JP2015026563A - All solid secondary battery, manufacturing method thereof, and electronic equipment - Google Patents

All solid secondary battery, manufacturing method thereof, and electronic equipment Download PDF

Info

Publication number
JP2015026563A
JP2015026563A JP2013156535A JP2013156535A JP2015026563A JP 2015026563 A JP2015026563 A JP 2015026563A JP 2013156535 A JP2013156535 A JP 2013156535A JP 2013156535 A JP2013156535 A JP 2013156535A JP 2015026563 A JP2015026563 A JP 2015026563A
Authority
JP
Japan
Prior art keywords
film
electrode film
secondary battery
solid
state secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013156535A
Other languages
Japanese (ja)
Other versions
JP6194675B2 (en
Inventor
山本 保
Tamotsu Yamamoto
保 山本
肥田 勝春
Katsuharu Hida
勝春 肥田
亮治 伊藤
Ryoji Ito
亮治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013156535A priority Critical patent/JP6194675B2/en
Publication of JP2015026563A publication Critical patent/JP2015026563A/en
Application granted granted Critical
Publication of JP6194675B2 publication Critical patent/JP6194675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability of an all solid secondary battery, relating to the all solid secondary battery, a method of manufacturing the same, and electronic equipment.SOLUTION: An all solid secondary battery includes a substrate 1, a first electrode film 3 formed on the first substrate 1, a solid electrolyte film 4 formed on the first electrode film 3, a second electrode film 5 formed on the solid electrolyte film 4, and a sealing film 6 which covers the second electrode film 5. At least one of the first electrode film 3 and the second electrode film 5 includes central parts 3x, 5x of a first film thickness T1, and peripheral parts 3y, 5y of second film thickness T2 which is thinner than the first film thickness T1.

Description

本発明は、全固体二次電池とその製造方法、及び電子機器に関する。   The present invention relates to an all-solid secondary battery, a method for manufacturing the same, and an electronic device.

二次電池には様々な種類のものがあるが、なかでも電極や電解質の全てを固体材料から形成する全固体二次電池は、電池内部に液体材料がないため安全性が高いと共に、半導体プロセスで製造できることから小型化が容易であるという利点がある。   There are various types of secondary batteries. Among them, all-solid-state secondary batteries, in which all electrodes and electrolytes are formed from solid materials, are highly safe because there are no liquid materials inside the batteries. Therefore, there is an advantage that downsizing is easy.

全固体電池の負極材料としては、金属の中で酸化還元電位が最も低いリチウムやリチウム合金を採用することが多い。   As a negative electrode material for an all solid state battery, lithium or lithium alloy having the lowest redox potential among metals is often adopted.

このような二次電池には、その信頼性を更に向上させるという点で改善の余地がある。   Such secondary batteries have room for improvement in terms of further improving their reliability.

特開2012−185974公報JP 2012-185974 A 特開2000−82495号公報JP 2000-82495 A

全固体二次電池とその製造方法、及び電子機器において、全固体二次電池の信頼性を向上させることを目的とする。   An object of the present invention is to improve the reliability of an all-solid-state secondary battery in an all-solid-state secondary battery, its manufacturing method, and electronic equipment.

以下の開示の一観点によれば、基板と、前記基板の上に形成された第1の電極膜と、前記第1の電極膜の上に形成された固体電解質膜と、前記固体電解質膜の上に形成された第2の電極膜と、前記第2の電極膜を覆う封止膜とを有し、前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを有する全固体二次電池が提供される。   According to one aspect of the following disclosure, a substrate, a first electrode film formed on the substrate, a solid electrolyte film formed on the first electrode film, and a solid electrolyte film A second electrode film formed thereon; and a sealing film that covers the second electrode film, wherein at least one of the first electrode film and the second electrode film is a first film. An all-solid-state secondary battery having a central portion with a thickness and a peripheral portion with a second film thickness that is thinner than the first film thickness is provided.

また、その開示の他の観点によれば、基板の上に第1の電極膜を形成する工程と、前記第1の電極膜の上に固体電解質膜を形成する工程と、前記固体電解質膜の上に第2の電極膜を形成する工程と、前記第2の電極膜を覆う封止膜を形成する工程とを有し、前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを有する全固体二次電池の製造方法が提供される。   According to another aspect of the disclosure, a step of forming a first electrode film on a substrate, a step of forming a solid electrolyte film on the first electrode film, A step of forming a second electrode film thereon, and a step of forming a sealing film covering the second electrode film, wherein at least one of the first electrode film and the second electrode film is There is provided a method for manufacturing an all-solid-state secondary battery having a central portion of a first film thickness and a peripheral portion of a second film thickness that is thinner than the first film thickness.

更に、その開示の別の観点によれば、全固体二次電池と、全固体二次電池の電力により駆動する回路とを有し、前記全固体二次電池が、基板と、前記基板の上に形成された第1の電極膜と、前記第1の電極膜の上に形成された固体電解質膜と、前記固体電解質膜の上に形成された第2の電極膜と、前記第2の電極膜を覆う封止膜とを備え、前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを備えた電子機器が提供される。   Further, according to another aspect of the disclosure, an all-solid-state secondary battery and a circuit that is driven by the power of the all-solid-state secondary battery are provided, and the all-solid-state secondary battery includes a substrate and an upper surface of the substrate. A first electrode film formed on the first electrode film, a solid electrolyte film formed on the first electrode film, a second electrode film formed on the solid electrolyte film, and the second electrode A sealing film covering the film, wherein at least one of the first electrode film and the second electrode film has a central portion of the first film thickness and a second thickness smaller than the first film thickness. An electronic device including a peripheral portion having a film thickness is provided.

以下の開示によれば、第1の電極膜と第2の電極膜の少なくとも一方において周縁部を中央部よりも薄くするので、充電時や放電時に周縁部の体積の変化が少なくなる。その結果、第1の電極膜や第2の電極膜において体積の変化量が急激に変わる部分が少なくなるため、これらの電極膜の体積変化に封止膜が追従できるようになり、封止膜に亀裂が生じるのを抑制できる。   According to the following disclosure, in at least one of the first electrode film and the second electrode film, the peripheral portion is made thinner than the central portion, so that the change in the volume of the peripheral portion during charging and discharging is reduced. As a result, in the first electrode film and the second electrode film, there are few portions where the amount of change in volume suddenly changes, so that the sealing film can follow the volume change of these electrode films. It is possible to suppress cracks from occurring.

図1は、本願発明者が検討に使用した全固体二次電池の断面図である。FIG. 1 is a cross-sectional view of an all-solid-state secondary battery used by the inventor for examination. 図2は、充電を続けたときの全固体二次電池の模式断面図である。FIG. 2 is a schematic cross-sectional view of an all-solid-state secondary battery when charging is continued. 図3は、第1実施形態に係る全固体二次電池の断面図である。FIG. 3 is a cross-sectional view of the all solid state secondary battery according to the first embodiment. 図4は、第1実施形態に係る全固体二次電池の充電時の模式断面図である。FIG. 4 is a schematic cross-sectional view of the all solid state secondary battery according to the first embodiment during charging. 図5(a)、(b)は、第1実施形態に係る全固体二次電池の製造途中の断面図(その1)である。FIGS. 5A and 5B are cross-sectional views (part 1) in the middle of manufacturing the all-solid-state secondary battery according to the first embodiment. 図6(a)、(b)は、第1実施形態に係る全固体二次電池の製造途中の断面図(その2)である。6A and 6B are cross-sectional views (part 2) in the middle of manufacturing the all-solid-state secondary battery according to the first embodiment. 図7は、第2実施形態に係る全固体二次電池の断面図である。FIG. 7 is a cross-sectional view of the all solid state secondary battery according to the second embodiment. 図8(a)、(b)は、第2実施形態に係る全固体二次電池の製造途中の断面図(その1)である。8A and 8B are cross-sectional views (part 1) in the middle of manufacturing the all-solid-state secondary battery according to the second embodiment. 図9(a)、(b)は、第2実施形態に係る全固体二次電池の製造途中の断面図(その2)である。FIGS. 9A and 9B are cross-sectional views (part 2) in the middle of manufacturing the all solid state secondary battery according to the second embodiment. 図10は、第3実施形態に係る全固体二次電池の断面図である。FIG. 10 is a cross-sectional view of the all solid state secondary battery according to the third embodiment. 図11は、第3実施形態に係る全固体二次電池の放電時の模式断面図である。FIG. 11 is a schematic cross-sectional view of the all solid state secondary battery according to the third embodiment during discharging. 図12(a)、(b)は、第3実施形態に係る全固体二次電池の製造途中の断面図(その1)である。12A and 12B are cross-sectional views (part 1) in the middle of manufacturing the all-solid-state secondary battery according to the third embodiment. 図13は、第3実施形態に係る全固体二次電池の製造途中の断面図(その2)である。FIG. 13: is sectional drawing (the 2) in the middle of manufacture of the all-solid-state secondary battery which concerns on 3rd Embodiment. 図14は、第4実施形態に係る全固体二次電池の断面図である。FIG. 14 is a cross-sectional view of an all solid state secondary battery according to the fourth embodiment. 図15(a)、(b)は、第4実施形態に係る全固体二次電池の製造途中の断面図(その1)である。15A and 15B are cross-sectional views (part 1) in the middle of manufacturing the all-solid-state secondary battery according to the fourth embodiment. 図16(a)、(b)は、第4実施形態に係る全固体二次電池の製造途中の断面図(その2)である。16A and 16B are cross-sectional views (part 2) in the middle of manufacturing the all-solid-state secondary battery according to the fourth embodiment. 図17は、第5実施形態に係る電子機器の断面図である。FIG. 17 is a cross-sectional view of an electronic apparatus according to the fifth embodiment.

本実施形態の説明に先立ち、本願発明者が検討した事項について説明する。   Prior to the description of the present embodiment, items studied by the inventor will be described.

図1は、その検討に使用した全固体二次電池の断面図である。   FIG. 1 is a cross-sectional view of the all solid state secondary battery used for the study.

この全固体二次電池10は、負極材料としてリチウムを使用したものであって、基板1の上に集電体2、正極膜3、固体電解質膜4、及び負極膜5をこの順に形成してなる。   This all-solid-state secondary battery 10 uses lithium as a negative electrode material. A current collector 2, a positive electrode film 3, a solid electrolyte film 4, and a negative electrode film 5 are formed on a substrate 1 in this order. Become.

これらのうち、集電体2は厚さが20nm程度のプラチナ膜であり、正極膜3は厚さが10μm程度のコバルト酸リチウム(LiCoO2)膜である。そして、固体電解質膜4としては例えばLiPON膜を2μm程度の厚さに形成し、負極膜5としては例えばリチウム膜やリチウム合金膜を5μm程度の厚さに形成する。 Among these, the current collector 2 is a platinum film having a thickness of about 20 nm, and the positive electrode film 3 is a lithium cobalt oxide (LiCoO 2 ) film having a thickness of about 10 μm. For example, a LiPON film is formed to a thickness of about 2 μm as the solid electrolyte film 4, and a lithium film or a lithium alloy film is formed to a thickness of about 5 μm as the negative electrode film 5.

固体電解質膜4は正極膜3の上面と側面とを覆うように形成されており、固体電解質4の上に形成された負極膜5の幅は正極膜3の幅よりも広い。そのため、負極膜5は、正極膜3に対向する中央部5xと、正極膜3に対向しない周縁部5yとを有することになる。   The solid electrolyte film 4 is formed so as to cover the upper surface and side surfaces of the positive electrode film 3, and the width of the negative electrode film 5 formed on the solid electrolyte 4 is wider than the width of the positive electrode film 3. Therefore, the negative electrode film 5 has a central portion 5 x that faces the positive electrode film 3 and a peripheral portion 5 y that does not face the positive electrode film 3.

ここで、負極膜5の材料であるリチウムが大気中の水分と触れると水酸化リチウムが生成され、その水酸化リチウムが原因で全固体二次電池10を充放電するのが困難となる。   Here, when lithium which is the material of the negative electrode film 5 comes into contact with moisture in the atmosphere, lithium hydroxide is generated, and it becomes difficult to charge and discharge the all-solid-state secondary battery 10 due to the lithium hydroxide.

そのため、この例では封止膜6で負極膜5を覆うことにより、負極膜5が大気中の水分に曝されるのを防止する。その封止膜6としては、水分の透過防止能力に優れたアルミナ(Al2O3)膜や酸化シリコン(SiO2)膜等の無機酸化膜を形成するのが好ましい。 Therefore, in this example, the negative electrode film 5 is covered with the sealing film 6 to prevent the negative electrode film 5 from being exposed to moisture in the atmosphere. As the sealing film 6, it is preferable to form an inorganic oxide film such as an alumina (Al 2 O 3 ) film or a silicon oxide (SiO 2 ) film excellent in moisture permeation preventing ability.

このような全固体二次電池10においては、充電の際に正極膜3から負極膜5に向かってリチウムイオン7が移動し、負極膜5においてそのリチウムイオン7が金属リチウム8となって析出する。   In such an all-solid secondary battery 10, lithium ions 7 move from the positive electrode film 3 toward the negative electrode film 5 during charging, and the lithium ions 7 are deposited as metallic lithium 8 in the negative electrode film 5. .

図2は、充電を続けたときの全固体二次電池10の模式断面図である。   FIG. 2 is a schematic cross-sectional view of the all-solid-state secondary battery 10 when charging is continued.

図2に示すように、充電を続けると負極膜5に析出する金属リチウム8の量が多くなり、点線のように負極膜5の体積が増加する。   As shown in FIG. 2, when charging is continued, the amount of metallic lithium 8 deposited on the negative electrode film 5 increases, and the volume of the negative electrode film 5 increases as indicated by a dotted line.

リチウムイオン7は正極膜3の表面に対して略垂直に移動するため、正極膜3に対向する負極膜5の中央部5xでは上記のような体積の増大が顕著となる。一方、正極膜3に対向していない負極膜5の周縁部5yでは、正極膜3から移動してくるリチウムイオン7の数が少ないため体積は殆ど増加しない。   Since the lithium ions 7 move substantially perpendicular to the surface of the positive electrode film 3, the increase in volume as described above becomes significant at the central portion 5 x of the negative electrode film 5 facing the positive electrode film 3. On the other hand, in the peripheral portion 5y of the negative electrode film 5 not facing the positive electrode film 3, the volume hardly increases because the number of lithium ions 7 moving from the positive electrode film 3 is small.

中央部5xと周縁部5yとでこのように体積の増加量が異なると、充放電を繰り返すうちに各部5x、5yの境界に接する部分の封止膜6が負極膜5の体積の増加に追従できなくなり、封止膜6に亀裂6xが生じることが明らかとなった。   If the amount of increase in volume is different between the central portion 5x and the peripheral portion 5y in this way, the portion of the sealing film 6 in contact with the boundary between the portions 5x and 5y follows the increase in the volume of the negative electrode film 5 while charging and discharging are repeated. As a result, it became clear that cracks 6x occurred in the sealing film 6.

このように亀裂6xが生じると、大気中の水分が亀裂6xを通じて負極膜5に至り、その水分が原因で負極膜5に水酸化リチウムが生成され、全固体二次電池1を充放電するのが難しくなってしまう。   When the crack 6x is generated in this way, moisture in the atmosphere reaches the negative electrode film 5 through the crack 6x, and lithium hydroxide is generated in the negative electrode film 5 due to the moisture, and the all-solid secondary battery 1 is charged and discharged. Becomes difficult.

本願発明者の調査によれば、この全固体二次電池1に対して充放電を60回行ったところ、封止膜6に亀裂6xが発生し、それ以降の充放電容量が急激に低下した。   According to the inventor's investigation, when charging / discharging was performed on the all-solid-state secondary battery 1 60 times, a crack 6x occurred in the sealing film 6 and the subsequent charging / discharging capacity rapidly decreased. .

以下に、封止膜に上記のような亀裂が入り難くすることができる各実施形態について説明する。   In the following, each embodiment capable of making it difficult for cracks to enter the sealing film will be described.

(第1実施形態)
図3は、第1実施形態に係る全固体二次電池の断面図である。
(First embodiment)
FIG. 3 is a cross-sectional view of the all solid state secondary battery according to the first embodiment.

なお、図3において、図1や図2で説明したのと同じ要素にはこれらの図におけるのと同じ符号を付し、以下ではその説明を省略する。   In FIG. 3, the same elements as those described in FIGS. 1 and 2 are denoted by the same reference numerals as those in FIGS.

この全固体二次電池20における正極膜3は、第1の膜厚T1の中央部3xと第2の膜厚T2の周縁部3yとを有しており、第2の膜厚T2が第1の膜厚T1よりも薄い。   The positive electrode film 3 in the all-solid-state secondary battery 20 has a central part 3x having a first film thickness T1 and a peripheral part 3y having a second film thickness T2, and the second film thickness T2 is the first film thickness T2. Is thinner than T1.

周縁部3yの断面形状は特に限定されないが、この例では周縁部3yの端3zに向かって第2の膜厚T2が連続的に減少するように周縁部3yを形成する。このような周縁部3yの形状に倣い、固体電解質膜4や負極膜5の上面も傾斜するようになる。なお、正極膜3と負極膜5は、それぞれ第1の電極膜と第2の電極膜の一例である。   The cross-sectional shape of the peripheral edge 3y is not particularly limited. In this example, the peripheral edge 3y is formed so that the second film thickness T2 continuously decreases toward the end 3z of the peripheral edge 3y. Following the shape of the peripheral edge 3y, the upper surfaces of the solid electrolyte membrane 4 and the negative electrode membrane 5 are also inclined. The positive electrode film 3 and the negative electrode film 5 are examples of a first electrode film and a second electrode film, respectively.

また、正極膜3の材料は例えばコバルト酸リチウムであり、負極膜5の材料は例えばリチウムやリチウム合金である。   The material of the positive electrode film 3 is, for example, lithium cobaltate, and the material of the negative electrode film 5 is, for example, lithium or a lithium alloy.

なお、全固体二次電池20の幅は特に限定されないが、この例ではその幅を数mm〜数十mm程度とする。   The width of the all-solid-state secondary battery 20 is not particularly limited, but in this example, the width is about several mm to several tens mm.

更に、負極膜5の幅は正極膜3の幅よりも広く、負極膜5は正極膜3の端3zから0.1mm〜10mm程度のはみ出し量Sだけはみ出る。これについては後述の第2〜第5実施形態でも同様である。   Further, the width of the negative electrode film 5 is wider than that of the positive electrode film 3, and the negative electrode film 5 protrudes from the end 3 z of the positive electrode film 3 by an amount of protrusion S of about 0.1 mm to 10 mm. The same applies to second to fifth embodiments described later.

図4は、充電時の全固体二次電池20の模式断面図である。   FIG. 4 is a schematic cross-sectional view of the all solid state secondary battery 20 during charging.

前述のように、正極膜3と負極膜5の材料の組み合わせがコバルト酸リチウムとリチウム等の場合には、充電時に正極膜3から負極膜5にリチウムイオン7が移動し、これにより析出した金属リチウム8により負極膜5の体積が増大する。その体積の増大量は正極膜3から出るリチウムイオン7の量に依存する。本実施形態では上記のように正極膜3の周縁部3yを中央部3xよりも薄くしたので、周縁部3yに含まれるリチウムの量が減り、中央部3xから周縁部3yに向かうにつれてリチウムイオン7の量も減る。   As described above, when the material combination of the positive electrode film 3 and the negative electrode film 5 is lithium cobaltate and lithium, the lithium ions 7 move from the positive electrode film 3 to the negative electrode film 5 during charging, and the deposited metal The volume of the negative electrode film 5 is increased by the lithium 8. The increase in volume depends on the amount of lithium ions 7 coming out of the positive electrode film 3. In the present embodiment, since the peripheral edge portion 3y of the positive electrode film 3 is made thinner than the central portion 3x as described above, the amount of lithium contained in the peripheral edge portion 3y decreases, and lithium ions 7 increase from the central portion 3x toward the peripheral edge portion 3y. The amount of is also reduced.

よって、リチウムイオン7が原因の負極膜5の体積の増加量が中央部3xから周縁部3yに向かうにつれて徐々に減り、負極膜5において体積の増加量が急激に変わる部分がなくなる。その結果、負極膜5の体積増加に封止膜6が追従できるようになり、封止膜6に生じる亀裂を抑制できる。   Therefore, the amount of increase in the volume of the negative electrode film 5 caused by the lithium ions 7 gradually decreases from the central portion 3x toward the peripheral portion 3y, and there is no portion in the negative electrode film 5 where the volume increase amount changes abruptly. As a result, the sealing film 6 can follow the volume increase of the negative electrode film 5, and cracks generated in the sealing film 6 can be suppressed.

特に、この例のように周縁部3yの端3zに向かって第2の膜厚T2を連続的に減少させることで、負極膜5の体積増加も連続的に減少し、負極膜5の体積増加に封止膜6がより一層容易に追従できるようになる。   In particular, by continuously decreasing the second film thickness T2 toward the end 3z of the peripheral edge 3y as in this example, the volume increase of the negative electrode film 5 is also continuously decreased, and the volume increase of the negative electrode film 5 is increased. Thus, the sealing film 6 can follow more easily.

このように、本実施形態によれば、充放電を繰り返しても封止膜6に亀裂が入り難くなり、長期間にわたって全固体二次電池20の信頼性を維持することが可能となる。   As described above, according to the present embodiment, the sealing film 6 is hardly cracked even after repeated charge and discharge, and the reliability of the all-solid-state secondary battery 20 can be maintained over a long period of time.

次に、本実施形態に係る全固体二次電池の製造方法について説明する。   Next, a manufacturing method of the all solid state secondary battery according to the present embodiment will be described.

図5〜図6は、本実施形態に係る全固体二次電池の製造途中の断面図である。   5-6 is sectional drawing in the middle of manufacture of the all-solid-state secondary battery which concerns on this embodiment.

まず、図5(a)に示すように、基板1としてシリコン基板を用意し、その基板1の上に集電体2としてプラチナ膜を20nmの厚さにスパッタ法で形成する。なお、そのスパッタ法では不図示のメタルマスクが使用され、成膜の時点で集電体2は平面視で矩形状に整形される。   First, as shown in FIG. 5A, a silicon substrate is prepared as the substrate 1, and a platinum film as a current collector 2 is formed on the substrate 1 to a thickness of 20 nm by sputtering. In the sputtering method, a metal mask (not shown) is used, and the current collector 2 is shaped into a rectangular shape in plan view at the time of film formation.

また、基板1はシリコン基板に限定されず、マイカ基板を基板1として用いてもよい。更に、集電体2の形成前に、基板1の上に密着膜としてチタン膜等の金属膜を形成してもよい。   The substrate 1 is not limited to a silicon substrate, and a mica substrate may be used as the substrate 1. Furthermore, a metal film such as a titanium film may be formed on the substrate 1 as an adhesion film before the current collector 2 is formed.

次に、図5(b)に示すように、開口22aを備えたメタルマスク22を基板1の上方に配する。そして、基板1の横方向Dにメタルマスク22を揺動させつつ、開口22aを通じて集電体2の上に正極膜3の電極材料3wとしてコバルト酸リチウムをスパッタ法で供給する。   Next, as shown in FIG. 5B, a metal mask 22 having an opening 22 a is disposed above the substrate 1. Then, while swinging the metal mask 22 in the lateral direction D of the substrate 1, lithium cobalt oxide is supplied as the electrode material 3w of the positive electrode film 3 onto the current collector 2 through the opening 22a by sputtering.

このとき、開口22aから常に露出している部分の集電体2には電極材料3wが多く供給されるため正極膜3の中央部3xが厚く形成される。この例では正極膜3の成膜時間を調節することにより中央部3xの膜厚T1を10μm程度とする。   At this time, since a large amount of the electrode material 3w is supplied to the current collector 2 that is always exposed from the opening 22a, the central portion 3x of the positive electrode film 3 is formed thick. In this example, the film thickness T1 of the central portion 3x is set to about 10 μm by adjusting the film formation time of the positive electrode film 3.

一方、集電体2の周縁領域においては、揺動しているメタルマスク22によって電極材料3wの供給が断続的に遮断されるため、端3zに向かって膜厚T2が連続的に薄くなる周縁部3yを形成することができる。   On the other hand, in the peripheral region of the current collector 2, the supply of the electrode material 3w is intermittently interrupted by the swinging metal mask 22, so that the film thickness T2 continuously decreases toward the end 3z. The portion 3y can be formed.

なお、周縁部3yの幅Wは、メタルマスク22の振幅と略同一であり、この例では幅Wを100μm〜10mm程度とする。   Note that the width W of the peripheral edge portion 3y is substantially the same as the amplitude of the metal mask 22, and in this example, the width W is about 100 μm to 10 mm.

続いて、図6(a)に示すように、正極膜3の上にスパッタ法でLiPON膜を2μm程度の膜厚に形成し、そのLiPON膜を固体電解質膜4とする。   Subsequently, as shown in FIG. 6A, a LiPON film is formed on the positive electrode film 3 by sputtering to a thickness of about 2 μm, and the LiPON film is used as the solid electrolyte film 4.

更に、この固体電解質膜4の上に負極膜5としてリチウム膜を5μm程度の厚さに蒸着法で形成する。リチウム膜に代えてリチウム合金膜を負極膜5として形成してもよい。   Further, a lithium film is formed as a negative electrode film 5 on the solid electrolyte film 4 to a thickness of about 5 μm by vapor deposition. A lithium alloy film may be formed as the negative electrode film 5 instead of the lithium film.

なお、固体電解質膜4や負極膜5を形成するスパッタ法や蒸着法ではメタルマスクが用いられ、固体電解質膜4と負極膜5は成膜の時点で平面視で矩形状に整形される。   Note that a metal mask is used in the sputtering method or vapor deposition method for forming the solid electrolyte film 4 or the negative electrode film 5, and the solid electrolyte film 4 and the negative electrode film 5 are shaped into a rectangular shape in plan view at the time of film formation.

