JP2015076158A - All-solid secondary battery, manufacturing method of the same, and sensor system - Google Patents

All-solid secondary battery, manufacturing method of the same, and sensor system Download PDF

Info

Publication number
JP2015076158A
JP2015076158A JP2013209975A JP2013209975A JP2015076158A JP 2015076158 A JP2015076158 A JP 2015076158A JP 2013209975 A JP2013209975 A JP 2013209975A JP 2013209975 A JP2013209975 A JP 2013209975A JP 2015076158 A JP2015076158 A JP 2015076158A
Authority
JP
Japan
Prior art keywords
solid
secondary battery
electrode
battery
state secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013209975A
Other languages
Japanese (ja)
Other versions
JP6221600B2 (en
Inventor
肥田 勝春
Katsuharu Hida
勝春 肥田
山本 保
Tamotsu Yamamoto
保 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013209975A priority Critical patent/JP6221600B2/en
Publication of JP2015076158A publication Critical patent/JP2015076158A/en
Application granted granted Critical
Publication of JP6221600B2 publication Critical patent/JP6221600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit deterioration caused by repetitive charging/discharging in an all-solid secondary battery, a manufacturing method of the all-solid secondary battery, and a sensor system.SOLUTION: An all-solid secondary battery includes: a substrate 2; a battery part 6 formed by laminating a first electrode 3, a solid electrolyte 4, and a second electrode 5 on the substrate 2 in sequence; a frame 11 provided around the battery part 6; and a sealing film 7 covering the battery part 6 and the frame 11.

Description

本発明は、全固体二次電池、全固体二次電池の製造方法、及びセンサシステムに関する。   The present invention relates to an all-solid secondary battery, a method for producing an all-solid secondary battery, and a sensor system.

充放電により電気エネルギを繰り返し供給できるリチウムイオン二次電池等の二次電池は、様々な機器へ応用されつつある。   Secondary batteries such as lithium ion secondary batteries that can repeatedly supply electric energy by charging and discharging are being applied to various devices.

二次電池が備える電解質は液体又は固体であり、電解質が固体の二次電池は全固体二次電池と呼ばれる。全固体二次電池は、電解質が固体であるため、液もれが発生せず安全である。更に、全固体二次電池は、半導体プロセスで形成することができるため、製造が容易であるという利点もある。   The electrolyte included in the secondary battery is liquid or solid, and the secondary battery having a solid electrolyte is called an all-solid secondary battery. The all-solid-state secondary battery is safe because it does not leak because the electrolyte is solid. Furthermore, since the all-solid-state secondary battery can be formed by a semiconductor process, there is an advantage that it is easy to manufacture.

特開2010−73687号公報JP 2010-73687 A

全固体二次電池、全固体二次電池の製造方法、及びセンサシステムにおいて信頼性を向上させることを目的とする。   It is an object of the present invention to improve reliability in an all-solid secondary battery, an all-solid secondary battery manufacturing method, and a sensor system.

以下の開示の一観点によれば、基板と、前記基板の上に第1の電極と固体電解質と第2の電極とを順に積層してなる電池部と、前記電池部の周囲に設けられた枠と、前記電池部と前記枠とを覆う封止膜とを有する全固体二次電池が提供される。   According to one aspect of the disclosure below, a substrate, a battery unit in which a first electrode, a solid electrolyte, and a second electrode are sequentially stacked on the substrate, and the periphery of the battery unit are provided. An all solid state secondary battery having a frame and a sealing film covering the battery part and the frame is provided.

更に、その開示の他の観点によれば、基板の上に枠を形成する工程と、前記枠の内側に、第1の電極と固体電解質と第2の電極とを順に積層して電池部を形成する工程と、前記電池部と前記枠とを覆う封止膜を形成する工程とを有する全固体二次電池の製造方法が提供される。   Further, according to another aspect of the disclosure, a battery unit is formed by sequentially stacking a first electrode, a solid electrolyte, and a second electrode inside the frame, the step of forming a frame on the substrate. There is provided a method for producing an all-solid-state secondary battery including a forming step and a step of forming a sealing film that covers the battery part and the frame.

また、その開示の別の観点によれば、全固体二次電池と、前記全固体二次電池が蓄えた電力で駆動するセンサと、前記全固体二次電池が蓄えた電力で駆動し、前記センサからの情報を無線送信する送信部とを有し、前記全固体二次電池は、第1の電極と固体電解質と第2の電極とを順に積層してなる電池部と、前記電池部の周囲に設けられた枠と、前記電池部と前記枠とを覆う封止膜とを有するセンサシステムが提供される。   According to another aspect of the disclosure, the all-solid-state secondary battery, a sensor that is driven by the power stored in the all-solid-state secondary battery, and the power that is stored in the all-solid-state secondary battery are driven, A transmission unit that wirelessly transmits information from the sensor, and the all-solid-state secondary battery includes: a battery unit in which a first electrode, a solid electrolyte, and a second electrode are sequentially stacked; and There is provided a sensor system having a frame provided around, and a sealing film covering the battery part and the frame.

以下の開示によれば、充放電によって電池部の高さが変化した場合であっても、電池部につられて封止膜が伸縮しようとするのを枠で抑えることができる。これにより、封止膜に繰り返しかかる応力を抑制して、封止膜に亀裂が入り難い信頼性の高い全固体二次電池を提供することができる。   According to the following disclosure, even when the height of the battery part is changed due to charging / discharging, it is possible to suppress the sealing film from being stretched and contracted by the battery part with a frame. Thereby, the stress applied repeatedly to the sealing film can be suppressed, and a highly reliable all-solid secondary battery that is difficult to crack the sealing film can be provided.

