JP2008280218A - Glass flow path, and method of manufacturing optical glass formed article using the same - Google Patents

Glass flow path, and method of manufacturing optical glass formed article using the same Download PDF

Info

Publication number
JP2008280218A
JP2008280218A JP2007126985A JP2007126985A JP2008280218A JP 2008280218 A JP2008280218 A JP 2008280218A JP 2007126985 A JP2007126985 A JP 2007126985A JP 2007126985 A JP2007126985 A JP 2007126985A JP 2008280218 A JP2008280218 A JP 2008280218A
Authority
JP
Japan
Prior art keywords
glass
flow path
flow
temperature
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007126985A
Other languages
Japanese (ja)
Inventor
Yuji Kudo
工藤雄士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2007126985A priority Critical patent/JP2008280218A/en
Publication of JP2008280218A publication Critical patent/JP2008280218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass flow path for preparing, simply and with high quality, a formed glass article of a recent glass having high refraction and low Tg for which selection of a forming condition is very difficult, and further the glass flow path capable of simply controlling at a short distance to allow a device to be small. <P>SOLUTION: The flow path for flowing out a molten glass connected to a molten glass tank has a glass flow retention part having a form in which its flow path diameter contracts after expanding. The flow path has an outlet of the glass flow retention part which is not positioned just beneath the inlet thereof. The flow path has a maximum diameter of the retention part which is not less than two times the flow path diameter of other than the retention part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、所定量の光学ガラス成形体を製造する技術に関する。 The present invention relates to a technique for producing a predetermined amount of an optical glass molded body.

近年、デジタルカメラやプロジェクタなどの光学機器の分野においては、小型化、軽量化が要求され、それに伴い、使用レンズ枚数を減らすことができる非球面レンズの需要が増加している。   In recent years, in the field of optical devices such as digital cameras and projectors, there has been a demand for miniaturization and weight reduction, and accordingly, there is an increasing demand for aspheric lenses that can reduce the number of lenses used.

通常、光学系を構成するレンズには一般に球面レンズと非球面レンズがある。多くの球面レンズは、ガラス材料をリヒートプレス成形して得られたガラス成形品を研削研磨することによって製造される。一方、非球面レンズは、加熱軟化したプリフォームを、高精度な成形面をもつ金型でプレス成形し、金型の高精度な成形面の形状をプリフォーム材に転写して得る方法、すなわち、精密プレス成形によって製造されることが主流となっている。 In general, the lenses constituting the optical system generally include a spherical lens and an aspheric lens. Many spherical lenses are manufactured by grinding and polishing a glass molded product obtained by reheat press molding a glass material. On the other hand, an aspheric lens is a method in which a heat-softened preform is press-molded with a mold having a high-precision molding surface, and the shape of the high-precision molding surface of the mold is transferred to a preform material, that is, It is mainly produced by precision press molding.

精密プレス成形用プリフォームとしては、球形又は扁平状ガラス成形体(ガラスゴブ)が使用されることが多いが、これらは、原料ガラスを坩堝等の溶融装置で溶融した後、溶融装置に連結されたノズル等から成形型上に流出させ、板状ガラスや棒状ガラス等に成形し、それらをさらに冷間加工することにより製造することができる。また、近年では、ノズル等の流路から流出する溶融ガラスを、シャーにより切断して、或いは表面張力を利用して分離し、例えばガスを噴出する多孔質型上に流下(滴下)させ、浮上成形させることにより、適当な大きさ及び形状のガラスゴブに調整する技術が用いられる。ただし前者ではシャーによる切断の痕跡がガラスゴブに残ることがあるため、近年ではもっぱら後者が用いられることが多い。   As a precision press-molding preform, a spherical or flat glass molded body (glass gob) is often used. These materials are melted in a melting apparatus such as a crucible and then connected to the melting apparatus. It can be produced by allowing it to flow out from a nozzle or the like onto a mold, forming it into plate-like glass or rod-like glass, and further cold-working them. Further, in recent years, molten glass flowing out from a flow path such as a nozzle is cut by a shear or separated by using surface tension, and flows down (drops) onto, for example, a porous mold that ejects gas, and then floats. A technique for adjusting the glass gob to an appropriate size and shape by molding is used. However, in the former case, traces of cutting by the shear may remain on the glass gob, so in recent years the latter is often used.