次に、図6(b)に示すように、アルミナ膜や酸化シリコン膜等の無機酸化膜6aとポリウレア膜等の樹脂膜6bとを負極膜5の上に交互に積層し、これらの膜6a、6bを封止膜6とする。なお、その封止膜6の無機酸化膜6aはスパッタ法で形成され、樹脂膜6bは蒸着重合法により形成される。   Next, as shown in FIG. 6B, an inorganic oxide film 6a such as an alumina film or a silicon oxide film and a resin film 6b such as a polyurea film are alternately laminated on the negative electrode film 5, and these films 6a 6b is used as the sealing film 6. The inorganic oxide film 6a of the sealing film 6 is formed by sputtering, and the resin film 6b is formed by vapor deposition polymerization.

無機酸化膜6aは、水分透過能力に優れており外部雰囲気中の水分が負極膜5に至るのを阻止する役割を担う。そして、その無機酸化膜6aの層間に柔らかな樹脂膜6bを形成することにより、前述の負極膜5の体積変化に封止膜6が良好に追従し易くなり、封止膜6に亀裂が生じるのを抑制できる。   The inorganic oxide film 6 a is excellent in moisture permeability and plays a role of preventing moisture in the external atmosphere from reaching the negative electrode film 5. Then, by forming a soft resin film 6b between the inorganic oxide films 6a, the sealing film 6 can easily follow the volume change of the negative electrode film 5 and a crack is generated in the sealing film 6. Can be suppressed.

本実施形態では、この封止膜6の全体の厚さを例えば1μm 〜100μm程度とする。   In the present embodiment, the total thickness of the sealing film 6 is, for example, about 1 μm to 100 μm.

以上により、本実施形態に係る全固体二次電池20の基本構造が完成する。   As described above, the basic structure of the all solid state secondary battery 20 according to the present embodiment is completed.

上記した本実施形態によれば、図5(b)に示したようにメタルマスク22を揺動させることにより、膜厚T2が連続的に減少する正極膜3の周縁部3yを形成することができる。   According to the present embodiment described above, the peripheral portion 3y of the positive electrode film 3 in which the film thickness T2 continuously decreases can be formed by swinging the metal mask 22 as shown in FIG. it can.

中央部3xの膜厚T1よりも薄い膜厚T2を有する周縁部3yは、前述のように封止膜6に生じる亀裂の抑制に寄与する。本願発明者の調査によれば、上記のようにして作製した全固体二次電池20は、充放電を500回繰り返した後でも封止膜6に亀裂が入らないことが確認された。   The peripheral portion 3y having a film thickness T2 smaller than the film thickness T1 of the central portion 3x contributes to suppression of cracks generated in the sealing film 6 as described above. According to the inventor's investigation, it was confirmed that the all-solid-state secondary battery 20 produced as described above does not crack in the sealing film 6 even after 500 times of charge and discharge.

(第2実施形態)
第1実施形態では、図3に示したように、正極膜3の周縁部3yの膜厚T2を端3zに向けて連続的に薄くした。これに対し、本実施形態では正極膜3の膜厚を段階的に薄くする。
(Second Embodiment)
In the first embodiment, as shown in FIG. 3, the film thickness T2 of the peripheral edge portion 3y of the positive electrode film 3 is continuously reduced toward the end 3z. In contrast, in the present embodiment, the thickness of the positive electrode film 3 is reduced stepwise.

図7は、本実施形態に係る全固体二次電池の断面図である。なお、図7において第1実施形態で説明したのと同じ要素には第1実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。   FIG. 7 is a cross-sectional view of the all solid state secondary battery according to the present embodiment. In FIG. 7, the same elements as those described in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted below.

図7に示すように、この全固体二次電池30においては正極膜3が下側層3aと上側層3bとを有する。その上側層3bの側面を下側層3aの側面から後退させることで、正極膜3の中央部3xから周縁部3yにかけて階段形状を付与し、正極膜3の膜厚を端3zに向けて段階的に減少させる。   As shown in FIG. 7, in this all solid state secondary battery 30, the positive electrode film 3 has a lower layer 3a and an upper layer 3b. By retreating the side surface of the upper layer 3b from the side surface of the lower layer 3a, a step shape is imparted from the central part 3x to the peripheral part 3y of the positive electrode film 3, and the film thickness of the positive electrode film 3 is stepped toward the end 3z. Decrease.

なお、正極膜3の膜厚は特に限定されないが、この例では中央部3xの膜厚T1を10μm程度とし、周縁部3yの膜厚T2を5μm程度とする。   The film thickness of the positive electrode film 3 is not particularly limited. In this example, the film thickness T1 of the central portion 3x is set to about 10 μm, and the film thickness T2 of the peripheral edge portion 3y is set to about 5 μm.

また、下側層3aの側面からの上側層3bの側面の後退量Lは、例えば100μm〜10mm程度とする。   Further, the retraction amount L of the side surface of the upper layer 3b from the side surface of the lower layer 3a is, for example, about 100 μm to 10 mm.

これによれば、第1実施形態と同様に充電時に正極膜3から負極膜5に移動するリチウムイオンの量を周縁部3yにおいて低減でき、リチウムイオンが原因の負極膜5の体積の増加量を中央部3xから周縁部3yに向けて減らすことができる。その結果、負極膜5の体積増加に封止膜6が容易に追従し、封止膜6に亀裂が生じるのを抑制できる。   According to this, similarly to the first embodiment, the amount of lithium ions moving from the positive electrode film 3 to the negative electrode film 5 at the time of charging can be reduced in the peripheral portion 3y, and the increase in volume of the negative electrode film 5 caused by lithium ions can be reduced. It can reduce toward the peripheral part 3y from the center part 3x. As a result, the sealing film 6 can easily follow the volume increase of the negative electrode film 5, and cracking of the sealing film 6 can be suppressed.

次に、本実施形態に係る全固体二次電池の製造方法について説明する。   Next, a manufacturing method of the all solid state secondary battery according to the present embodiment will be described.

図8〜図9は、本実施形態に係る全固体二次電池の製造途中の断面図である。   8-9 is sectional drawing in the middle of manufacture of the all-solid-state secondary battery which concerns on this embodiment.

まず、第1実施形態の図5(a)の工程を行うことで、図8(a)のように基板1の上に集電体2が形成された構造を作製する。   First, by performing the process of FIG. 5A of the first embodiment, a structure in which the current collector 2 is formed on the substrate 1 as shown in FIG.

次いで、図8(b)に示すように、集電体2と略同じ大きさの第1の開口24aを備えた第1のメタルマスク24を基板1の上方に配する。そして、その第1の開口24aを通じて集電体2の上に正極膜3の電極材料3wとしてコバルト酸リチウムをスパッタ法で供給することにより、正極膜3の下側層3aを5μm程度の厚さに形成する。   Next, as shown in FIG. 8B, a first metal mask 24 having a first opening 24 a having the same size as the current collector 2 is disposed above the substrate 1. Then, by supplying lithium cobalt oxide by sputtering as the electrode material 3w of the positive electrode film 3 onto the current collector 2 through the first opening 24a, the lower layer 3a of the positive electrode film 3 has a thickness of about 5 μm. To form.

次に、図9(a)に示すように、下側層3aよりも小さい第2の開口25aを備えた第2のメタルマスク25を基板1の上方に配する。その後、第2の開口25aを通じて下側層3aの上に電極材料3wとしてコバルト酸リチウムをスパッタ法で供給し、下側層3aの側面よりも後退した上側層3bを5μm程度の厚さに形成する。   Next, as shown in FIG. 9A, a second metal mask 25 having a second opening 25 a smaller than the lower layer 3 a is disposed above the substrate 1. After that, lithium cobalt oxide is supplied as the electrode material 3w onto the lower layer 3a through the second opening 25a by sputtering, and the upper layer 3b that is recessed from the side surface of the lower layer 3a is formed to a thickness of about 5 μm. To do.

ここまでの工程により、下側層3aと上側層3bとを順に形成してなる正極膜3が得られる。   Through the steps so far, the positive electrode film 3 formed by sequentially forming the lower layer 3a and the upper layer 3b is obtained.

この後は、第1実施形態で説明した図6(a)〜(b)の工程を行うことで、図9(b)に示す全固体二次電池30の基本構造を完成させる。   Thereafter, the basic structure of the all-solid-state secondary battery 30 shown in FIG. 9B is completed by performing the steps of FIGS. 6A to 6B described in the first embodiment.

その全固体二次電池30においては、上記のように上側層3bの側面を下側層3aの側面から後退させることで正極膜3の断面形状が階段状となり、これにより前述のように封止膜6に亀裂が生じるのを抑制することができる。   In the all-solid-state secondary battery 30, the cross-sectional shape of the positive electrode film 3 becomes stepped by retreating the side surface of the upper layer 3b from the side surface of the lower layer 3a as described above, thereby sealing as described above. Generation of cracks in the film 6 can be suppressed.

(第3実施形態)
第1、第2実施形態では、充電時における負極膜5の体積増加が原因で生じる封止膜6の亀裂を防止した。
(Third embodiment)
In the first and second embodiments, cracking of the sealing film 6 caused by an increase in the volume of the negative electrode film 5 during charging is prevented.

これに対し、本実施形態では、以下のようにして放電時に封止膜6に生じる亀裂を防止する。   On the other hand, in this embodiment, the crack which arises in the sealing film 6 at the time of discharge is prevented as follows.

図10は、本実施形態に係る全固体二次電池の断面図である。なお、図10において、第1実施形態や第2実施形態で説明したのと同じ要素にはこれらの実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。   FIG. 10 is a cross-sectional view of the all solid state secondary battery according to the present embodiment. In FIG. 10, the same elements as those described in the first embodiment and the second embodiment are denoted by the same reference numerals as those in these embodiments, and the description thereof is omitted below.

この全固体二次電池40の負極5は、第1の膜厚T1の中央部5xと第2の膜厚T2の周縁部5yとを有しており、第2の膜厚T2が第1の膜厚T1よりも薄い。そして、第2の膜厚T2は、周縁部5yの端5zに向かって連続的に減少する。   The negative electrode 5 of the all-solid-state secondary battery 40 has a central portion 5x having a first thickness T1 and a peripheral portion 5y having a second thickness T2, and the second thickness T2 is the first thickness T2. It is thinner than film thickness T1. The second film thickness T2 continuously decreases toward the end 5z of the peripheral edge portion 5y.

ここで、負極膜5の材料は、第1、第2実施形態と同様にリチウムやリチウム合金である。一方、正極膜3の材料は、第1、第2実施形態と異なり、マンガン酸リチウム(LixMnO2(0≦x<1))である。 Here, the material of the negative electrode film 5 is lithium or a lithium alloy as in the first and second embodiments. On the other hand, unlike the first and second embodiments, the material of the positive electrode film 3 is lithium manganate (Li x MnO 2 (0 ≦ x <1)).

このような材料の組み合わせの場合、以下のように放電時に負極膜5の体積が減少する。   In the case of such a combination of materials, the volume of the negative electrode film 5 decreases during discharge as follows.

図11は、放電時の全固体二次電池40の模式断面図である。   FIG. 11 is a schematic cross-sectional view of the all solid state secondary battery 40 during discharge.

上記のように正極膜3の材料としてリチウムマンガンオキサイドを使用し、かつ負極膜5としてリチウムやその合金を使用する場合、放電時にリチウムイオン7が負極膜5から正極膜3に移動し、正極膜3内に金属リチウム8が吸蔵される。そのリチウムイオン7は負極膜5に由来しているため、放電を続けると点線のように負極膜5の体積が減少する。   When lithium manganese oxide is used as the material of the positive electrode film 3 and lithium or an alloy thereof is used as the negative electrode film 5 as described above, the lithium ions 7 move from the negative electrode film 5 to the positive electrode film 3 during discharge, and the positive electrode film 3 is occluded with metallic lithium 8. Since the lithium ions 7 are derived from the negative electrode film 5, the volume of the negative electrode film 5 decreases as indicated by the dotted line when the discharge is continued.

このような負極膜5の体積の減少量は、負極膜5から出るリチウムイオン7の量に依存する。本実施形態では上記のように負極膜5の周縁部5yを中央部5xよりも薄くしたので周縁部5yに含まれるリチウムの量が減り、中央部5xから周縁部5yに向かうにつれてリチウムイオン7の量も減る。   The amount of decrease in the volume of the negative electrode film 5 depends on the amount of lithium ions 7 coming out of the negative electrode film 5. In the present embodiment, since the peripheral edge 5y of the negative electrode film 5 is made thinner than the central part 5x as described above, the amount of lithium contained in the peripheral part 5y decreases, and the lithium ions 7 move toward the peripheral part 5y from the central part 5x. The amount is also reduced.

したがって、負極膜5の体積の減少量が中央部5xから周縁部5yに向かうにつれて徐々に減り、負極膜5において体積の減少量が急激に変わる部分がなくなる。これにより、負極膜5の体積減少に封止膜6が追従できるようになり、負極膜5の体積減少が原因で封止膜6に亀裂が生じるのを抑制できる。   Therefore, the amount of decrease in the volume of the negative electrode film 5 gradually decreases from the central portion 5x toward the peripheral portion 5y, and there is no portion in the negative electrode film 5 where the volume decrease amount changes rapidly. As a result, the sealing film 6 can follow the volume reduction of the negative electrode film 5, and the occurrence of cracks in the sealing film 6 due to the volume reduction of the negative electrode film 5 can be suppressed.

特に、この例のように周縁部5yの端5zに向かって第2の膜厚T2を連続的に減少させることで、負極膜5の体積減少も連続的に減少し、負極膜5の体積減少に封止膜6がより一層容易に追従できるようになる。   In particular, by continuously reducing the second film thickness T2 toward the end 5z of the peripheral edge 5y as in this example, the volume reduction of the negative electrode film 5 is also continuously reduced, and the volume reduction of the negative electrode film 5 is achieved. Thus, the sealing film 6 can follow more easily.

このように、本実施形態によれば、充放電を繰り返しても封止膜6に亀裂が入り難くなり、長期間にわたって全固体二次電池40の信頼性を維持することが可能となる。   As described above, according to the present embodiment, the sealing film 6 is hardly cracked even after repeated charge and discharge, and the reliability of the all-solid-state secondary battery 40 can be maintained over a long period of time.

次に、本実施形態に係る全固体二次電池の製造方法について説明する。   Next, a manufacturing method of the all solid state secondary battery according to the present embodiment will be described.

図12〜図13は、本実施形態に係る全固体二次電池の製造途中の断面図である。なお、図12〜図13において、第1実施形態や第2実施形態で説明したのと同じ要素にはこれらの実施形態におけるのと同じ符号を付し、以下ではその説明を省略する。   12-13 is sectional drawing in the middle of manufacture of the all-solid-state secondary battery which concerns on this embodiment. 12 to 13, the same elements as those described in the first embodiment and the second embodiment are denoted by the same reference numerals as those in these embodiments, and the description thereof is omitted below.

まず、図12(a)に示すように、シリコン基板等の基板1の上にスパッタ法で集電体2としてプラチナ膜を20nmの膜厚にスパッタ法で形成し、更にその上に正極膜3をスパッタ法で形成する。前述のように、正極膜3の材料はマンガン酸リチウムであって、例えば5μm程度の膜厚に形成し得る。   First, as shown in FIG. 12 (a), a platinum film as a current collector 2 is formed on a substrate 1 such as a silicon substrate by sputtering to a thickness of 20 nm, and further a positive electrode film 3 is formed thereon. Is formed by sputtering. As described above, the material of the positive electrode film 3 is lithium manganate, and can be formed to a thickness of, for example, about 5 μm.

次に、正極膜3の上に固体電解質膜4としてLiPON膜をスパッタ法で2μm程度の膜厚に形成する。   Next, a LiPON film as a solid electrolyte film 4 is formed on the positive electrode film 3 to a thickness of about 2 μm by sputtering.

なお、上記した集電体2、正極膜3、及び固体電解質膜4は、不図示のメタルマスクを用いて成膜され、成膜の時点で平面視で矩形状に整形される。   The current collector 2, the positive electrode film 3, and the solid electrolyte film 4 are formed using a metal mask (not shown) and shaped into a rectangular shape in plan view at the time of film formation.

続いて、図12(b)に示すように、開口27aを備えたメタルマスク27を基板1の上方に配する。そして、基板1の横方向Dにメタルマスク27を揺動させながら、開口27aを通じて固体電解質膜4の上に負極膜5の電極材料5wとしてリチウム又ははリチウム合金を蒸着法で供給する。   Subsequently, as shown in FIG. 12B, a metal mask 27 having an opening 27 a is disposed above the substrate 1. Then, while swinging the metal mask 27 in the lateral direction D of the substrate 1, lithium or a lithium alloy is supplied as an electrode material 5w of the negative electrode film 5 onto the solid electrolyte film 4 through the opening 27a by a vapor deposition method.

これにより、第1実施形態の図5(b)の工程と同様に、端5zに向かって膜厚T2が連続的に薄くなる周縁部5yを負極膜5に形成できると共に、周縁部5yよりも膜厚T1が厚い中央部5xを形成することができる。その中央部T1の膜厚は、例えば10μm程度である。   As a result, as in the step of FIG. 5B of the first embodiment, the peripheral edge portion 5y whose film thickness T2 continuously decreases toward the end 5z can be formed in the negative electrode film 5, and more than the peripheral edge portion 5y. A central portion 5x having a thick film thickness T1 can be formed. The film thickness of the central portion T1 is, for example, about 10 μm.

また、周縁部5yの幅Wは、メタルマスク27の振幅と略同一であり、この例では100μm〜10mm程度である。   Further, the width W of the peripheral portion 5y is substantially the same as the amplitude of the metal mask 27, and is about 100 μm to 10 mm in this example.

その後、図13に示すように、第1実施形態の図6(b)と同じ工程を行うことにより、封止膜6で負極膜5を覆う。   Thereafter, as shown in FIG. 13, the negative electrode film 5 is covered with the sealing film 6 by performing the same process as in FIG. 6B of the first embodiment.

以上により、本実施形態に係る全固体二次電池40の基本構造が完成する。   As described above, the basic structure of the all-solid-state secondary battery 40 according to this embodiment is completed.

上記した本実施形態によれば、図12(b)のようにメタルマスク27を揺動させることで膜厚T2が連続的に減少する負極膜5の周縁部5yを形成でき、これにより封止膜6に亀裂が生じるのを抑制することができる。   According to the present embodiment described above, the peripheral portion 5y of the negative electrode film 5 in which the film thickness T2 continuously decreases can be formed by swinging the metal mask 27 as shown in FIG. Generation of cracks in the film 6 can be suppressed.

(第4実施形態)
第3実施形態では、図10に示したように、負極膜5の周縁部5yの膜厚T2を端5zに向けて連続的に薄くした。これに対し、本実施形態では負極膜5の膜厚を段階的に薄くする。
(Fourth embodiment)
In the third embodiment, as shown in FIG. 10, the film thickness T2 of the peripheral edge portion 5y of the negative electrode film 5 is continuously reduced toward the end 5z. On the other hand, in the present embodiment, the thickness of the negative electrode film 5 is reduced stepwise.

図14は、本実施形態に係る全固体二次電池の断面図である。なお、図14において第1〜3実施形態で説明したのと同じ要素にはこれらと同じ符号を付し、以下ではその説明を省略する。   FIG. 14 is a cross-sectional view of the all solid state secondary battery according to the present embodiment. In FIG. 14, the same elements as those described in the first to third embodiments are denoted by the same reference numerals, and description thereof is omitted below.

図14に示すように、この全固体二次電池50においては負極膜5が下側層5aと上側層5bとを有する。その上側層5bの側面を下側層5aの側面よりも後退させることで、この例では負極膜5の中央部5xから周縁部5yにかけて階段形状を付与し、負極膜5の膜厚をその端5zに向けて段階的に減少させる。   As shown in FIG. 14, in this all solid state secondary battery 50, the negative electrode film 5 has a lower layer 5a and an upper layer 5b. By retreating the side surface of the upper layer 5b from the side surface of the lower layer 5a, in this example, a staircase shape is given from the central portion 5x to the peripheral portion 5y of the negative electrode film 5, and the film thickness of the negative electrode film 5 is changed to its end Decrease in steps toward 5z.

なお、負極膜5の膜厚は特に限定されないが、この例では中央部5xの膜厚T1を2μm程度とし、周縁部5yの膜厚T2を1μm程度とする。   The film thickness of the negative electrode film 5 is not particularly limited, but in this example, the film thickness T1 of the central portion 5x is about 2 μm, and the film thickness T2 of the peripheral portion 5y is about 1 μm.

また、そして、下側層5aの側面からの上側層5bの側面の後退量Lは、例えば100μm〜10mm程度とする。   Further, the retraction amount L of the side surface of the upper layer 5b from the side surface of the lower layer 5a is, for example, about 100 μm to 10 mm.

これによれば、第3実施形態と同様に放電時に負極膜5から正極膜3に移動するリチウムイオンの量を周縁部5yにおいて低減でき、リチウムイオンが原因の負極膜5の体積の減少量を中央部5xから周縁部5yに向けて減らすことができる。これにより、負極膜5の体積減少に封止膜6が容易に追従できるようになり、封止膜6に生じる亀裂を抑制できる。   According to this, similarly to the third embodiment, the amount of lithium ions moving from the negative electrode film 5 to the positive electrode film 3 during discharge can be reduced at the peripheral portion 5y, and the amount of decrease in the volume of the negative electrode film 5 caused by lithium ions can be reduced. It can reduce toward the peripheral part 5y from the center part 5x. Thereby, the sealing film 6 can easily follow the volume reduction of the negative electrode film 5, and cracks generated in the sealing film 6 can be suppressed.

次に、本実施形態に係る全固体二次電池の製造方法について説明する。   Next, a manufacturing method of the all solid state secondary battery according to the present embodiment will be described.

図15〜図16は、本実施形態に係る全固体二次電池の製造途中の断面図である。   15-16 is sectional drawing in the middle of manufacture of the all-solid-state secondary battery which concerns on this embodiment.

まず、第3実施形態の図12(a)の工程を行うことで、図15(a)のように基板1の上に集電体2、正極膜3、及び固体電解質膜4が順に形成された構造を作製する。   First, the current collector 2, the positive electrode film 3, and the solid electrolyte film 4 are sequentially formed on the substrate 1 as shown in FIG. 15A by performing the process of FIG. 12A of the third embodiment. The structure is made.

次いで、図15(b)に示すように、固体電解質膜4の上面と略同じ大きさの第1の開口28aを備えた第1のメタルマスク28を基板1の上方に配する。そして、その第1の開口28aを通じて固体電解質膜4の上に負極膜5の電極材料5wとしてリチウムを蒸着法で供給することにより、負極膜5の下側層5aを1μm程度の厚さに形成する。   Next, as shown in FIG. 15B, a first metal mask 28 having a first opening 28 a having the same size as the upper surface of the solid electrolyte membrane 4 is disposed above the substrate 1. Then, by supplying lithium as an electrode material 5w of the negative electrode film 5 onto the solid electrolyte film 4 through the first opening 28a by vapor deposition, the lower layer 5a of the negative electrode film 5 is formed to a thickness of about 1 μm. To do.

次に、図16(a)に示すように、下側層5aよりも小さい第2の開口29aを備えた第2のメタルマスク29を基板1の上方に配する。その後、第2の開口29aを通じて下側層5aの上に電極材料5wとしてリチウムマンガンオキサイドをスパッタ法で供給し、下側層5aの側面から後退した上側層5bを1μm程度の厚さに形成する。   Next, as shown in FIG. 16A, a second metal mask 29 having a second opening 29 a smaller than the lower layer 5 a is disposed above the substrate 1. Thereafter, lithium manganese oxide is supplied as the electrode material 5w onto the lower layer 5a through the second opening 29a by sputtering, and the upper layer 5b receding from the side surface of the lower layer 5a is formed to a thickness of about 1 μm. .

ここまでの工程により、下側層5aと上側層5bとを順に形成してなる負極膜5が得られる。   Through the steps so far, the negative electrode film 5 formed by sequentially forming the lower layer 5a and the upper layer 5b is obtained.

その後、図16(b)に示すように、第1実施形態の図6(b)と同じ工程を行うことにより、封止膜6で負極膜5を覆う。   Thereafter, as shown in FIG. 16B, the negative electrode film 5 is covered with the sealing film 6 by performing the same process as in FIG. 6B of the first embodiment.

以上により、本実施形態に係る全固体二次電池50の基本構造が完成する。   As described above, the basic structure of the all-solid-state secondary battery 50 according to this embodiment is completed.

その全固体二次電池50においては、上記のように上側層5bの側面を下側層5aから後退させることで負極膜5の断面形状が階段状となり、前述のように封止膜6に亀裂が生じるのを抑制することができる。   In the all-solid-state secondary battery 50, the side surface of the upper layer 5b is retreated from the lower layer 5a as described above, whereby the cross-sectional shape of the negative electrode film 5 becomes stepped, and the sealing film 6 is cracked as described above. Can be suppressed.

(第5実施形態)
本実施形態では、第1〜第4実施形態で説明した全固体二次電池を利用した電子機器について説明する。
(Fifth embodiment)
In this embodiment, an electronic apparatus using the all solid state secondary battery described in the first to fourth embodiments will be described.

図17は、本実施形態に係る電子機器の断面図である。   FIG. 17 is a cross-sectional view of the electronic apparatus according to the present embodiment.

この電子機器60は、例えばエネルギハーベスト技術において使用されるものであり、第1実施形態で説明した全固体二次電池20と、この全固体二次電池20の電力により駆動する回路61とを有する。   The electronic device 60 is used in, for example, energy harvesting technology, and includes the all solid state secondary battery 20 described in the first embodiment and a circuit 61 that is driven by the power of the all solid state secondary battery 20. .

なお、全固体二次電池20に代えて、第2〜第4実施形態で説明した全固体二次電池30、40、50を用いてもよい。   Instead of the all solid state secondary battery 20, all the solid state secondary batteries 30, 40, 50 described in the second to fourth embodiments may be used.

回路61は、基板1の上に設けられており、基板1の表面の不図示の配線により全固体二次電池20の正極膜3と電気的に接続される。   The circuit 61 is provided on the substrate 1 and is electrically connected to the positive electrode film 3 of the all-solid-state secondary battery 20 by wiring (not shown) on the surface of the substrate 1.

また、全固体二次電池20の負極膜5は、銅等を材料とする配線62により回路61と電気的に接続される。なお、この配線62は、全固体二次電池20の製造時に負極膜5の上に直接形成され、配線62の一部が封止膜6により覆われる。   Further, the negative electrode film 5 of the all-solid-state secondary battery 20 is electrically connected to the circuit 61 by a wiring 62 made of copper or the like. The wiring 62 is formed directly on the negative electrode film 5 when the all solid state secondary battery 20 is manufactured, and a part of the wiring 62 is covered with the sealing film 6.

回路61の機能は特に限定されないが、エネルギハーベスト技術において環境中の温度をモニタするための温度センサや、その温度センサの計測値を無線送信する機能を回路61に設けるのが好ましい。また、人体の脈拍を計測するための脈拍センサとして回路61を設けてもよい。   The function of the circuit 61 is not particularly limited, but it is preferable to provide the circuit 61 with a temperature sensor for monitoring the temperature in the environment in the energy harvesting technology and a function for wirelessly transmitting the measured value of the temperature sensor. Further, the circuit 61 may be provided as a pulse sensor for measuring the pulse of the human body.

このような電子機器60においては、第1実施形態で説明したように封止膜6に亀裂が入りにくい全固体二次電池20を使用しているため、長期間にわたって環境中の温度等を安定して測定することができる。   In such an electronic device 60, as described in the first embodiment, since the all-solid-state secondary battery 20 that does not easily crack in the sealing film 6 is used, the temperature in the environment and the like can be stabilized over a long period of time. Can be measured.

以上説明した各実施形態に関し、更に以下の付記を開示する。   The following additional notes are disclosed for each embodiment described above.

(付記1) 基板と、
前記基板の上に形成された第1の電極膜と、
前記第1の電極膜の上に形成された固体電解質膜と、
前記固体電解質膜の上に形成された第2の電極膜と、
前記第2の電極膜を覆う封止膜とを有し、
前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを有することを特徴とする全固体二次電池。
(Appendix 1) a substrate,
A first electrode film formed on the substrate;
A solid electrolyte membrane formed on the first electrode membrane;
A second electrode film formed on the solid electrolyte film;
A sealing film covering the second electrode film,
At least one of the first electrode film and the second electrode film has a central part having a first film thickness and a peripheral part having a second film thickness smaller than the first film thickness. All-solid-state secondary battery characterized.

(付記2) 前記第2の膜厚は、前記周縁部の端に向かって連続的に減少することを特徴とする付記1に記載の全固体二次電池。   (Supplementary note 2) The all-solid-state secondary battery according to Supplementary note 1, wherein the second film thickness continuously decreases toward an end of the peripheral edge.

(付記3) 前記第2の膜厚は、前記周縁部の端に向かって段階的に減少することを特徴とする付記1に記載の全固体二次電池。   (Additional remark 3) The said 2nd film thickness decreases in steps toward the edge of the said peripheral part, The all-solid-state secondary battery of Additional remark 1 characterized by the above-mentioned.

(付記4) 前記第1の電極膜は正極膜であり、
前記第2の電極膜は、リチウム又はリチウム合金を材料とする負極膜であり、
前記中央部と前記周縁部とが前記正極膜に設けられたことを特徴とする付記1乃至付記3のいずれかに記載の全固体二次電池。
(Supplementary Note 4) The first electrode film is a positive electrode film,
The second electrode film is a negative electrode film made of lithium or a lithium alloy,
The all-solid-state secondary battery according to any one of appendix 1 to appendix 3, wherein the central portion and the peripheral portion are provided on the positive electrode film.

(付記5) 前記第1の電極膜は、マンガン酸リチウムを材料とする正極膜であり、
前記第2の電極膜は、リチウム又はリチウム合金を材料とする負極膜であり、
前記中央部と前記周縁部とが前記負極膜に設けられたことを特徴とする付記1乃至付記3のいずれかに記載の全固体二次電池。
(Appendix 5) The first electrode film is a positive electrode film made of lithium manganate,
The second electrode film is a negative electrode film made of lithium or a lithium alloy,
The all-solid-state secondary battery according to any one of appendix 1 to appendix 3, wherein the central portion and the peripheral portion are provided on the negative electrode film.

(付記6) 基板の上に第1の電極膜を形成する工程と、
前記第1の電極膜の上に固体電解質膜を形成する工程と、
前記固体電解質膜の上に第2の電極膜を形成する工程と、
前記第2の電極膜を覆う封止膜を形成する工程とを有し、
前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを有することを特徴とする全固体二次電池の製造方法。
(Appendix 6) A step of forming a first electrode film on a substrate;
Forming a solid electrolyte membrane on the first electrode membrane;
Forming a second electrode film on the solid electrolyte film;
Forming a sealing film covering the second electrode film,
At least one of the first electrode film and the second electrode film has a central part having a first film thickness and a peripheral part having a second film thickness smaller than the first film thickness. A method for producing an all-solid secondary battery.

(付記7) 前記第1の電極膜を形成する工程において、
開口を備えたマスクを前記基板の上方に配し、前記基板に対して横方向に前記マスクを揺動させながら、前記開口を通じて前記基板の上に電極材料を供給することにより、前記第1の電極膜の端に向かって前記第2の膜厚が連続的に薄くなる前記周縁部を形成することを特徴とする付記6に記載の全固体二次電池の製造方法。
(Supplementary Note 7) In the step of forming the first electrode film,
A mask having an opening is disposed above the substrate, and an electrode material is supplied onto the substrate through the opening while swinging the mask laterally with respect to the substrate. The manufacturing method of an all-solid-state secondary battery according to appendix 6, wherein the peripheral portion where the second film thickness continuously decreases toward an end of the electrode film is formed.

(付記8) 前記第2の電極膜を形成する工程において、
開口を備えたマスクを前記基板の上方に配し、前記基板に対して横方向に前記マスクを揺動させながら、前記開口を通じて前記固体電解質膜の上に電極材料を供給することにより、前記第2の電極膜の端に向かって前記第2の膜厚が連続的に薄くなる前記周縁部を形成することを特徴とする付記6に記載の全固体二次電池の製造方法。
(Supplementary Note 8) In the step of forming the second electrode film,
A mask having an opening is disposed above the substrate, and an electrode material is supplied onto the solid electrolyte membrane through the opening while swinging the mask laterally with respect to the substrate. The manufacturing method of an all-solid-state secondary battery according to appendix 6, wherein the peripheral portion where the second film thickness continuously decreases toward the end of the second electrode film is formed.

(付記9) 全固体二次電池と、
全固体二次電池の電力により駆動する回路とを有し、
前記全固体二次電池が、
基板と、
前記基板の上に形成された第1の電極膜と、
前記第1の電極膜の上に形成された固体電解質膜と、
前記固体電解質膜の上に形成された第2の電極膜と、
前記第2の電極膜を覆う封止膜とを備え、
前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを備えたことを特徴とする電子機器。
(Supplementary note 9) an all-solid-state secondary battery;
A circuit driven by the power of the all-solid-state secondary battery,
The all solid state secondary battery is
A substrate,
A first electrode film formed on the substrate;
A solid electrolyte membrane formed on the first electrode membrane;
A second electrode film formed on the solid electrolyte film;
A sealing film covering the second electrode film,
At least one of the first electrode film and the second electrode film includes a central part having a first film thickness and a peripheral part having a second film thickness smaller than the first film thickness. Electronic equipment characterized by

1…基板、2…集電体、3…正極膜、3a…下側層、3b…上側層、3x…中央部、3y…周縁部、3w…電極材料、4…固体電解質膜、5…負極膜、5a…下側層、5b…上側層、5w…電極材料、6…封止膜、6a…無機酸化膜、6b…樹脂膜、6x…亀裂、7…リチウムイオン、8…金属リチウム、10、20、30、40、50…全固体二次電池、22、27…メタルマスク、22a、27a…開口、24、28…第1のメタルマスク、24a、28a…第1の開口、25、29…第2のメタルマスク、25a、29a…第2の開口、60…電子機器、61…回路、62…配線。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Current collector, 3 ... Positive electrode film, 3a ... Lower layer, 3b ... Upper layer, 3x ... Center part, 3y ... Peripheral part, 3w ... Electrode material, 4 ... Solid electrolyte membrane, 5 ... Negative electrode Membrane, 5a ... lower layer, 5b ... upper layer, 5w ... electrode material, 6 ... sealing film, 6a ... inorganic oxide film, 6b ... resin film, 6x ... crack, 7 ... lithium ion, 8 ... metallic lithium, 10 20, 30, 40, 50 ... all solid state secondary battery, 22, 27 ... metal mask, 22 a, 27 a ... opening, 24, 28 ... first metal mask, 24 a, 28 a ... first opening, 25, 29 ... second metal mask, 25a, 29a ... second opening, 60 ... electronic device, 61 ... circuit, 62 ... wiring.

Claims (5)

基板と、
前記基板の上に形成された第1の電極膜と、
前記第1の電極膜の上に形成された固体電解質膜と、
前記固体電解質膜の上に形成された第2の電極膜と、
前記第2の電極膜を覆う封止膜とを有し、
前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを有することを特徴とする全固体二次電池。
A substrate,
A first electrode film formed on the substrate;
A solid electrolyte membrane formed on the first electrode membrane;
A second electrode film formed on the solid electrolyte film;
A sealing film covering the second electrode film,
At least one of the first electrode film and the second electrode film has a central part having a first film thickness and a peripheral part having a second film thickness smaller than the first film thickness. All-solid-state secondary battery characterized.
前記第2の膜厚は、前記周縁部の端に向かって連続的に減少することを特徴とする請求項1に記載の全固体二次電池。   2. The all-solid-state secondary battery according to claim 1, wherein the second film thickness continuously decreases toward an end of the peripheral edge. 前記第2の膜厚は、前記周縁部の端に向かって段階的に減少することを特徴とする請求項1に記載の全固体二次電池。   2. The all-solid-state secondary battery according to claim 1, wherein the second film thickness decreases stepwise toward an end of the peripheral edge. 基板の上に第1の電極膜を形成する工程と、
前記第1の電極膜の上に固体電解質膜を形成する工程と、
前記固体電解質膜の上に第2の電極膜を形成する工程と、
前記第2の電極膜を覆う封止膜を形成する工程とを有し、
前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを有することを特徴とする全固体二次電池の製造方法。
Forming a first electrode film on the substrate;
Forming a solid electrolyte membrane on the first electrode membrane;
Forming a second electrode film on the solid electrolyte film;
Forming a sealing film covering the second electrode film,
At least one of the first electrode film and the second electrode film has a central part having a first film thickness and a peripheral part having a second film thickness smaller than the first film thickness. A method for producing an all-solid secondary battery.
全固体二次電池と、
全固体二次電池の電力により駆動する回路とを有し、
前記全固体二次電池が、
基板と、
前記基板の上に形成された第1の電極膜と、
前記第1の電極膜の上に形成された固体電解質膜と、
前記固体電解質膜の上に形成された第2の電極膜と、
前記第2の電極膜を覆う封止膜とを備え、
前記第1の電極膜と前記第2の電極膜の少なくとも一方が、第1の膜厚の中央部と、前記第1の膜厚よりも薄い第2の膜厚の周縁部とを備えたことを特徴とする電子機器。
An all-solid-state secondary battery;
A circuit driven by the power of the all-solid-state secondary battery,
The all solid state secondary battery is
A substrate,
A first electrode film formed on the substrate;
A solid electrolyte membrane formed on the first electrode membrane;
A second electrode film formed on the solid electrolyte film;
A sealing film covering the second electrode film,
At least one of the first electrode film and the second electrode film includes a central part having a first film thickness and a peripheral part having a second film thickness smaller than the first film thickness. Electronic equipment characterized by
JP2013156535A 2013-07-29 2013-07-29 All-solid secondary battery, method for producing the same, and electronic device Expired - Fee Related JP6194675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156535A JP6194675B2 (en) 2013-07-29 2013-07-29 All-solid secondary battery, method for producing the same, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156535A JP6194675B2 (en) 2013-07-29 2013-07-29 All-solid secondary battery, method for producing the same, and electronic device

Publications (2)

Publication Number Publication Date
JP2015026563A true JP2015026563A (en) 2015-02-05
JP6194675B2 JP6194675B2 (en) 2017-09-13

Family

ID=52491064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156535A Expired - Fee Related JP6194675B2 (en) 2013-07-29 2013-07-29 All-solid secondary battery, method for producing the same, and electronic device

Country Status (1)

Country Link
JP (1) JP6194675B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131503A1 (en) * 2017-12-28 2019-07-04 日立造船株式会社 All-solid-state battery, method for manufacturing same, and processing device
JP2020107414A (en) * 2018-12-26 2020-07-09 トヨタ自動車株式会社 Laminate
JPWO2021010231A1 (en) * 2019-07-18 2021-01-21
CN113994501A (en) * 2019-06-13 2022-01-28 株式会社村田制作所 Solid-state battery
WO2023047795A1 (en) * 2021-09-22 2023-03-30 東レエンジニアリング株式会社 Lithium ion battery with barrier film and method for producing lithium ion battery with barrier film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016210A (en) * 2006-07-03 2008-01-24 Sony Corp Secondary battery and its manufacturing method
JP2009544141A (en) * 2006-07-18 2009-12-10 シンベット・コーポレイション Method and apparatus for manufacturing, singulation and passivation of solid state microbatteries by photolithography
JP2013182842A (en) * 2012-03-05 2013-09-12 Hitachi Zosen Corp All-solid secondary battery and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016210A (en) * 2006-07-03 2008-01-24 Sony Corp Secondary battery and its manufacturing method
JP2009544141A (en) * 2006-07-18 2009-12-10 シンベット・コーポレイション Method and apparatus for manufacturing, singulation and passivation of solid state microbatteries by photolithography
JP2013182842A (en) * 2012-03-05 2013-09-12 Hitachi Zosen Corp All-solid secondary battery and method for manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7082142B2 (en) 2017-12-28 2022-06-07 日立造船株式会社 All-solid-state battery, its manufacturing method and processing equipment
KR20200103778A (en) * 2017-12-28 2020-09-02 히다치 조센 가부시키가이샤 All-solid-state battery, its manufacturing method and processing device
JPWO2019131503A1 (en) * 2017-12-28 2020-12-17 日立造船株式会社 All-solid-state battery, its manufacturing method and processing equipment
WO2019131503A1 (en) * 2017-12-28 2019-07-04 日立造船株式会社 All-solid-state battery, method for manufacturing same, and processing device
KR102544158B1 (en) * 2017-12-28 2023-06-14 히다치 조센 가부시키가이샤 All-solid-state battery, its manufacturing method and processing device
JP2020107414A (en) * 2018-12-26 2020-07-09 トヨタ自動車株式会社 Laminate
JP7052710B2 (en) 2018-12-26 2022-04-12 トヨタ自動車株式会社 Laminate
CN113994501A (en) * 2019-06-13 2022-01-28 株式会社村田制作所 Solid-state battery
CN113994501B (en) * 2019-06-13 2024-03-08 株式会社村田制作所 Solid-state battery
JPWO2021010231A1 (en) * 2019-07-18 2021-01-21
WO2021010231A1 (en) * 2019-07-18 2021-01-21 株式会社村田製作所 Solid-state battery
CN114127984A (en) * 2019-07-18 2022-03-01 株式会社村田制作所 Solid-state battery
WO2023047795A1 (en) * 2021-09-22 2023-03-30 東レエンジニアリング株式会社 Lithium ion battery with barrier film and method for producing lithium ion battery with barrier film

Also Published As

Publication number Publication date
JP6194675B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
US11923499B2 (en) Secondary battery and a method for fabricating the same
JP5540643B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
JP6357728B2 (en) Multi-layer lithium metal electrode and method of manufacturing the same
JP5515308B2 (en) Thin-film solid lithium ion secondary battery and manufacturing method thereof
TWI679798B (en) Electrochemical cell with protected negative electrode
US8785051B2 (en) Nonaqueous-electrolyte battery and method for producing the same
JP6194675B2 (en) All-solid secondary battery, method for producing the same, and electronic device
JP4970875B2 (en) All-solid-state energy storage device
JP2017527970A5 (en)
JP2007103130A (en) Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
KR20140003511A (en) Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
EP2975671B1 (en) Thin film battery structure and manufacturing method thereof
JP2009199920A (en) Lithium battery
JP2014086174A (en) All solid state battery and manufacturing method therefor
JP6920347B2 (en) Manufacturing method and equipment for all-solid-state batteries
JP5902579B2 (en) Secondary battery and manufacturing method thereof
JP7034703B2 (en) Lithium ion secondary battery
JP2020126791A (en) All-solid-state secondary battery
JP2014229502A (en) Manufacturing method of all-solid state lamination battery
JP2014049205A (en) Method of manufacturing thin film lithium secondary battery, mask, apparatus of manufacturing thin film lithium secondary battery
JP2015076315A (en) Method of manufacturing solid state battery
WO2019102668A1 (en) Lithium ion secondary battery, multilayer structure for lithium ion secondary batteries, and method for producing lithium ion secondary battery
JP3927527B2 (en) Method for producing negative electrode for lithium secondary battery
JP2021197204A (en) battery
JP2011187348A (en) Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6194675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees