JP2015076591A - Feedthrough capacitor - Google Patents

Feedthrough capacitor Download PDF

Info

Publication number
JP2015076591A
JP2015076591A JP2013213960A JP2013213960A JP2015076591A JP 2015076591 A JP2015076591 A JP 2015076591A JP 2013213960 A JP2013213960 A JP 2013213960A JP 2013213960 A JP2013213960 A JP 2013213960A JP 2015076591 A JP2015076591 A JP 2015076591A
Authority
JP
Japan
Prior art keywords
element body
insulating film
terminal electrode
terminal
terminal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013213960A
Other languages
Japanese (ja)
Other versions
JP6343901B2 (en
Inventor
賢嗣 福島
Kenji Fukushima
賢嗣 福島
俊宏 井口
Toshihiro Iguchi
俊宏 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2013213960A priority Critical patent/JP6343901B2/en
Publication of JP2015076591A publication Critical patent/JP2015076591A/en
Application granted granted Critical
Publication of JP6343901B2 publication Critical patent/JP6343901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a feedthrough capacitor capable of preventing occurrence of surface leakage.SOLUTION: Inside an element assembly 10, which has a pair of side faces 10a and 10b, a pair of end faces 10c and 10d and a pair of main faces 10e and 10f and is constituted of a dielectric ceramic, first inner electrodes 20 and second inner electrodes 22 are alternately laminated through dielectric layers 24. First terminal electrodes 30 and 32 are formed on the end faces 10c and 10d of the element assembly 10. Second terminal electrodes 34 and 36 are formed on the side faces 10a and 10b of the element assembly 10. On a surface, where the distance between the first terminal electrodes 30 and 32 and the second terminal electrodes 34 and 36 is the shortest, of the element assembly 10, are formed both insulator film region in which insulator layers 40 are formed and an element assembly-surface exposed region 42 in which the insulator layers 40 are not formed.

Description

本発明は、貫通コンデンサに係り、さらに詳しくは、表面リークが発生し難い貫通コンデンサに関する。   The present invention relates to a feedthrough capacitor, and more particularly to a feedthrough capacitor in which surface leakage is unlikely to occur.

電子部品のノイズ対策などに貫通コンデンサが用いられている。たとえば特許文献1にも示すように、貫通コンデンサは、一対の信号用端子電極と一対の接地用端子電極とを有し、一般的なコンデンサ(一対の端子電極のみ)に比較して、外部端子の数が多い。   Feedthrough capacitors are used for noise suppression of electronic components. For example, as shown in Patent Document 1, the feedthrough capacitor has a pair of signal terminal electrodes and a pair of ground terminal electrodes, and has an external terminal as compared with a general capacitor (a pair of terminal electrodes only). There are many numbers.

また、近年では、電子部品の小型化および薄層化のために、貫通コンデンサも小型化され、そのために、信号用端子電極と接地用端子電極との間の距離が近くなってきている。そのため、貫通コンデンサの素体表面において、これらの端子電極間で表面リークが発生し、所望の特性が得られないおそれがある。   In recent years, feedthrough capacitors have also been miniaturized in order to reduce the size and thickness of electronic components. For this reason, the distance between a signal terminal electrode and a ground terminal electrode has become closer. Therefore, surface leakage occurs between these terminal electrodes on the surface of the feedthrough capacitor body, and desired characteristics may not be obtained.

特開平1−206615号公報JP-A-1-206615

本発明は、このような実状に鑑みてなされ、その目的は、表面リークの発生を防止することができる貫通コンデンサを提供することである。   The present invention has been made in view of such a situation, and an object thereof is to provide a feedthrough capacitor capable of preventing occurrence of surface leakage.

上記目的を達成するために、本発明に係る貫通コンデンサは、
一対の側面、一対の端面、および一対の主面を有し、誘電体セラミックで構成してある素体と、
前記素体内に配置され、一対の前記端面に引き出される第1内部電極と、
前記素体内に配置され、一対の前記側面に引き出される第2内部電極と、
前記素体の端面に形成され、前記第1内部電極に接続される第1端子電極と、
前記素体の側面に形成され、前記第2内部電極に接続される第2端子電極と、を有する貫通コンデンサであって、
前記第1端子電極と前記第2端子電極との最短距離となる前記素体の表面には、絶縁膜が形成される絶縁膜領域と、前記絶縁膜が形成されていない素体表面露出領域との双方が形成してある。
In order to achieve the above object, the feedthrough capacitor according to the present invention comprises:
An element body having a pair of side surfaces, a pair of end surfaces, and a pair of main surfaces, and made of a dielectric ceramic;
A first internal electrode disposed in the element body and drawn out to the pair of end faces;
A second internal electrode disposed in the element body and drawn out to the pair of side surfaces;
A first terminal electrode formed on an end surface of the element body and connected to the first internal electrode;
A feedthrough capacitor having a second terminal electrode formed on a side surface of the element body and connected to the second internal electrode,
On the surface of the element body that is the shortest distance between the first terminal electrode and the second terminal electrode, an insulating film region where an insulating film is formed, and an element body surface exposed region where the insulating film is not formed Both are formed.

一般的には、信号用端子電極となる第1端子電極と、接地用端子電極となる第2端子電極との最短距離となる貫通コンデンサの素体の表面では、表面リーク電流が生じやすい。特に、コンデンサの小型化および薄層化と共に、その傾向が顕著になってきている。   In general, surface leakage current is likely to occur on the surface of the feedthrough capacitor element body, which is the shortest distance between the first terminal electrode serving as the signal terminal electrode and the second terminal electrode serving as the ground terminal electrode. In particular, the tendency has become remarkable with the miniaturization and thinning of capacitors.

本発明に係る貫通コンデンサでは、信号用端子電極となる第1端子電極と、接地用端子電極となる第2端子電極との間に、絶縁膜が形成されていることにより、これらの電極の間での表面リーク電流の発生を抑制することができる。また、絶縁膜が形成されていない素体表面露出領域が、絶縁膜領域と共に形成されることにより、ゴミなどの付着が抑制され、ゴミによる表面リークを防止できる。   In the feedthrough capacitor according to the present invention, an insulating film is formed between the first terminal electrode serving as the signal terminal electrode and the second terminal electrode serving as the ground terminal electrode. It is possible to suppress the occurrence of surface leakage current in Further, since the element body surface exposed region where the insulating film is not formed is formed together with the insulating film region, adhesion of dust and the like is suppressed, and surface leakage due to dust can be prevented.

なお、素体表面露出領域を形成することなく、絶縁膜で第1端子電極と前記第2端子電極とを連絡してしまうと、絶縁膜の表面に付着してしまうゴミなどが原因で、表面リーク電流が発生してしまう。本発明では、ゴミの付着しにくい素体表面露出領域を設けることにより、ゴミによる表面リークを防止できる。すなわち、表面リークの原因となる第1端子電極と第2端子電極の最短経路上において、絶縁膜は第1端子電極と第2端子電極の間に連続して形成されていない(素体露出部を有する)ので、ゴミによる表面リークを防止できる。   If the first terminal electrode and the second terminal electrode are connected by an insulating film without forming an element body surface exposed region, the surface of the insulating film is caused by dust or the like attached to the surface. Leakage current is generated. In the present invention, by providing the element body surface exposed region to which dust does not easily adhere, surface leakage due to dust can be prevented. That is, the insulating film is not continuously formed between the first terminal electrode and the second terminal electrode on the shortest path between the first terminal electrode and the second terminal electrode that causes surface leakage (element exposed portion). Therefore, surface leakage due to dust can be prevented.

好ましくは、前記絶縁膜は、前記第1端子電極と前記第2端子電極との最短距離となる前記素体の表面では、前記第1端子電極と前記第2端子電極とを連絡しないように形成してある。   Preferably, the insulating film is formed so as not to connect the first terminal electrode and the second terminal electrode on the surface of the element body that is the shortest distance between the first terminal electrode and the second terminal electrode. It is.

好ましくは、前記素体の表面と前記第1端子電極との境界に位置する前記素体の表面を覆うように、前記絶縁膜が形成してあり、
前記素体の表面と前記第2端子電極との境界に位置する前記素体の表面を覆うように、前記絶縁膜が形成してあり、
前記第1端子電極近くの前記絶縁膜と、前記第2端子電極近くの前記絶縁膜との間に位置する前記素体の表面には、前記素体表面露出領域が形成してある。
Preferably, the insulating film is formed so as to cover a surface of the element body located at a boundary between the surface of the element body and the first terminal electrode,
The insulating film is formed so as to cover the surface of the element body located at the boundary between the surface of the element body and the second terminal electrode;
The exposed surface of the element body is formed on the surface of the element body located between the insulating film near the first terminal electrode and the insulating film near the second terminal electrode.

このように構成することで、表面リーク電流を、より効果的に防止することができる。素体の表面と端子電極との境界、すなわち、端子電極のエッジ部では、端子電極の電圧印加と共に、電界が集中し、電子なだれ、正コロナ放電および端子間放電が引き続き生じることで、表面リークが生じると考えられる。第1端子電極および第2端子電極の双方のエッジ部に、絶縁膜を位置させることで、表面リーク電流を、より効果的に防止することができる。   With this configuration, surface leakage current can be more effectively prevented. At the boundary between the surface of the element body and the terminal electrode, that is, at the edge of the terminal electrode, the electric field concentrates along with the voltage application of the terminal electrode, and avalanche, positive corona discharge and inter-terminal discharge continue to occur, resulting in surface leakage. Is considered to occur. By disposing the insulating film at the edge portions of both the first terminal electrode and the second terminal electrode, surface leakage current can be more effectively prevented.

好ましくは、前記絶縁膜は、前記素体の表面に、前記第1端子電極および前記第2端子電極の外面よりも外側に飛び出さない厚みで形成してある。このように構成することで、貫通コンデンサを回路基板などにハンダ付けなどで実装する際の実装性が向上する。   Preferably, the insulating film is formed on the surface of the element body with a thickness that does not protrude outward from the outer surfaces of the first terminal electrode and the second terminal electrode. With this configuration, mountability when the feedthrough capacitor is mounted on a circuit board or the like by soldering or the like is improved.

好ましくは、前記素体の主面と側面とが交差する前記素体の角部に、前記主面から側面にまたがって、前記絶縁膜が形成してある。角部にまたがって絶縁膜が形成してあることで、素体の角部における応力を緩和することができる。また、素体の丸みを絶縁膜がカバーすることになり、実装時におけるノズル吸着エラーや、画像認識エラーなどを低減することもできる。   Preferably, the insulating film is formed across the main surface to the side surface at a corner portion of the element body where the main surface and the side surface of the element body intersect. Since the insulating film is formed across the corners, the stress at the corners of the element body can be relieved. In addition, since the insulating film covers the roundness of the element body, it is possible to reduce nozzle suction errors and image recognition errors during mounting.

好ましくは、前記素体の側面では、前記素体の表面と前記第2端子電極との境界に位置する前記素体の表面に、前記第2端子電極に沿って前記絶縁膜が形成されている。一般的には、素体の側面では、第2端子電極と接続する第2内部電極のリード部が、第2端子電極の両側で、素体の表面に露出し易く、そこから、湿気などが進入しやすい。しかしながら、第2端子電極に沿って絶縁膜を形成することで、内部電極への湿気の進入を防止することができる。   Preferably, on the side surface of the element body, the insulating film is formed along the second terminal electrode on the surface of the element body located at a boundary between the surface of the element body and the second terminal electrode. . Generally, on the side surface of the element body, the lead portion of the second internal electrode connected to the second terminal electrode is easily exposed on the surface of the element body on both sides of the second terminal electrode, from which moisture and the like are exposed. Easy to enter. However, by forming the insulating film along the second terminal electrode, it is possible to prevent moisture from entering the internal electrode.

好ましくは、一対の前記主面において、前記素体の表面には、前記絶縁膜領域と、前記素体表面露出領域との双方が形成してある。一対の主面の双方に、本発明の構造を適用することで、いずれの主面でも実装することが可能となり、実装時に方向性を気にする必要がなく、実装作業性に優れている。   Preferably, in the pair of main surfaces, both the insulating film region and the element body surface exposed region are formed on the surface of the element body. By applying the structure of the present invention to both the pair of main surfaces, it becomes possible to mount on either main surface, and there is no need to worry about the direction during mounting, and the mounting workability is excellent.

図1は本発明の一実施形態に係る積層貫通コンデンサの斜視図である。FIG. 1 is a perspective view of a multilayer feedthrough capacitor according to an embodiment of the present invention. 図2は図1に示すコンデンサの側面図である。FIG. 2 is a side view of the capacitor shown in FIG. 図3は図1に示すIII−III線に沿う断面図である。FIG. 3 is a sectional view taken along line III-III shown in FIG. 図4は図1に示すIV−IV線に沿う断面図である。4 is a cross-sectional view taken along line IV-IV shown in FIG. 図5(A)は図1に示すコンデンサ素体の製造過程を示す分解斜視図、図5(B)は図5(A)に示す接地用端子電極の斜視図である。5A is an exploded perspective view showing the manufacturing process of the capacitor body shown in FIG. 1, and FIG. 5B is a perspective view of the ground terminal electrode shown in FIG. 5A. 図6は本発明の他の実施形態に係る積層貫通コンデンサの斜視図である。FIG. 6 is a perspective view of a multilayer feedthrough capacitor according to another embodiment of the present invention. 図7は本発明のさらに他の実施形態に係る積層貫通コンデンサにおけるコンデンサ素体の製造過程を示す分解斜視図である。FIG. 7 is an exploded perspective view showing a manufacturing process of a capacitor body in a multilayer feedthrough capacitor according to still another embodiment of the present invention.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

第1実施形態
図1に示すように、本発明の一実施形態に係る積層貫通コンデンサ2は、コンデンサ素体10を有する。コンデンサ素体10は、一対の側面10a,10b、一対の端面10c,10d、および一対の主面10e,10fを有し、直方体形状である。側面10e,10fは、Y軸方向に向き合っており、主面はZ軸方向に向き合っている。また、端面10c,10dは、X軸方向に向き合っている。なお、X軸、Y軸およびZ軸は、相互に垂直である。
First Embodiment As shown in FIG. 1, a multilayer feedthrough capacitor 2 according to an embodiment of the present invention has a capacitor body 10. The capacitor body 10 has a pair of side surfaces 10a and 10b, a pair of end surfaces 10c and 10d, and a pair of main surfaces 10e and 10f, and has a rectangular parallelepiped shape. The side surfaces 10e and 10f face the Y-axis direction, and the main surface faces the Z-axis direction. Further, the end faces 10c and 10d face each other in the X axis direction. Note that the X axis, the Y axis, and the Z axis are perpendicular to each other.

コンデンサ素体10は、誘電体セラミックで構成してあり、図3〜図5に示すように、内側誘電体層24を介して、信号用内部電極としての層状の第1内部電極20と、接地用内部電極としての層状の第2内部電極22とが交互に積層してある積層構造を持つ。積層方向(Z軸方向)の外側には、内側誘電体層24よりも厚みが大きな外側誘電体層26が積層してある。   The capacitor body 10 is made of a dielectric ceramic. As shown in FIGS. 3 to 5, a layered first internal electrode 20 as a signal internal electrode is connected to the ground via an inner dielectric layer 24. It has a laminated structure in which layered second internal electrodes 22 as internal electrodes are alternately laminated. On the outer side in the stacking direction (Z-axis direction), an outer dielectric layer 26 having a thickness larger than that of the inner dielectric layer 24 is stacked.

外側誘電体層26は、図5(A)に示すように、複数のグリーンシートを積層して、誘電体層24となるその他のグリーンシートと内部電極20,22となる電極層と共に焼成することにより得られる。   As shown in FIG. 5A, the outer dielectric layer 26 is formed by laminating a plurality of green sheets and firing together with the other green sheets to be the dielectric layer 24 and the electrode layers to be the internal electrodes 20 and 22. Is obtained.

内側誘電体層24および外側誘電体層26を構成する誘電体材料としては、絶縁性であれば特に限定されず、たとえばチタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ジルコニウムなどの誘電体材料が例示される。また、内部電極20および22の材質も特に限定されず、Ni、Ni合金、銀−パラジウム合金などのパラジウムベース合金、Cu、Agなどが例示される。   The dielectric material constituting the inner dielectric layer 24 and the outer dielectric layer 26 is not particularly limited as long as it is insulative. For example, a dielectric such as calcium titanate, strontium titanate, barium titanate, zirconium titanate or the like. Materials are illustrated. Further, the material of the internal electrodes 20 and 22 is not particularly limited, and examples thereof include palladium base alloys such as Ni, Ni alloy, silver-palladium alloy, Cu, Ag, and the like.

図3、図4および図5(A)に示すように、第1内部電極20は、Y軸方向の幅が、素体10のY軸方向幅よりも狭く、各側面10a,10bには露出せず、X軸方向に沿って細長く延びて素体10の端面10c,10dに露出している。図3に示すように、素体10の端面10c,10dには、信号用端子電極としての第1端子電極30,32が各々形成してあり、端面10c,10dに露出している第1内部電極のリード端が第1端子電極30,32の内面にそれぞれ接続してある。   As shown in FIGS. 3, 4, and 5 (A), the first internal electrode 20 has a width in the Y-axis direction that is narrower than the width in the Y-axis direction of the element body 10, and is exposed on the side surfaces 10 a and 10 b. Instead, it extends along the X-axis direction and is exposed on the end faces 10c and 10d of the element body 10. As shown in FIG. 3, first terminal electrodes 30 and 32 as signal terminal electrodes are formed on the end faces 10 c and 10 d of the element body 10, respectively, and are exposed to the end faces 10 c and 10 d. The lead ends of the electrodes are connected to the inner surfaces of the first terminal electrodes 30 and 32, respectively.

図4、図5(A)および図5(B)に示すように、第2内部電極22は、内側誘電体層24を介して、第1内部電極20の位置に対応して設けられ、X軸方向の長さが、第1内部電極20のそれよりも短く、X軸方向の端面10c,10dには、露出しないようになっている。その代わりに、図4および図5(B)に示すように、第2内部電極22のX軸方向の中央部には、リード部23がY軸方向の両側に突出するように形成してあり、各リード部23の先端は、素体10の側面10a,10bに露出するようになっている。   As shown in FIG. 4, FIG. 5A and FIG. 5B, the second internal electrode 22 is provided corresponding to the position of the first internal electrode 20 via the inner dielectric layer 24, and X The length in the axial direction is shorter than that of the first internal electrode 20, and it is not exposed to the end faces 10c and 10d in the X-axis direction. Instead, as shown in FIG. 4 and FIG. 5 (B), the lead part 23 is formed at the center of the second internal electrode 22 in the X-axis direction so as to protrude on both sides in the Y-axis direction. The leading end of each lead portion 23 is exposed to the side surfaces 10a and 10b of the element body 10.

素体10の両側面10a,10bには、図1に示すように、接地用端子電極としての第2端子電極34,36がそれぞれ形成してある。これらの端子電極34,36の内側では、図4および図5(A)に示す第2内部電極22のリード部23の先端が接続してある。リード部23のX軸方向幅は、第2端子電極34および36のX軸方向の幅と同等以下であることが好ましい。   As shown in FIG. 1, second terminal electrodes 34 and 36 as ground terminal electrodes are formed on both side surfaces 10a and 10b of the element body 10, respectively. Inside the terminal electrodes 34 and 36, the tips of the lead portions 23 of the second internal electrode 22 shown in FIGS. 4 and 5A are connected. The width of the lead portion 23 in the X-axis direction is preferably equal to or less than the width of the second terminal electrodes 34 and 36 in the X-axis direction.

図1に示すように、第2端子電極34,36は、素体10の側面10a,10bにおいて、X軸方向の略中央位置に形成してあり、Z軸方向に延び、側面10a,10bと主面10e,10fとの角部において、主面10e,10f側に跨がって形成してある。各第2端子電極34,36のZ軸方向の端部には、主面10e,10fに位置する半円状端部35,37が形成してある。このように半円状端部35,37を設けることで、第2端子電極34と素体10との密着強度を向上させることができると共に、内部への湿気などの進入を抑制することができる。   As shown in FIG. 1, the second terminal electrodes 34 and 36 are formed at substantially the center position in the X-axis direction on the side surfaces 10 a and 10 b of the element body 10, extend in the Z-axis direction, and the side surfaces 10 a and 10 b In the corner | angular part with main surface 10e, 10f, it is formed over the main surfaces 10e, 10f side. Semicircular end portions 35 and 37 located on the main surfaces 10e and 10f are formed at the end portions in the Z-axis direction of the second terminal electrodes 34 and 36, respectively. By providing the semicircular end portions 35 and 37 in this way, the adhesion strength between the second terminal electrode 34 and the element body 10 can be improved, and the entry of moisture and the like into the inside can be suppressed. .

側面10a,10bおよび主面10e,10fにおけるX軸方向の端部を覆うように、第1端子電極30および第2端子電32には、カバー部31および33が、それぞれ連続して形成してある。これらのカバー部31および33を、各端子電極30および32に一体的に形成することで、素体10との密着強度を向上させると共に内部への湿気の進入を抑制することができる。   Cover portions 31 and 33 are continuously formed on the first terminal electrode 30 and the second terminal electrode 32 so as to cover the end portions in the X-axis direction on the side surfaces 10a and 10b and the main surfaces 10e and 10f. is there. By forming these cover portions 31 and 33 integrally with the terminal electrodes 30 and 32, the adhesion strength with the element body 10 can be improved and the ingress of moisture into the inside can be suppressed.

端子電極30,32,34,36は、特に限定されないが、たとえばCu、Ni、Ag、Au、Pdなどにより構成してある。また、これらの端子電極30,32,34,36は、焼き付け処理、メッキ、印刷、CVD法、PDV法などで素体10の外面に形成される。   The terminal electrodes 30, 32, 34, and 36 are not particularly limited, but are made of, for example, Cu, Ni, Ag, Au, Pd, or the like. The terminal electrodes 30, 32, 34, and 36 are formed on the outer surface of the element body 10 by baking, plating, printing, CVD, PDV, or the like.

本実施形態では、第1端子電極30,32と第2端子電極34,36との最短距離となる素体10の表面(側面10a,10bおよび主面10e,10f)には、絶縁膜40が形成される絶縁膜領域と、絶縁膜40が形成されていない素体表面露出領域42との双方が形成してある。絶縁膜40は、第1端子電極30,32と第2端子電極34,36との最短距離となる素体10の表面では、第1端子電極30,32と第2端子電極34,36とを連絡しないように形成してある。   In the present embodiment, the insulating film 40 is formed on the surface (side surfaces 10a, 10b and main surfaces 10e, 10f) of the element body 10 that is the shortest distance between the first terminal electrodes 30, 32 and the second terminal electrodes 34, 36. Both the insulating film region to be formed and the element body surface exposed region 42 in which the insulating film 40 is not formed are formed. The insulating film 40 has the first terminal electrodes 30, 32 and the second terminal electrodes 34, 36 on the surface of the element body 10 that is the shortest distance between the first terminal electrodes 30, 32 and the second terminal electrodes 34, 36. It is formed so as not to contact.

本実施形態において、第1端子電極30,32と第2端子電極34,36との最短距離W0(図2参照)としては、特に限定されないが、素体10の小型化と共に短くなってきており、たとえば0.1〜0.3mmである。また、素体表面露出領域42におけるX軸方向の幅W3(電極間方向の幅)は、好ましくは0.06〜0.24mmである。また、電極間に位置する一対の絶縁膜40のX軸方向の幅W1,W2(電極間方向の幅)は、それぞれ異なっていても同じでも良く、好ましくは0.02〜0.12mmである。図示する例では、最短距離W0の素体表面に二つの絶縁膜40が形成してあるが、本発明では、それに限定されず、単一、または3つ以上であっても良い。また、それに応じて、素体表面露出領域42の数も複数であっても良い。最短距離W0に対する幅W3の割合(W3/W0)は、好ましくは0.2〜2.4である。   In the present embodiment, the shortest distance W0 (see FIG. 2) between the first terminal electrodes 30 and 32 and the second terminal electrodes 34 and 36 is not particularly limited, but has become shorter as the element body 10 becomes smaller. For example, 0.1 to 0.3 mm. Further, the width W3 in the X-axis direction (width between the electrodes) in the element body surface exposed region 42 is preferably 0.06 to 0.24 mm. Further, the widths W1 and W2 (widths between the electrodes) in the X-axis direction of the pair of insulating films 40 located between the electrodes may be different or the same, and preferably 0.02 to 0.12 mm. . In the illustrated example, the two insulating films 40 are formed on the surface of the element body with the shortest distance W0. However, the present invention is not limited to this, and may be single or three or more. Accordingly, the number of the element body surface exposed regions 42 may be plural. The ratio of the width W3 to the shortest distance W0 (W3 / W0) is preferably 0.2 to 2.4.

絶縁膜40は、たとえばエポキシ樹脂、フェノール樹脂、シリコン樹脂などで構成され、図1に示すようなX,Y,Z軸方向に断続的なパターンで形成される。好ましくは絶縁膜40は、SiC、Al、BN、ZrOなどのセラミックペースト膜であり、素体10よりも絶縁性が高い。絶縁膜40の形成方法は、特に限定されず、絶縁ペーストによるパターン塗布、CVD法、PVD法などが例示される。絶縁膜40は、端子電極30,32,34,36の形成後に、素体10の表面に形成しても良いし、これらの端子電極30,32,34,36の形成前に、素体10の表面に形成しても良い。 The insulating film 40 is made of, for example, epoxy resin, phenol resin, silicon resin, or the like, and is formed in an intermittent pattern in the X, Y, and Z axis directions as shown in FIG. Preferably, the insulating film 40 is a ceramic paste film such as SiC, Al 2 O 3 , BN, ZrO 2 , and has a higher insulating property than the element body 10. The formation method of the insulating film 40 is not particularly limited, and examples thereof include pattern coating using an insulating paste, a CVD method, and a PVD method. The insulating film 40 may be formed on the surface of the element body 10 after the terminal electrodes 30, 32, 34, 36 are formed, or before the terminal electrodes 30, 32, 34, 36 are formed. It may be formed on the surface.

一般的には、信号用端子電極となる第1端子電極30,32と、接地用端子電極となる第2端子電極34,36との最短距離となる貫通コンデンサ2の素体10の表面では、表面リーク電流が生じやすい。特に、コンデンサの小型化および薄層化と共に、その傾向が顕著になってきている。   In general, on the surface of the element body 10 of the feedthrough capacitor 2 that is the shortest distance between the first terminal electrodes 30 and 32 serving as signal terminal electrodes and the second terminal electrodes 34 and 36 serving as ground terminal electrodes, Surface leakage current is likely to occur. In particular, the tendency has become remarkable with the miniaturization and thinning of capacitors.

本実施形態に係る貫通コンデンサ2では、第1端子電極30,32と、第2端子電極34,36との間に、絶縁膜40が形成されていることにより、これらの電極の間での表面リーク電流の発生を抑制することができる。また、絶縁膜40が形成されていない素体表面露出領域42が、絶縁膜領域と共に形成されることにより、ゴミなどの付着が抑制され、ゴミによる表面リークを防止できる。   In the feedthrough capacitor 2 according to the present embodiment, since the insulating film 40 is formed between the first terminal electrodes 30 and 32 and the second terminal electrodes 34 and 36, the surface between these electrodes is formed. Generation of leakage current can be suppressed. In addition, since the element body surface exposed region 42 where the insulating film 40 is not formed is formed together with the insulating film region, adhesion of dust and the like is suppressed, and surface leakage due to dust can be prevented.

なお、素体表面露出領域42を形成することなく、絶縁膜40で第1端子電極30,32と第2端子電極34,36とを連絡してしまうと、絶縁膜40の表面に付着してしまうゴミなどが原因で、表面リーク電流が発生してしまう。本実施形態では、ゴミの付着しにくい素体表面露出領域42を設けることにより、ゴミによる表面リークを防止できる。すなわち、表面リークの原因となる第1端子電極30,32と第2端子電極34,36の最短経路上において、絶縁膜40は第1端子電極30,32と第2端子電極34,36の間に連続して形成されていない(素体露出部を有する)ので、ゴミによる表面リークを防止できる。   In addition, if the first terminal electrodes 30 and 32 and the second terminal electrodes 34 and 36 are communicated with each other through the insulating film 40 without forming the element body surface exposed region 42, they adhere to the surface of the insulating film 40. A surface leakage current is generated due to dust and the like. In the present embodiment, by providing the element body surface exposed region 42 to which dust is difficult to adhere, surface leakage due to dust can be prevented. That is, the insulating film 40 is located between the first terminal electrodes 30 and 32 and the second terminal electrodes 34 and 36 on the shortest path between the first terminal electrodes 30 and 32 and the second terminal electrodes 34 and 36 that cause surface leakage. Therefore, the surface leakage due to dust can be prevented.

また、本実施形態では、素体10の表面と第1端子電極30,32との境界に位置する素体10の表面を覆うように、絶縁膜40が形成してあり、素体10の表面と第2端子電極34との境界に位置する素体10の表面を覆うように、絶縁膜40が形成してある。また、第1端子電極30,32近くの絶縁膜40と、第2端子電極34,36近くの絶縁膜40との間に位置する素体10の表面には、素体表面露出領域42が形成してある。   In the present embodiment, the insulating film 40 is formed so as to cover the surface of the element body 10 located at the boundary between the surface of the element body 10 and the first terminal electrodes 30 and 32. An insulating film 40 is formed so as to cover the surface of the element body 10 located at the boundary between the first terminal electrode 34 and the second terminal electrode 34. Further, an element body surface exposed region 42 is formed on the surface of the element body 10 located between the insulating film 40 near the first terminal electrodes 30 and 32 and the insulating film 40 near the second terminal electrodes 34 and 36. It is.

このように構成することで、表面リーク電流を、より効果的に防止することができる。素体10の表面と端子電極30〜36との境界、すなわち、端子電極30〜36のエッジ部では、端子電極30〜36の電圧印加と共に、電界が集中し、電子なだれ、正コロナ放電および端子間放電が引き続き生じることで、表面リークが生じると考えられる。第1端子電極30,32および第2端子電極34,36の双方のエッジ部に、絶縁膜40を位置させることで、表面リーク電流を、より効果的に防止することができる。   With this configuration, surface leakage current can be more effectively prevented. At the boundary between the surface of the element body 10 and the terminal electrodes 30 to 36, that is, at the edge portions of the terminal electrodes 30 to 36, the electric field concentrates as the voltage is applied to the terminal electrodes 30 to 36, and avalanche, positive corona discharge and terminal It is considered that surface leakage is caused by the continuous discharge. By disposing the insulating film 40 at the edge portions of both the first terminal electrodes 30 and 32 and the second terminal electrodes 34 and 36, surface leakage current can be more effectively prevented.

本実施形態では、絶縁膜40は、素体10の表面に、第1端子電極30,32および第2端子電極34,36の外面よりも外側に飛び出さない厚みで形成してある。このように構成することで、貫通コンデンサを回路基板などにハンダ付けなどで実装する際の実装性が向上する。   In the present embodiment, the insulating film 40 is formed on the surface of the element body 10 with a thickness that does not protrude outward from the outer surfaces of the first terminal electrodes 30 and 32 and the second terminal electrodes 34 and 36. With this configuration, mountability when the feedthrough capacitor is mounted on a circuit board or the like by soldering or the like is improved.

図1に示すように、本実施形態では、素体10の主面10e,10fと側面10a,10bとが交差する素体10の角部に、主面10e,10fから側面10a,10bにまたがって、絶縁膜40が形成してある。角部にまたがって絶縁膜40が形成してあることで、素体10の角部における応力を緩和することができる。また、図4に示すように、素体10の丸みを絶縁膜40がカバーすることになり、実装時におけるノズル吸着エラーや、画像認識エラーなどを低減することもできる。   As shown in FIG. 1, in this embodiment, the main surface 10e, 10f of the element body 10 and the side surfaces 10a, 10b cross the corners of the element body 10 from the main surfaces 10e, 10f to the side surfaces 10a, 10b. Thus, an insulating film 40 is formed. Since the insulating film 40 is formed across the corners, the stress at the corners of the element body 10 can be relieved. Further, as shown in FIG. 4, the insulating film 40 covers the roundness of the element body 10, and it is possible to reduce nozzle adsorption errors and image recognition errors during mounting.

図1および図3に示すように、本実施形態では、一対の主面10e,10fにおいて、素体10の表面には、絶縁膜40が形成してある絶縁膜領域と、素体表面露出領域42との双方が形成してある。一対の主面10e,10fの双方に、本実施形態の構造を適用することで、いずれの主面10e,10fでも基板など実装することが可能となり、実装時に方向性を気にする必要がなく、実装作業性に優れている。   As shown in FIGS. 1 and 3, in the present embodiment, in a pair of main surfaces 10e and 10f, an insulating film region in which an insulating film 40 is formed on the surface of the element body 10 and an element body surface exposed region. 42 and both are formed. By applying the structure of the present embodiment to both the pair of main surfaces 10e and 10f, it becomes possible to mount a substrate or the like on any of the main surfaces 10e and 10f, and there is no need to worry about directionality during mounting. Excellent mounting workability.

第2実施形態
本発明の第2実施形態に係る積層貫通コンデンサ2aは、以下に示す以外は、前述した第1実施形態と同様であり、共通する部分の説明は省略する。
Second Embodiment A multilayer feedthrough capacitor 2a according to a second embodiment of the present invention is the same as the above-described first embodiment except for the following, and a description of common portions is omitted.

図6に示すように、素体10の側面10a,10bでは、素体10の表面と第2端子電極34,36との境界に位置する素体10の表面に、第2端子電極34,36に沿って絶縁膜40aが形成されている。一般的には、素体10の側面では、第2端子電極34,36と接続する第2内部電極22のリード部23(図5参照)が、第2端子電極34,36のX軸方向両側で、素体34の表面に露出し易く、そこから、湿気などが進入しやすい。しかしながら、第2端子電極34,36に沿って絶縁膜40aを形成することで、内部電極22への湿気の進入を効果的に防止することができる。   As shown in FIG. 6, on the side surfaces 10 a and 10 b of the element body 10, the second terminal electrodes 34 and 36 are formed on the surface of the element body 10 located at the boundary between the surface of the element body 10 and the second terminal electrodes 34 and 36. An insulating film 40a is formed along the line. In general, on the side surface of the element body 10, the lead portions 23 (see FIG. 5) of the second internal electrode 22 connected to the second terminal electrodes 34 and 36 are on both sides in the X-axis direction of the second terminal electrodes 34 and 36. Therefore, it is easy to be exposed on the surface of the element body 34, and moisture or the like easily enters from there. However, by forming the insulating film 40 a along the second terminal electrodes 34 and 36, it is possible to effectively prevent moisture from entering the internal electrode 22.

なお、本実施形態においては、絶縁膜40aは、第2端子電極34,36のX軸方向両側のみでなく、半円状端部35,37も含めて、電極34,36の全周に位置する素体表面を各々覆っている。また、第2電極34,36のみでなく、第1電極30,32においても、カバー部31,33のエッジ部(素体との境界)において、素体10の表面を、エッジ部に沿って絶縁膜40bが連続して覆っていても良い。   In the present embodiment, the insulating film 40a is positioned not only on both sides in the X-axis direction of the second terminal electrodes 34 and 36 but also on the entire circumference of the electrodes 34 and 36 including the semicircular ends 35 and 37. Each of the body surfaces to be covered is covered. Further, not only the second electrodes 34 and 36 but also the first electrodes 30 and 32, the surface of the element body 10 extends along the edge portions at the edge portions (boundaries with the element body) of the cover portions 31 and 33. The insulating film 40b may be continuously covered.

なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。   The present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.

たとえば、貫通コンデンサ2,2aにおける内部電極のパターンや端子電極の形成パターンなどは、上述した実施形態に限定されず、種々に改変することができる。たとえば図7に示すように、コンデンサ素体10Aの内部における第1内部電極20aのパターンを、図5(A)に示す第1内部電極20のY軸方向幅よりも狭く設計してもよい。また、図7に示すように、第2内部電極22aにおけるリード部23aのX軸方向幅を、図5(A)に示す第2内部電極22におけるリード部23のY軸方向幅よりも広く設計しても良い。   For example, the internal electrode pattern and the terminal electrode formation pattern in the feedthrough capacitors 2 and 2a are not limited to the above-described embodiment, and can be variously modified. For example, as shown in FIG. 7, the pattern of the first internal electrode 20a inside the capacitor body 10A may be designed to be narrower than the Y-axis direction width of the first internal electrode 20 shown in FIG. Further, as shown in FIG. 7, the X-axis direction width of the lead portion 23a in the second internal electrode 22a is designed wider than the Y-axis direction width of the lead portion 23 in the second internal electrode 22 shown in FIG. You may do it.

図7に示す例では、これらの内部電極20a,22aおよびリード部23aのパターン形状に合わせて、素体の外表面に形成される端子電極のパターンが決定される。   In the example shown in FIG. 7, the pattern of the terminal electrode formed on the outer surface of the element body is determined in accordance with the pattern shape of the internal electrodes 20a, 22a and the lead portion 23a.

2,2a… 積層貫通コンデンサ
10,10A… コンデンサ素体
10a,10b… 側面
10c,10d… 端面
10e,10f… 主面
20,20a… 第1内部電極
22,22a… 第2内部電極
23,23a… リード部
24… 内側誘電体層
26… 外側誘電体層
30,32… 第1端子電極
34,36… 第2端子電極
40,40a,40b… 絶縁膜
42… 素体表面露出領域
2, 2a ... multilayer feedthrough capacitors 10, 10A ... capacitor body 10a, 10b ... side face 10c, 10d ... end face 10e, 10f ... main face 20, 20a ... first internal electrode 22, 22a ... second internal electrode 23, 23a ... Lead portion 24 ... inner dielectric layer 26 ... outer dielectric layer 30, 32 ... first terminal electrodes 34, 36 ... second terminal electrodes 40, 40a, 40b ... insulating film 42 ... element body surface exposed region

Claims (7)

一対の側面、一対の端面、および一対の主面を有し、誘電体セラミックで構成してある素体と、
前記素体内に配置され、一対の前記端面に引き出される第1内部電極と、
前記素体内に配置され、一対の前記側面に引き出される第2内部電極と、
前記素体の端面に形成され、前記第1内部電極に接続される第1端子電極と、
前記素体の側面に形成され、前記第2内部電極に接続される第2端子電極と、を有する貫通コンデンサであって、
前記第1端子電極と前記第2端子電極との最短距離となる前記素体の表面には、絶縁膜が形成される絶縁膜領域と、前記絶縁膜が形成されていない素体表面露出領域との双方が形成してある貫通コンデンサ。
An element body having a pair of side surfaces, a pair of end surfaces, and a pair of main surfaces, and made of a dielectric ceramic;
A first internal electrode disposed in the element body and drawn out to the pair of end faces;
A second internal electrode disposed in the element body and drawn out to the pair of side surfaces;
A first terminal electrode formed on an end surface of the element body and connected to the first internal electrode;
A feedthrough capacitor having a second terminal electrode formed on a side surface of the element body and connected to the second internal electrode,
On the surface of the element body that is the shortest distance between the first terminal electrode and the second terminal electrode, an insulating film region where an insulating film is formed, and an element body surface exposed region where the insulating film is not formed A feedthrough capacitor formed by both.
前記絶縁膜は、前記第1端子電極と前記第2端子電極との最短距離となる前記素体の表面では、前記第1端子電極と前記第2端子電極とを連絡しないように形成してある請求項1に記載の貫通コンデンサ。   The insulating film is formed so as not to connect the first terminal electrode and the second terminal electrode on the surface of the element body that is the shortest distance between the first terminal electrode and the second terminal electrode. The feedthrough capacitor according to claim 1. 前記素体の表面と前記第1端子電極との境界に位置する前記素体の表面を覆うように、前記絶縁膜が形成してあり、
前記素体の表面と前記第2端子電極との境界に位置する前記素体の表面を覆うように、前記絶縁膜が形成してあり、
前記第1端子電極近くの前記絶縁膜と、前記第2端子電極近くの前記絶縁膜との間に位置する前記素体の表面には、前記素体表面露出領域が形成してある請求項1または2に記載の貫通コンデンサ。
The insulating film is formed so as to cover the surface of the element body located at the boundary between the surface of the element body and the first terminal electrode;
The insulating film is formed so as to cover the surface of the element body located at the boundary between the surface of the element body and the second terminal electrode;
2. The element body surface exposed region is formed on a surface of the element body located between the insulating film near the first terminal electrode and the insulating film near the second terminal electrode. Or the feedthrough capacitor of 2.
前記絶縁膜は、前記素体の表面に、前記第1端子電極および前記第2端子電極の外面よりも外側に飛び出さない厚みで形成してある請求項1〜3のいずれかに記載の貫通コンデンサ。   The penetration according to claim 1, wherein the insulating film is formed on the surface of the element body with a thickness that does not protrude outward from the outer surfaces of the first terminal electrode and the second terminal electrode. Capacitor. 前記素体の主面と側面とが交差する前記素体の角部に、前記主面から側面にまたがって、前記絶縁膜が形成してある請求項1〜4のいずれかに記載の貫通コンデンサ。   5. The feedthrough capacitor according to claim 1, wherein the insulating film is formed from the main surface to the side surface at a corner portion of the element body where a main surface and a side surface of the element body intersect. . 前記素体の側面では、前記素体の表面と前記第2端子電極との境界に位置する前記素体の表面に、前記第2端子電極に沿って前記絶縁膜が形成されている請求項1〜5のいずれかに記載の貫通コンデンサ。   2. The insulating film is formed along the second terminal electrode on a side surface of the element body on a surface of the element body located at a boundary between the surface of the element body and the second terminal electrode. The feedthrough capacitor according to any one of? 一対の前記主面において、前記素体の表面には、前記絶縁膜領域と、前記素体表面露出領域との双方が形成してある請求項1〜6のいずれかに記載の貫通コンデンサ。   The feedthrough capacitor according to any one of claims 1 to 6, wherein, in the pair of main surfaces, both the insulating film region and the element body surface exposed region are formed on a surface of the element body.
JP2013213960A 2013-10-11 2013-10-11 Feedthrough capacitor Active JP6343901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213960A JP6343901B2 (en) 2013-10-11 2013-10-11 Feedthrough capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213960A JP6343901B2 (en) 2013-10-11 2013-10-11 Feedthrough capacitor

Publications (2)

Publication Number Publication Date
JP2015076591A true JP2015076591A (en) 2015-04-20
JP6343901B2 JP6343901B2 (en) 2018-06-20

Family

ID=53001194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213960A Active JP6343901B2 (en) 2013-10-11 2013-10-11 Feedthrough capacitor

Country Status (1)

Country Link
JP (1) JP6343901B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058021A (en) 2016-11-23 2018-05-31 삼성전기주식회사 Multi-layered capacitor and board having the same mounted thereon
US10090107B2 (en) 2015-12-29 2018-10-02 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component having first internal electrode base patterns exposed to an end and opposing side surfaces of a body, and method of manufacturing the same
KR20180132490A (en) 2017-06-02 2018-12-12 삼성전기주식회사 Multilayered ceramic capacitor and board having the same mounted thereon
US10468185B2 (en) 2017-06-02 2019-11-05 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same mounted thereon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333206A (en) * 1991-05-08 1992-11-20 Mitsubishi Materials Corp Laminated ceramic capacitor
JPH09180957A (en) * 1995-12-22 1997-07-11 Kyocera Corp Multilayered ceramic capacitor
JP2005012167A (en) * 2003-05-27 2005-01-13 Murata Mfg Co Ltd Multilayer ceramic electronic component, mounting structure therefor and mounting method
JP2011204778A (en) * 2010-03-24 2011-10-13 Murata Mfg Co Ltd Method of manufacturing laminated ceramic electronic component
US20130063864A1 (en) * 2011-09-09 2013-03-14 Hon Hai Precision Industry Co., Ltd. Multi-layer ceramic electronic component with solder blocking layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333206A (en) * 1991-05-08 1992-11-20 Mitsubishi Materials Corp Laminated ceramic capacitor
JPH09180957A (en) * 1995-12-22 1997-07-11 Kyocera Corp Multilayered ceramic capacitor
JP2005012167A (en) * 2003-05-27 2005-01-13 Murata Mfg Co Ltd Multilayer ceramic electronic component, mounting structure therefor and mounting method
JP2011204778A (en) * 2010-03-24 2011-10-13 Murata Mfg Co Ltd Method of manufacturing laminated ceramic electronic component
US20130063864A1 (en) * 2011-09-09 2013-03-14 Hon Hai Precision Industry Co., Ltd. Multi-layer ceramic electronic component with solder blocking layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10090107B2 (en) 2015-12-29 2018-10-02 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component having first internal electrode base patterns exposed to an end and opposing side surfaces of a body, and method of manufacturing the same
US10249437B2 (en) 2015-12-29 2019-04-02 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component with side parts on external surfaces, and method of manufacturing the same
US10340087B2 (en) 2015-12-29 2019-07-02 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component having first internal electrode base patterns exposed to an end and opposing side surfaces of a body, and method of manufacturing the same
KR20180058021A (en) 2016-11-23 2018-05-31 삼성전기주식회사 Multi-layered capacitor and board having the same mounted thereon
US10699847B2 (en) 2016-11-23 2020-06-30 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having multilayer capacitor mounted thereon
KR102613871B1 (en) * 2016-11-23 2023-12-15 삼성전기주식회사 Multi-layered capacitor and board having the same mounted thereon
KR20180132490A (en) 2017-06-02 2018-12-12 삼성전기주식회사 Multilayered ceramic capacitor and board having the same mounted thereon
US10468185B2 (en) 2017-06-02 2019-11-05 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same mounted thereon
KR20220111239A (en) 2017-06-02 2022-08-09 삼성전기주식회사 Multilayered ceramic capacitor and board having the same mounted thereon

Also Published As

Publication number Publication date
JP6343901B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
US8947850B2 (en) Multilayer capacitor
US9997295B2 (en) Electronic component
US20190103223A1 (en) Multilayer electronic component and board having the same
JP7200499B2 (en) Laminated coil parts
US10566137B2 (en) Multilayer electronic component and board having the same
US9646767B2 (en) Ceramic electronic component and ceramic electronic apparatus including a split inner electrode
US10026554B2 (en) Multilayer capacitor with (1) an element body having internal electrodes and (2) opposing terminal electrodes
TWI399770B (en) Laminated capacitors
JP6343901B2 (en) Feedthrough capacitor
JP2020047908A (en) Electronic component
US9972437B2 (en) Multilayer capacitor with terminal electrode including sintered conductor layer
US20190069411A1 (en) Electronic component and board having the same
KR101843272B1 (en) Multi-layered ceramic electronic components and method for manufacturing the same
US10366839B1 (en) Electronic component
US10650972B2 (en) Electronic component
JP2021114584A (en) Multilayer ceramic electronic component and manufacturing method thereof
JP5791411B2 (en) Capacitor and circuit board
JP2015041735A (en) Capacitor element
JP7238622B2 (en) Laminated coil parts
CN114823143B (en) Multilayer capacitor
KR102118494B1 (en) Electronic component
JP2018129435A (en) Multilayer feed-through capacitor and electronic component device
JP6668913B2 (en) Electronic components
JP6746899B2 (en) Electronic component mounting board and mounting structure
JP2022052325A (en) Electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6343901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150