JP2009096684A - Flow passage for flowing-out molten glass - Google Patents

Flow passage for flowing-out molten glass Download PDF

Info

Publication number
JP2009096684A
JP2009096684A JP2007271197A JP2007271197A JP2009096684A JP 2009096684 A JP2009096684 A JP 2009096684A JP 2007271197 A JP2007271197 A JP 2007271197A JP 2007271197 A JP2007271197 A JP 2007271197A JP 2009096684 A JP2009096684 A JP 2009096684A
Authority
JP
Japan
Prior art keywords
flow path
molten glass
glass
tube
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271197A
Other languages
Japanese (ja)
Inventor
Junichi Kuwabara
潤一 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2007271197A priority Critical patent/JP2009096684A/en
Publication of JP2009096684A publication Critical patent/JP2009096684A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow passage for feeding molten glass which does not cause wetting-up even in molten glass having low viscosity, thus can mold a preform having no degenerated parts caused by wetting-up and having no presence of striae. <P>SOLUTION: A flow passage is provided which is connected to a molten glass tank and flows out molten glass. The distal end part is branched into an inside tube and an outside tube arranged on the outside thereof at prescribed intervals, the inside diameter of the inside tube is ≥50% of the inside diameter of the outside tube, and the lower side edge of the inside tube is projected more downward than the lower side edge of the outside tube. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、溶融ガラスを成形型に流出させてガラス成形体を製造するために溶融ガラス槽に接続され、溶融ガラスを流出させる流路に関し、特に溶融ガラスを表面張力およびガラスの自重を利用してノズルからガラスゴブとして滴下させて、プリフォーム成形型により精密プレス成形用プリフォームに成形するプリフォーム成形用に好適な流路に関する。   TECHNICAL FIELD The present invention relates to a flow path that is connected to a molten glass tank and allows molten glass to flow out in order to produce a glass molded body by flowing molten glass into a mold, and particularly uses the surface tension of the molten glass and its own weight. The present invention relates to a flow path suitable for preform molding in which a glass gob is dropped from a nozzle and molded into a precision press molding preform by a preform molding die.

光学系を構成するレンズには一般に球面レンズと非球面レンズがある。多くの球面レンズは、ガラス材料をリヒートプレス成形して得られたガラス成形品を研削研磨することによって製造される。一方非球面レンズは、加熱軟化したプリフォーム材を高精度な成形面を有するモールド金型でプレス成形し、金型の高精度な成形面の形状をプリフォーム材に転写して得る方法すなわち精密プレス成形によって製造することが主流となっている。   In general, there are a spherical lens and an aspheric lens as lenses constituting the optical system. Many spherical lenses are manufactured by grinding and polishing a glass molded product obtained by reheat press molding a glass material. On the other hand, an aspherical lens is a method in which a heat-softened preform material is press-molded with a mold having a high-precision molding surface, and the shape of the mold with a high-precision molding surface is transferred to the preform material. Manufacturing by press molding has become the mainstream.

精密プレス成形用プリフォームとしては、球形、楕円球形または扁平形ガラス成形体(ガラスゴブ)が使用されることが多いが、これらは、原料ガラスを坩堝等の溶融装置で溶融した後、溶融装置に連結されたノズル等から成形型上に流出させ、板状ガラスや棒状ガラス等に成形し、それらをさらに冷間加工することにより製造することができる。また、近年は、ノズルから流出する溶融ガラスをシャーにより切断し、或いは表面張力および自重を利用して分離し、たとえばガスを噴出可能な多孔質型上に滴下させ、浮上成形することにより適当な大きさと形状のガラスゴブに成形する技術が用いられている。ガラス流をシャーにより切断する場合はその切断痕跡がガラスゴブに残ることがあるため、近年では表面張力および自重を利用してガラスゴブを滴下させる方法が用いられることが多い。   As a precision press-molding preform, a spherical, elliptical or flat glass molded body (glass gob) is often used. These materials are melted in a melting apparatus such as a crucible and then put into a melting apparatus. It can be manufactured by allowing it to flow out from a connected nozzle or the like onto a mold, forming it into plate-like glass or rod-like glass, and further cold-working them. In recent years, the molten glass flowing out from the nozzle is cut with a shear, or separated by utilizing surface tension and its own weight, and, for example, dropped onto a porous mold capable of ejecting gas, and is appropriately floated. A technique for forming a glass gob of size and shape is used. When a glass stream is cut with a shear, the cutting trace may remain on the glass gob. In recent years, a method of dropping the glass gob using surface tension and its own weight is often used.

近年、光学ガラスの高屈折率化に伴い、その液相温度が高温化し或いは溶融ガラスが低粘性化する傾向にある。このようなガラス物性の傾向に伴って発生する問題の一つに、溶融ガラスのノズル口からの濡れ上がりの問題がある。すなわち溶融ガラスがノズル流出口において所定量まで溜り、表面張力と自重によりガラス流から分離して滴下する過程において、溶融ガラスの一部がノズルの外側下端部に濡れ上がって滞留することがある。このような滞留が生じると、その滞留部分に変質を生じやすくなり、これがノズルから流出する溶融ガラス流とともにプリフォーム成形型上に落下しプリフォームに成形されると、脈理が発生するという問題がある。濡れ上がりの問題に対しては種々の対策が提案されているが、簡単な装置で充分な効果を挙げることができるものは未だ存在しない。   In recent years, as the refractive index of optical glass increases, the liquidus temperature tends to increase or the molten glass tends to decrease in viscosity. One of the problems that occur with such a tendency of glass physical properties is the problem of wetting from the nozzle opening of molten glass. That is, molten glass accumulates up to a predetermined amount at the nozzle outlet, and in the process of dropping from the glass flow due to surface tension and its own weight, a part of the molten glass may get wet and stay at the outer lower end of the nozzle. When such a stay occurs, it becomes easy to cause alteration in the staying part, and when this falls onto the preform mold together with the molten glass flow flowing out from the nozzle, the striae occurs when it is molded into the preform. There is. Various countermeasures have been proposed for the problem of wetting up, but there is not yet anything that can provide a sufficient effect with a simple device.

特許文献1には、高い均質度のガラスを得るための装置として第1のガラス溶解槽から第2のガラス溶解槽へ溶融ガラスを供給する装置が示されている。この文献に記載のガラス供給装置のノズルとして、外筒管の内側に溶融ガラスガイド部材として管状の部材を配置したものが開示されている。しかし、このノズルにおいては、ガイド部材の中を流下する溶融ガラスは比較的少量であり、溶融ガラスの大部分は外筒管とガイド部材の間隙を通って流下するので、この外筒管とガイド部材の間の間隙を流下するガラス流がガイド部材によって影響を受けることはほとんどない。従って、このノズルをガラスゴブの滴下用ノズルとして適用した場合は低粘性の溶融ガラスが外筒管の口から外筒管の外側下端部に濡れ上がることを防止することは不可能である。
特開2006−199554号公報
Patent Document 1 discloses an apparatus for supplying molten glass from a first glass melting tank to a second glass melting tank as an apparatus for obtaining glass with high homogeneity. As a nozzle of the glass supply device described in this document, a nozzle in which a tubular member is disposed as a molten glass guide member inside an outer tube is disclosed. However, in this nozzle, a relatively small amount of molten glass flows down through the guide member, and most of the molten glass flows down through the gap between the outer tube and the guide member. The glass flow flowing down the gap between the members is hardly affected by the guide member. Therefore, when this nozzle is applied as a glass gob dropping nozzle, it is impossible to prevent the low-viscosity molten glass from getting wet from the mouth of the outer tube to the outer lower end of the outer tube.
JP 2006-199554 A

本発明は、上記低粘性溶融ガラスからガラスゴブを成形する場合の問題点に鑑みてなされたものであって、濡れ上がりを生じやすい低粘性の溶融ガラスでも濡れ上がりを生ずることなく、その結果、濡れ上がりによる変質部分がなく脈理のないプリフォームを成形することができる溶融ガラス供給用流路を提供しようとするものである。   The present invention has been made in view of the problems in molding a glass gob from the above low-viscosity molten glass, and does not cause wetting even in low-viscosity molten glass that tends to cause wetting. An object of the present invention is to provide a flow path for supplying molten glass that can form a preform having no alteration due to ascent and having no striae.

上記課題を解決する本発明の第1の構成は、溶融ガラス槽に接続され、溶融ガラスを流出させるための流路であって、その先端部分が、内側管とその外側において所定の間隔をおいて配置された外側管に分岐されており、内側管の内径が外側管の内径の50%以上であり、該内側管の下側縁は該外側管の下側縁よりも下方に突出していることを特徴とする。   A first configuration of the present invention that solves the above-described problems is a flow path that is connected to a molten glass tank and allows molten glass to flow out, and a tip portion thereof is spaced apart from the inner tube by a predetermined distance. The inner tube has an inner diameter of 50% or more of the inner diameter of the outer tube, and the lower edge of the inner tube protrudes below the lower edge of the outer tube. It is characterized by that.

本発明の流路の第2の構成は、第1の構成に加え、流路の流出口近傍において、溶融ガラスの内側管外壁に対する濡れ性が、溶融ガラスの外側管外壁に対する濡れ性よりも良いことを特徴とする。   In the second configuration of the flow channel of the present invention, in addition to the first configuration, the wettability of the molten glass with respect to the outer tube outer wall is better than the wettability of the molten glass with respect to the outer tube outer wall in the vicinity of the outlet. It is characterized by that.

本発明の流路の第3の構成は、第2の構成に加え、内側管は、白金族合金又はそれらの強化白金族合金からなり、該外側管は金を含有する白金族合金、又は強化白金族合金或いは金又は強化金からなることを特徴とする。   In the third configuration of the flow path of the present invention, in addition to the second configuration, the inner tube is made of a platinum group alloy or a reinforced platinum group alloy thereof, and the outer tube is a platinum group alloy containing gold, or reinforced. It consists of a platinum group alloy or gold or reinforced gold.

本発明の流路の第4の構成は、第2又は3の構成に加え、内側管の外壁の面粗さが外側管の外壁の面粗さより粗いことを特徴とする。   The fourth configuration of the flow path of the present invention is characterized in that, in addition to the second or third configuration, the surface roughness of the outer wall of the inner tube is rougher than the surface roughness of the outer wall of the outer tube.

本発明の流路の第5の構成は、第1〜第4のいずれかの構成に加え、内側管の突出部分の流出方向の長さが、内側管と外側管の間に形成される流路幅の1〜10倍であることを特徴とする。   In the fifth configuration of the flow path of the present invention, in addition to any of the first to fourth configurations, the length in the outflow direction of the protruding portion of the inner tube is a flow formed between the inner tube and the outer tube. It is 1 to 10 times the road width.

本発明の流路の第6の構成は、第1〜第5のいずれかの構成に加え、溶融ガラス流出方向に対して垂直な流路断面重心が、上流側の流路断面重心に対してずれている部位を有することを特徴とする。   In addition to any of the first to fifth configurations, the sixth configuration of the flow channel of the present invention is such that the flow path cross-sectional center of gravity perpendicular to the molten glass outflow direction is It has the site | part which has shifted | deviated.

本発明の流路の第7の構成は、第6の構成に加え、前記流路の内側に邪魔板を設けたことを特徴とする。   According to a seventh configuration of the flow path of the present invention, in addition to the sixth configuration, a baffle plate is provided inside the flow path.

本発明の流路の第8の構成は、第7の構成に加え、邪魔板の厚さは、溶融ガラス流出方向に対して垂直な流路断面重心が上流側の流路断面重心に対しずれる部位の流路径の0.1〜10倍であることを特徴とする。   In the eighth configuration of the flow path of the present invention, in addition to the seventh configuration, the thickness of the baffle plate is such that the flow path cross-sectional center perpendicular to the molten glass outflow direction is shifted from the upstream flow path cross-section center. It is characterized by being 0.1 to 10 times the flow path diameter of the part.

本発明の流路の第9の構成は、第1〜第8のいずれかの構成に加え、流路外壁が溶融ガラスの流出方向に対し拡開する部位を有することを特徴とする。   The ninth structure of the flow channel of the present invention is characterized in that, in addition to any of the first to eighth configurations, the flow channel outer wall has a portion that expands in the flowing direction of the molten glass.

本発明の流路の第10の構成は、ガラス原料を溶融ガラス槽において溶融し、溶融ガラス槽に接続された請求項1〜10のいずれか記載の流路を介して溶融ガラスを成形型に流出させてガラス成形体を成形することを含むガラス成形体の製造方法である。   According to a tenth configuration of the flow path of the present invention, a glass raw material is melted in a molten glass tank, and the molten glass is formed into a mold through the flow path according to claim 1 connected to the molten glass tank. It is the manufacturing method of the glass forming body including making it flow out and shape | molding a glass forming body.

本発明の第11の構成は、ガラス原料を溶融ガラス槽において溶融し、溶融ガラス槽に接続された流路を介して溶融ガラスを成形型に流出させてガラス成形体を成形することを含むガラス成形体の製造方法において、該流路が構成1〜10のいずれか記載の流路であることを特徴とするガラス成形体の製造方法である。   The eleventh configuration of the present invention is a glass including melting a glass raw material in a molten glass tank, and flowing the molten glass into a mold through a flow path connected to the molten glass tank to form a glass molded body. In the manufacturing method of a molded object, this flow path is the flow path in any one of the structures 1-10, It is a manufacturing method of the glass molded object characterized by the above-mentioned.

上記構成によれば、低粘性の溶融ガラスからガラス塊を取得し浮上成形させるにより、脈理のない光学ガラスプリフォームを成形することができる。   According to the said structure, an optical glass preform without a striae can be shape | molded by acquiring a glass lump from low-viscosity molten glass and carrying out float forming.

以下、本発明の実施態様について説明する。
本明細書において「流路」とは、溶融ガラスを溶融及び/又は保持する溶融ガラス槽に接続され、溶融ガラスを型に流出させる際の、ガラス流が通過する流路全体および流出口を含む概念であるあり、パイプ、オリフイスは「流路」に含まれることになる。
Hereinafter, embodiments of the present invention will be described.
In this specification, the “flow path” includes an entire flow path through which the glass flow passes and an outlet, which are connected to a molten glass tank that melts and / or holds molten glass and flows the molten glass into a mold. It is a concept, and pipes and orifices are included in the “flow path”.

本発明の第1の構成において、流路はその先端部分、すなわち流出口近傍が、内側管とその外側において所定の間隔をおいて配置された外側管に分岐されており、内側管の内径が外側管の内径の50%以上であり、該内側管の下側縁は該外側管の下側縁よりも下方に突出している。そのため、内側管の外側下端部におけるガラス流には、外側管から内側管の外壁に沿って流下する溶融ガラスも流入するため、外側管の外壁部分に濡れ上がるガラス量を激減させることができ、その結果、濡れ上がりガラスの変質する問題が生じにくくなり、その結果、プリフォームの脈理を低減させることができる成形が可能となる。   In the first configuration of the present invention, the flow path has its distal end portion, that is, the vicinity of the outlet, branched into an inner tube and an outer tube disposed at a predetermined interval on the outer side, and the inner diameter of the inner tube is It is 50% or more of the inner diameter of the outer tube, and the lower edge of the inner tube protrudes below the lower edge of the outer tube. Therefore, the glass flow at the outer lower end of the inner tube also flows in the molten glass flowing down from the outer tube along the outer wall of the inner tube, so that the amount of glass wetted on the outer wall portion of the outer tube can be drastically reduced. As a result, it becomes difficult to cause a problem that the glass is wet and changes in quality, and as a result, molding capable of reducing the striae of the preform becomes possible.

もちろん、外側管から内側管の外壁に沿って流出する溶融ガラスも、その一部は外側管の管口から外側管の外側下端部に濡れ上がろうとするが、この部分のガラスは内側管の外壁に沿って流下する溶融ガラス流に引っ張られ、この流下するガラスの引っ張り力が濡れ上がろうとする力に抗するために、この部分のガラスも外側管の管口から濡れ上がりにくくなる。このように、本発明の流路においては、内側管、外側管の2つのガラス流間の作用により、濡れ上がりを防止することができ、均質で脈理のないガラスゴブを供給することができる。   Of course, a part of the molten glass flowing out from the outer tube along the outer wall of the inner tube also tries to wet up from the tube opening of the outer tube to the outer lower end of the outer tube, but this portion of the glass is not covered by the inner tube. Since the glass is pulled by the molten glass flow flowing down along the outer wall and the pulling force of the flowing glass resists the force of wetting, the glass in this portion is also difficult to wet from the mouth of the outer tube. As described above, in the flow channel of the present invention, wetting can be prevented by the action between the two glass flows of the inner tube and the outer tube, and a glass gob having a uniform and no striae can be supplied.

これには、外側管の内径に対する内側管の内径の比が所定の範囲内であること極めて効果的であることが、経験的に今般見出された。内側管の径が小さすぎると、内側管の間を流れる溶融ガラスからの(内側管と外側管との間を流れるガラスに対する)引っ張り効果が減少し、外側管外壁への濡れ上がりを防ぐ効果が減退する。他方、内側管の径が大きすぎると、外壁に沿って流下する溶融ガラスの厚さが薄くなるので冷却されやすく、このため外側管側から流出する溶融ガラスに失透が生じるおそれが生じる。   It has now been empirically found that this is very effective if the ratio of the inner tube inner diameter to the outer tube inner diameter is within a predetermined range. If the diameter of the inner tube is too small, the pulling effect from the molten glass flowing between the inner tubes (against the glass flowing between the inner tube and the outer tube) will decrease, and the effect of preventing wetting on the outer wall of the outer tube will be prevented. Decline. On the other hand, if the diameter of the inner tube is too large, the thickness of the molten glass flowing down along the outer wall becomes thin, so that it is easy to be cooled, and thus devitrification may occur in the molten glass flowing out from the outer tube side.

したがって、内側管の内径が外側管の内径の50%以上であることが好ましく、55%以上であることがより好ましく、60%以上であることが最も好ましい。また97%以下であることが好ましく、95%以下であることがより好ましく、93%以下であることが最も好ましい。   Accordingly, the inner diameter of the inner tube is preferably 50% or more of the inner diameter of the outer tube, more preferably 55% or more, and most preferably 60% or more. Further, it is preferably 97% or less, more preferably 95% or less, and most preferably 93% or less.

本発明の第2の構成において、流路の流出口近傍において、溶融ガラスの内側管外壁に対する濡れ性が、溶融ガラスの外側管に外壁に対する濡れ性よりも良いので、上記の濡れ上がり防止効果をさらに促進することができる。このように外側管の濡れ性を内側管のそれより小さくすることにより、外側管外壁へ濡れ上がろうとするガラスが、内側を流れるガラス流に引っ張られた際に容易に引き込まれることとなる。   In the second configuration of the present invention, the wettability of the molten glass with respect to the outer wall of the inner tube is better than the wettability of the outer surface of the molten glass with respect to the outer wall near the outlet of the flow path. It can be further promoted. Thus, by making the wettability of the outer tube smaller than that of the inner tube, the glass that is going to get wet to the outer wall of the outer tube is easily drawn when pulled by the glass flow flowing inside.

本発明の第3の構成において、内側管は比較的溶融ガラスとの濡れ性の良い白金系金属であり、外側管は溶融ガラスとの濡れ性に乏しい金又は金含有合金等であるので、外側管の内外壁に沿って流下するガラス流は容易に流れる一方、外側管から流下するガラス流は濡れ上がり防止効果が向上する。   In the third configuration of the present invention, the inner tube is a platinum-based metal that has relatively good wettability with molten glass, and the outer tube is gold or a gold-containing alloy that has poor wettability with molten glass. While the glass flow flowing down along the inner and outer walls of the tube flows easily, the glass flow flowing down from the outer tube improves the wet-up preventing effect.

内側管に使用する白金族、白金族合金又はそれらの強化物は、ガラス溶解用部材として使用される公知の白金族合金等であることが好ましく、具体的には白金とパラジウム、イリジウム、オスミウム、レニウムが使用できる。また金をこれらに一定量含有させること妨げるものではないが、外側間の溶融ガラスに対する濡れ性よりもよくなることが好ましい。また白金族金属等の強化物とは、酸化ジルコニウム等の公知の強化材を所定量含有(分散)させた白金族合金等が使用される。   The platinum group, platinum group alloy or their reinforcements used for the inner tube is preferably a known platinum group alloy or the like used as a glass melting member, specifically platinum and palladium, iridium, osmium, Rhenium can be used. Further, it does not prevent the gold from being contained in a certain amount, but it is preferable that the wettability with respect to the molten glass between the outer sides is improved. Further, as the reinforcement such as platinum group metal, a platinum group alloy containing a predetermined amount of a known reinforcing material such as zirconium oxide (dispersed) is used.

外側管に使用される金を含有する白金族合金、又は強化白金族合金或いは金又は強化金としては、ガラス溶解用部材として使用される公知の金含有白金族合金であることが好ましく、さらに白金族合金を使用しなくとも金又は強化金を使用してもよい。ここで強化材としては酸化ジルコニウム等の公知の強化材を所定量含有(分散)させたものが使用できる。   The platinum group alloy containing gold used in the outer tube, or the reinforced platinum group alloy or gold or reinforced gold is preferably a known gold-containing platinum group alloy used as a glass melting member, and more preferably platinum. Gold or reinforced gold may be used without using a group alloy. Here, a reinforcing material containing (dispersing) a predetermined amount of a known reinforcing material such as zirconium oxide can be used.

本発明の第4の構成において、内側管の外壁の面粗さが外側管の外壁の面粗さより粗いので、上記濡れ上がり防止効果を一層促進することができる。   In the 4th structure of this invention, since the surface roughness of the outer wall of an inner side pipe is rougher than the surface roughness of the outer wall of an outer side pipe | tube, the said wet-up prevention effect can be promoted further.

本発明の第5の構成において、内側間の突出部分の流出方向の長さを、内側管と外側管の間に形成される流路幅との関係で、所定の割合にすることにより、上記濡れ上がり防止効果を発揮させ最適の流路構造を得ることができる。本発明者の鋭意研究した結果によれば、内側間の突出部分の流出方向の長さを内側管と外側管の間に形成される流路幅の1〜10倍とすることが好ましく、2〜9倍とすることがより好ましく、3〜8倍とすることが最も好ましい。ここで内側間の「突出部分の流出方向の長さ」とは、外側管末端部と内側管末端部との流出方向における距離、すなわち本発明の態様を表す図2におけるdの距離を意味する。   In the fifth configuration of the present invention, the length in the outflow direction of the protruding portion between the inner sides is set to a predetermined ratio in relation to the flow path width formed between the inner tube and the outer tube. An optimal flow path structure can be obtained by exhibiting the effect of preventing wetting. According to the results of intensive studies by the inventor, it is preferable that the length in the outflow direction of the protruding portion between the inner sides is 1 to 10 times the width of the flow path formed between the inner tube and the outer tube. It is more preferable to set it to -9 times, and it is most preferable to set it as 3-8 times. Here, the “length in the outflow direction of the protruding portion” between the inner sides means the distance in the outflow direction between the outer tube end portion and the inner tube end portion, that is, the distance d in FIG. 2 representing the embodiment of the present invention. .

本発明の第6及び7の構成において、ノズルの上流部に流路の断面重心がずれる部分、例えば、邪魔板を設けることにより、成形するガラス塊の脈理等の不利益を、著しく減少させることができる。   In the sixth and seventh configurations of the present invention, by providing a portion where the cross-sectional center of gravity of the flow path is shifted in the upstream portion of the nozzle, for example, a baffle plate, disadvantages such as striae of the glass lump to be formed are significantly reduced. be able to.

溶融ガラス槽から流出する溶融ガラスが流路を通過する場合、流路の断面中心の温度は、内壁近傍に比べ相対的に非常に高くなる。ガラス流中に温度、粘度、流速の不均一性が拡大することなり、脈利や失透の原因となりやすい。従って、かかる流路の断面重心をずらす部分、例えば流路の途中に邪魔板を設けることにより、溶融ガラス流の進行方向に垂直な断面の中央付近を流れる比較的に高温のガラス流は急激にその進路を曲げられ、内側管内壁近傍の比較的温度の低いガラス流と混合され、比較的均一な温度分布を有することになる。その結果、失透や脈理等の不利益を解消することができる。この部位より先において、適当な径、長さ、形状、温度制御方法を有する流出部を構成することにより所望の温度、流速分布を得ることができ、これによってガラス成形体における脈理や失透を一層抑えることができる。
なお、ノズル上流部における流路の断面重心をずらす手段は、邪魔板に限られるものではない。
When the molten glass flowing out of the molten glass tank passes through the flow path, the temperature at the center of the cross section of the flow path is relatively much higher than in the vicinity of the inner wall. Non-uniformity in temperature, viscosity, and flow rate will increase during the glass flow, which is likely to cause pulse and devitrification. Accordingly, by providing a baffle plate in the middle of the flow path, for example, by providing a baffle plate in the middle of the flow path, the relatively high temperature glass flow that flows near the center of the cross section perpendicular to the traveling direction of the molten glass flow suddenly. The path is bent and mixed with a relatively cool glass stream near the inner wall of the inner tube, resulting in a relatively uniform temperature distribution. As a result, disadvantages such as devitrification and striae can be eliminated. A desired temperature and flow velocity distribution can be obtained by constructing an outflow portion having an appropriate diameter, length, shape, and temperature control method beyond this portion, thereby allowing striae and devitrification in the glass molded body. Can be further suppressed.
The means for shifting the cross-sectional center of gravity of the flow path in the upstream portion of the nozzle is not limited to the baffle plate.

本発明の第8の構成において、邪魔板を所定の形状とすることにより、前記脈理等の問題をいっそう減少させることができる。上記邪魔板は、厚さが厚すぎるとガラス流の流れを停滞させやすくなり、かえって失透や脈理の原因となりやすく、また薄すぎるとガラス流の熱と圧力に耐え切れずに破損、変形しやすくなる。従って、前記邪魔板の厚さを、溶融ガラス流出方向に対して垂直な断面重心が上流側の断面重心に対してずれる部位の流路径の0.1〜10倍とすることが好ましく、0.2〜9倍とすることがより好ましく、0.3〜8倍とすることが最も好ましい。   In the eighth configuration of the present invention, the problem such as striae can be further reduced by forming the baffle plate in a predetermined shape. If the thickness of the baffle plate is too thick, the flow of the glass flow tends to stagnate, and on the contrary, it tends to cause devitrification and striae, and if it is too thin, it cannot withstand the heat and pressure of the glass flow and breaks or deforms. It becomes easy to do. Therefore, it is preferable that the thickness of the baffle plate is 0.1 to 10 times the flow path diameter of the portion where the cross-sectional center of gravity perpendicular to the molten glass outflow direction is shifted from the upstream cross-sectional center of gravity. It is more preferably 2 to 9 times, and most preferably 0.3 to 8 times.

本発明の第9の構成において、流路外壁を溶融ガラスの流出方向に対し拡開させることにより、取得ガラス塊のサイズ、形状又はガラスの粘度等に適宜対応させて成形が可能となる。   In the ninth configuration of the present invention, by expanding the flow path outer wall in the flowing direction of the molten glass, it is possible to perform molding in accordance with the size, shape, glass viscosity, and the like of the acquired glass lump.

本発明の第10の構成によれば、前記流路を成形型上に供給された溶融ガラスをプレス成形用プリフォームに成形するプレス成形用プリフォーム製造装置において使用することにより、均質で脈理のないプレス成形用プリフォームを成形することができる。   According to the tenth configuration of the present invention, the flow path is used in a press molding preform manufacturing apparatus that molds the molten glass supplied onto the molding die into a press molding preform, thereby providing a homogeneous and striae. It is possible to mold a press-molding preform without any.

添付図面を参照して本発明の実施の形態について説明する。
図1は本発明の流路を使用するガラス成形体製造装置の全体を示す概略図である。
ガラス成形体製造装置1は溶融ガラス槽3を含む溶解装置2、溶解ガラス槽3に接続された流路4、流路4から供給される溶融ガラスがプリフォームに成形されるプリフォーム成形装置5を備える。通常ガラス原料は、溶解装置2の坩堝等からなる溶融ガラス槽3内に投入され、加熱され、所定の温度にて溶融される。溶融ガラスをプリフォーム成形装置5に供給する流路4は通常耐熱金属製であり多くは前述の白金合金や強化白金合金等が使用される。溶融ガラスは流路4を通り、或いは適宜清澄、脱泡、攪拌等の処置が施された後、流路4の先端からプリフォーム成形装置5の成形型に流下される。成形型は作成するプリフォームにより様々な形態をとることができる。たとえば板状ガラスを作る場合には、ほぼ四角形の成形型上に連続流として流下される。浮上成形をする場合は円形の窪みを有する多孔質の成形型や、最下部に気体を噴出口を有するラッパ形状の成形型を使用するのが一般的である。
Embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic view showing the entire glass molded body manufacturing apparatus using the flow path of the present invention.
The glass molded body manufacturing apparatus 1 includes a melting device 2 including a molten glass tank 3, a flow path 4 connected to the molten glass tank 3, and a preform forming apparatus 5 in which molten glass supplied from the flow path 4 is formed into a preform. Is provided. Usually, the glass raw material is put into a molten glass tank 3 composed of a crucible or the like of the melting apparatus 2, heated, and melted at a predetermined temperature. The flow path 4 for supplying the molten glass to the preform molding apparatus 5 is usually made of a heat-resistant metal, and in many cases, the above-described platinum alloy, reinforced platinum alloy or the like is used. The molten glass passes through the flow path 4 or after being appropriately subjected to clarification, defoaming, stirring, and the like, and then flows down from the front end of the flow path 4 to the mold of the preform molding device 5. The mold can take various forms depending on the preform to be created. For example, when making a sheet glass, it flows down as a continuous flow on a substantially rectangular mold. When performing floating molding, it is common to use a porous mold having a circular depression or a trumpet-shaped mold having a gas outlet at the bottom.

図2は本発明の流路の先端部分の1実施形態を示す縦断面図である。
流路2は、その先端部分が下流側に向けてテーパー状に拡開する拡開部6に形成されており、その先端部は内径が外側管の内径の50%以上である溶融ガラスの大部分を流出させる円筒状の内側管7と、その外側において所定の間隔をおいて配置された円筒状の外側管8に分岐されており、内側管7の下端縁は該外側管8の下端縁よりも下方に所定寸法だけ突出している。内側管7はその上端部の複数の箇所において半径方向に延長する支持部7aが一体的に形成されており、これら支持部7aの先端部はそれぞれ外側管8の外周に溶接固定されている。内側管7の突出部分の流出方向の長さは、内側管と外側管の間に形成される流路幅の1〜10倍であることが好ましい。
FIG. 2 is a longitudinal sectional view showing an embodiment of the tip portion of the flow path of the present invention.
The flow path 2 is formed in a widened portion 6 whose tip portion widens in a tapered shape toward the downstream side, and the tip portion has a large diameter of molten glass whose inner diameter is 50% or more of the inner diameter of the outer tube. The inner pipe 7 is branched into a cylindrical inner pipe 7 that allows the portion to flow out, and a cylindrical outer pipe 8 that is arranged at a predetermined interval on the outer side thereof, and the lower end edge of the inner pipe 7 is the lower end edge of the outer pipe 8. It protrudes downward by a predetermined dimension. The inner tube 7 is integrally formed with support portions 7a extending in the radial direction at a plurality of locations at the upper end portion thereof, and the tip portions of the support portions 7a are fixed to the outer periphery of the outer tube 8 by welding. The length in the outflow direction of the protruding portion of the inner tube 7 is preferably 1 to 10 times the width of the flow path formed between the inner tube and the outer tube.

内側管7はガラス流に対して濡れ性の良い白金、白金族合金、強化白金又は強化白金合金からなり、外側管はガラス流に対して濡れ性に乏しい金を含有する白金、白金族合金、強化白金又は強化白金合金或いは金又は強化金等からなることが好ましい。この構成により、内側管7の内外壁に沿って流下するガラス流は容易に流れる一方外側管8から流下するガラス流に対して濡れ上がり防止効果が向上する。
図3は、二重管に分岐する前に流路の一部に邪魔板10を設けた実施形態を示す断面図である。
The inner tube 7 is made of platinum, platinum group alloy, reinforced platinum or reinforced platinum alloy having good wettability with respect to the glass flow, and the outer tube is made of platinum, platinum group alloy containing gold with poor wettability with respect to the glass flow, It is preferably made of reinforced platinum, reinforced platinum alloy, gold or reinforced gold. With this configuration, the glass flow flowing down along the inner and outer walls of the inner tube 7 easily flows, while the effect of preventing wetting is improved with respect to the glass flow flowing down from the outer tube 8.
FIG. 3 is a cross-sectional view showing an embodiment in which a baffle plate 10 is provided in a part of a flow path before branching into a double pipe.

邪魔板10がある部位において流路は非連続的に狭くなっており、当該部位の流路中心はその上流部分に流路中心からずれている。   The flow path is discontinuously narrow at the site where the baffle plate 10 is located, and the flow path center of the site is shifted from the flow path center to the upstream portion.

このような邪魔板10を採用することにより、流路上流部において中央付近を流れてきた高温ガラス流は邪魔板10によりその進路を流路内壁近傍に変えざるを得ず、その際に、もともと流路内壁近傍を流れてきた低温のガラス流と混ざり合い、温度が均一化される。その結果、邪魔板10を通過する際に、より精度良く温度の計測および制御が可能となるため、流下されるガラスゴブ内において脈理の原因となるような高温ガラス流の流出や不適切な温度を生じにくくなる。なお、図3において、ガラス流は邪魔板10により形成される狭い流路を通過しているが、前記流路のずれによる効果を生じるものであれば、一枚の邪魔板10により形成される流路は一箇所に限定されるものではない。   By adopting such a baffle plate 10, the high-temperature glass flow that has flowed near the center in the upstream portion of the flow path must be changed to the vicinity of the inner wall of the flow path by the baffle plate 10. It mixes with the low-temperature glass flow that has flowed near the inner wall of the flow path, and the temperature is made uniform. As a result, since temperature can be measured and controlled with higher accuracy when passing through the baffle plate 10, the outflow or inappropriate temperature of the high-temperature glass flow that causes striae in the glass gob that flows down Is less likely to occur. In FIG. 3, the glass flow passes through a narrow flow path formed by the baffle plate 10, but is formed by a single baffle plate 10 as long as it produces an effect due to the shift of the flow path. The flow path is not limited to one place.

以下、本発明の具体的な実施例を示す。
本実施例においては、リン燐酸系光学ガラスを白金坩堝にて溶融させ、坩堝に接続された流路を介して溶融ガラスをその末端の流出口から流出させ、ガスを噴出するタングステンカーバイド製多孔質成形型上にて浮上成形させ、精密プレス成形用プリフォームとして使用するためのガラスゴブを取得した。
Specific examples of the present invention will be described below.
In this example, the phosphorous phosphate optical glass is melted in a platinum crucible, and the molten glass is caused to flow out of the terminal outlet through a flow path connected to the crucible, and a porous gas made of tungsten carbide that ejects gas. A glass gob for use as a precision press molding preform was obtained by flotation molding on a mold.

流路としては前述の図2と同じ形状の強化白金流路を使用した。ここで、流路内径は3mm(断面積7.07mm)で、流出口は9mmまで拡開している。流路全長、すなわち坩堝の出口から流路末端の流出口までの長さは2mであった。 As the flow channel, a reinforced platinum flow channel having the same shape as that in FIG. 2 was used. Here, the inner diameter of the flow path is 3 mm (cross-sectional area 7.07 mm 2 ), and the outlet is expanded to 9 mm. The total length of the channel, that is, the length from the outlet of the crucible to the outlet at the end of the channel was 2 m.

流出口付近の二重管部分においては内側管の内径は6mm、外側管の内径は9mmであった。外側間は金を5%含有した強化白金を使用した。内側管の突出部分の長さdは4mmであった。   In the double pipe portion near the outflow port, the inner diameter of the inner pipe was 6 mm, and the inner diameter of the outer pipe was 9 mm. Between the outsides, reinforced platinum containing 5% gold was used. The length d of the protruding portion of the inner tube was 4 mm.

受け型は、多孔質ステンレスで作られ、その受面から空気を噴出している状態で、溶融ガラスを受けることにより、受け型から浮上した状態で溶融ガラスを受け、ガラスゴブを得た。   The receiving mold was made of porous stainless steel, and received molten glass in a state where air was blown from the receiving surface thereof. Thus, the molten glass floated from the receiving mold to receive glass gob.

使用したガラスは、五酸化リンを主成分とする光学ガラスを溶融した。坩堝は約900℃に保たれ、流出パイプは通電加熱により約850℃に保たれた。流出口からは、溶融ガラスを液滴状に分離している状態にした。この時の溶融ガラスの流出量は毎分20gであった。   The glass used was melted optical glass mainly composed of phosphorus pentoxide. The crucible was kept at about 900 ° C., and the outflow pipe was kept at about 850 ° C. by electric heating. From the outlet, the molten glass was separated into droplets. The amount of molten glass flowing out at this time was 20 g per minute.

このガラスゴブには、失透及び脈理などの光学欠陥を目視で観察したところ、そのような不良は発見できず、光学素子成形用プリフォームとして使用できる高品質のガラスゴブであった。   When this glass gob was visually observed for optical defects such as devitrification and striae, such a defect could not be found, and it was a high-quality glass gob that could be used as a preform for molding an optical element.

ガラス成形品を製造する装置の全体外略図である。1 is an overall schematic view of an apparatus for producing a glass molded product. 本発明の流路の1実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the flow path of this invention. 本発明の流路の他の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows other embodiment of the flow path of this invention.

符号の説明Explanation of symbols

4 流路
7 内側管
8 外側管
4 Channel 7 Inner tube 8 Outer tube

Claims (11)

溶融ガラス槽に接続され、溶融ガラスを流出させるための流路であって、その先端部分が、内側管とその外側において所定の間隔をおいて配置された外側管に分岐されており、内側管の内径が外側管の内径の50%以上であり、該内側管の下側縁は該外側管の下側縁よりも下方に突出していることを特徴とする前記流路。 A flow path for flowing molten glass connected to the molten glass tank, the tip portion of which is branched into an inner tube and an outer tube arranged at a predetermined interval on the outer side, and the inner tube The inner diameter of the inner pipe is 50% or more of the inner diameter of the outer pipe, and the lower edge of the inner pipe protrudes below the lower edge of the outer pipe. 流路の流出口近傍において、溶融ガラスの内側管外壁に対する濡れ性が、溶融ガラスの外側管外壁に対する濡れ性よりも良いことを特徴とする請求項1記載の流路。 2. The flow path according to claim 1, wherein the wettability of the molten glass with respect to the inner tube outer wall is better than the wettability of the molten glass with respect to the outer tube outer wall in the vicinity of the outlet of the flow channel. 内側管は、白金族、白金族合金又はそれらの強化物からなり、該外側管は金を含有する白金族、白金族合金又はそれらの強化物、あるいは金又は強化金からなることを特徴とする請求項2記載の流路。 The inner tube is made of a platinum group, a platinum group alloy or a reinforced material thereof, and the outer tube is made of a platinum group containing gold, a platinum group alloy or a reinforced material thereof, or gold or reinforced gold. The flow path according to claim 2. 内側管の外壁の面粗さが外側管の外壁の面粗さより粗いことを特徴とする請求項2又は3に記載の流路。 The flow path according to claim 2 or 3, wherein the surface roughness of the outer wall of the inner tube is rougher than the surface roughness of the outer wall of the outer tube. 内側管の突出部分の流出方向の長さが、内側管と外側管の間に形成される流路幅の1〜10倍であることを特徴とする請求項1〜4のいずれかに記載の流路。 The length in the outflow direction of the protruding portion of the inner pipe is 1 to 10 times the width of the flow path formed between the inner pipe and the outer pipe. Flow path. 溶融ガラス流出方向に対して垂直な流路断面重心が、上流側の流路断面重心に対してずれている部位を有することを特徴とする請求項1〜5のいずれかに記載の流路。 The flow path according to any one of claims 1 to 5, wherein the flow path cross-sectional center of gravity perpendicular to the molten glass outflow direction has a portion shifted from the upstream-side flow path cross-section center of gravity. 前記流路の内側に邪魔板を設けたことを特徴とする請求項6に記載の流路。 The flow path according to claim 6, wherein a baffle plate is provided inside the flow path. 邪魔板の厚さは、溶融ガラス流出方向に対して垂直な流路断面重心が上流側の流路断面重心に対しずれる部位の流路径の0.1〜10倍であることを特徴とする請求項7の流路。 The thickness of the baffle plate is 0.1 to 10 times the flow path diameter of the portion where the flow path cross-sectional center perpendicular to the molten glass outflow direction deviates from the upstream flow path cross-section center. Item 7. The flow path according to item 7. 流路外壁が溶融ガラスの流出方向に対し拡開する部位を有することを特徴とする請求項1〜8のいずれかに記載の流路。 The flow path according to any one of claims 1 to 8, wherein the flow path outer wall has a portion that expands in a flow direction of the molten glass. 成形型上に供給された溶融ガラスをプレス成形用プリフォームに成形するプレス成形用プリフォーム製造装置において使用することを特徴とする請求項1〜9のいずれかに記載の流路。 The flow path according to any one of claims 1 to 9, wherein the flow path is used in a press-molding preform manufacturing apparatus that molds molten glass supplied onto a mold into a press-molding preform. ガラス原料を溶融ガラス槽において溶融し、溶融ガラス槽に接続された請求項1〜10のいずれか記載の流路を介して溶融ガラスを成形型に流出させてガラス成形体を成形することを含むガラス成形体の製造方法。 It melt | dissolves a glass raw material in a molten glass tank, and flows out a molten glass to a shaping | molding die through the flow path in any one of Claims 1-10 connected to the molten glass tank, and includes shape | molding a glass molded object. A method for producing a glass molded body.
JP2007271197A 2007-10-18 2007-10-18 Flow passage for flowing-out molten glass Pending JP2009096684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271197A JP2009096684A (en) 2007-10-18 2007-10-18 Flow passage for flowing-out molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271197A JP2009096684A (en) 2007-10-18 2007-10-18 Flow passage for flowing-out molten glass

Publications (1)

Publication Number Publication Date
JP2009096684A true JP2009096684A (en) 2009-05-07

Family

ID=40700032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271197A Pending JP2009096684A (en) 2007-10-18 2007-10-18 Flow passage for flowing-out molten glass

Country Status (1)

Country Link
JP (1) JP2009096684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016706A (en) * 2009-07-10 2011-01-27 Konica Minolta Opto Inc Molten glass-feeding nozzle, glass gob, forming apparatus, and glass product
JP2012211039A (en) * 2011-03-31 2012-11-01 Tanaka Kikinzoku Kogyo Kk Molten glass supplying nozzle and manufacturing method therefor
CN103058497A (en) * 2011-10-07 2013-04-24 Hoya株式会社 Manufacturing method of glass formed body and manufacturing method of optical component using same glass formed body
CN104556635A (en) * 2013-10-18 2015-04-29 Hoya株式会社 Glass discharging device and method, and manufacturing method of pre-moulding parison and optical elements

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016706A (en) * 2009-07-10 2011-01-27 Konica Minolta Opto Inc Molten glass-feeding nozzle, glass gob, forming apparatus, and glass product
JP2012211039A (en) * 2011-03-31 2012-11-01 Tanaka Kikinzoku Kogyo Kk Molten glass supplying nozzle and manufacturing method therefor
CN103058497A (en) * 2011-10-07 2013-04-24 Hoya株式会社 Manufacturing method of glass formed body and manufacturing method of optical component using same glass formed body
CN104556635A (en) * 2013-10-18 2015-04-29 Hoya株式会社 Glass discharging device and method, and manufacturing method of pre-moulding parison and optical elements

Similar Documents

Publication Publication Date Title
EP1832558B1 (en) Plate glass manufacturing apparatus and plate glass manufacturing method
JP6929873B2 (en) Methods and equipment for processing glass
CN102781856B (en) Stablize the method for melting material post
JP2009096684A (en) Flow passage for flowing-out molten glass
US20070271963A1 (en) Apparatus and Process for Producing Tubes or Rods
JP4323481B2 (en) Glass tube manufacturing apparatus, glass tube manufacturing method, and glass tube
JP4990229B2 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
WO2018110218A1 (en) Sheet glass production method, clarification container, and sheet glass production apparatus
JP4867318B2 (en) Sheet glass manufacturing method and manufacturing apparatus
JP2019206448A (en) Method and apparatus for manufacturing glass article
JP5243723B2 (en) Nozzle and method of manufacturing optical glass block using the nozzle
JP5438084B2 (en) Manufacturing method of glass molded body, and manufacturing method of optical element using the glass molded body
JP2009102200A (en) Glass flow passage and method for manufacturing optical glass formed body using the same
KR20180075696A (en) Glass melting system and method for increased batch melting and glass homogeneity
JP3862589B2 (en) Optical glass outflow device and method of manufacturing optical glass block
JP2008280194A (en) Glass flow passage and method for manufacturing optical glass formed body using the same
JPWO2015194642A1 (en) Dissimilar substrate discharge structure of molten glass, glass article manufacturing apparatus and manufacturing method
JP2017513799A (en) Apparatus and method for producing composite glass products
KR20190079410A (en) Glass manufacturing apparatus
JP2015145316A (en) Nozzle and method of manufacturing optical glass lump using the nozzle
JP2016050148A (en) Method and apparatus for manufacturing glass plate
JP2013086991A (en) Supply pipe for molten glass and apparatus for forming glass
JP2008297173A (en) Glass flow passage and method for manufacturing optical glass molding by using the same
JP2013043784A (en) Glass molding nozzle and method for molding glass using the same
JP2008280218A (en) Glass flow path, and method of manufacturing optical glass formed article using the same