図1は、本願発明者が検討した全固体二次電池の断面図である。FIG. 1 is a cross-sectional view of an all solid state secondary battery investigated by the present inventors. 図2は、全固体二次電池の充放電曲線である。FIG. 2 is a charge / discharge curve of the all-solid-state secondary battery. 図3(a)は、本願発明者が検討した第1の充電量の全固体二次電池の断面図であり、図3(b)は、本願発明者が検討した第2の充電量の全固体二次電池の断面図である。FIG. 3A is a cross-sectional view of an all-solid-state secondary battery having a first charge amount examined by the inventor of the present application, and FIG. 3B is an entire view of the second charge amount examined by the present inventor. It is sectional drawing of a solid secondary battery. 図4は、第1実施形態に係る全固体二次電池の断面図である。FIG. 4 is a cross-sectional view of the all solid state secondary battery according to the first embodiment. 図5(a)は、第1の充電量のときの第1実施形態に係る全固体二次電池の断面図であり、図3(b)は、第2の充電量のときの第1実施形態に係る全固体二次電池の断面図である。FIG. 5A is a cross-sectional view of the all-solid-state secondary battery according to the first embodiment at the first charge amount, and FIG. 3B is the first embodiment at the second charge amount. It is sectional drawing of the all-solid-state secondary battery which concerns on a form. 図6は、第1実施形態に係る全固体二次電池において、封止膜が受ける応力が保護枠の高さによってどのように変わるのかを計算して得られた図である。FIG. 6 is a diagram obtained by calculating how the stress applied to the sealing film varies depending on the height of the protective frame in the all-solid-state secondary battery according to the first embodiment. 図7は、第1実施形態に係る全固体二次電池の製造途中の断面図(その1)である。FIG. 7 is a cross-sectional view (part 1) in the middle of manufacturing the all-solid-state secondary battery according to the first embodiment. 図8は、第1実施形態に係る全固体二次電池の製造途中の断面図(その2)である。FIG. 8 is a cross-sectional view (No. 2) in the middle of manufacturing the all solid state secondary battery according to the first embodiment. 図9は、第1実施形態に係る全固体二次電池の製造途中の断面図(その3)である。FIG. 9 is a cross-sectional view (No. 3) in the middle of manufacturing the all solid state secondary battery according to the first embodiment. 図10は、第1実施形態に係る全固体二次電池の製造途中の断面図(その4)である。FIG. 10 is a cross-sectional view (part 4) in the middle of manufacturing the all-solid-state secondary battery according to the first embodiment. 図11は、第1実施形態に係る全固体二次電池の製造途中の断面図(その5)である。FIG. 11 is a cross-sectional view (part 5) of the all-solid-state secondary battery according to the first embodiment in the middle of manufacture. 図12は、第1実施形態に係る全固体二次電池の製造途中の断面図(その6)である。FIG. 12 is a cross-sectional view (No. 6) of the all solid state secondary battery according to the first embodiment in the middle of manufacture. 図13は、第1実施形態に係る全固体二次電池の製造途中の断面図(その7)である。FIG. 13 is a sectional view (No. 7) in the middle of manufacturing the all solid state secondary battery according to the first embodiment. 図14は、第1実施形態に係る全固体二次電池の製造途中の平面図(その1)である。FIG. 14 is a plan view (part 1) in the middle of manufacturing the all-solid-state secondary battery according to the first embodiment. 図15は、第1実施形態に係る全固体二次電池の製造途中の平面図(その2)である。FIG. 15 is a plan view (part 2) of the all-solid-state secondary battery according to the first embodiment during manufacture. 図16は、第1実施形態に係る全固体二次電池の他の例について示す断面図である。FIG. 16 is a cross-sectional view illustrating another example of the all solid state secondary battery according to the first embodiment. 図17は、第2実施形態に係るセンサシステムの機能ブロック図である。FIG. 17 is a functional block diagram of a sensor system according to the second embodiment.

本実施形態の説明に先立ち、本願発明者が検討した事項について説明する。   Prior to the description of the present embodiment, items studied by the inventor will be described.

図1は、本願発明者が検討した全固体二次電池1の断面図である。   FIG. 1 is a cross-sectional view of an all-solid secondary battery 1 examined by the present inventors.

図1に示すように、全固体二次電池1は、基板2の上に、第1の電極3、電解質4、及び第2の電極5を順に積層してなる電池部6を有する。基板2の表面から測った電池部6の高さはTであり、その電池部6は封止膜7で覆われる。   As shown in FIG. 1, the all-solid-state secondary battery 1 has a battery unit 6 formed by sequentially laminating a first electrode 3, an electrolyte 4, and a second electrode 5 on a substrate 2. The height of the battery unit 6 measured from the surface of the substrate 2 is T, and the battery unit 6 is covered with a sealing film 7.

基板2は、例えばシリコン基板である。また、第1の電極3は、電池部6の正極であり、コバルト酸リチウム(LiCoO2)などの材料から形成される。そして、第2の電極5は、電池部6の負極であり、リチウム(Li)などの材料から形成される。 The substrate 2 is a silicon substrate, for example. The first electrode 3 is a positive electrode of the battery unit 6 and is made of a material such as lithium cobalt oxide (LiCoO 2 ). And the 2nd electrode 5 is a negative electrode of the battery part 6, and is formed from materials, such as lithium (Li).

また、電解質4は固体であって、その材料としてはリン酸リチウム(LiPON)などのリチウム塩がある。また、封止膜7の材料としては、アクリル等の樹脂がある。   The electrolyte 4 is a solid, and a material thereof is a lithium salt such as lithium phosphate (LiPON). The material of the sealing film 7 includes a resin such as acrylic.

更に、第1の電極3と基板2との間には第1の集電体8が設けられ、第2の電極5の上には第2の集電体9が設けられる。各集電体8、9の材料は例えばプラチナ(Pt)であり、電池部6の充放電はこれらの集電体8、9を介して行われる。   Further, a first current collector 8 is provided between the first electrode 3 and the substrate 2, and a second current collector 9 is provided on the second electrode 5. The material of each current collector 8, 9 is, for example, platinum (Pt), and charging / discharging of the battery unit 6 is performed via these current collectors 8, 9.

図2は、全固体二次電池1の充放電曲線である。   FIG. 2 is a charge / discharge curve of the all solid state secondary battery 1.

図2の放電曲線に示すように、全固体二次電池1は、放電によりその電圧値が凡そ3.0Vよりも低下すると電圧値が急激に低下する。よって、電圧値が3.0Vの点は全固体二次電池1が放電完了となる目安の電圧値であって、以下ではその電圧値に対応する全固体二次電池1の容量を第1の充電量C1と呼ぶ。 As shown in the discharge curve of FIG. 2, the voltage value of the all-solid-state secondary battery 1 rapidly decreases when the voltage value thereof drops below about 3.0 V due to discharge. Therefore, the point where the voltage value is 3.0 V is a reference voltage value at which the all-solid-state secondary battery 1 is completely discharged. Hereinafter, the capacity of the all-solid-state secondary battery 1 corresponding to the voltage value is the first value. Called the charge amount C 1 .

また、図2の充電曲線に示すように、全固体二次電池1は、充電によりその電圧値が凡そ4.1Vよりも高くなると電圧値の上昇が緩やかとなる。よって、電圧値が4.1Vの点は全固体二次電池1が充電完了となる目安の電圧値であって、以下ではその電圧値に対応する全固体二次電池1の容量を第2の充電量C2と呼ぶ。 Further, as shown in the charging curve of FIG. 2, when the voltage value of the all-solid-state secondary battery 1 becomes higher than about 4.1 V by charging, the voltage value rises gradually. Therefore, the point where the voltage value is 4.1 V is a standard voltage value at which the charging of the all-solid-state secondary battery 1 is completed. Hereinafter, the capacity of the all-solid-state secondary battery 1 corresponding to the voltage value is set to the second value. referred to as the amount of charge C 2.

図3(a)は、第1の充電量C1の全固体二次電池1の断面図であり、図3(b)は、第2の充電量C2の全固体二次電池1の断面図である。 3A is a cross-sectional view of the all-solid-state secondary battery 1 having the first charge amount C 1 , and FIG. 3B is a cross-section of the all-solid-state secondary battery 1 having the second charge amount C 2. FIG.

図3(a)に示すように、第1の充電量C1のとき、電池部6の高さTは第1の高さT1を有する。 As shown in FIG. 3A, the height T of the battery unit 6 has a first height T 1 when the charge amount is C 1 .

この状態において電池部6に対して充電を行うと、第1の電極3のコバルト酸リチウムの結晶からリチウムイオン(Li+)が放出される。 When the battery unit 6 is charged in this state, lithium ions (Li + ) are released from the lithium cobalt oxide crystal of the first electrode 3.

そして、図3(b)に示すように、上記のリチウムイオン(Li+)は電解質4を通って第2の電極5の下面に到達し、そこで電子と結合することでリチウムの金属層10が形成される。 Then, as shown in FIG. 3 (b), the lithium ions (Li + ) reach the lower surface of the second electrode 5 through the electrolyte 4, where they are combined with electrons, whereby the lithium metal layer 10 is formed. It is formed.

この結果、電池部6の高さTは、金属層10の厚さTLiの分だけ高くなり、第2の高さT2=T1+TLiとなる。 As a result, the height T of the battery unit 6 is increased by the thickness T Li of the metal layer 10, and the second height T 2 = T 1 + T Li is obtained.

これとは逆に、放電時には金属層10のリチウムが電子を放出してリチウムイオン(Li+)となり、そのリチウムイオンが第1の電極3へと移動する。これにより、リチウムイオンが第1の電極3に吸蔵されると共に、金属層10が薄くなって電池部6の高さT2が減少する。 On the contrary, during discharge, lithium in the metal layer 10 emits electrons to become lithium ions (Li + ), and the lithium ions move to the first electrode 3. As a result, lithium ions are occluded in the first electrode 3, and the metal layer 10 is thinned to reduce the height T 2 of the battery unit 6.

このように、全固体二次電池1は充放電に伴いその高さTが変化する。これにより、封止膜7に応力が繰り返し作用するようになり、封止膜7に亀裂7aが入ることがある。   Thus, the height T of the all-solid-state secondary battery 1 changes with charge / discharge. As a result, stress repeatedly acts on the sealing film 7, and a crack 7 a may enter the sealing film 7.

封止膜7は、リチウムを含む電池部6を大気中の水分等から保護する役割を担うものであるが、このように亀裂7aが生じるとその亀裂7aから電池部6に外部の水分が侵入し、水分とリチウムとが反応して発熱や発火が生じるおそれがある。   The sealing film 7 plays a role of protecting the battery unit 6 containing lithium from moisture in the atmosphere. When the crack 7a is generated in this way, external moisture enters the battery unit 6 from the crack 7a. However, moisture and lithium may react to generate heat or ignite.

特に、封止膜7の下部Dにおいては、基板2に固定された部分の封止膜7が上下に動けないため応力が強く作用し、上記のような亀裂7aが発生し易い。   In particular, in the lower portion D of the sealing film 7, the portion of the sealing film 7 fixed to the substrate 2 cannot move up and down, so that stress acts strongly, and the crack 7a as described above is likely to occur.

以上のように、全固体二次電池1には封止膜に作用する応力を低減し、その信頼性を向上させるという点で改善の余地がある。   As described above, the all-solid-state secondary battery 1 has room for improvement in terms of reducing the stress acting on the sealing film and improving its reliability.

(第1実施形態)
図4は、本実施形態に係る全固体二次電池21の断面図である。なお、図4において、図1で説明したのと同じ要素には図1におけるのと同じ符号を付し、以下ではその説明を省略する。
(First embodiment)
FIG. 4 is a cross-sectional view of the all-solid-state secondary battery 21 according to this embodiment. In FIG. 4, the same elements as those described in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and the description thereof is omitted below.

図4に示すように、全固体二次電池21は、基板2の上に、第1の電極3と、電解質4と、第2の電極5とを順に積層してなる電池部6を有する。   As shown in FIG. 4, the all-solid-state secondary battery 21 has a battery unit 6 formed by sequentially laminating a first electrode 3, an electrolyte 4, and a second electrode 5 on a substrate 2.

基板2は、例えばシリコン基板であって、その上には酸化シリコン(SiO2)膜等の不図示の絶縁膜が形成される。 The substrate 2 is, for example, a silicon substrate, and an insulating film (not shown) such as a silicon oxide (SiO 2 ) film is formed thereon.

第1の電極3は、電池部6の正極として機能し、コバルト酸リチウムなどの材料から形成され、その膜厚は例えば6μmである。   The 1st electrode 3 functions as a positive electrode of the battery part 6, is formed from materials, such as lithium cobaltate, The film thickness is 6 micrometers, for example.

そして、電解質4は、リン酸リチウムなどのリチウム塩を含む材料から形成され、その膜厚は例えば2μmである。   And the electrolyte 4 is formed from the material containing lithium salts, such as lithium phosphate, The film thickness is 2 micrometers, for example.

また、第2の電極5は、電池部6の負極として機能し、金属リチウムなどの材料により例えば2μmの膜厚に形成される。   The second electrode 5 functions as a negative electrode of the battery unit 6 and is formed with a thickness of, for example, 2 μm from a material such as metallic lithium.

更に、第1の電極3と基板2との間には第1の集電体8が設けられ、第2の電極5の上には第2の集電体9が設けられる。各集電体8、9は例えばプラチナ膜であり、電池部6の充放電はこれらの集電体8、9を介して行われる。   Further, a first current collector 8 is provided between the first electrode 3 and the substrate 2, and a second current collector 9 is provided on the second electrode 5. The current collectors 8 and 9 are, for example, platinum films, and the battery unit 6 is charged / discharged through the current collectors 8 and 9.

そして、電池部6の周囲には、高さThを有する絶縁性の保護枠11が設けられる。保護枠11の材料は特に限定されないが、この例ではアルミナで保護膜11を形成する。 Then, around the battery unit 6, an insulating protective frame 11 is provided having a height T h. The material of the protective frame 11 is not particularly limited, but in this example, the protective film 11 is formed of alumina.

更に、その保護枠11と電池部6は、アクリル等の樹脂を材料とする封止膜7で覆われる。   Further, the protective frame 11 and the battery unit 6 are covered with a sealing film 7 made of a resin such as acrylic.

次に、本実施形態に係る全固体二次電池21の動作について、図5(a)、(b)を参照しながら説明する。   Next, the operation of the all solid state secondary battery 21 according to this embodiment will be described with reference to FIGS. 5 (a) and 5 (b).

図5(a)は、第1の充電量C1の全固体二次電池21の断面図であり、図5(b)は、第2の充電量C2の全固体二次電池21の断面図である。 5A is a cross-sectional view of the all-solid-state secondary battery 21 having the first charge amount C 1 , and FIG. 5B is a cross-section of the all-solid-state secondary battery 21 having the second charge amount C 2. FIG.

前述のように、第1の充電量C1は放電完了時の全固体二次電池21の容量であり、第2の充電量C2は充電完了時の全固体二次電池21の容量である。 As described above, the first charge amount C 1 is the capacity of the all-solid-state secondary battery 21 when the discharge is completed, and the second charge amount C 2 is the capacity of the all-solid-state secondary battery 21 when the charge is completed. .

図5(a)に示すように、放電完了時においては、電池部6の高さは前述のように第1の高さT1まで減少する。 As shown in FIG. 5A, when the discharge is completed, the height of the battery unit 6 decreases to the first height T 1 as described above.

一方、充電完了時においては、図5(b)に示すように、金属のリチウムが析出して形成された金属層10により、電池部6の高さが前述の第2の高さT2まで増加する。 On the other hand, when the charging is completed, as shown in FIG. 5B, the height of the battery portion 6 is reduced to the second height T 2 by the metal layer 10 formed by depositing metallic lithium. To increase.

ここで、本実施形態では電池部6の周囲を保護枠11で囲ったため、電池部6の側面において当該電池部6と封止膜7とが隔離される。   Here, in this embodiment, since the periphery of the battery unit 6 is surrounded by the protective frame 11, the battery unit 6 and the sealing film 7 are isolated on the side surface of the battery unit 6.

よって、電池部6の高さが上記のように変化しても、保護枠11の側面の封止膜7に対して電池部6から応力が直接作用せず、その応力が原因で封止膜7に亀裂が入るのを抑制できる。   Therefore, even if the height of the battery part 6 changes as described above, stress does not directly act on the sealing film 7 on the side surface of the protective frame 11 from the battery part 6, and the sealing film is caused by the stress. 7 can be prevented from cracking.

これにより、封止膜7の亀裂から大気中の水分が電池部6に侵入するのを防止でき、水分との接触で電池部6が発熱するおそれが低減されるので、全固体二次電池21の信頼性を高めることができる。   Thereby, it is possible to prevent moisture in the atmosphere from entering the battery unit 6 from the crack of the sealing film 7, and the possibility that the battery unit 6 generates heat due to contact with moisture is reduced. Can improve the reliability.

なお、保護枠11の高さThは特に限定されないが、第1の高さT1よりも高く、かつ、第2の高さT2よりも低くなるように高さThを設定するのが好ましい。これにより、図5(b)に示すように、充電完了時における保護枠11と第2の電極5の各々の高さの差Δが金属層10の厚さTLiよりも小さくなり、電池部6の上方で封止膜7が受ける応力を低減し易くなる。 Although the height T h of the protective frame 11 is not particularly limited, the first higher than the height T 1, and to set the second lower than the height T 2 as the height T h Is preferred. Thereby, as shown in FIG. 5B, the difference Δ between the heights of the protective frame 11 and the second electrode 5 at the completion of charging becomes smaller than the thickness T Li of the metal layer 10, and the battery unit It becomes easy to reduce the stress which the sealing film 7 receives above 6.

本願発明者は、封止膜7が受ける応力が保護枠11の高さによってどのように変わるのかを計算した。   The inventor of the present application calculated how the stress applied to the sealing film 7 changes depending on the height of the protective frame 11.

その計算結果を図6に示す。   The calculation result is shown in FIG.

図6の横軸は、図5(a)の各高さTh、T1の差(Th−T1)を表し、その縦軸は封止膜7が受ける応力を表す。なお、差(Th−T1)は、放電完了時の状態における電池部6と保護枠11の各々の高さの差に相当する。 The horizontal axis in FIG. 6 represents the difference (T h −T 1 ) between the heights Th and T 1 in FIG. 5A, and the vertical axis represents the stress that the sealing film 7 receives. The difference (T h −T 1 ) corresponds to the difference in height between the battery unit 6 and the protective frame 11 in the state when the discharge is completed.

また、この計算に使用した電池部6のモデルは、平面視で一辺の長さが5mmの正方形とした。また、保護枠11のモデルは、平面視で一辺の長さが5.2mmの正方形とした。更に、充電完了時における金属層10(図5(b)参照)の厚さTLiは1μmとした。金属層10の厚さTLiは前述の各高さT1、T2の差(T2−T1)に等しいので、T2−T1=1μmということになる。 The model of the battery unit 6 used for this calculation was a square with a side length of 5 mm in plan view. The model of the protective frame 11 was a square having a side length of 5.2 mm in plan view. Further, the thickness T Li of the metal layer 10 (see FIG. 5B) upon completion of charging was set to 1 μm. Since the thickness T Li of the metal layer 10 is equal to the difference (T 2 −T 1 ) between the aforementioned heights T 1 and T 2 , T 2 −T 1 = 1 μm.

図6に示すように、差(Th−T1)が大きくなるにつれて封止膜7が受ける応力が低減している。 As shown in FIG. 6, as the difference (T h −T 1 ) increases, the stress applied to the sealing film 7 decreases.

特に、差(Th−T1)が0μm〜0.5μmの範囲において応力が急激に低減し、差(Th−T1)が0.5μmよりも大きくなると応力の低減がなだらかとなる。前述のようにT2−T1=1μmであるから、Th−T1が0.5μmに等しいときは、Th=(T1+T2)/2となる。よって、保護枠11の高さを、第1の高さT1と第2の高さT2の和の2分の1よりも高くすることで、封止膜7が受ける応力を十分に低減することができる。 In particular, when the difference (T h −T 1 ) is in the range of 0 μm to 0.5 μm, the stress is drastically reduced. When the difference (T h −T 1 ) is larger than 0.5 μm, the stress is gently reduced. Since T 2 −T 1 = 1 μm as described above, when T h −T 1 is equal to 0.5 μm, T h = (T 1 + T 2 ) / 2. Therefore, the stress applied to the sealing film 7 is sufficiently reduced by making the height of the protective frame 11 higher than one half of the sum of the first height T 1 and the second height T 2. can do.

次に、本実施形態に係る全固体二次電池の製造方法について説明する。   Next, a manufacturing method of the all solid state secondary battery according to the present embodiment will be described.

図7〜図13は、本実施形態に係る全固体二次電池21の製造途中の断面図である。また、図14及び図15は、本実施形態に係る全固体二次電池21の製造途中の平面図である。   7-13 is sectional drawing in the middle of manufacture of the all-solid-state secondary battery 21 which concerns on this embodiment. 14 and 15 are plan views of the all-solid-state secondary battery 21 according to this embodiment in the middle of manufacture.

まず、図7に示すように、基板2として表面に酸化シリコン膜などの不図示の酸化膜が形成されたシリコン基板を用意する。そして、基板2の上方に不図示のメタルマスクを配置し、そのメタルマスク膜で覆われていない部分の基板2にチタン膜とプラチナ膜とをスパッタ法でこの順に形成し、これらの膜を第1の集電体8とする。そのチタン膜は、プラチナ膜と基板2との密着性を向上させる密着膜として機能する。   First, as shown in FIG. 7, a silicon substrate having an oxide film (not shown) such as a silicon oxide film formed on the surface is prepared as the substrate 2. Then, a metal mask (not shown) is disposed above the substrate 2, and a titanium film and a platinum film are formed in this order by sputtering on the portion of the substrate 2 that is not covered with the metal mask film. 1 current collector 8. The titanium film functions as an adhesion film that improves the adhesion between the platinum film and the substrate 2.

また、第1の集電体8の膜厚は特に限定されないが、この例ではその膜厚を約200nmとする。   The film thickness of the first current collector 8 is not particularly limited, but in this example, the film thickness is about 200 nm.

次に、図8及び図14に示すように、基板2の上にスパッタ法でアルミナを堆積し、それをリフトオフ法でパターニングすることで、基板2の上に保護枠11を10.7μm程度の厚さに形成する。   Next, as shown in FIG. 8 and FIG. 14, alumina is deposited on the substrate 2 by a sputtering method, and is patterned by a lift-off method, so that the protective frame 11 is formed on the substrate 2 to about 10.7 μm. Form to thickness.

なお、保護枠11はスパッタ法に代えて印刷法で形成することもできる。その際、1500℃〜1600℃程度の基板温度で保護枠11を熱処理することで、保護枠11のアルミナを焼結させる。   The protective frame 11 can be formed by a printing method instead of the sputtering method. In that case, the alumina of the protective frame 11 is sintered by heat-treating the protective frame 11 at a substrate temperature of about 1500 ° C. to 1600 ° C.

また、保護枠11に酸化シリコンを添加することで、上記の熱処理温度を低くしてもよい。   In addition, the heat treatment temperature may be lowered by adding silicon oxide to the protective frame 11.

更に、アルミナ等のセラミックに代えて樹脂を保護枠11の材料として用いてもよい。   Further, a resin may be used as a material for the protective frame 11 instead of ceramic such as alumina.

続いて、図9に示すように、基板2の上方に窓12aを備えたマスク12を配置して、窓12aを通じて保護枠11内の第1の集電体8の上にスパッタ法でコバルト酸リチウムを供給することで、保護枠11内に第1の電極3を約6μの厚さに形成する。   Subsequently, as shown in FIG. 9, a mask 12 having a window 12a is disposed above the substrate 2, and cobalt acid is sputtered onto the first current collector 8 in the protective frame 11 through the window 12a. By supplying lithium, the first electrode 3 is formed in the protective frame 11 to a thickness of about 6 μm.

なお、スパッタ法に代えて印刷法で第1の電極3を形成してもよい。   Note that the first electrode 3 may be formed by a printing method instead of the sputtering method.

その後に、大気中で基板温度を約600℃とする熱処理を第1の電極3に対して施し、第1の電極3のコバルト酸リチウムを結晶化させる。   Thereafter, a heat treatment is performed on the first electrode 3 to set the substrate temperature to about 600 ° C. in the atmosphere, and the lithium cobalt oxide of the first electrode 3 is crystallized.

次に、図10に示すように、基板2の上方に窓13aを備えたマスク13を配置する。そして、窓13aを通じて第1の電極3の上にスパッタ法でリン酸リチウムを供給することで、保護枠11内に電解質4を約2μmの厚さに形成する。   Next, as shown in FIG. 10, a mask 13 having a window 13 a is disposed above the substrate 2. Then, lithium phosphate is supplied onto the first electrode 3 by the sputtering method through the window 13a, thereby forming the electrolyte 4 in the protective frame 11 to a thickness of about 2 μm.

続いて、図11に示すように、上記とは別のマスク14を基板2の上方に配置する。そして、そのマスク14が備える窓14aを通じて電解質4の上にスパッタ法でリチウムを供給することで、保護枠11内に厚さが約2μm程度の第2の電極5を形成する。   Subsequently, as shown in FIG. 11, a mask 14 different from the above is disposed above the substrate 2. Then, lithium is supplied onto the electrolyte 4 through the window 14 a provided in the mask 14 by sputtering, thereby forming the second electrode 5 having a thickness of about 2 μm in the protective frame 11.

なお、この例のように第1の電極3を形成した後に第2の電極5を形成することで、第1の電極3のコバルト酸リチウムを結晶化させるための熱処理に第2の電極5が曝されず、その熱処理で第2の電極5のリチウムが溶融するのを防止できる。   In addition, by forming the second electrode 5 after forming the first electrode 3 as in this example, the second electrode 5 is subjected to heat treatment for crystallizing lithium cobalt oxide of the first electrode 3. It is not exposed and the lithium of the second electrode 5 can be prevented from melting by the heat treatment.

ここまでの工程により、第1の電極3、電解質4、及び第2の電極5をこの順に積層してなる電池部6が得られる。   Through the steps so far, a battery unit 6 is obtained in which the first electrode 3, the electrolyte 4, and the second electrode 5 are laminated in this order.

次に、図12に示す断面構造を得るまでの工程について説明する。   Next, steps required until a sectional structure shown in FIG.

まず、第2の電極5の上方にマスク15を配置する。そして、マスク15で覆われていない部分の第2の電極5と基板2の各々の上に蒸着法によりプラチナ膜を200μm程度の厚さに形成し、そのプラチナ膜を第2の集電体9とする。   First, the mask 15 is disposed above the second electrode 5. Then, a platinum film having a thickness of about 200 μm is formed on each of the portions of the second electrode 5 and the substrate 2 that are not covered with the mask 15 by vapor deposition, and the platinum film is formed on the second current collector 9. And

図15は、本工程を終了した時点での平面図である。   FIG. 15 is a plan view at the time when this process is completed.

電池部6は、例えば平面視で一辺の長さが約5mmの正方形であり、その周囲には前述の保護枠11が設けられる。その保護膜11の平面サイズは特に限定されないが、この例では一辺の長さが約5.2mmの正方形に保護枠11を形成する。   The battery unit 6 is, for example, a square having a side length of about 5 mm in plan view, and the protective frame 11 is provided around the battery unit 6. The planar size of the protective film 11 is not particularly limited, but in this example, the protective frame 11 is formed in a square having a side length of about 5.2 mm.

その後に、図13に示すように、アクリルなどの樹脂材料を真空中で電池部6と保護枠11に吹き付け、電池部6と保護枠11とを覆う封止膜7を形成する。このように単層のアクリル層に代えて、アクリル層と金属層とをこの順に積層してなる膜を封止膜7として形成してもよい。   After that, as shown in FIG. 13, a resin material such as acrylic is sprayed on the battery unit 6 and the protective frame 11 in a vacuum to form a sealing film 7 that covers the battery unit 6 and the protective frame 11. Thus, instead of a single acrylic layer, a film formed by laminating an acrylic layer and a metal layer in this order may be formed as the sealing film 7.

以上により、本実施形態に係る全固体二次電池21の基本構造が完成する。   As described above, the basic structure of the all-solid-state secondary battery 21 according to this embodiment is completed.

なお、本実施形態は上記に限定されない。   Note that the present embodiment is not limited to the above.

図16は、本実施形態に係る全固体二次電池の他の例について示す断面図である。   FIG. 16 is a cross-sectional view showing another example of the all solid state secondary battery according to the present embodiment.

この例では、銅やアルミニウム等の金属で保護枠11を形成し、その保護枠11の表面に酸化シリコン膜等の絶縁膜16を形成することで、その絶縁膜16により電池部6と保護枠11とを電気的に絶縁する。   In this example, the protective frame 11 is formed of a metal such as copper or aluminum, and the insulating film 16 such as a silicon oxide film is formed on the surface of the protective frame 11. 11 is electrically insulated.

このように保護枠11の材料として金属を採用すると、めっき等により保護枠11を簡単に形成することができる。なお、絶縁膜16の形成方法としては、例えば、段差被覆性に優れたMOCVD(Metal Organic Chemical Vapour Deposition)法がある。   Thus, if a metal is employ | adopted as a material of the protective frame 11, the protective frame 11 can be easily formed by plating etc. As a method for forming the insulating film 16, for example, there is a MOCVD (Metal Organic Chemical Deposition) method having excellent step coverage.

(第2実施形態)
本実施形態では、第1実施形態で説明した全固体二次電池21をセンサシステムに適用する。
(Second Embodiment)
In the present embodiment, the all solid state secondary battery 21 described in the first embodiment is applied to a sensor system.

図17は、本実施形態に係るセンサシステムの機能ブロック図である。   FIG. 17 is a functional block diagram of the sensor system according to the present embodiment.

図17に示すように、このセンサシステム30は、熱電変換素子等の発電素子20と、その発電素子20が発電した電力を蓄える全固体二次電池21とを有する。   As shown in FIG. 17, the sensor system 30 includes a power generation element 20 such as a thermoelectric conversion element, and an all-solid-state secondary battery 21 that stores electric power generated by the power generation element 20.

全固体二次電池21は、センサ22と送信部23に電力を供給する。センサ22は、全固体二次電池21の電力で駆動する温度センサや振動センサ等であって、温度や振動等の環境に係る情報S1を送信部23に送る。 The all-solid-state secondary battery 21 supplies power to the sensor 22 and the transmission unit 23. The sensor 22 is a temperature sensor, a vibration sensor, or the like that is driven by the power of the all-solid-state secondary battery 21, and sends information S 1 related to the environment such as temperature and vibration to the transmission unit 23.

送信部23は、全固体二次電池21の電力で駆動すると共に、第1のアンテナ24を介して上記の情報S1を適当な通信プロトコルで無線送信する。無線送信された情報S1は、第2のアンテナ25を介してユーザが所有する受信機器26により受信される。 The transmitter 23 is driven by the power of the all-solid-state secondary battery 21 and wirelessly transmits the information S 1 via the first antenna 24 using an appropriate communication protocol. The wirelessly transmitted information S 1 is received by the receiving device 26 owned by the user via the second antenna 25.

受信機器26は、例えばパーソナルコンピュータであって、その画面に上記した温度等の環境に係る情報が表示される。   The receiving device 26 is, for example, a personal computer, and information related to the environment such as the temperature described above is displayed on the screen.

以上説明した本実施形態によれば、保護膜7(図4参照)に亀裂が入り難い信頼性の高い全固体二次電池21を使用しているので、長期にわたって環境に係る温度等の情報を取得し、その情報をユーザに安定して提供することができる。   According to the present embodiment described above, since the highly reliable all-solid secondary battery 21 that does not easily crack in the protective film 7 (see FIG. 4) is used, information such as temperature related to the environment over a long period of time. It is possible to acquire and stably provide the information to the user.

1、21…全固体二次電池、2…基板、3…第1の電極、4…電解質、5…第2の電極、6…電池部、7…封止膜、8、9…集電体、10…金属層、11…保護枠、12〜15…マスク、12a〜14a…開口、16…絶縁膜、20…発電素子、22…センサ、23…送信部、24、25…アンテナ、26…受信機器。 DESCRIPTION OF SYMBOLS 1, 21 ... All-solid-state secondary battery, 2 ... Board | substrate, 3 ... 1st electrode, 4 ... Electrolyte, 5 ... 2nd electrode, 6 ... Battery part, 7 ... Sealing film, 8, 9 ... Current collector DESCRIPTION OF SYMBOLS 10 ... Metal layer, 11 ... Protective frame, 12-15 ... Mask, 12a-14a ... Opening, 16 ... Insulating film, 20 ... Power generation element, 22 ... Sensor, 23 ... Transmitter, 24, 25 ... Antenna, 26 ... Receiver equipment.

Claims (6)

基板と、
前記基板の上に第1の電極と固体電解質と第2の電極とを順に積層してなる電池部と、
前記電池部の周囲に設けられた枠と、
前記電池部と前記枠とを覆う封止膜と、
を有する全固体二次電池。
A substrate,
A battery part in which a first electrode, a solid electrolyte, and a second electrode are sequentially laminated on the substrate;
A frame provided around the battery unit;
A sealing film covering the battery part and the frame;
An all solid state secondary battery.
前記枠が、第1の充電量の前記電池部の第1の高さより高く、第2の充電量の前記電池部の第2の高さより低いことを特徴とする請求項1に記載の全固体二次電池。   2. The all solid body according to claim 1, wherein the frame is higher than a first height of the battery part having a first charge amount and lower than a second height of the battery part having a second charge amount. Secondary battery. 前記第1の充電量は前記電池部の放電完了時の充電量であり、前記第2の充電量は前記電池部の充電完了時の充電量であることを特徴とする請求項2に記載の全固体二次電池。   The said 1st charge amount is the charge amount at the time of completion of discharge of the said battery part, The said 2nd charge amount is the charge amount at the time of completion of charge of the said battery part, The Claim 2 characterized by the above-mentioned. All-solid secondary battery. 前記枠が、前記第1の高さと第2の高さの和の2分の1の高さより高いことを特徴とする請求項3に記載の全固体二次電池。   4. The all-solid-state secondary battery according to claim 3, wherein the frame is higher than a height that is a half of a sum of the first height and the second height. 5. 基板の上に枠を形成する工程と、
前記枠の内側に、第1の電極と固体電解質と第2の電極とを順に積層して電池部を形成する工程と、
前記電池部と前記枠とを覆う封止膜を形成する工程と、
を有する全固体二次電池の製造方法。
Forming a frame on the substrate;
Forming a battery part by sequentially laminating a first electrode, a solid electrolyte, and a second electrode inside the frame;
Forming a sealing film covering the battery part and the frame;
The manufacturing method of the all-solid-state secondary battery which has this.
全固体二次電池と、
前記全固体二次電池が蓄えた電力で駆動するセンサと、
前記全固体二次電池が蓄えた電力で駆動し、前記センサからの情報を無線送信する送信部とを有し、
前記全固体二次電池は、第1の電極と固体電解質と第2の電極とを順に積層してなる電池部と、前記電池部の周囲に設けられた枠と、前記電池部と前記枠とを覆う封止膜とを有することを特徴とするセンサシステム。
An all-solid-state secondary battery;
A sensor that is driven by the electric power stored in the all-solid-state secondary battery;
Driven by the power stored in the all-solid-state secondary battery, and having a transmitter that wirelessly transmits information from the sensor,
The all-solid-state secondary battery includes a battery part in which a first electrode, a solid electrolyte, and a second electrode are sequentially laminated, a frame provided around the battery part, the battery part, and the frame. And a sealing film covering the sensor.
JP2013209975A 2013-10-07 2013-10-07 All-solid secondary battery, all-solid-state secondary battery manufacturing method, and sensor system Expired - Fee Related JP6221600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013209975A JP6221600B2 (en) 2013-10-07 2013-10-07 All-solid secondary battery, all-solid-state secondary battery manufacturing method, and sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013209975A JP6221600B2 (en) 2013-10-07 2013-10-07 All-solid secondary battery, all-solid-state secondary battery manufacturing method, and sensor system

Publications (2)

Publication Number Publication Date
JP2015076158A true JP2015076158A (en) 2015-04-20
JP6221600B2 JP6221600B2 (en) 2017-11-01

Family

ID=53000879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013209975A Expired - Fee Related JP6221600B2 (en) 2013-10-07 2013-10-07 All-solid secondary battery, all-solid-state secondary battery manufacturing method, and sensor system

Country Status (1)

Country Link
JP (1) JP6221600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159581A (en) * 2017-03-22 2018-10-11 Tdk株式会社 State detection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303718A (en) * 2003-03-14 2004-10-28 Matsushita Electric Ind Co Ltd Solid battery
JP2006179241A (en) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd Solid battery
JP2006351326A (en) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd Solid battery
JP2009193728A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp All-solid battery and its manufacturing method
JP2010503957A (en) * 2006-09-14 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochemical energy source and electronic device comprising such an electrochemical energy source
JP2011253673A (en) * 2010-06-01 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Solid type secondary battery
JP2012079322A (en) * 2011-11-09 2012-04-19 Panasonic Corp Radio sensor device
WO2013024537A1 (en) * 2011-08-17 2013-02-21 富士通株式会社 Lithium ion electroconductive body and method for manufacturing same, all-solid-state lithium secondary cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303718A (en) * 2003-03-14 2004-10-28 Matsushita Electric Ind Co Ltd Solid battery
JP2006179241A (en) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd Solid battery
JP2006351326A (en) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd Solid battery
JP2010503957A (en) * 2006-09-14 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochemical energy source and electronic device comprising such an electrochemical energy source
JP2009193728A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp All-solid battery and its manufacturing method
JP2011253673A (en) * 2010-06-01 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Solid type secondary battery
WO2013024537A1 (en) * 2011-08-17 2013-02-21 富士通株式会社 Lithium ion electroconductive body and method for manufacturing same, all-solid-state lithium secondary cell
JP2012079322A (en) * 2011-11-09 2012-04-19 Panasonic Corp Radio sensor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159581A (en) * 2017-03-22 2018-10-11 Tdk株式会社 State detection device
US10905011B2 (en) 2017-03-22 2021-01-26 Tdk Corporation State detecting device

Also Published As

Publication number Publication date
JP6221600B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6158869B2 (en) Power storage device
JP6187069B2 (en) Lithium battery
US8815450B1 (en) Low voltage thin film batteries
US20100285372A1 (en) MultiLayer Solid Electrolyte for Lithium Thin Film Batteries
US10950887B2 (en) Anode structure for solid-state lithium-based thin-film battery
US20100055573A1 (en) Thin film buried anode battery
JP2017529662A (en) Electrochemical device stack including an interlayer for reducing interfacial resistance and overvoltage
US11600819B2 (en) Positive electrode of lithium-ion battery, all-solid-state lithium-ion battery and preparation method thereof, and electrical device
JP2010205718A (en) Thin-film solid lithium-ion secondary battery and its manufacturing method
JP2013512547A (en) Lithium ion battery and method for producing lithium ion battery
JP2010251113A (en) Method of manufacturing solid electrolyte battery, and solid electrolyte battery
JP2008112635A (en) All solid lithium ion battery and its manufacturing method
JP2015026563A (en) All solid secondary battery, manufacturing method thereof, and electronic equipment
US20200251784A1 (en) High-performance thin-film battery with an interfacial layer
WO2012029641A1 (en) Solid state battery and manufacturing method for same
JP2004146297A (en) Solid battery
JP6221600B2 (en) All-solid secondary battery, all-solid-state secondary battery manufacturing method, and sensor system
JP2017147186A (en) Solid-state power storage device
JP6580077B2 (en) Power storage system having plate-like discrete elements, plate-like discrete elements, method for producing the same, and use thereof
JP7012423B2 (en) Manufacturing method of all-solid-state lithium secondary battery and all-solid-state lithium secondary battery
US11038209B2 (en) Thin-film battery
JP2013109840A (en) Secondary battery, and method for manufacturing the same
US20170358828A1 (en) Electrode coil for a galvanic element, and method for producing same
JP2004183078A (en) Laminated thin film, its manufacturing method and all-solid lithium-ion secondary battery using the same
US20190013544A1 (en) Thin-film battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6221600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees