の変化が十分に小さくなったとすると、得られた位相分布、従って複素振幅分布は測定結果を満足するものと見做すことができる。 By repeating this process, if the change in the complex amplitude distribution is sufficiently small, the resulting phase distribution, therefore the complex amplitude distribution can be regarded as satisfying the measurement results. 計算の収束条件としては、繰り返し法による数値計算で一般的に用いられている適当な条件を利用することができる。 The convergence condition of the calculation, it is possible to utilize the appropriate conditions that are commonly used in numerical calculation by iterative methods.

【0015】収束したときの像面複素振幅分布を逆フーリエ変換することにより、瞳回折像の複素振幅分布A(X) [0015] By the inverse Fourier transform of an image plane complex amplitude distribution when converged, the complex amplitude distribution A pupil diffraction pattern (X)
が求まる。 It is obtained. 一方、瞳回折像の複素振幅分布A(X)は、瞳関数P(X)とマスクパターンのフーリエ変換T(X)の積として表わされるので、求めた瞳回折像の複素振幅分布をマスクパターンのフーリエ変換で割ることにより、瞳関数が下記式(7)から求められる。 On the other hand, the complex amplitude distribution A pupil diffraction pattern (X), since represented pupil function P (X) and as a product of the Fourier transform T of the mask pattern (X), masks the complex amplitude distribution in a pupil diffraction image obtained pattern divided by the Fourier transform, the pupil function is determined from the following equation (7). P(X)=A(X)/T(X) ………(7) この瞳関数(複素数)の位相部が波面収差に他ならない。 P (X) = A (X) / T (X) ......... (7) the phase of the pupil function (complex) is none other than the wavefront aberration.

【0016】なお、上記説明では初期位相分布は一様であると仮定したが、位相シフトマスクなどを用いた場合には、当然予測される位相分布を、像面上初期位相分布として仮定することが望ましい。 [0016] Although it was assumed that in the above description the initial phase distribution is uniform, when using a phase shift mask, of course the predicted phase distribution, assuming as an image plane on the initial phase distribution It is desirable また上記説明では、像面とデフォーカス面の間で計算を繰り返したが、一方の面が像面であることは不可欠ではなく、2つ以上の任意のデフォーカス面の間で繰り返し計算を行っても、空間像および瞳回折像の複素振幅分布、さらに投影レンズの収差を求めることができる。 In the above description, was repeated calculated between the image plane and the defocus plane is not essential that one surface is an image plane, repeatedly performing calculations between two or more arbitrary defocus plane also, it is possible to determine the aberrations of the complex amplitude distribution, further projection lens of the spatial image and the pupil diffraction image.

【0017】また、この目的で用いられるマスクパターンとしては、瞳面全面の情報を得るために瞳面全面にスペクトルを有し、かつ瞳面内で0とならないパターンが望ましい。 Further, as the mask pattern used for this purpose, it has a spectrum pupil plane entire surface in order to obtain information of the pupil plane entirely, and the pattern not at the pupil plane 0 and desirable. 従って、例えば、遮光部中に孤立した微小開口パターン(孔パターン)などであってもよい。 Thus, for example, the fine opening pattern (hole pattern) was isolated in the light shielding portion, or the like. しかし、これらの像は、像面においてパターン中心の強い明部と周囲の弱い回折パターンの間のダイナミックレンジ(強度差)が極めて大きいので、両者に対して十分な情報を得ることが難しい。 However, these images, since the image plane dynamic range (intensity difference) between the weak diffraction pattern strong bright portion and around the pattern center is very large, it is difficult to obtain sufficient information for both. そのため、この場合は、像面からややデフォーカスした位置で像をサンプリングすることが好ましい。 Therefore, in this case, it is preferable to sample the image at a position slightly defocused from the image plane. ただし、孤立した孔パターンの場合は、 However, in the case of an isolated hole pattern,
デフォーカスすると強度が極端に弱くなるため、十分な露光積算を行うとともにノイズなどに気をつける等、像取り込み時に注意が必要である。 Since the defocus strength becomes extremely weak, and the like watch like noise performs exposure sufficient integration, care must be taken during image capture. また、ジーメンスターのような、中心から放射状に広がる回折格子パターンも好ましいパターンの一つである。 Also, like Jimen star, diffraction grating pattern radiating from the center is also one of the preferred patterns.

【0018】なお、上記説明は、すべてのマスクが完全に正しく(設計通りに)作られていることを前提としている。 [0018] It should be noted that the above description, all of the mask is based on the premise that it is entirely made correctly (as designed). 実際にマスクの精度が問題となる場合には、マスクの精度をあらかじめ別の手段で測定し、得られた測定データを用いて実際の測定結果を補正することが望ましい。 If the actual accuracy of the mask is a problem, measured in advance another means the accuracy of the mask, it is desirable to correct the actual measurement result using the measurement data obtained.

【0019】上記複数の面は結像面とこの結像面の上下のデフォーカス面からなることが好ましい。 [0019] The plurality of surfaces is preferably made of defocus surfaces of the upper and lower of the image plane and image plane. 結像面は含まず、デフォーカス面のみであってもよいが、この場合は、最も結像面に近いデフォーカス面の位置は結像面から0.5λ/NA 2 (ただし、λは用いた光の波長、N Imaging surface is free, but may only defocus plane, in this case, the most position near the defocus plane the imaging plane is 0.5 [lambda / NA 2 from image plane (where, lambda use is wavelength of the stomach was light, N
Aは投影レンズの開口数を、それぞれ表す)とすることが好ましい。 A is the numerical aperture of the projection lens, it is preferable that the each represents). マスクパターンの投影像の光強度分布がそれぞれ測定される上記面の数は、多いほど測定精度が向上するが、数が多くなると操作が煩雑になる、通常は、 The number of the plane light intensity distribution of the projection image of the mask pattern is measured, respectively, is improved in many cases as the measurement accuracy, the number increases and the operation becomes complicated, usually,
上記面の数を3(結像面および結像面上下のデフォーカス面各1)とすれば実用上充分な結果が得られる。 The number of the surface 3 (the defocus surfaces of the upper and lower image plane and the image plane 1) Tosureba practically sufficient results. 隣接する上記平面の間隔はλ/NA 2 〜10λ/NA 2 (ただし、λは上記光の波長、NAは上記投影レンズの開口数を、それぞれ表わす)とすれば好ましい結果が得られる。 Spacing between adjacent said plane is λ / NA 2 ~10λ / NA 2 ( however, lambda is the wavelength of the light, NA denotes the numerical aperture of the of the projection lens, each represents) favorable results if.

【0020】上記パターンの投影像は拡大レンズによって拡大された後、光センサに入射させて光強度を測定することができ、この光センサとしてはCCDセンサが実用上便利である。 [0020] After the projected image of the pattern is enlarged by a magnifying lens, and is incident on the optical sensor can measure light intensity, the as an optical sensor CCD sensor is practically useful. この場合、上記パターンの投影像の光強度分布は、上記拡大レンズと上記CCDセンサからなる投影像モニタを上記光軸上の互いに異なる位置に移動させて、それぞれ測定される。 In this case, the light intensity distribution of a projected image of said pattern, a projection image monitor consisting of the magnifying lens and the CCD sensor is moved to different positions on the optical axis, are measured.

【0021】上記拡大レンズの上記CCDセンサ側の結像面にピンホールを設け、上記パターンの投影像を、上記ピンホールを介して上記CCDセンサに入射させることによって、解像度をさらに向上させることができる。 [0021] The pinhole provided in the image plane of the CCD sensor side of the magnifying lens, the projected image of the pattern, by incident on the CCD sensor through the pinhole, is possible to further improve the resolution it can.

【0022】また、上記本発明の投影レンズの収差測定方法によって測定された上記波面収差の値を用いることにより、上記投影レンズの収差を調整することができる。 Further, by using the value of the wavefront aberration measured by the aberration measuring method of the projection lens of the present invention, it is possible to adjust the aberration of the projection lens.

【0023】さらに、上記本発明の投影レンズの収差測定方法によって測定された上記波面収差の値を用いて、 Furthermore, by using the value of the wavefront aberration measured by the aberration measuring method of the projection lens of the present invention,
上記マスクパターンの形状を補正することができる。 It can be corrected shape of the mask pattern.

【0024】なお、上記投影レンズは、一部に反射鏡を含む光学系またはすべて反射鏡からなる反射光学系であってもよい。 [0024] Incidentally, the projection lens may be a reflective optical system comprising an optical system or any reflective mirror comprising a reflecting mirror portion.

【0025】 [0025]

【発明の実施の形態】本発明によれば、所定のパターンを有するマスクを透過した光を、収差を測定すべき投影レンズによって結像面近傍に結像し、結像面近傍の光軸に垂直な複数の面における、マスクパターンの投影像の光強度分布をそれぞれ測定し、得られた上記複数の面における投影像の光強度分布から上記位相回復の手法を用いて結像面付近もしくは投影レンズの瞳付近の複素振幅分布を求め、さらにこれらの情報から上記投影レンズの収差が計算される。 According to the embodiment of the present invention, the light transmitted through a mask having a predetermined pattern, is imaged in the vicinity of the imaging surface by the projection lens to be measured aberration, the optical axis of the imaging plane near in vertical multiple faces, each measured light intensity distribution of the projection image of the mask pattern, the resulting image plane near or projection using a technique from the light intensity distribution of the projection image of the phase recovery in the plurality of surfaces determined complex amplitude distribution in the vicinity of the pupil of the lens, the aberration of the projection lens is calculated further from these information.

【0026】上記のように、マスクパターンの投影像の光強度分布がそれぞれ測定される上記面の数は、多いほど測定精度が向上するが、数が多くなると操作が煩雑になる、通常は、上記面の数を3(結像面および結像面上下のデフォーカス面各1)とすれば実用上充分な結果が得られる。 [0026] As described above, the number of the plane light intensity distribution of the projection image of the mask pattern is measured, respectively, is improved in many cases as the measurement accuracy, the number increases and the operation becomes complicated, usually, the number of the surface 3 (the defocus surfaces of the upper and lower image plane and the image plane 1) Tosureba practically sufficient results.

【0027】投影レンズによって形成された上記パターンの投影像は、拡大レンズによって拡大された後、CC The projected image of the pattern formed by the projection lens, after being magnified by the magnifying lens, CC
Dなど光センサに入射され、この光センサからの信号はコンピュータに入力されてパターンの投影像の上記光強度分布が求められる。 Enters the optical sensor, such as D, the signal from the optical sensor is the light intensity distribution of the projection image of the pattern is input to the computer is required.

【0028】また、ホトレジスト膜を結像面およびデフォーカス面に配置して、同一のマスクパターンを介してそれぞれ露光および現像を行って、マスクパターンに対応した膜厚分布(凹凸)を有するレジストパターンを形成し、この膜厚分布から投影像の光強度分布を求めることもできる。 Further, a resist pattern having disposed a photoresist film on the imaging surface and a defocus plane, performed respectively exposed and developed through the same mask pattern, the film thickness distribution corresponding to the mask pattern (unevenness) forming a can also be obtained a light intensity distribution of the projected image from the film thickness distribution.

【0029】投影露光装置用レンズによる投影像を直接測定することは、一般に投影露光レンズの製造工程におけるレンズ調整工程で行われており、さらに、最近の投影露光装置には像特性モニタリング用に光学像モニターが内蔵されたものもある。 [0029] measuring the projected image by the projection exposure apparatus lens directly, generally it is performed in the lens adjusting step in the manufacturing process of the projection exposure lens, further, optical for image characteristic monitoring recent projection exposure apparatus some of which image monitor is built. 本発明ではこれらの既に確立された技術を利用することも可能である。 In the present invention it is also possible to use these techniques already established. これら光学像モニター方法については、例えば、エスピーアイイー・ These optical image monitoring method, for example, sp eye E.
プロシーディング、第2726巻、オプティカル・マイクロリソグラフィ、第788頁から798頁(1996 Proceedings, the 2726 volume, Optical microlithography, 798 pages from the first 788 pages (1996
年)(SPIE Proceedings Vol.2726, Optical Microlitho Year) (SPIE Proceedings Vol.2726, Optical Microlitho
graphy IX,pp.788-798,1996)などに記載されている。 graphy IX, are described in, for example, pp.788-798,1996).

【0030】なお、本発明が適用できるマスクパターンの平面形状の一例を図4に示した。 [0030] Incidentally, an example of a planar shape of the mask pattern to which the present invention is applicable are shown in FIG. このマスクパターンは正方形の光透過部24とそれを囲む遮光部25を有しているが、本発明で用いることのできるマスクパターンはこの形状に限らない。 This mask pattern has a light shielding portion 25 surrounding the light transmitting portion 24 of the square, the mask pattern that can be used in the present invention is not limited to this shape.

【0031】 [0031]

【実施例】 【Example】

〈実施例1〉本実施例は、本発明を投影レンズ製造工程におけるレンズの評価および調整に適用した例を示す。 <Example 1> This embodiment shows an example of applying the present invention to the evaluation and adjustment of the lens in the projection lens manufacturing process.
図2は本実施例に用いたレンズ評価装置の概略を模式的に示した図である。 Figure 2 is a diagram schematically showing an outline of the lens evaluation device used in this embodiment.

【0032】図2(a)に示したように、空間的にほぼコヒーレントな照明光1によってマスク2を照明し、マスク2を透過した光を投影レンズ3によって結像面4に結像させた。 [0032] As shown in FIG. 2 (a), illuminates the mask 2 by spatially substantially coherent illumination light 1, and is focused on the image plane 4 of the light transmitted through the mask 2 by the projection lens 3 . 結像面4付近のマスクパターンの投影像は拡大レンズ系5によって拡大され、CCDセンサー6上に結像される。 The projected image of the mask pattern of the imaging plane around 4 are magnified by the magnifying lens system 5 and is imaged on the CCD sensor 6. CCDセンサー6からの信号をコンピュータ7へ入力して処理し、マスクパターンの投影像の光強度分布を求めた。 Signal input to the process to the computer 7 from the CCD sensor 6 to determine the light intensity distribution of the projection image of the mask pattern.

【0033】拡大レンズ系5とCCDセンサー6からなる投影像モニター8を光軸9の方向に移動させて上記測定を行い、図2(b)に示したように、上記結像面4から若干離れたデフォーカス面10における投影像の光強度分布を測定した。 [0033] The projected image monitor 8 of the magnification lens system 5 and the CCD sensor 6 is moved in the direction of the optical axis 9 perform the above measurement, as shown in FIG. 2 (b), slightly from the image plane 4 It was measured light intensity distribution of the projection image in defocus plane 10 apart. この測定を、互いに離れた複数のデフォーカス面10においてそれぞれ行った。 The measurements were performed each in a plurality of defocus plane 10 apart from each other. また、上記投影像モニター8を露光領域内で水平方向に移動させて、露光領域内の様々な位置における投影像の光強度分布を測定した。 Moreover, the projected image monitor 8 is moved horizontally in the exposure area to measure the light intensity distribution of a projected image at various positions in the exposure area.

【0034】ほぼ合焦点位置4および4μmデフォーカスした位置10において得られた光学像分布から、先に説明したアルゴリズムを用いて、投影レンズ3の波面収差を求めた。 [0034] From the obtained optical image distribution at a position 10 which is substantially focused position 4 and 4μm defocus, by using the algorithm described above to determine the wavefront aberration of the projection lens 3. 周知の通り、投影レンズ収差は露光領域内の位置に依存するので、レンズ露光領域内の種々な位置に対する像の測定結果から、上記露光領域内の収差分布を求めた。 As is well known, projection lens aberration because it depends on the position in the exposure region, from the measurement results of the image corresponding to various positions of the lenses within the exposure region, it was determined aberration distribution of the exposure area.

【0035】次に、上記収差データをフィードバックし、上記収差データにもとづいて上記投影レンズの各レンズ要素の位置を調整した後、再度収差測定を行ったところ、収差量が大幅に改善された。 Next, feeding back the aberration data, after adjusting the position of each lens element of the projection lens on the basis of the aberration data, was subjected to aberration measurement again, the aberration amount is greatly improved. また、この方法を用いることにより、レンズ調整に要する時間は従来の約3 Further, by using this method, the time required for the lens adjustment about 3 conventional
0%に短縮され、良品率を約40%向上させることができた。 Is reduced to 0%, it was possible to improve the yield rate of about 40%. さらに、このようにして調整された投影レンズを露光装置に搭載することにより、露光領域内における回路パターンの寸法均一性は設計寸法±17%から設計寸法±8%へ向上した。 Furthermore, by mounting the thus adjusted projection lens in the exposure apparatus, the dimensional uniformity of the circuit pattern in the exposure area is improved to design dimension ± 8% from the designed size ± 17%.

【0036】なお、拡大レンズ5のCCDセンサー6側結像面に微小ピンホールを設け、この微小ピンホールを介して像をCCDセンサー6に入射させるようにすれば、共焦点顕微鏡効果によって、投影像モニターの解像度はさらに向上する。 It should be noted, a small pinhole is provided to the CCD sensor 6 side image plane of the magnifying lens 5, if through the minute pinholes so as to be incident image on the CCD sensor 6, by confocal microscopy effect, projection image resolution monitor is further improved.

【0037】また、マスク2の代わりに、マスク面に単一モードレーザーを結像させ、得られたレーザースポットの投影レンズ3による像を、上記マスク2を用いた場合と同様に処理してもよい。 Further, instead of the mask 2, to image the single-mode laser mask surface, the image formed by the projection lens 3 of the resulting laser spot, be treated as in the case of using the mask 2 good. このようにすることにより、マスクが不完全であるかもしれないという恐れを避けることができる。 In this way, it is possible to avoid a fear that the mask might be incomplete. ただし、上記レーザーの波長は、上記投影レンズに使用が想定される光の波長とレンズ所定の許容範囲内で一致させる必要がある。 However, the wavelength of the laser is used in the projection lens must be matched with the wavelength and the lens a predetermined tolerance of the light is assumed.

【0038】〈実施例2〉次に、実際の露光装置を用いた回路パターン形成工程に本発明を適用した例を図3を用いて説明する。 [0038] <Example 2> will now be described with reference to FIG. 3 an example of applying the present invention to a circuit pattern forming process using the actual exposure apparatus. まず、図3(a)に示したように、S First, as shown in FIG. 3 (a), S
i基板21の表面上にレジスト(FH−EX1U;富士ハント社製品名)を塗布してレジスト膜22を形成し、 Surface on the resist of the i substrate 21 (FH-EX1U; Fuji Hunt Co. product name) was coated to form a resist film 22,
KrFエキシマレーザ投影露光装置を用いてマスクパターンを上記レジスト膜上に投影露光した。 A mask pattern using a KrF excimer laser projection exposure apparatus and the projection exposure onto the resist film. この際、露光装置の照明条件を空間的にほぼコヒーレントとなるように変更した。 In this case, change the lighting conditions of the exposure apparatus so as to be spatially substantially coherent. 同一マスクパターンに対して、合焦点位置(結像面)および±3μmデフォーカス位置にそれぞれ露光を行い、所定の現像液で現像して各フォーカス位置におけるレジストパターン22を形成した。 For the same mask pattern, focus position (image plane) and performs each exposure to ± 3 [mu] m defocus position, to form a resist pattern 22 at each focus position was developed with a predetermined developer. なお、本実施例で用いた上記レジストは、上記レーザ光の波長に対する吸収が相当大きく、いわゆるレジストコントラストが低いため、現像後のレジストパターン断面形状は光強度分布を忠実に反映した形状が得られた。 Incidentally, the resist used in this embodiment, large absorption for the wavelength of the laser beam corresponds, for a so-called resist contrast is low, cross-sectional shape of the resist pattern after development shape faithfully reflecting the light intensity distribution is obtained It was.

【0039】次に走査型原子間力顕微鏡(AFM)を用いて、微小AFMチップ23を上記レジストパターン2 [0039] Next, using a scanning atomic force microscope (AFM), the resist pattern 2 minute AFM tip 23
2の表面を走査させ、上記マスクパターンに対応したレジストパターン22の表面の凹凸を、各焦点位置における露光毎に測定して、図3(b)に示す凹凸データ(マスクパターンに対応したレジストパターン22の膜厚分布)を得た。 By scanning the second surface, the irregularities on the surface of the resist pattern 22 corresponding to the mask pattern, as measured for each of the exposure at each focal position, a resist pattern corresponding to the unevenness data (mask pattern shown in FIG. 3 (b) thickness of 22 distribution) was obtained.

【0040】この凹凸データをコンピュータヘ入力し、 [0040] The uneven data to computer F input,
エスピーアイイー・プロシーディング・第2726巻、 Sp Ai e-Proceedings No. 2726, pp.
オプティカル・マイクロリソグラフィ、第410頁から416頁 (1996年)(SPIE Proceedings Vol.272 Optical microlithography, 416 pp # 410 (1996) (SPIE Proceedings Vol.272
6, Optical Microlithography IX,pp.410-416,1996)に示されている方法を用いて、図3(c)に示した各焦点位置における投影像光強度分布を求めた。 6, Optical Microlithography IX, pp.410-416,1996) in using the method shown, to determine the projected image light intensity distribution at each focal position shown in Figure 3 (c).

【0041】さらに、実施例1と同様の方法(上記アルゴリズム)を用いて、上記各焦点位置における投影像光強度分布(図3(c))から、投影露光装置に用いられている投影レンズの波面収差を求めた。 [0041] Furthermore, using the same method as that in Example 1 (above algorithm), the projected image light intensity distribution at each focal position from (FIG. 3 (c)), the projection lens used in the projection exposure apparatus I asked the wavefront aberration. この操作を、上記投影レンズの露光領域内の互いに異なる多くの位置で行い、露光領域内の波面収差分布を求めた。 This operation, carried out at different number of positions in the exposure area of ​​the projection lens to determine the wavefront aberration distribution in the exposure area.

【0042】次に、マスクパターンに対して光学的近接効果の補正を行い、上記波面収差によって生じたパターン変形を相殺した。 [0042] Next, the correction of optical proximity to the mask pattern, offset the pattern deformation caused by the wavefront aberration. 具体的には、光学的近接効果プログラム内の光学像計算部において、測定した波面収差を仮定して最適マスク形状を求めた。 Specifically, in the optical image calculation portion in the optical proximity program to determine the optimum mask shape by assuming the measured wavefront aberration. 波面収差は露光領域内で分布を有するので、上記補正はマスク内の位置に応じて行った。 Since wavefront aberration has a distribution in the exposure region, the correction was conducted in accordance with the position of the mask. 補正したマスクを用いて露光を行った結果、 As a result of the exposure by using the corrected mask,
露光領域の全域でレジストパターン寸法均一性は設計寸法±17%から設計寸法±9%に向上した。 Resist pattern dimension uniformity across the exposed region was improved in design dimension ± 9% from the design dimensions ± 17%.

【0043】〈実施例3〉本発明を用いて半導体生産ラインで使用されている投影露光装置の収差状態をモニタリングした例を示す。 [0043] shows an example of monitoring the aberration condition of the projection exposure apparatus used in the semiconductor production line using <Example 3> present invention. CCDセンサーアレイのセンサー面を遮光膜で覆いその各ピクセル中心に露光波長より小さな微小ピンホールを設けた専用光学像検出装置を作製した。 To prepare a dedicated optical image detecting device provided with a small micro-pinholes than the exposure wavelength on the respective pixel centers to cover the sensor surface of the CCD sensor array by the light-shielding film. これを投影露光装置のウエハーステージ上に設置し、専用マスクと位置合わせした後、ウエハーステージを水平方向にスキャンしながらCCDセンサーの出力をモニターすることにより、マスクパターンの光強度分布を測定できるようにした。 This was placed on a wafer stage of the projection exposure apparatus, after aligning a dedicated mask, by monitoring the output of the CCD sensor while scanning the wafer stage in the horizontal direction, so that it can measure the light intensity distribution of the mask pattern It was. 異なるデフォーカス位置、露光位置に対する測定結果より、上記実施例1、2と同様にして投影光学系の収差分布を求めた。 Different defocus position, from the measurement results with respect to the exposure position, to determine the aberration distribution of the projection optical system in the same manner as in Example 1 and 2.

【0044】本実施例では、露光領域内の多くの位置に像モニタリング用パターンを有する専用のマスク、およびこれに対応した位置にセンサーを有する専用光学像検出装置を用いることにより高速で収差解析を行うことができた。 [0044] In the present embodiment, a dedicated with many image monitoring pattern to the position of the exposure area masks, and aberration analysis at a high speed by using a dedicated optical image detection device including a sensor at a position corresponding thereto It could be carried out.

【0045】このような測定を定期的に行って収差の経時的変化を調べ、収差量が所定の許容範囲を超えた場合は、投影光学系のレンズ要素の位置調整を行って収差を低減した。 [0045] examined the temporal change in aberrations by performing such measurements periodically, if the aberration amount exceeds the predetermined allowable range, with reduced aberrations by performing the position adjustment of the lens element of the projection optical system . これにより、露光装置の結像性能を常に好ましい状態に保ち、半導体集積回路の品質を一定に保つことができた。 Thus, maintaining the imaging performance of the exposure apparatus always preferred conditions, it was possible to maintain the quality of the semiconductor integrated circuit constant. なお、上記専用光学像検出装置を、CCD Note that the dedicated optical image detector, CCD
センサーを作製したSiウエハーで構成することにより、異なる露光装置上で用いることもできる。 By constituting in Si wafers to produce a sensor, it can also be used on a different exposure device.

【0046】なお、上記実施例における光強度分布測定方法としては、各実施例でそれぞれ用いられた方法に限定されるものではなく、他の方法を用いることができる。 [0046] Incidentally, as the light intensity distribution measuring method in the above embodiment is not limited to the method used by the respective embodiments, it is possible to use other methods.

【0047】 [0047]

【発明の効果】上記説明から明らかなように、本発明による投影レンズの収差測定方法は、投影レンズの異なる複数の焦点位置におけるマスクパターン投影像の光学像強度分布から、位相回復の手法を用いて投影レンズの収差を求め、この情報を用いて上記投影レンズ又はマスクパターン形状を調整することにより、上記投影レンズまたはマスクパターンを用いて形成されるパターンの精度、均一性を大幅に向上することができる。 As apparent from the above description, according to the present invention, the aberration measuring method of the projection lens according to the present invention, the optical image intensity distribution of the mask pattern projected image at a plurality of focal positions of different projection lenses, using the method of phase retrieval obtains the aberration of the projection lens Te, by adjusting the projection lens or the mask pattern by using this information, it is significantly improved precision of the pattern formed by using the projection lens or a mask pattern, the uniformity can.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の構成を説明するための流れ図。 Figure 1 is a flow diagram for explaining the structure of the present invention.

【図2】本発明の第1の実施例を説明するための図。 Diagram for explaining the first embodiment of the present invention; FIG.

【図3】本発明の第2の実施例を説明するための図。 Diagram for explaining the second embodiment of the present invention; FIG.

【図4】本発明を適用できるパターンの平面形状の一例を示す図。 It illustrates an example of a planar shape of the pattern [Figure 4] the present invention can be applied.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…照明光、2…マスク2、3…投影レンズ、4…結像面、5…拡大レンズ系、6…CCDセンサー、7…コンピュータ、8…投影像モニター、9…光軸、10…デフォーカス面、21…Si基板、22…レジスト膜、23 1 ... illumination light, 2 ... mask 2,3 ... projection lens, 4 ... imaging surface, 5 ... enlargement lens system, 6 ... CCD sensor, 7 ... computer, 8 ... projection image monitor, 9 ... optical axis, 10 ... de focus plane, 21 ... Si substrate, 22 ... resist film, 23
…AFMチップ、24…光透過部、25…遮光部。 ... AFM tip, 24 ... light transmission portion, 25 ... light shielding portion.

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】所定のパターンを有するマスクを光で照明して、上記パターンを投影レンズによって上記マスクの結像面近傍に結像させ、光軸に垂直で上記結像面近傍の複数の平面における上記パターンの投影像の光強度分布をそれぞれ測定し、上記複数の平面における投影像光強度分布から、位相回復法によって上記結像面付近もしくは上記投影レンズの瞳付近の光学像複素振幅分布を求め、当該光学像複素振幅分布から上記投影レンズの波面収差を求めることを特徴とする投影レンズの収差測定方法。 1. A illuminates with light a mask having a predetermined pattern, the pattern by the projection lens is imaged on the imaging plane near the mask, a plurality of planes of the imaging plane near perpendicular to the optical axis the light intensity distribution of a projected image of the pattern were measured, respectively, in, the projection image light intensity distribution in the plurality of planes, the phase retrieval method an optical image complex amplitude distribution in the vicinity of the pupil of the imaging plane near or above the projection lens determined, the aberration measuring method of the projection lens and obtaining the wavefront aberration of the projection lens from the optical image complex amplitude distribution.
  2. 【請求項2】上記平面は上記投影レンズの結像面とデフォーカス面若しくは上記投影レンズの複数のデフォーカス面からなることを特徴とする請求項1に記載の投影レンズの収差測定方法。 Wherein said plane aberration measuring method of the projection lens according to claim 1, characterized in that it consists of a plurality of defocus plane of the imaging plane and the defocus plane or the projection lens of the projection lens.
  3. 【請求項3】隣接する上記平面の間隔はλ/NA 2 〜1 Wherein distance between adjacent said plane is lambda / NA 2 to 1
    0λ/NA 2 (ただし、λは上記光の波長、NAは上記投影レンズの開口数を、それぞれ表わす)であることを特徴とする請求項1若しくは2に記載の投影レンズの収差測定方法。 0λ / NA 2 (however, lambda is the wavelength of the light, NA denotes the numerical aperture of the of the projection lens, each represents) aberration measuring method of the projection lens according to claim 1 or 2, characterized in that a.
  4. 【請求項4】上記パターンの投影像は拡大レンズによって拡大された後、光センサに入射されることを特徴とする請求項1から3のいずれか一に記載の投影レンズの収差測定方法。 4. After the projected image of the pattern is enlarged by a magnifying lens, the aberration measuring method of the projection lens as claimed in any one of 3, characterized in that is incident on the light sensor.
  5. 【請求項5】上記光センサはCCDセンサであり、上記パターンの投影像の光強度分布は、上記拡大レンズと上記CCDセンサからなる投影像モニタを上記光軸上の互いに異なる位置に移動させて、それぞれ測定されることを特徴とする請求項4に記載の投影レンズの収差測定方法。 Wherein said optical sensor is a CCD sensor, the light intensity distribution of the projected image of the pattern is the projected image monitor consisting of the magnifying lens and the CCD sensor is moved to different positions on the optical axis the aberration measuring method of the projection lens according to claim 4, characterized in that respectively measured.
  6. 【請求項6】請求項1から請求項5のいずれか一に記載の投影レンズの収差測定方法によって測定された上記波面収差の値を用いて、上記投影レンズの収差を調整することを特徴とする投影レンズの収差調整方法。 6. Using the values ​​of the measured the wavefront aberration by the aberration measuring method of the projection lens as claimed in any one of claims 5, and wherein adjusting the aberration of the projection lens aberration adjustment method of the projection lens to be.
  7. 【請求項7】請求項1から請求項5のいずれか一に記載の投影レンズの収差測定方法によって測定された上記波面収差の値を用いて、上記マスクパターンの形状を補正することを特徴とするマスクパターンの形状の補正方法。 7. Using the values ​​of the measured the wavefront aberration by the aberration measuring method of the projection lens as claimed in any one of claims 5, and characterized in that to correct the shape of the mask pattern correction the shape of the mask pattern.
JP8504297A 1997-04-03 1997-04-03 Aberration measuring method of the projection lens Expired - Fee Related JP3634550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8504297A JP3634550B2 (en) 1997-04-03 1997-04-03 Aberration measuring method of the projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8504297A JP3634550B2 (en) 1997-04-03 1997-04-03 Aberration measuring method of the projection lens

Publications (2)

Publication Number Publication Date
JPH10284368A true true JPH10284368A (en) 1998-10-23
JP3634550B2 JP3634550B2 (en) 2005-03-30

Family

ID=13847638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8504297A Expired - Fee Related JP3634550B2 (en) 1997-04-03 1997-04-03 Aberration measuring method of the projection lens

Country Status (1)

Country Link
JP (1) JP3634550B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063570A2 (en) * 1999-06-25 2000-12-27 Svg Lithography Systems, Inc. In situ projection optic metrology method and apparatus
JP2001108530A (en) * 1999-10-08 2001-04-20 Japan Atom Energy Res Inst Measuring method for wave front of laser light
US6278514B1 (en) 1998-12-28 2001-08-21 Canon Kabushiki Kaisha Exposure apparatus
WO2002031570A1 (en) * 2000-10-10 2002-04-18 Nikon Corporation Method of evaluating imaging performance
WO2003001165A1 (en) * 2001-06-26 2003-01-03 Iatia Imaging Pty Ltd Processing of phase data to select phase visualisation image
US6693704B1 (en) 2000-09-26 2004-02-17 Nikon Corporation Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method
US6743554B2 (en) 2001-11-22 2004-06-01 Renesas Technology Corp. Photomask for aberration measurement, aberration measurement method unit for aberration measurement and manufacturing method for device
US6833906B1 (en) * 1999-05-28 2004-12-21 Canon Kabushiki Kaisha Projection exposure apparatus, and device manufacturing method using the same
EP1544677A1 (en) * 2003-12-19 2005-06-22 ASML Holding N.V. Grating patch arrangement, lithographic apparatus, method of testing, device manufacturing method, and device manufactured thereby
US7102728B2 (en) 2002-02-27 2006-09-05 Nikon Corporation Imaging optical system evaluation method, imaging optical system adjustment method, exposure apparatus and exposure method
JP2009047469A (en) * 2007-08-15 2009-03-05 Toppan Printing Co Ltd Method and device for inspecting color filter using diffracted image
US7936860B2 (en) 2006-12-28 2011-05-03 Jtec Corporation X-ray condensing method and its device using phase restoration method
US9494483B2 (en) 2012-03-23 2016-11-15 Carl Zeiss Smt Gmbh Measuring system for measuring an imaging quality of an EUV lens
DE112005000963B4 (en) * 2004-04-28 2017-08-17 Globalfoundries Inc. A method of fabricating an integrated circuit photolithographic

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278514B1 (en) 1998-12-28 2001-08-21 Canon Kabushiki Kaisha Exposure apparatus
US6833906B1 (en) * 1999-05-28 2004-12-21 Canon Kabushiki Kaisha Projection exposure apparatus, and device manufacturing method using the same
EP1063570A3 (en) * 1999-06-25 2004-05-19 Svg Lithography Systems, Inc. In situ projection optic metrology method and apparatus
EP1063570A2 (en) * 1999-06-25 2000-12-27 Svg Lithography Systems, Inc. In situ projection optic metrology method and apparatus
KR100808621B1 (en) 1999-06-25 2008-02-29 에이에스엠엘 유에스, 인크. Apparatus and Method for in situ Measuring a Wavefront of an Optical System
JP2001108530A (en) * 1999-10-08 2001-04-20 Japan Atom Energy Res Inst Measuring method for wave front of laser light
JP4729733B2 (en) * 1999-10-08 2011-07-20 独立行政法人 日本原子力研究開発機構 Measurement of the wavefront of the laser beam
US6693704B1 (en) 2000-09-26 2004-02-17 Nikon Corporation Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method
KR100877022B1 (en) 2000-10-10 2009-01-07 가부시키가이샤 니콘 Method of evaluating imaging performance
WO2002031570A1 (en) * 2000-10-10 2002-04-18 Nikon Corporation Method of evaluating imaging performance
US6870668B2 (en) 2000-10-10 2005-03-22 Nikon Corporation Method for evaluating image formation performance
KR100870585B1 (en) 2000-10-10 2008-11-25 가부시키가이샤 니콘 Method of evaluating imaging performance
KR100857931B1 (en) 2000-10-10 2008-09-09 가부시키가이샤 니콘 Method of evaluating imaging performance
US7061671B2 (en) 2000-10-10 2006-06-13 Nikon Corporation Method for evaluating image formation performance
WO2003001165A1 (en) * 2001-06-26 2003-01-03 Iatia Imaging Pty Ltd Processing of phase data to select phase visualisation image
US6743554B2 (en) 2001-11-22 2004-06-01 Renesas Technology Corp. Photomask for aberration measurement, aberration measurement method unit for aberration measurement and manufacturing method for device
US7102728B2 (en) 2002-02-27 2006-09-05 Nikon Corporation Imaging optical system evaluation method, imaging optical system adjustment method, exposure apparatus and exposure method
EP1544677A1 (en) * 2003-12-19 2005-06-22 ASML Holding N.V. Grating patch arrangement, lithographic apparatus, method of testing, device manufacturing method, and device manufactured thereby
US7113255B2 (en) 2003-12-19 2006-09-26 Asml Holding N.V. Grating patch arrangement, lithographic apparatus, method of testing, device manufacturing method, and device manufactured thereby
DE112005000963B4 (en) * 2004-04-28 2017-08-17 Globalfoundries Inc. A method of fabricating an integrated circuit photolithographic
US7936860B2 (en) 2006-12-28 2011-05-03 Jtec Corporation X-ray condensing method and its device using phase restoration method
JP2009047469A (en) * 2007-08-15 2009-03-05 Toppan Printing Co Ltd Method and device for inspecting color filter using diffracted image
US9494483B2 (en) 2012-03-23 2016-11-15 Carl Zeiss Smt Gmbh Measuring system for measuring an imaging quality of an EUV lens

Also Published As

Publication number Publication date Type
JP3634550B2 (en) 2005-03-30 grant

Similar Documents

Publication Publication Date Title
US6094305A (en) Exposure method and apparatus therefor
US6368763B2 (en) Method of detecting aberrations of an optical imaging system
US7217503B2 (en) Exposure method and apparatus
US5136413A (en) Imaging and illumination system with aspherization and aberration correction by phase steps
US20020021434A1 (en) Evaluation mask, focus measuring method and aberration measuring method
US6842237B2 (en) Phase shifted test pattern for monitoring focus and aberrations in optical projection systems
US20020186879A1 (en) Alternating phase-shift mask inspection method and apparatus
US6248486B1 (en) Method of detecting aberrations of an optical imaging system
EP0678768A2 (en) Projection exposure apparatus and microdevice manufacturing method
US5331369A (en) Method of forming patterns and apparatus for carrying out the same
US6636311B1 (en) Alignment method and exposure apparatus using the same
US7075651B2 (en) Image forming characteristics measuring method, image forming characteristics adjusting method, exposure method and apparatus, program and storage medium, and device manufacturing method
US6633362B2 (en) Projection exposure apparatus
US20070046921A1 (en) Exposure apparatus and method
US6278514B1 (en) Exposure apparatus
US20020155356A1 (en) Mask for measuring optical aberration and method of measuring optical aberration
US20050190378A1 (en) Exposure apparatus mounted with measuring apparatus
US6982786B2 (en) Reticle and optical characteristic measuring method
US6614535B1 (en) Exposure apparatus with interferometer
EP1577709A2 (en) Illumination apparatus exposure apparatus and device manufacturing method
JPH0684757A (en) Projection aligner
JPH11304653A (en) Method for measuring image-forming characteristic of projection optical system and projection aligner
JPH05160002A (en) Exposing method and device, exposing system and mask circuit pattern inspection system
JP2002015997A (en) Operation method of lithographic projection system
JP2002289494A (en) Measuring method and projection aligner using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees