JP2015078099A - Glass outflow device, glass outflow method, method of manufacturing preform for press molding, and method of manufacturing optical element - Google Patents

Glass outflow device, glass outflow method, method of manufacturing preform for press molding, and method of manufacturing optical element Download PDF

Info

Publication number
JP2015078099A
JP2015078099A JP2013217103A JP2013217103A JP2015078099A JP 2015078099 A JP2015078099 A JP 2015078099A JP 2013217103 A JP2013217103 A JP 2013217103A JP 2013217103 A JP2013217103 A JP 2013217103A JP 2015078099 A JP2015078099 A JP 2015078099A
Authority
JP
Japan
Prior art keywords
glass
molten glass
pipe
diameter portion
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013217103A
Other languages
Japanese (ja)
Other versions
JP2015078099A5 (en
Inventor
敦司 上▲崎▼
Atsushi Kamisaki
敦司 上▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013217103A priority Critical patent/JP2015078099A/en
Priority to CN201410548777.1A priority patent/CN104556635A/en
Publication of JP2015078099A publication Critical patent/JP2015078099A/en
Publication of JP2015078099A5 publication Critical patent/JP2015078099A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing

Abstract

PROBLEM TO BE SOLVED: To provide a glass outflow device including a diameter enlarged portion at a lower end of a pipe, capable of suppressing occurrence of a single flow of molten glass.SOLUTION: A glass outflow device 1 includes a pipe which flows out molten glass. The pipe includes a constant diameter portion 6 of which the inner diameter constantly extends in a vertical direction and a diameter enlarged portion 8 having a shape in which the inner diameter continuously extends and enlarges toward a lower end, both of which are formed in a glass flow passage 2 in which the molten glass flows. A diameter reduced portion 10 of which the inner diameter reduces toward an upper end is formed on the inner surface of the lower end edge of the diameter enlarged portion 8.

Description

本発明は、ガラス流出装置、ガラス流出方法、プレス成形用プリフォームの製造方法、及び、光学素子の製造方法に関し、特に、プリフォーム等のガラス成形品を製造するためのガラス流出装置、及び、ガラス流出方法、このガラス流出装置及び方法を用いたプレス成形用プリフォームの製造方法、並びに、この製造方法により製造されたプリフォームを用いた光学素子の製造方法に関する。   The present invention relates to a glass outflow device, a glass outflow method, a press molding preform manufacturing method, and an optical element manufacturing method, and in particular, a glass outflow device for manufacturing a glass molded product such as a preform, and The present invention relates to a glass outflow method, a method for manufacturing a press-molding preform using the glass outflow apparatus and method, and a method for manufacturing an optical element using the preform manufactured by the manufacturing method.

従来より、熔融ガラスを流出パイプから流出し、所定量の熔融ガラス塊を成形型上に供給して、プレス成型用のプリフォームを成形する方法が知られている。成形型上に供給した熔融ガラス塊を成形、冷却することにより、プリフォームを作製することができる。   2. Description of the Related Art Conventionally, a method is known in which molten glass is flowed out from an outflow pipe, a predetermined amount of molten glass lump is supplied onto a mold, and a preform for press molding is formed. A preform can be produced by molding and cooling the molten glass lump supplied on the mold.

このような流出パイプとして、例えば、特許文献1(特に、図3)には、熔融ガラスの滴下重量を増加させ、大型のプリフォームを製造するために、パイプ先端部に内径が広がる拡径部が形成された流出パイプが開示されている。   As such an outflow pipe, for example, in Patent Document 1 (particularly, FIG. 3), in order to increase the dripping weight of the molten glass and produce a large preform, a diameter-expanded portion whose inner diameter expands at the tip of the pipe. An outflow pipe formed of is disclosed.

また、例えば、特許文献2には、パイプからの熔融ガラスの滴下を遅延させるために、ガラス流出口に向かって内径が拡大するような拡径部を形成した熔融ガラスの流出パイプが開示されている。さらに、特許文献2には、熔融ガラスが流出パイプ先端から自然に滴下する重量よりも重量の大きいプリフォームを得るため、流出する熔融ガラスの先端を成形型により支持し、成形型に所望の量の熔融ガラスが溜まったときに成形型を急降下させて、流出パイプから流出する熔融ガラスと成形型上に溜めた熔融ガラスとを分離し、所望量の熔融ガラス塊を得る方法(以下、降下切断法という)が開示されている。   Further, for example, Patent Document 2 discloses a molten glass outflow pipe in which an enlarged diameter portion is formed such that the inner diameter increases toward the glass outlet in order to delay the dropping of the molten glass from the pipe. Yes. Furthermore, in Patent Document 2, in order to obtain a preform whose weight is larger than the weight by which the molten glass naturally drops from the tip of the outflow pipe, the tip of the molten glass that flows out is supported by a mold, and a desired amount is provided in the mold. When the molten glass is accumulated, the mold is suddenly lowered to separate the molten glass flowing out from the outflow pipe and the molten glass accumulated on the mold, thereby obtaining a desired amount of molten glass lump (hereinafter referred to as drop cutting). Law).

通常、プリフォームの成形では、複数の成形型を用い、これら成形型を順次、流出パイプの下方に移動、停留させて熔融ガラス塊を受け、熔融ガラス塊を受けた成形型を停留位置から搬出するとともに、次の成形型を流出パイプの下方に移動、停留させて、熔融ガラス塊を供給する。降下切断法によれば、自然滴下する熔融ガラス塊よりも重量の大きい熔融ガラス塊を得ることができる。さらに大型のプリフォームを成形するためには、単位時間当たりの熔融ガラス流出量(以下、引き上げ量という)を増やなければならなくなる。引き上げ量を増やすと、熔融ガラスが滴下せずに流出パイプ先端に留まる時間が短くなる。その結果、次の成形型が流出パイプの下方に移動する前に熔融ガラスの滴下が起こり、安定してプリフォームを生産することができなくなる。   In general, preform molding uses multiple molds, and these molds are sequentially moved below the outflow pipe and stopped to receive the molten glass lump, and the mold receiving the molten glass lump is taken out from the stop position. At the same time, the next mold is moved and stopped below the outflow pipe to supply a molten glass lump. According to the descending cutting method, it is possible to obtain a molten glass lump having a weight larger than that of the molten glass lump that is naturally dropped. In order to form a larger preform, it is necessary to increase the amount of molten glass flowing out per unit time (hereinafter referred to as the pulling amount). When the pulling amount is increased, the time during which the molten glass stays at the tip of the outflow pipe without dropping is shortened. As a result, the molten glass is dripped before the next mold moves below the outflow pipe, and the preform cannot be produced stably.

特許文献1、2に記載されているような流出パイプによれば、引き上げ量を増やしても、熔融ガラスが自然滴下せずにパイプ先端に留まる時間を長くすることができる。
このような理由により、特許文献1、2に記載されている方法は、大型のプリフォームを安定して製造する上で有効である。
According to the outflow pipe as described in Patent Documents 1 and 2, even if the pulling amount is increased, the time during which the molten glass stays at the tip of the pipe without spontaneous dripping can be increased.
For these reasons, the methods described in Patent Documents 1 and 2 are effective in stably producing a large preform.

特開平8−188419号公報JP-A-8-188419 特開平10−36123号公報JP-A-10-36123

ここで、より大型のプリフォームを製造するためには、さらに引き上げ量を増やすとともに、流出パイプのガラス流出口の口径を大きくして、熔融ガラスが自然滴下せずに流出パイプ先端に留まる時間を長くする必要がある。しかしながら、パイプ下端の口径をさらに大きくしていくと、図6に示すように、熔融ガラス220が拡径部208の内周面の一部から離間してしまい、反対側の周面(図6の左側)に偏在してしまう。なお、このような現象を本明細書では「片流れ」という。   Here, in order to manufacture a larger preform, while further increasing the amount of pull-up, increasing the diameter of the glass outlet of the spill pipe, the time for the molten glass to stay at the tip of the spill pipe without spontaneous dripping It needs to be long. However, when the diameter of the lower end of the pipe is further increased, as shown in FIG. 6, the molten glass 220 is separated from a part of the inner peripheral surface of the enlarged diameter portion 208, and the opposite peripheral surface (FIG. 6). Left side). Such a phenomenon is referred to as “single flow” in this specification.

このように片流れが発生した後、再び、熔融ガラス220が拡径部208の全内周面と接触した状態で流れる状態に戻ることもある。しかしながら、片流れが発生してしまうと、熔融ガラス220内が気体を巻き込み、プリフォームに気泡が混入してしまったり、脈理が発生したりするため、プリフォームの品質が低下してしまうという問題がある。   After the single flow is generated in this way, the molten glass 220 may return to the state of flowing again in contact with the entire inner peripheral surface of the enlarged diameter portion 208. However, if a single flow occurs, the inside of the molten glass 220 entrains gas, bubbles are mixed into the preform, or striae occur, resulting in a deterioration in the quality of the preform. There is.

本発明は、上記の問題に鑑みなされたものであり、その目的は、熔融ガラスの片流れの発生を抑止可能なパイプ下端に拡径部を有するガラス流出装置、及びガラス流出方法を適用すること、並びに、前記流出方法により熔融ガラスを流出してプレス成形用プリフォームを成形するプレス成形用プリフォームの製造方法、及び、この成形用プリフォームの製造方法により製造されたプリフォームを用いた光学素子の製造方法を提供することである。   The present invention has been made in view of the above problems, and its purpose is to apply a glass outflow device having an enlarged diameter portion at the lower end of a pipe capable of suppressing the occurrence of a single flow of molten glass, and a glass outflow method. And a method for manufacturing a press-molding preform for forming a press-molding preform by flowing out the molten glass by the outflow method, and an optical element using the preform manufactured by the method for manufacturing the molding preform. It is to provide a manufacturing method.

本発明のガラス流出装置は、熔融ガラスが流れる流路に、上下方向に延びる内径が一定の一定径部と、一定径部に連続して下端に向かって内径が拡がる形状を有する拡径部と、が形成されたパイプから熔融ガラスを流出するガラス流出装置であって、拡径部の下端縁の内面に、先端に向かって内径が縮小する縮径部が形成されている。   The glass outflow device of the present invention includes a constant diameter portion having a constant inner diameter extending in the vertical direction in a flow path through which the molten glass flows, and an enlarged diameter portion having a shape in which the inner diameter expands continuously toward the lower end. Is a glass outflow device for outflowing molten glass from a pipe in which is formed, and a reduced diameter portion whose inner diameter decreases toward the tip is formed on the inner surface of the lower end edge of the enlarged diameter portion.

また、本発明のガラス流出方法は、熔融ガラスが流れる流路に、上下方向に延びる内径が一定の一定径部と、一定径部に連続して下端に向かって内径が拡がる形状を有する拡径部と、が形成されたパイプから熔融ガラスを流出するガラス流出方法であって、パイプの下端縁の内面に、先端に向かって内径が縮小する縮径部を形成しておく。   Further, the glass outflow method of the present invention has a constant diameter portion having a constant inner diameter extending in the vertical direction in the flow path through which the molten glass flows, and an enlarged diameter having a shape in which the inner diameter expands continuously toward the lower end. And a reduced diameter portion whose inner diameter is reduced toward the tip, on the inner surface of the lower end edge of the pipe.

熔融ガラスは表面張力により細くなる傾向があるが、本発明によれば、拡径部の下端縁に縮径部が形成されているため、拡径部の下端部においても熔融ガラスがパイプ内周面に接触した状態が保たれ、熔融ガラスの片流れの発生を抑止することができる。   Although molten glass has a tendency to become thin due to surface tension, according to the present invention, since the reduced diameter portion is formed at the lower end edge of the enlarged diameter portion, the molten glass is also in the pipe inner periphery at the lower end portion of the enlarged diameter portion. The state which contacted the surface is maintained and generation | occurrence | production of the single flow of molten glass can be suppressed.

本発明のガラス流出装置及びガラス流出方法によれば、熔融ガラスの片流れの発生を抑止することができる。また、本発明のプレス成形用プリフォームの製造方法によれば、均質性の高いプリフォームを製造することができる。また、本発明の光学素子の製造方法によれば、熔融ガラスからプリフォームを経て、高品質な光学素子を安定して製造することができる。   According to the glass outflow apparatus and the glass outflow method of the present invention, it is possible to suppress the occurrence of a single flow of molten glass. Moreover, according to the method for manufacturing a press-molding preform of the present invention, a highly homogeneous preform can be manufactured. Moreover, according to the manufacturing method of the optical element of this invention, a high quality optical element can be manufactured stably through a preform from molten glass.

本実施形態のガラス流出装置を示す鉛直断面図である。It is a vertical sectional view showing the glass outflow device of this embodiment. 本実施形態のガラス流出装置の拡径部および縮径部付近を拡大して示す鉛直断面図である。It is a vertical sectional view which expands and shows the diameter expansion part and diameter reduction part vicinity of the glass outflow device of this embodiment. 縮径部を備えていないガラス流出装置の拡径部の下端部の形状を示す鉛直断面図であり、熔融ガラスを流出している状態を示す。It is a vertical sectional view which shows the shape of the lower end part of the diameter-expansion part of the glass outflow apparatus which is not provided with the diameter reduction part, and shows the state which is flowing out the molten glass. 本実施形態のガラス流出装置において、熔融ガラスを流出している状態における拡径部の下端部を拡大して示す鉛直断面図である。In the glass outflow apparatus of this embodiment, it is a vertical sectional view which expands and shows the lower end part of the enlarged diameter part in the state which is flowing out out of the molten glass. 流出パイプより流出する熔融ガラスを、流出パイプの下方に停留する成形型の上面に設けた凹部に供給する際の、流出パイプ、熔融ガラスならびに成形型の鉛直断面図である。It is a vertical sectional view of an outflow pipe, molten glass, and a forming die when supplying molten glass flowing out from an outflow pipe to a recess provided on an upper surface of a forming die that is retained below the outflow pipe. 熔融ガラスの片流れを説明するための図である。It is a figure for demonstrating the single flow of a molten glass.

以下、本発明のガラス流出装置の一実施形態を図面を参照しながら詳細に説明する。
図1は、本実施形態のガラス流出装置1の熔融ガラスを流出する下端部付近を示す鉛直断面図である。本実施形態のガラス流出装置1は、図示しない熔融坩堝を上部に有し、熔融坩堝内に蓄積された熔融ガラスを下方へと流す流出パイプ2を有する。流出パイプ2は図示しない加熱装置と保温材により、熔融ガラスが失透することなく、所望の流量で流出するよう温度制御される。なお、加熱装置については公知の装置、例えば、流出パイプに電流を流してジュール熱を発生させる通電加熱機構や、流出パイプの外周に高周波コイルを配置し、コイルに高周波電源を接続し、高周波電流を流すことにより、流出パイプを誘導加熱する高周波誘導加熱機構などを適用することができる。また、保温材として公知のものを用いることができる。
Hereinafter, one embodiment of a glass outflow device of the present invention is described in detail, referring to drawings.
FIG. 1 is a vertical cross-sectional view showing the vicinity of the lower end portion that flows out of the molten glass of the glass outflow device 1 of the present embodiment. The glass outflow apparatus 1 of this embodiment has a molten crucible (not shown) at the top, and has an outflow pipe 2 through which the molten glass accumulated in the molten crucible flows downward. The temperature of the outflow pipe 2 is controlled by a heating device (not shown) and a heat insulating material so that the molten glass flows out at a desired flow rate without devitrification. As for the heating device, a known device, for example, an energization heating mechanism for generating Joule heat by supplying current to the outflow pipe, a high-frequency coil disposed on the outer periphery of the outflow pipe, a high-frequency power source connected to the coil, It is possible to apply a high-frequency induction heating mechanism for inductively heating the outflow pipe. Moreover, a well-known thing can be used as a heat insulating material.

図1に示すように、流出パイプ2は、内部に上下方向に延びるガラス流路3を備える。ガラス流路3は、上部が熔融坩堝の底部に接続するとともに、一定の内径を有する一定径部6と、一定径部6の下端から内径が連続し、下方に向かうにつれて増加する拡径部8とを有する。熔融坩堝内の熔融ガラスは、ガラス流路3を流下し、拡径部8の下方に設けられている開口部、すなわち、ガラス流出口9から流出される。   As shown in FIG. 1, the outflow pipe 2 includes a glass flow path 3 extending in the vertical direction inside. The glass flow path 3 has an upper portion connected to the bottom of the melting crucible, a constant diameter portion 6 having a constant inner diameter, and an enlarged diameter portion 8 that has an inner diameter continuous from the lower end of the constant diameter portion 6 and increases downward. And have. The molten glass in the melting crucible flows down the glass flow path 3 and flows out from an opening provided below the enlarged diameter portion 8, that is, a glass outlet 9.

図2は、本実施形態のガラス流出装置1の流出パイプ2の拡径部8の下端部を拡大して示す鉛直断面図である。同図に示すように、流出パイプ2の拡径部8の下端縁に、全周に亘って先端に向かって内径が縮小する縮径部10が形成されている。縮径部10は、ガラス流路3の内面が、ガラス流路3の中心に向かって環状に突出することにより形成されている。縮径部10の表面は鉛直断面において略円弧状を呈している。なお、本実施形態では、熔融坩堝との接続部から直接一定径部6が延びているが、本発明はこれに限らず、熔融坩堝との接続部と一定径部6との間に、一定径部6の内径とは異なる内径の部分を設けてもよい。例えば、熔融ガラスの流出量を制御するために、熔融坩堝との接続部から一定径部6に向けて、内径が段階的に小さくなるようにしてもよい。また、一定径部6の上方に、内径が一定径部6の内径よりも小さい部分を設けてもよい。   FIG. 2 is an enlarged vertical cross-sectional view showing the lower end portion of the enlarged diameter portion 8 of the outflow pipe 2 of the glass outflow device 1 of the present embodiment. As shown in the figure, a reduced diameter portion 10 is formed at the lower end edge of the enlarged diameter portion 8 of the outflow pipe 2 so that the inner diameter decreases toward the tip over the entire circumference. The reduced diameter portion 10 is formed by projecting the inner surface of the glass flow path 3 in an annular shape toward the center of the glass flow path 3. The surface of the reduced diameter portion 10 has a substantially arc shape in the vertical cross section. In this embodiment, the constant diameter portion 6 extends directly from the connection portion with the melting crucible. However, the present invention is not limited to this, and the constant diameter portion 6 is fixed between the connection portion with the melting crucible and the constant diameter portion 6. A portion having an inner diameter different from the inner diameter of the diameter portion 6 may be provided. For example, in order to control the outflow amount of the molten glass, the inner diameter may gradually decrease from the connecting portion with the melting crucible toward the constant diameter portion 6. Further, a portion having an inner diameter smaller than the inner diameter of the fixed diameter portion 6 may be provided above the fixed diameter portion 6.

以下、本実施形態における縮径部10の形状について、より詳細に説明する。
図3は、縮径部を備えていないガラス流出装置の拡径部の下端部の形状を示す鉛直断面図であり、熔融ガラスを流出している状態を示している。同図に示すように、従来のガラス流出装置101では、拡径部108の下端に縮径部が設けられていないため、ガラス流出装置101のガラス流路の下端は略鉛直下方に向いている。このようなガラス流出装置101を用いた場合には、拡径部108の下端近傍の高さ位置P´において、熔融ガラス120がパイプ内面から離間している。この際、図3に示すように、熔融ガラス120の外周面は、パイプ内面から離間した位置から鉛直下方に延びるのではなく、表面張力の影響により内側に向かって湾曲して縮径している。ここで、この熔融ガラス120がパイプ内面から離間する高さ位置P´におけるパイプ内面の接線L´0と、熔融ガラスの外周面の高さ位置Pにおける接線L´1との角度を接触角度θ0とする。拡径部108の下端における内径が大きいほど、接触角度θ0は大きくなる。
Hereinafter, the shape of the reduced diameter portion 10 in the present embodiment will be described in more detail.
FIG. 3 is a vertical cross-sectional view showing the shape of the lower end portion of the enlarged diameter portion of the glass outflow device not provided with the reduced diameter portion, and shows a state where the molten glass is flowing out. As shown in the figure, in the conventional glass outflow device 101, since the reduced diameter portion is not provided at the lower end of the enlarged diameter portion 108, the lower end of the glass flow path of the glass outflow device 101 faces substantially vertically downward. . When such a glass outflow device 101 is used, the molten glass 120 is separated from the inner surface of the pipe at a height position P ′ in the vicinity of the lower end of the enlarged diameter portion 108. At this time, as shown in FIG. 3, the outer peripheral surface of the molten glass 120 does not extend vertically downward from a position separated from the inner surface of the pipe, but is curved and reduced in diameter due to the influence of surface tension. . Here, the angle between the tangent L′ 0 of the pipe inner surface at the height position P ′ where the molten glass 120 is separated from the inner surface of the pipe and the tangent L′ 1 at the height position P of the outer peripheral surface of the molten glass is the contact angle θ. Set to 0 . The contact angle θ 0 increases as the inner diameter at the lower end of the enlarged diameter portion 108 increases.

なお、例えば、熔融ガラスがホウ酸ランタン含有ガラスであり、流出時の粘度が5〜6dPas・sであり、パイプ下端部における内径(ガラス流出口の内径)が9mmの場合には、上記接触角度θ0は概ね30〜35度の範囲であり、パイプ下端部における内径が16mmの場合には、上記接触角度θ0は概ね40〜45度の範囲である。 For example, when the molten glass is lanthanum borate-containing glass, the viscosity at the time of outflow is 5 to 6 dPas · s, and the inner diameter at the lower end of the pipe (the inner diameter of the glass outlet) is 9 mm, the above contact angle θ 0 is approximately in the range of 30 to 35 degrees, and when the inner diameter at the lower end of the pipe is 16 mm, the contact angle θ 0 is approximately in the range of 40 to 45 degrees.

図4は、本実施形態における流出パイプ2の拡径部8の下端部を拡大して示す鉛直断面図であり、熔融ガラス20を流出している状態を示す。同図に示すように、本実施形態のガラス流出装置1では、縮径部10の上端が高さ位置Pに位置するように構成されている。この高さ位置Pは、上述した縮径部を備えていないガラス滴下装置における熔融ガラス120がパイプ内面から離間する高さ位置P´と等しいことが好ましい。   FIG. 4 is an enlarged vertical sectional view showing the lower end portion of the enlarged diameter portion 8 of the outflow pipe 2 in the present embodiment, and shows a state in which the molten glass 20 is flowing out. As shown in the figure, the glass outflow device 1 of the present embodiment is configured such that the upper end of the reduced diameter portion 10 is located at the height position P. This height position P is preferably equal to the height position P ′ at which the molten glass 120 in the glass dropping device not provided with the reduced diameter portion is separated from the pipe inner surface.

縮径部10は鉛直断面において略円弧状(パイプの外側に凸)の表面形状を有しており、その最上部である高さ位置Pにおいて、鉛直断面における縮径部10の表面の接線の鉛直方向に対する角度が最大となっていることが好ましい。本実施形態では、絞り角度θは、10度以上であることが好ましく、また、パイプの下端の内径が9mm以上である場合には、絞り角度θは20度以上であることが好ましい。さらに、この絞り角度θは、接触角度θ0以上となることがより好ましい。
流出パイプ2の材料には、耐熱性、耐蝕性に優れ、通電性があり、通電加熱や高周波誘導加熱が可能な白金、白金合金、強化白金など白金系の材料が好ましい。
The reduced diameter portion 10 has a substantially arcuate surface shape (convex to the outside of the pipe) in the vertical cross section, and at the height position P that is the uppermost portion, the tangent of the surface of the reduced diameter portion 10 in the vertical cross section. It is preferable that the angle with respect to the vertical direction is maximized. In the present embodiment, the aperture angle θ is preferably 10 degrees or more, and when the inner diameter of the lower end of the pipe is 9 mm or more, the aperture angle θ is preferably 20 degrees or more. Further, it is more preferable that the aperture angle θ is not less than the contact angle θ 0 .
The material of the outflow pipe 2 is preferably a platinum-based material such as platinum, a platinum alloy, or reinforced platinum that has excellent heat resistance and corrosion resistance, is electrically conductive, and can be heated by electric current and high-frequency induction.

以下、このガラス流出装置1を用いてプリフォームを製造する方法を説明する。
プリフォームを製造する際には、まず、ガラス熔融装置を用い、ガラス熔融装置内の熔融坩堝内においてガラス原料を熔融、清澄、均質化し、熔融ガラスを作る。熔融ガラスは熔融坩堝底部との接続部からガラス流出装置1の流出パイプ2へ流れ込む。熔融ガラスはガラス流路3を流下する。熔融ガラスは、流出パイプ2の下方に熔融ガラスを受ける成形型が移送されるまで、ガラス流出口9に滞留し、滴下しない。
熔融ガラスがガラス流出口9に滞留している間に、流出パイプ2の下方に成形型を移送、停留させ、成形型上の凹部に熔融ガラスを流出する。
Hereinafter, a method for producing a preform using the glass outflow device 1 will be described.
When manufacturing a preform, first, a glass melting apparatus is used, and a glass raw material is melted, clarified, and homogenized in a melting crucible in the glass melting apparatus to produce a molten glass. The molten glass flows into the outflow pipe 2 of the glass outflow device 1 from the connection with the bottom of the melting crucible. The molten glass flows down the glass flow path 3. The molten glass stays at the glass outlet 9 and does not drip until the mold receiving the molten glass is transferred below the outflow pipe 2.
While the molten glass stays at the glass outlet 9, the molding die is transferred and stopped below the outflow pipe 2, and the molten glass flows out into the concave portion on the molding die.

図5は、流出パイプ2より流出する熔融ガラスを、流出パイプ2の下方に停留する成形型11の上面に設けた凹部12に供給する際の、流出パイプ2、熔融ガラスならびに成形型11の鉛直断面図である。
熔融ガラスは、ガラス流路3を流れ、ガラス流出口9から流出する際、表面張力により細くなろうとしてパイプ内周面から離間し、片流れが発生しやすくなるが、拡径部8の下端縁に縮径部10が形成されているため、図5に示すように、拡径部8の下端部においても熔融ガラスがパイプ内周面に接触した状態が保たれる。このため、熔融ガラス20の片流れの発生を抑止することができる。
FIG. 5 shows the vertical flow of the outflow pipe 2, the molten glass and the mold 11 when the molten glass flowing out from the outflow pipe 2 is supplied to the recess 12 provided on the upper surface of the mold 11 that is retained below the outflow pipe 2. It is sectional drawing.
When the molten glass flows through the glass flow path 3 and flows out from the glass outlet 9, it is separated from the inner peripheral surface of the pipe so as to become thin due to surface tension, and a single flow tends to occur. Since the reduced diameter portion 10 is formed, the molten glass is kept in contact with the inner peripheral surface of the pipe at the lower end portion of the enlarged diameter portion 8 as shown in FIG. For this reason, generation | occurrence | production of the single flow of the molten glass 20 can be suppressed.

成形型11の凹部12に流出した熔融ガラスが所定量に達したときに、図示しない昇降装置により成形型11を急速に降下させて、ガラス流出口から流出する熔融ガラスから、凹部12上の熔融ガラスを分離する(降下切断法)。分離された熔融ガラス塊は、凹部12に形成された図示しない多数の細孔から噴出するガスにより、上向きの風圧を受けて浮上し、その状態で所定の形状に成形されてプリフォームになる。このように成形型11上でガラスを浮上状態で成形する方法は浮上成形法と呼ばれている。   When the molten glass that has flowed into the recess 12 of the mold 11 reaches a predetermined amount, the mold 11 is rapidly lowered by a lifting device (not shown) to melt the melt on the recess 12 from the molten glass that flows out of the glass outlet. Separate the glass (down-cut method). The separated molten glass lump floats by receiving upward wind pressure by a gas ejected from a large number of pores (not shown) formed in the recess 12 and is molded into a predetermined shape in this state to become a preform. A method of forming glass in a floating state on the forming die 11 in this way is called a floating forming method.

なお、このようにして形成したプリフォームは気泡、脈理を含まず、高い均質性を有するため、レンズ等の光学素子の成形材料に好適である。プリフォームを光学素子に成形する方法としては、精密プレス成形法を例示することができる。精密プレス成形法の一例では、まず、プリフォームを成形型に収容した状態で加熱、軟化させ、成形型によりプレスする。これにより、成形型に対応した形状の光学素子が得られる。   The preform thus formed does not contain bubbles and striae and has high homogeneity, and is therefore suitable as a molding material for optical elements such as lenses. As a method for molding the preform into an optical element, a precision press molding method can be exemplified. In an example of the precision press molding method, first, a preform is heated and softened in a state of being accommodated in a mold, and then pressed by the mold. Thereby, an optical element having a shape corresponding to the mold is obtained.

本実施形態のガラス流出装置1によれば、拡径部8の下端縁に縮径部10が形成されているため、拡径部8の下端部においても熔融ガラスがパイプ内面に接触した状態が保たれる。このため、熔融ガラスの片流れの発生を抑止することができる。   According to the glass outflow device 1 of the present embodiment, since the reduced diameter portion 10 is formed at the lower end edge of the enlarged diameter portion 8, the molten glass is in contact with the inner surface of the pipe also at the lower end portion of the enlarged diameter portion 8. Kept. For this reason, generation | occurrence | production of the single flow of a molten glass can be suppressed.

また、本実施形態のガラス流出装置1の縮径部10は、絞り角度θが接触角度θ0以上となっている。これにより、縮径部10の表面は、縮径部を備えていない場合の熔融ガラス流の表面よりも内側位置まで進出することとなる。これにより、熔融ガラスがパイプ内面から離間することを抑止し、片流れの発生を抑止することができる。   Moreover, as for the diameter reducing part 10 of the glass outflow apparatus 1 of this embodiment, the aperture angle (theta) is more than the contact angle (theta) 0. Thereby, the surface of the reduced diameter part 10 will advance to an inner position rather than the surface of the molten glass flow in the case where the reduced diameter part is not provided. Thereby, it can suppress that molten glass leaves | separates from a pipe inner surface, and can suppress generation | occurrence | production of a single flow.

さらに、本実施形態のガラス流出装置を用いてプリフォームを製造することにより、熔融ガラスの片流れの発生が抑止することができるため、プリフォーム内部への気泡の混入や、脈理の発生を抑止し、均質性の高いプリフォームを製造できる。このように均質性の高いプリフォームを用いて光学素子を製造することにより、高品質な光学素子を安定して製造することができる。   Furthermore, by producing a preform using the glass outflow device of the present embodiment, it is possible to suppress the occurrence of a single flow of molten glass, thereby suppressing the occurrence of bubbles and striae inside the preform. In addition, a preform with high homogeneity can be produced. Thus, by manufacturing an optical element using a preform with high homogeneity, a high-quality optical element can be stably manufactured.

なお、上記実施形態では、縮径部を鉛直断面視において湾曲形状としているが、本発明はこれに限らず、逆円錐台形状等としてもよい。片流れ発生をより確実に抑制するためには、鉛直断面視において拡径部と縮径部とが滑らかに接続されていること、すなわち、拡径部における接線の傾きと縮径部における接線の傾きが連続して変化することが好ましい。   In the above-described embodiment, the reduced diameter portion has a curved shape in a vertical sectional view, but the present invention is not limited to this and may have an inverted truncated cone shape or the like. In order to more reliably suppress the occurrence of a single flow, the enlarged diameter portion and the reduced diameter portion are smoothly connected in a vertical sectional view, that is, the tangential slope at the enlarged diameter portion and the tangential slope at the reduced diameter portion. Preferably varies continuously.

また、上記実施形態では、縮径部10の上端の高さ位置Pが、縮径部を備えていないガラス滴下装置における熔融ガラス120がパイプ内面から離間する高さ位置P´と等しい場合について説明したが、これに限らず、高さ位置Pは縮径部を備えていないガラス滴下装置における熔融ガラス120がパイプ内面から離間する高さ位置P´よりも高い位置であっても低い位置であってもよい。   Moreover, in the said embodiment, the height position P of the upper end of the diameter reducing part 10 demonstrates the case where the molten glass 120 in the glass dropping apparatus which is not equipped with the diameter reducing part is equal to the height position P 'which spaces apart from the pipe inner surface. However, the height position P is not limited to this, and the height position P is a low position even if the position is higher than the height position P ′ at which the molten glass 120 is separated from the inner surface of the pipe in the glass dropping device not provided with the reduced diameter portion. May be.

ここで、発明者らは、本実施形態のガラス流出装置によれば、片流れの発生を抑止できることを実験により確認したので、以下説明する。
本実験では、パイプの下端の内径及び絞り角度が異なる白金製のパイプを用いて熔融ガラスを流出させ、降下切断法‐浮上成形法によりプリフォームの成形を行い、各パイプにおいて片流れの発生頻度を調査した。なお、片流れ発生頻度は、24時間連続してパイプから熔融ガラスを流出させてプリフォームの成形を行い、その間に発生した片流れの回数により示す。
Here, the inventors have confirmed through experiments that the occurrence of a single flow can be suppressed according to the glass spill device of the present embodiment, which will be described below.
In this experiment, molten glass was flowed out using platinum pipes with different inner diameters and squeezing angles at the lower ends of the pipes, preforms were formed by the descent cutting method-floating molding method, and the frequency of occurrence of single flow in each pipe was determined. investigated. The frequency of occurrence of single flow is indicated by the number of single flows generated during the time when molten glass is allowed to flow out of the pipe for 24 hours to form a preform.

硝材としては、ホウ酸ランタン含有ガラスであるHOYA株式会社製のMP−TAFD305(屈折率nd=1.8535、アッベ数νd=40.1)及びMP−BACD12(屈折率nd=1.58313、アッベ数νd=59.46)を用いた。また、パイプの温度は、硝材としてMP−TAFD305を用いた場合には、1000〜1100℃、MP−BACD12を用いた場合には、950〜1100℃の範囲で、ガラスが失透しない温度に設定した。
なお、片流れが発生した場合には、熔融ガラスの流出調整を行い、片流れがない状態でガラスの流出を再開させる操作を行った。
As glass materials, lanthanum borate containing glass MP-TAFD305 (refractive index nd = 1.8535, Abbe number νd = 40.1) and MP-BACD12 (refractive index nd = 1.58313, Abbe, manufactured by HOYA Corporation). The number νd = 59.46) was used. Moreover, the temperature of the pipe is set to a temperature at which the glass does not devitrify in the range of 1000 to 1100 ° C. when MP-TAFD305 is used as the glass material and 950 to 1100 ° C. when MP-BACD12 is used. did.
In addition, when the single flow generate | occur | produced, the outflow adjustment of the molten glass was performed and operation which restarts the outflow of glass in the state without a single flow was performed.

表1及び表2は、それぞれ、硝材にMP−TAFD305及びMP−BACD12を用いた場合の片流れ発生頻度を示す表である。

Figure 2015078099
Figure 2015078099
これら表1及び表2に示すように、絞り角度を大きくすることにより、パイプの径や硝材の種類によらず、片流れの発生頻度が低くなっている。このことから、パイプの下端縁に縮径部を設けることにより、片流れの発生を抑止できることが確認された。 Tables 1 and 2 are tables showing the frequency of single-flow occurrence when MP-TAFD305 and MP-BACD12 are used for the glass material, respectively.
Figure 2015078099
Figure 2015078099
As shown in Tables 1 and 2, by increasing the throttle angle, the frequency of occurrence of single flow is reduced regardless of the diameter of the pipe and the type of glass material. From this, it was confirmed that the occurrence of a single flow can be suppressed by providing a reduced diameter portion at the lower edge of the pipe.

また、MP−TAFD305を用い、パイプの下端の内径を16mmとした場合には、絞り角度が20度以上で成形可能であるが、それ以外の条件では、絞り角度を10度以上とすれば概ねプリフォームの作成が可能であることが確認された。このことから、絞り角度を10度以上とすることが好ましいことがわかった。   In addition, when MP-TAFD305 is used and the inner diameter of the lower end of the pipe is 16 mm, molding can be performed at a drawing angle of 20 degrees or more. It was confirmed that a preform could be created. From this, it was found that the aperture angle is preferably 10 degrees or more.

さらに、絞り角度が20度以上である場合には、全ての条件において、プリフォームの作成が可能であることが確認された。このことから、パイプの下端の内径が9mm以上である場合には、絞り角度が20度以上であることが特に好ましいことがわかった。   Furthermore, when the aperture angle was 20 degrees or more, it was confirmed that a preform could be created under all conditions. From this, it was found that when the inner diameter of the lower end of the pipe is 9 mm or more, it is particularly preferable that the aperture angle is 20 degrees or more.

[光学素子の製造例]
上記各プリフォームを用いて光学素子の製造を行った。ここでは、光学素子の製造例として非球面レンズの製造例を示す。
最初に上型、下型、胴型等の部品からなるプレス成形型を用意する。上型および下型の成形面は、目的とする非球面レンズの光学機能面(レンズ面)の形状の凹凸を反転した形状に精密に加工され、炭素膜の離型膜がコーティングされている。
[Example of optical element production]
An optical element was manufactured using each of the above preforms. Here, a manufacturing example of an aspheric lens is shown as a manufacturing example of an optical element.
First, a press mold comprising parts such as an upper mold, a lower mold, and a body mold is prepared. The molding surfaces of the upper mold and the lower mold are precisely processed into a shape in which the irregularities of the shape of the optical function surface (lens surface) of the target aspherical lens are reversed, and are coated with a carbon film release film.

次にプリフォームを上型、下型、胴型によって囲まれた空間内に導入し、一緒にガラスが軟化するまで加熱し、上型および下型によりプリフォームをプレスし、成形面の形状をガラスに精密に転写し、非球面レンズ形状に精密プレス成形した。
さらに成形したガラスを冷却してからプレス成形型からガラスを取り出し、非球面レンズを得た。
なお、精密プレス成形の条件、プレス成形型の形材、その他は、公知の条件、材料を適用すればよい。
Next, the preform is introduced into the space surrounded by the upper mold, the lower mold, and the body mold, heated together until the glass is softened, the preform is pressed by the upper mold and the lower mold, and the shape of the molding surface is changed. It was precisely transferred to glass and precision press molded into an aspheric lens shape.
Further, after cooling the molded glass, the glass was taken out from the press mold to obtain an aspherical lens.
Note that known conditions and materials may be applied to the precision press molding conditions, the shape of the press mold, and others.

最後に、本実施形態を図等を用いて総括する。
図1に示すように、本実施形態のガラス流出装置1は、熔融ガラスが流れるガラス流路3に、上下方向に延びる内径が一定の一定径部6と、一定径部6に連続して下端に向かって内径が拡がる形状を有する拡径部8と、が形成された流出パイプ2から熔融ガラスを滴下するガラス流出装置1であって、拡径部8の下端縁の内面に、先端に向かって内径が縮小する縮径部10が形成されている。
Finally, this embodiment will be summarized with reference to the drawings.
As shown in FIG. 1, the glass outflow device 1 of the present embodiment has a glass channel 3 through which molten glass flows, a constant diameter portion 6 having a constant inner diameter extending in the vertical direction, and a lower end continuous to the constant diameter portion 6. A glass outflow device 1 for dropping molten glass from an outflow pipe 2 formed with an expanded inner diameter portion 8 having an inner diameter expanding toward the inner surface of the lower diameter edge of the expanded diameter portion 8 toward the tip. Thus, a reduced diameter portion 10 whose inner diameter is reduced is formed.

1 ガラス流出装置
2 流出パイプ
3 ガラス流路
6 一定径部
8 拡径部
9 ガラス流出口
10 縮径部
11 成形型
12 凹部
20 熔融ガラス
DESCRIPTION OF SYMBOLS 1 Glass outflow apparatus 2 Outflow pipe 3 Glass flow path 6 Constant diameter part 8 Expanded part 9 Glass outflow port 10 Reduced diameter part 11 Mold 12 Recess 20 Molten glass

Claims (6)

熔融ガラスが流れる流路に、上下方向に延びる内径が一定の一定径部と、前記一定径部に連続して下端に向かって内径が拡がる形状を有する拡径部と、が形成されたパイプから熔融ガラスを流出するガラス流出装置であって、
前記拡径部の下端縁の内面に、先端に向かって内径が縮小する縮径部が形成されている、ガラス流出装置。
A pipe in which a constant diameter portion having a constant inner diameter extending in the vertical direction and a diameter increasing portion having a shape in which the inner diameter expands toward the lower end is formed continuously in the flow path through which the molten glass flows. A glass outflow device for flowing out molten glass,
A glass outflow device in which a reduced diameter portion whose inner diameter decreases toward the tip is formed on the inner surface of the lower end edge of the enlarged diameter portion.
前記縮径部の内面の鉛直方向に対する最大角度を絞り角度としたとき、前記絞り角度が10度以上である請求項1に記載されたガラス流出装置。   2. The glass outflow device according to claim 1, wherein when the maximum angle of the inner surface of the reduced diameter portion with respect to the vertical direction is a throttle angle, the throttle angle is 10 degrees or more. 前記パイプの下端の内径が9mm以上、かつ、前記絞り角度が20度以上である、請求項2に記載されたガラス流出装置。   The glass outflow device according to claim 2, wherein an inner diameter of a lower end of the pipe is 9 mm or more and the throttle angle is 20 degrees or more. 熔融ガラスが流れる流路に、上下方向に延びる内径が一定の一定径部と、前記一定径部に連続して下端に向かって内径が拡がる形状を有する拡径部と、が形成されたパイプから熔融ガラスを流出するガラス流出方法であって、
前記パイプの下端縁の内面に、先端に向かって内径が縮小する縮径部を形成しておく、ガラス流出方法。
A pipe in which a constant diameter portion having a constant inner diameter extending in the vertical direction and a diameter increasing portion having a shape in which the inner diameter expands toward the lower end is formed continuously in the flow path through which the molten glass flows. A glass outflow method for flowing out molten glass,
A glass outflow method in which a reduced diameter portion whose inner diameter decreases toward the tip is formed on the inner surface of the lower end edge of the pipe.
請求項4に記載のガラス流出方法により熔融ガラスを流出してプレス成形用プリフォームを成形するプレス成形用プリフォームの製造方法。   A method for producing a press-molding preform, wherein a molten glass is flowed out by the glass outflow method according to claim 4 to form a press-molding preform. 請求項5に記載のプレス成形用プリフォームの製造方法により、プレス成形用プリフォームを製造するステップと、
前記プリフォームを加熱するステップと、
前記加熱されたプリフォームをプレス成形するステップと、
を備える、光学素子の製造方法。
A step of producing a press-molding preform by the method for producing a press-molding preform according to claim 5;
Heating the preform;
Press-molding the heated preform;
A method for manufacturing an optical element.
JP2013217103A 2013-10-18 2013-10-18 Glass outflow device, glass outflow method, method of manufacturing preform for press molding, and method of manufacturing optical element Pending JP2015078099A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013217103A JP2015078099A (en) 2013-10-18 2013-10-18 Glass outflow device, glass outflow method, method of manufacturing preform for press molding, and method of manufacturing optical element
CN201410548777.1A CN104556635A (en) 2013-10-18 2014-10-16 Glass discharging device and method, and manufacturing method of pre-moulding parison and optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013217103A JP2015078099A (en) 2013-10-18 2013-10-18 Glass outflow device, glass outflow method, method of manufacturing preform for press molding, and method of manufacturing optical element

Publications (2)

Publication Number Publication Date
JP2015078099A true JP2015078099A (en) 2015-04-23
JP2015078099A5 JP2015078099A5 (en) 2016-12-08

Family

ID=53009900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013217103A Pending JP2015078099A (en) 2013-10-18 2013-10-18 Glass outflow device, glass outflow method, method of manufacturing preform for press molding, and method of manufacturing optical element

Country Status (2)

Country Link
JP (1) JP2015078099A (en)
CN (1) CN104556635A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234525A (en) * 1988-07-22 1990-02-05 Hoya Corp Method for forming glass element
JPH08188419A (en) * 1995-01-10 1996-07-23 Olympus Optical Co Ltd Fused glass-supplying nozzle
JPH1036123A (en) * 1996-07-24 1998-02-10 Ohara Inc Production of glass gob
JP2002104829A (en) * 2000-09-26 2002-04-10 Ngk Insulators Ltd Discharging mechanism for molten glass
JP2003306334A (en) * 2002-04-17 2003-10-28 Canon Inc Apparatus for flowing out optical glass, method of flowing out optical glass, optical glass block and method of manufacturing it
JP2004339002A (en) * 2003-05-15 2004-12-02 Canon Inc Device and method for allowing molten glass to flow out
JP2006335631A (en) * 2005-06-06 2006-12-14 Hoya Corp Method for producing preform for precision press molding, and method for producing optical element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096684A (en) * 2007-10-18 2009-05-07 Ohara Inc Flow passage for flowing-out molten glass
CN202089884U (en) * 2011-06-27 2011-12-28 山东瑞泰玻璃绝缘子有限公司 Bowl
CN202594944U (en) * 2012-06-01 2012-12-12 安徽杜氏高科玻璃有限公司 Nichrome orifice ring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234525A (en) * 1988-07-22 1990-02-05 Hoya Corp Method for forming glass element
JPH08188419A (en) * 1995-01-10 1996-07-23 Olympus Optical Co Ltd Fused glass-supplying nozzle
JPH1036123A (en) * 1996-07-24 1998-02-10 Ohara Inc Production of glass gob
JP2002104829A (en) * 2000-09-26 2002-04-10 Ngk Insulators Ltd Discharging mechanism for molten glass
JP2003306334A (en) * 2002-04-17 2003-10-28 Canon Inc Apparatus for flowing out optical glass, method of flowing out optical glass, optical glass block and method of manufacturing it
JP2004339002A (en) * 2003-05-15 2004-12-02 Canon Inc Device and method for allowing molten glass to flow out
JP2006335631A (en) * 2005-06-06 2006-12-14 Hoya Corp Method for producing preform for precision press molding, and method for producing optical element

Also Published As

Publication number Publication date
CN104556635A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
CN100422100C (en) Manufacturing method of glass former and optical component, melting glass outflow device and manufacturing device of glass former
JP4309859B2 (en) Method for manufacturing press-molding preform and method for manufacturing optical element
CN102887622B (en) Method and apparatus for producing glass tubes with pre-determined internal profile
JP2015078099A (en) Glass outflow device, glass outflow method, method of manufacturing preform for press molding, and method of manufacturing optical element
JP2010083724A (en) Manufacturing method of lens and lens
JP5438084B2 (en) Manufacturing method of glass molded body, and manufacturing method of optical element using the glass molded body
JP2015063436A (en) Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element
TWI551553B (en) Method for manufacturing glass preform and glass preform, method for manufacturing optical element and optical element
JP5565265B2 (en) Method for producing glass molded body
TW201638029A (en) Glass outflow device, glass outflow method, manufacturing method of preforms for compression molding, and manufacturing method of optical elements
JP2008297159A (en) Molten glass dropping nozzle, and method and apparatus for manufacturing shaped glass
JP4871236B2 (en) Glass outflow pipe, glass manufacturing apparatus, glass molded body manufacturing method, and optical element manufacturing method
CN107382034B (en) High-efficient production facility of optical lens
JP5243723B2 (en) Nozzle and method of manufacturing optical glass block using the nozzle
JP2004284847A (en) Method of manufacturing glass lump and method of manufacturing optical element
CN111574031B (en) Precision mould pressing production device for optical glass
JP2008297158A (en) Molten glass dropping nozzle, and method and apparatus for manufacturing shaped glass
JP2015145316A (en) Nozzle and method of manufacturing optical glass lump using the nozzle
JP4843063B2 (en) Method for manufacturing press-molding preform and method for manufacturing optical element
JP4957623B2 (en) Method for miniaturizing molten glass droplet, method for producing glass gob, and method for producing glass molded body
JP2008100876A (en) Glass manufacturing method and glass manufacturing apparatus
JP2008280194A (en) Glass flow passage and method for manufacturing optical glass formed body using the same
JP5244949B2 (en) Manufacturing method of glass molded body and manufacturing method of optical element
JP2012086996A (en) Molding die and method for manufacturing glass molded article
JP2008297173A (en) Glass flow passage and method for manufacturing optical glass molding by using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171211