上記のいずれの手段においても、流路からガラスを流出させる場合、そのガラス流の温度、流出量を制御するため、或いは成形の際に生じる脈理、失透等の不良発生を防ぐため、その流路については様々な形状が考案されてきた。近年、光学ガラスの高屈折率化に伴う液相温度の高温化及び/又は粘性の低粘性化、あるいは低Tg化に伴う粘性の低粘性化に対応すべく様々な手法が考案されてきたが、十分には対応し切れていないのが現状である。 In any of the above means, when glass is caused to flow out of the flow path, in order to control the temperature and flow rate of the glass flow, or to prevent defects such as striae and devitrification occurring during molding, Various shapes have been devised for the flow path. In recent years, various methods have been devised to cope with the increase in the liquid phase temperature and / or the decrease in the viscosity accompanying the increase in the refractive index of the optical glass, or the decrease in the viscosity associated with the decrease in the Tg. However, the current situation is not enough.

特許文献1には、流路本体の径よりも流出口の径を大きくすることにより、例えば流路末端の溶融ガラス流出口をテーパー状に開くことにより、溶融ガラス流を流路流出口により長い時間滞留させ、ガラスの流下のタイミングを遅延制御することができる流路が記載されている。   In Patent Document 1, the diameter of the outlet is made larger than the diameter of the channel main body, for example, the molten glass outlet at the end of the channel is opened in a tapered shape so that the molten glass flow is longer than the channel outlet. A flow path is described which can be held for a period of time and the delay of glass flow-down timing can be controlled.

特許文献2には、溶融ガラスが溶融装置から流れ始めて、パイプを通過し、流出口から流出する際に、内部に絞りを加えることにより流速分布を一様にさせ、成分が揮発した変質ガラスの滞留を抑え、脈理の発生を防ぐ方法が記載されている。また、絞りによる流量低下を防止するために、絞り部の温度を絞り部以外よりも高温に制御することが記載されている。   In Patent Document 2, when molten glass starts to flow from a melting apparatus, passes through a pipe, and flows out from an outlet, the flow velocity distribution is made uniform by adding a constriction inside, and the modified glass in which the components are volatilized is disclosed. A method is described that suppresses retention and prevents striae. In addition, it is described that the temperature of the throttle portion is controlled to be higher than that other than the throttle portion in order to prevent the flow rate from being reduced due to the throttle.

特許文献3には、流路の内部に抵抗部材を設けて流路断面の中央を流れるガラス流の流速を低減させ、取得できるガラスゴブの最大重量を増加させる方法が記載されている。
特開平10−36123号公報 特開2003−306334号公報 特開平8−26737号公報
Patent Document 3 describes a method in which a resistance member is provided inside a flow path to reduce the flow velocity of the glass flow flowing through the center of the cross section of the flow path and increase the maximum weight of the glass gob that can be obtained.
JP-A-10-36123 JP 2003-306334 A JP-A-8-26737

しかし、上記従来の方法は以下のような問題点を有していた。 However, the above conventional methods have the following problems.

一般的には、溶融ガラスを、流路を介して溶融槽から流出させ、成形型にて成形する場合には、溶融槽から流出口まで斬次低下させた温度制御を行い、成形に適した温度まで溶融ガラス温度を下げる必要がある。ここで、例えば流出後に、ガラス成分の揮発に由来する脈理が発生することがあるが、この場合には流路制御温度を下げることで対応しなければならない。しかしながら、溶融ガラス流は、すなわち高温側から低温側への高粘性流体であり、流路内の温度は内壁近傍が低く、断面重心付近が高くなる。また、流速分布は内壁面近傍では低く、断面重心付近では高い値を示す。 In general, when molten glass is flowed out of a melting tank through a flow path and molded with a molding die, temperature control is performed by gradually reducing the temperature from the melting tank to the outlet, which is suitable for molding. It is necessary to lower the molten glass temperature to the temperature. Here, for example, striae derived from the volatilization of the glass component may occur after the outflow, but in this case, it is necessary to cope with this by lowering the flow path control temperature. However, the molten glass flow is a highly viscous fluid from the high temperature side to the low temperature side, and the temperature in the flow path is low near the inner wall and high near the center of gravity of the cross section. Further, the flow velocity distribution is low near the inner wall surface and is high near the center of gravity of the cross section.

流路の温度測定に基づく制御を行った場合、流路での測定温度は内壁面近傍のガラス温度をほぼ正確に表しているものの、ガラス流中心温度(すなわち流路内の流路断面重心付近を通過するガラス流の温度)とは乖離した低い温度を示す。そのため、液相温度が高いガラスでは、ガラス流中心が揮発を生じない温度に低下する以前に、流路温度(流路内壁近傍のガラス温度)は結晶を成長する温度、いわゆる失透温度まで低下してしまい、失透の発生を招くことがある。 When the control based on the temperature measurement of the flow path is performed, the measured temperature in the flow path almost accurately represents the glass temperature near the inner wall surface, but the glass flow center temperature (that is, near the center of gravity of the cross section of the flow path in the flow path) The temperature of the glass flow passing through the lower temperature) shows a low temperature. Therefore, in glass with a high liquidus temperature, the flow path temperature (the glass temperature near the inner wall of the flow path) drops to the temperature at which crystals grow, the so-called devitrification temperature, before the glass flow center drops to a temperature at which no volatilization occurs. This may cause devitrification.

特許文献1に記載される流路では、流出口がテーパー状に開き内径が大きくなっているため、内壁面とガラス流中心との温度差および流速差が増大し、上述の傾向がより顕著となる。 In the flow path described in Patent Document 1, since the outlet is tapered and the inner diameter is increased, the temperature difference and the flow velocity difference between the inner wall surface and the glass flow center are increased, and the above-described tendency is more prominent. Become.

特許文献2のような絞りを有する流路を使用した場合、ガラス流の流出速度分布の一様化の効果はあるが、流路断面重心付近の高温のガラス流を取り出すことになるため、流出時に揮発由来の脈理を防止することは困難である。揮発を抑えようと制御温度を下げると、直ちに失透発生・成長を生じやすく、これにより絞り部の流路を塞いでしまい、流出そのものが停止しやすい。実施例では、絞りによる流量低下を抑制するために、絞り部の温度を絞り部以外よりも高温に設定しており、近年の高屈折率ガラスの製造に適した方法ではないことが明らかである。 When a flow path having a restriction as in Patent Document 2 is used, there is an effect of uniforming the flow velocity distribution of the glass flow, but a high temperature glass flow near the center of gravity of the cross section of the flow channel is taken out. Sometimes it is difficult to prevent striae from volatilization. If the control temperature is lowered to suppress volatilization, devitrification is likely to occur and grow immediately, thereby blocking the flow path of the throttle portion, and the outflow itself is likely to stop. In the example, in order to suppress the flow rate drop due to the restriction, the temperature of the restriction part is set to a temperature higher than that other than the restriction part, and it is clear that this is not a method suitable for the production of high refractive index glass in recent years. .

特許文献3に記載される流路は、内部の中央に設けた抵抗部材によって中央部の溶融ガラスの流下速度を遅延させており、流出速度の速度分布の一様化は成されるものの、熱容量の小さい貴金属を主成分とする小さな抵抗部材では、直ちに高温のガラス流中心温度になってしまう。そのため、ガラス流中心温度を下げる効果は得られず、揮発由来の脈理の抑制効果はない。また、特許文献3中の図3のように支持部材を用いて抵抗部材を固定する必要があり、白金等の貴金属を主成分とするガラス流出用流路として加工するのは極めて困難である。また、特許文献3の請求項4にはルツボ底部に複数の流路が設けられ、当該複数の流路の各々の先端部は、互いに連結されることにより一つの流路口を構成していることを特徴としているが、複数流路の各々の中心で高温のガラス流が発生し、流下するガラス流中心温度を低下させる効果は得られない。これらのような複雑な構造を適用すると、ガラスの温度、粘度、濡れ、密度及び液圧に適応するための構造の変更が極めて困難なため、流速や温度分布も複雑化するため、その点においても、より単純な構造が求められていた。 The flow path described in Patent Document 3 delays the flow rate of the molten glass at the center by a resistance member provided at the center of the inside, and the velocity distribution of the outflow rate is made uniform, but the heat capacity In a small resistance member mainly composed of a small noble metal, the glass flow center temperature immediately becomes high. Therefore, the effect of lowering the glass flow center temperature cannot be obtained, and there is no effect of suppressing striae derived from volatilization. Further, as shown in FIG. 3 in Patent Document 3, it is necessary to fix the resistance member using a support member, and it is extremely difficult to process the glass outlet channel mainly containing a noble metal such as platinum. Further, in claim 4 of Patent Document 3, a plurality of channels are provided at the bottom of the crucible, and tip portions of the plurality of channels are connected to each other to form one channel port. However, the high temperature glass flow is generated at the center of each of the plurality of flow paths, and the effect of lowering the glass flow center temperature flowing down cannot be obtained. Applying such a complicated structure makes it very difficult to change the structure to adapt to the temperature, viscosity, wetting, density, and fluid pressure of the glass, which also complicates the flow rate and temperature distribution. However, a simpler structure was sought.

本発明では、通常、中央付近の流速が大きくなる傾向があるガラス流路において、そのガラス流を、一旦、所定の位置にて滞留させることにより温度分布を均一化させ、脈理や失透の発生を低減させる。そして、その結果として、成形条件の選定が非常に難しい近年の高屈折ガラスあるいは低Tgガラスのガラス成形品を、簡単かつ高品質に得るための流路を提供するものである。さらに、従来のガラスにおいても、簡単かつ短距離での制御を可能とし、装置の小型化が可能な流路を提供することを目的とする。   In the present invention, normally, in a glass flow path where the flow velocity near the center tends to increase, the temperature of the glass flow is made uniform by temporarily retaining the glass flow at a predetermined position. Reduce the occurrence. As a result, the present invention provides a flow path for easily and high-quality glass moldings of recent high refractive glass or low Tg glass, which is very difficult to select molding conditions. It is another object of the present invention to provide a flow path that enables simple and short-distance control even in conventional glass, and that can reduce the size of the apparatus.

本発明者は、流路の途中にガラス流が一旦滞留できる滞留部を設けることにより、ガラス流の温度・流速分布を平均化させることに加え、さらに所望の温度・流速分布が得ることを可能とし、結果として脈理等の不利益を抑えることができることを見出し、上記課題を解決するに至った。 The present inventor can obtain a desired temperature / flow velocity distribution in addition to averaging the temperature / velocity distribution of the glass flow by providing a retention portion in the flow path where the glass flow can once stay. As a result, it has been found that disadvantages such as striae can be suppressed, and the above problems have been solved.

本発明の第1の構成は、溶融ガラス槽に接続され、溶融ガラスを流出させる流路であり、その流路径が拡開した後収縮する形状のガラス流滞留部を有することを特徴とする前記流路である。 The first configuration of the present invention is a flow path that is connected to a molten glass tank and allows molten glass to flow out, and has a glass flow retention portion that has a shape that shrinks after the flow path diameter is expanded. It is a flow path.

本発明の第2の構成は、前記ガラス流滞留部の出口が入口の直下に位置しないことを特徴とする前記構成1の流路である。 A second configuration of the present invention is the flow path according to the first configuration, wherein an outlet of the glass flow retention portion is not located immediately below the inlet.

本発明の第3の構成は、前記滞留部の最大径が、前記滞留部以外の流路径の2倍以上であることを特徴とする前記構成1及び2の流路である。 A third configuration of the present invention is the flow channel according to the above configurations 1 and 2, wherein the maximum diameter of the staying portion is twice or more the diameter of the flow channel other than the staying portion.

本発明の第4の構成は、ガラス原料を溶融槽にて溶融し、溶融槽に接続された流路を介して溶融ガラス流を成形型へ流出させガラスを成形することを含むガラス成形体の製造方法であって、溶融ガラスを、前記構成1〜3の流路を通過させることにより流路内で溶融ガラス流をいったん滞留させ、温度分布を均一化させる工程を含む前記製造方法である。 According to a fourth aspect of the present invention, there is provided a glass molded body comprising melting a glass raw material in a melting tank, and flowing a molten glass flow into a mold through a flow path connected to the melting tank to form a glass. It is a manufacturing method, wherein the molten glass is allowed to pass through the channels having the above-described configurations 1 to 3 so that the molten glass flow is once retained in the channel and the temperature distribution is made uniform.

以下、本発明の流路について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, the flow path of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. .

本発明において「流路」とは、溶融ガラスを溶融及び/又は保持する溶融槽に接続され、溶融ガラスを型(例えば成形型)に流出させる際の、ガラス流が通過する流路全体及び流出口を含む概念である。つまり、いわゆるパイプ、オリフィス、ノズルを包括する概念である。 In the present invention, the “flow path” is connected to a melting tank for melting and / or holding molten glass, and the entire flow path and flow path through which the glass flow passes when the molten glass flows out into a mold (for example, a mold). It is a concept that includes an exit. That is, it is a concept that encompasses so-called pipes, orifices, and nozzles.

通常、流路の温度制御は、流路を種々の方法により加熱することにより行われるが、流路を流れる溶融ガラスの温度分布は、流路の断面重心(すなわち流路断面が略円形の場合は、断面方向中心)付近が最も高く、流速も大きい。前述のように、本発明ではガラス流滞留部にて一旦ガラス流を滞留させることにより、ガラス流間で熱交換が起こり、流路内の流動位置による温度分布のギャップを緩和しようとするものである。 Normally, the temperature control of the flow path is performed by heating the flow path by various methods. However, the temperature distribution of the molten glass flowing through the flow path is determined by the center of gravity of the cross section of the flow path (that is, when the cross section of the flow path is substantially circular). Is the highest near the center in the cross-sectional direction and the flow velocity is large. As described above, in the present invention, the glass flow is temporarily retained in the glass flow retention portion, whereby heat exchange occurs between the glass flows, and the temperature distribution gap due to the flow position in the flow path is to be relaxed. is there.

図1は本発明の流路を表す一例である。図1に示すように、流路1には、その流路径が拡開した後収縮する形状のガラス流滞留部2が設けられている。図1において流路1に示された矢印はガラス流の進行方向を示すものであり、流路上方から流れてきた溶融ガラス流は、ガラス流滞留部2に入るとその流れが一時的に停滞し、その後、ガラス流滞留部2が所定量のガラス流にて満たされると、下方の流路から流出する。前述のように上方から流入したガラス流は、流路断面重心付近を流れてきたものは温度が高く、内壁近傍を流れてきたものは温度が低いといった温度分布を有しているが、ガラス流滞留部2にてそれらが所定の時間の間、混合されることにより、ガラス成形において不利益をもたらす温度分布が緩和される。そして、ガラス流滞留部2の出口から再び流出するガラス流は、ガラス流が流入時に有していたものとは異なり、比較的均一な温度分布を有するものに変化している。 FIG. 1 is an example showing the flow path of the present invention. As shown in FIG. 1, the flow path 1 is provided with a glass flow retention portion 2 having a shape that contracts after the flow path diameter is expanded. In FIG. 1, the arrow shown in the flow path 1 indicates the traveling direction of the glass flow. When the molten glass flow flowing from above the flow path enters the glass flow retention portion 2, the flow temporarily stagnates. After that, when the glass flow retention part 2 is filled with a predetermined amount of glass flow, it flows out from the lower flow path. As described above, the glass flow flowing in from above has a temperature distribution in which the temperature flowing near the center of gravity of the cross section of the flow path has a high temperature and that flowing near the inner wall has a low temperature distribution. By mixing them for a predetermined time in the residence part 2, the temperature distribution which causes a disadvantage in glass forming is relaxed. And the glass flow which flows out again from the exit of the glass flow retention part 2 is changing into what has a comparatively uniform temperature distribution unlike what the glass flow had at the time of inflow.

ガラス流滞留部2の形状は特に限定するものではないが、滞留部の流入口の直下に流出口が無いことが好ましい。流入口の直下に流出口を設けると、流入したガラス流が十分に滞留されないまま流出しやすくなり、ガラス流間の熱交換が不十分となりやすいからである。 Although the shape of the glass flow retention part 2 is not specifically limited, It is preferable that there is no outflow port directly under the inflow port of a retention part. This is because if the outlet is provided immediately below the inlet, the glass flow that has flowed in tends to flow out without being sufficiently retained, and heat exchange between the glass flows tends to be insufficient.

ガラス流滞留部2は曲面又は平面或いはそれらの組み合わせにより形成されることができる。ガラス流滞留部2の大きさは特に限定するものではないが、あまり小さすぎるとガラス流滞留部2に流入したガラス流の熱交換が不十分なまま流出しなければならなくなってしまう。 The glass flow retention part 2 can be formed by a curved surface, a flat surface, or a combination thereof. The size of the glass flow retention portion 2 is not particularly limited, but if it is too small, the glass flow flowing into the glass flow retention portion 2 must flow out with insufficient heat exchange.

従って、前記ガラス流滞留部2の最大径が、前記滞留部以外の流路径の2倍以上であることが好ましく、2.5倍以上であることがより好ましく、3倍以上であることが最も好ましい。ここでガラス流滞留部2の径とは、ガラス流滞留部2内でのガラス流進行方向と垂直な断面をとった場合、その断面形状が略円形の場合はその直径を意味し、ガラス流滞留部2の最大径とは前記滞留部2の径のうち最大のものを意味する。 Therefore, the maximum diameter of the glass flow retention part 2 is preferably at least twice the diameter of the flow path other than the retention part, more preferably at least 2.5 times, and most preferably at least 3 times. preferable. Here, the diameter of the glass flow retention portion 2 means the diameter when the cross section of the glass flow retention portion 2 is perpendicular to the direction in which the glass flow proceeds, and when the cross-sectional shape is substantially circular, The maximum diameter of the staying portion 2 means the largest diameter of the staying portion 2.

なお、その断面形状が略円形でない場合、例えば長方形などの場合にはその断面積を円に換算した場合の直径を意味する。 In addition, when the cross-sectional shape is not substantially circular, for example, in the case of a rectangle or the like, it means the diameter when the cross-sectional area is converted into a circle.

ガラス流滞留部2の長さは特に限定するものではなく、その数も1つに限らず複数でもよい。 The length of the glass flow retention part 2 is not particularly limited, and the number is not limited to one and may be plural.

ガラス流滞留部2の設置位置は特に限定するものではないが、各位置は、ガラスの熱伝導率、熱容量、流路径、流量、所望の温度/温度分布等を勘案しながら決定される。流路1の全長にも当然に依存するが、あまり上流すぎるとガラス流滞留部2により温度が均一化されても、流れが進行するに従い新たな温度分布を形成しやすくなり、結局、本発明において期待される効果が得にくくなる。したがって、好ましくは下流側50%、より好ましくは下流側45%、最も好ましくは下流側40%までの範囲に、少なくとも1以上有する。 Although the installation position of the glass flow retention part 2 is not specifically limited, each position is determined in consideration of the thermal conductivity, heat capacity, flow path diameter, flow rate, desired temperature / temperature distribution, and the like of the glass. Of course, depending on the total length of the flow path 1, if it is too upstream, even if the temperature is made uniform by the glass flow retention part 2, it becomes easier to form a new temperature distribution as the flow proceeds. It is difficult to obtain the expected effect. Accordingly, at least one is preferably in the range of 50% downstream, more preferably 45% downstream, and most preferably 40% downstream.

本発明の流路は、流路1自体及び/又は外部からの付加手段による加熱及び/又は冷却を妨げるものではない。流路1自体の加熱手段としては、流路に直接通電させることによる公知の加熱方法が使用できるし、外部からの付加手段としてはガスバーナー、電熱式ヒーター、赤外線放射、高周波加熱などの公知の手法を適宜使用してよい。さらに、ガラス流出口付近をリングバーナー等で覆い、保温することにより、失透、脈理等の不良をいっそう抑えることができる。 The flow path of the present invention does not hinder heating and / or cooling by the flow path 1 itself and / or an external addition means. As a heating means for the flow path 1 itself, a known heating method by directly energizing the flow path can be used, and as an additional means from the outside, a known method such as a gas burner, an electric heater, infrared radiation, high frequency heating or the like can be used. Techniques may be used as appropriate. Further, by covering the vicinity of the glass outlet with a ring burner or the like and keeping it warm, defects such as devitrification and striae can be further suppressed.

本発明の流路を使用したガラスの成形手段は特に制限されるものではない。光学ガラスの成形としては、成形型にガラス流として連続的に流出させ、板状或いは棒状ガラス等に連続成形してもよいし、シャー又は表面張力によりガラスゴブを分離し、多孔質型上にて浮上成形させることによりガラスゴブを成形するものでもよい。 The glass forming means using the flow path of the present invention is not particularly limited. As optical glass molding, it may be continuously flown out as a glass flow into a mold, and may be continuously molded into a plate-like or rod-like glass, etc., or the glass gob is separated by shear or surface tension, and on a porous mold. A glass gob may be formed by floating molding.

本発明の流路の材質は、通常、ガラスの溶融工程に使用される材質を使用することができ、例えば白金、強化白金、金、強化金、ロジウム、その他貴金属及びそれらの合金、或いは石英が使用できる。また、公知の手法によりメッキされた材質、例えば内面を金メッキ、あるいはSiCなどのセラミックを成膜した白金を使用しても良い。 As the material of the flow path of the present invention, materials usually used in the glass melting process can be used, for example, platinum, reinforced platinum, gold, reinforced gold, rhodium, other noble metals and their alloys, or quartz. Can be used. Further, a material plated by a known method, for example, platinum having a gold-plated inner surface or a ceramic film such as SiC may be used.

本発明は、流路1の内部構造を規定するものであるから、流路流出口付近の雰囲気を適宜変更しても良い。例えば窒素雰囲気、アルゴン等の不活性ガス雰囲気にしてもよい。また場合によっては、加熱雰囲気にて流路流出口を覆ってもよい。 Since the present invention defines the internal structure of the flow path 1, the atmosphere in the vicinity of the flow path outlet may be appropriately changed. For example, a nitrogen atmosphere or an inert gas atmosphere such as argon may be used. In some cases, the channel outlet may be covered with a heated atmosphere.

以下、本発明の具体的な実施例を示す Specific examples of the present invention are shown below.

(実施例1)本実施例においては、光学ガラスを白金坩堝にて溶融させ、坩堝に接続された流路を介して溶融ガラスをその末端の流出口から流出させ、ガスを噴出するタングステンカーバイド製多孔質成形型上にて浮上成形させ、精密プレス成形用プリフォームとして使用するためのガラスゴブを取得した。 (Embodiment 1) In this embodiment, optical glass is melted in a platinum crucible, and the molten glass is made to flow out from its outlet through a flow path connected to the crucible, and gas is jetted out. A glass gob for use as a precision press-molding preform was obtained by flotation molding on a porous mold.

流路としては前述の図1と同じ形状の強化白金流路を使用した。ここで、流路内径は3mm(断面積7.07mm)で、流出口は6mmまで拡開している。流路全長、すなわち坩堝の出口から流路末端の流出口までの長さは2mであった。 As the flow channel, a reinforced platinum flow channel having the same shape as that shown in FIG. 1 was used. Here, the inner diameter of the flow path is 3 mm (cross-sectional area 7.07 mm 2 ), and the outlet is expanded to 6 mm. The total length of the channel, that is, the length from the outlet of the crucible to the outlet at the end of the channel was 2 m.

流路内のガラス流滞留部は、流出口末端から300mm〜400mmの地点(長さ100mm)に1個形成させた。滞留部の形状は図1に示すものと同一であり、断面は略円形とした。また断面の最大径は50mmであった。 One glass flow retention part in the flow path was formed at a point (length 100 mm) from 300 mm to 400 mm from the outlet end. The shape of the staying portion is the same as that shown in FIG. 1, and the cross section is substantially circular. The maximum diameter of the cross section was 50 mm.

受け型は、多孔質ステンレスで作られ、その受面から空気を噴出している状態で、溶融ガラスを受けることにより、受け型から浮上した状態で溶融ガラスを受け、ガラスゴブを得た。 The receiving mold was made of porous stainless steel, and received molten glass in a state where air was blown from the receiving surface thereof. Thus, the molten glass floated from the receiving mold to receive glass gob.

使用したガラスは、酸化ホウ素及び酸化ランタンを主成分とする光学ガラスを溶融した。坩堝は約1200℃に保たれ、流出パイプは通電加熱により約1100℃に保たれた。流出口からは、溶融ガラスを液滴状に分離している状態にした。この時の溶融ガラスの流出量は毎分80gであった。 The glass used was melted optical glass mainly composed of boron oxide and lanthanum oxide. The crucible was kept at about 1200 ° C., and the outflow pipe was kept at about 1100 ° C. by electric heating. From the outlet, the molten glass was separated into droplets. The amount of molten glass flowing out at this time was 80 g per minute.

このガラスゴブには、失透及び脈理などの光学欠陥を目視で観察したところ、そのような不良は発見できず、光学素子成形用プリフォームとして使用できる高品質のガラスゴブであった。 When this glass gob was visually observed for optical defects such as devitrification and striae, such a defect could not be found, and it was a high-quality glass gob that could be used as a preform for molding an optical element.

本発明の流路の概略図Schematic diagram of the flow path of the present invention

符号の説明Explanation of symbols

1 流路
2 ガラス流滞留部
1 Flow path 2 Glass flow retention part

Claims (4)

溶融ガラス槽に接続され、溶融ガラスを流出させる流路であり、その流路径が拡開した後収縮する形状のガラス流滞留部を有することを特徴とする前記流路。 A flow path that is connected to a molten glass tank and allows molten glass to flow out, and has a glass flow retention portion that has a shape that shrinks after the flow path diameter is expanded. 前記ガラス流滞留部の出口が入口の直下に位置しないことを特徴とする請求項1の流路。 The flow path according to claim 1, wherein an outlet of the glass flow retention portion is not located immediately below the inlet. 前記滞留部の最大径が、前記滞留部以外の流路径の2倍以上であることを特徴とする請求項1又は2の流路。 The flow path according to claim 1 or 2, wherein the maximum diameter of the staying portion is at least twice the diameter of the flow path other than the staying portion. ガラス原料を溶融槽にて溶融し、溶融槽に接続された流路を介して溶融ガラス流を成形型へ流出させガラスを成形することを含むガラス成形体の製造方法であって、溶融ガラスを、請求項1〜3のいずれかの流路を通過させることにより流路内で溶融ガラス流をいったん滞留させ、温度分布を均一化させる工程を含む前記製造方法。 A method for producing a glass molded body, comprising melting a glass raw material in a melting tank, and flowing a molten glass flow into a mold through a flow path connected to the melting tank, and molding the glass. The said manufacturing method including the process of once stagnating a molten glass flow within a flow path by making the flow path in any one of Claims 1-3 pass, and making temperature distribution uniform.
JP2007126985A 2007-05-11 2007-05-11 Glass flow path, and method of manufacturing optical glass formed article using the same Pending JP2008280218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126985A JP2008280218A (en) 2007-05-11 2007-05-11 Glass flow path, and method of manufacturing optical glass formed article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126985A JP2008280218A (en) 2007-05-11 2007-05-11 Glass flow path, and method of manufacturing optical glass formed article using the same

Publications (1)

Publication Number Publication Date
JP2008280218A true JP2008280218A (en) 2008-11-20

Family

ID=40141345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126985A Pending JP2008280218A (en) 2007-05-11 2007-05-11 Glass flow path, and method of manufacturing optical glass formed article using the same

Country Status (1)

Country Link
JP (1) JP2008280218A (en)

Similar Documents

Publication Publication Date Title
JP4359169B2 (en) Press molding preform manufacturing method, manufacturing apparatus, and optical element manufacturing method
US20070271963A1 (en) Apparatus and Process for Producing Tubes or Rods
JPH08337427A (en) Apparatus and method for forming rod of glassy material and glass rod formed thereby
JP4938988B2 (en) Press molding preform manufacturing method, optical element manufacturing method, and molten glass outflow device
JP2015074574A (en) Method of manufacturing plate glass
JP5243723B2 (en) Nozzle and method of manufacturing optical glass block using the nozzle
US7992412B2 (en) Process for producing glass shaped material and process for producing optical element
US5738701A (en) Glass gob production device and production method
JP2009102200A (en) Glass flow passage and method for manufacturing optical glass formed body using the same
JP2009096684A (en) Flow passage for flowing-out molten glass
JP2008280218A (en) Glass flow path, and method of manufacturing optical glass formed article using the same
TWI597248B (en) Method of manufacturing glass molded body and method of manufacturing optical element using the same
JP2008280194A (en) Glass flow passage and method for manufacturing optical glass formed body using the same
JP2015145316A (en) Nozzle and method of manufacturing optical glass lump using the nozzle
CN101041549B (en) Glass gob shaping apparatus, process for the production of glass gobs and process for the production of optical element
JP2008297173A (en) Glass flow passage and method for manufacturing optical glass molding by using the same
JP2009107889A (en) Glass flow passage, glass production device, and glass production method
JP2009107890A (en) Glass flow path, apparatus for manufacturing glass, and method of manufacturing glass
JP4162562B2 (en) Method for producing glass molded body, method for producing glass material for press molding, and method for producing optical element
JP2008273800A (en) Glass flow path and method for manufacturing optical glass molded body using the flow path
CN101172750A (en) Nozzle and method for producing optical glass gob using the nozzle
JP3862589B2 (en) Optical glass outflow device and method of manufacturing optical glass block
JP3965627B2 (en) Method for producing glass molded body and method for producing optical element
JP2008297159A (en) Molten glass dropping nozzle, and method and apparatus for manufacturing shaped glass
JP2007145627A (en) Glass suitable for droplet-like glass