JP2014049205A - Method of manufacturing thin film lithium secondary battery, mask, apparatus of manufacturing thin film lithium secondary battery - Google Patents

Method of manufacturing thin film lithium secondary battery, mask, apparatus of manufacturing thin film lithium secondary battery Download PDF

Info

Publication number
JP2014049205A
JP2014049205A JP2012189203A JP2012189203A JP2014049205A JP 2014049205 A JP2014049205 A JP 2014049205A JP 2012189203 A JP2012189203 A JP 2012189203A JP 2012189203 A JP2012189203 A JP 2012189203A JP 2014049205 A JP2014049205 A JP 2014049205A
Authority
JP
Japan
Prior art keywords
layer
mask
secondary battery
thin film
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012189203A
Other languages
Japanese (ja)
Other versions
JP6170657B2 (en
Inventor
Shunsuke Sasaki
俊介 佐々木
Akiyoshi Suzuki
亮由 鈴木
Keiichiro Asakawa
慶一郎 浅川
Taketo Jinbo
武人 神保
Hirotsuna Su
弘綱 鄒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012189203A priority Critical patent/JP6170657B2/en
Publication of JP2014049205A publication Critical patent/JP2014049205A/en
Application granted granted Critical
Publication of JP6170657B2 publication Critical patent/JP6170657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for preventing precipitation of a dendrite metal between a mask and a base metal layer, when forming a layer composed of a material having insulation properties and lithium ion conductivity on a substrate in the vacuum by sputtering through a mask.SOLUTION: A method of manufacturing a thin film lithium secondary battery having a solid electrolyte layer 23, composed of a material having insulation properties and lithium ion conductivity, on a substrate 9 is provided. When forming a solid electrolyte layer 23 on the substrate 9 in the vacuum by sputtering through the patterning aperture 12 of a mask 10, a gap forming recess 15 is provided in the deposition side surface 14 of the mask 10, so that a portion of the deposition side surface 14 of the mask 10 contiguous to the patterning aperture 12 does not come into contact with a positive electrode collector layer 21.

Description

本発明は、主に固体電解質のような絶縁性とリチウムイオン伝導性を併せ持つ材料を用いたリチウム二次電池を製造する技術に関し、特に真空中で薄膜によってリチウム二次電池を製造する技術に関する。   The present invention mainly relates to a technique for manufacturing a lithium secondary battery using a material having both insulating properties and lithium ion conductivity, such as a solid electrolyte, and particularly to a technique for manufacturing a lithium secondary battery by a thin film in a vacuum.

従来から、携帯電話やパーソナルコンピュータの電源として、リチウムイオン二次電池が広く知られているが、リチウムイオン二次電池は、液体電解質を用いているため、液漏れや発火等が発生する場合があり、安全性についての課題がある。   Conventionally, lithium ion secondary batteries have been widely known as power sources for mobile phones and personal computers. However, since lithium ion secondary batteries use liquid electrolytes, liquid leakage or ignition may occur. There are safety issues.

そこで、近年、電解質の材料として固体材料を用いた全固体型のリチウム二次電池が提案されており、その開発が進展している(例えば、特許文献1参照)。
特に、固体材料を用いた全固体型のリチウム二次電池として、薄膜からなる全固体型のリチウム二次電池は、カード型の電子部品等の電源用として期待されている。
Therefore, in recent years, an all-solid-state lithium secondary battery using a solid material as an electrolyte material has been proposed, and the development thereof is progressing (for example, see Patent Document 1).
In particular, as an all-solid-state lithium secondary battery using a solid material, an all-solid-type lithium secondary battery including a thin film is expected as a power source for a card-type electronic component or the like.

このような全固体型の薄膜リチウム二次電池は、例えばターゲットとしてLi3PO4を用い、スパッタリングによって、基板上の正極層上にLiPONからなる固体電解質層を形成するものが知られているが、このような従来技術では、マスクを用いてパターン成膜を行う際に、マスクと下地金属層との間にデンドライト状の金属が析出するという問題がある。 Such an all-solid-state thin film lithium secondary battery is known, for example, using Li 3 PO 4 as a target and forming a solid electrolyte layer made of LiPON on the positive electrode layer on the substrate by sputtering. Such a conventional technique has a problem in that a dendrite-like metal is deposited between the mask and the base metal layer when the pattern is formed using the mask.

特開2007−12324号公報JP 2007-12324 A

本発明は、このような従来の技術の課題に鑑みてなされたもので、その目的とするところは、真空中でマスクを介してスパッタリングによって基板上に主に固体電解質のような絶縁性とリチウムイオン伝導性を併せ持つ材料からなる層を形成する際、マスクと下地金属層間にデンドライト状の金属が析出することを防止する技術を提供することにある。   The present invention has been made in view of the problems of the prior art as described above. The object of the present invention is to provide an insulating material such as a solid electrolyte and lithium as a main material by sputtering through a mask in a vacuum. An object of the present invention is to provide a technique for preventing dendrite-like metal from being deposited between a mask and an underlying metal layer when a layer made of a material having ion conductivity is formed.

本発明者は上記課題を解決すべく鋭意努力を重ねた結果、真空中でマスクを介してスパッタリングによって基板上に絶縁性とリチウムイオン伝導性を併せ持つ層を形成する際、マスクの成膜側面のパターン形成用開口部に隣接する金属部分が下地金属層に接触しないように隙間を設けることにより、マスクと下地金属層間にデンドライト状の金属が析出することを防止しうることを見出し、本発明を完成するに到った。   As a result of diligent efforts to solve the above-mentioned problems, the inventor formed a layer having both insulating properties and lithium ion conductivity on a substrate by sputtering through a mask in a vacuum. It has been found that by providing a gap so that the metal portion adjacent to the opening for pattern formation does not contact the base metal layer, it is possible to prevent the dendritic metal from being deposited between the mask and the base metal layer. It came to completion.

かかる知見に基づく本発明は、基板上に、正極集電層、正極層、固体電解質層、負極集電層、負極層を有する薄膜リチウム二次電池を製造する方法であって、前記基板上において下地金属層である前記正極集電層又は前記負極集電層上に絶縁性とリチウムイオン伝導性を併せ持つ層を形成する工程を有し、真空中でマスクのパターン形成用開口部を介してスパッタリングによって前記基板上に前記絶縁性とリチウムイオン伝導性を併せ持つ層を形成する際、前記マスクの成膜側面の前記パターン形成用開口部に隣接する金属部分が前記下地金属層に接触しないように当該金属部分と当該下地金属層との間に隙間を設けて成膜を行う工程を有する薄膜リチウム二次電池製造方法である。
本発明では、前記絶縁性とリチウムイオン伝導性を併せ持つ層が、前記正極層、前記固体電解質層、前記負極層からなる群から選択される1又は2以上の層である場合にも効果的である。
本発明では、前記固体電解質層が、リン酸リチウムオキシナイトライドガラス電解質からなる場合にも効果的である。
本発明は、上述したいずれかの薄膜リチウム二次電池製造方法を実施するためのマスクであって、当該マスクの成膜側面の前記パターン形成用開口部に隣接する金属部分に、所定の深さの隙間形成用凹部が設けられているものである。
本発明は、スパッタリング用の真空槽を有し、当該真空槽内において、上述したマスクが基板に対して近接配置するように構成されている薄膜リチウム二次電池製造装置である。
The present invention based on such knowledge is a method for producing a thin film lithium secondary battery having a positive electrode current collecting layer, a positive electrode layer, a solid electrolyte layer, a negative electrode current collecting layer, and a negative electrode layer on a substrate, Sputtering through a mask pattern forming opening in a vacuum having a step of forming a layer having both insulating properties and lithium ion conductivity on the positive electrode current collecting layer or the negative electrode current collecting layer which is a base metal layer When forming a layer having both insulating properties and lithium ion conductivity on the substrate, the metal portion adjacent to the opening for pattern formation on the side surface of the mask forming film is not in contact with the base metal layer. It is a thin film lithium secondary battery manufacturing method including a step of forming a film by providing a gap between a metal portion and the base metal layer.
In the present invention, it is also effective when the layer having both insulating properties and lithium ion conductivity is one or more layers selected from the group consisting of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer. is there.
The present invention is also effective when the solid electrolyte layer is made of a lithium phosphate oxynitride glass electrolyte.
The present invention provides a mask for carrying out any one of the above-described methods for manufacturing a thin film lithium secondary battery, wherein a predetermined depth is formed in a metal portion adjacent to the pattern forming opening on a film formation side surface of the mask. The gap forming recess is provided.
The present invention is a thin-film lithium secondary battery manufacturing apparatus that includes a vacuum chamber for sputtering and is configured so that the above-described mask is disposed close to a substrate in the vacuum chamber.

本発明は、以下の効果を奏するものである。
すなわち、従来技術では、金属部分を有するマスクを用いたスパッタリングによって基板上に固体電解質層や正極層又は負極層のような絶縁性とリチウムイオン伝導性を併せ持つ層を形成する際に、下地金属層である正極又は負極集電層上にマスクを装着するとマスクの金属部分が下地金属層に接触して回路的に接続される。
The present invention has the following effects.
That is, in the prior art, when forming a layer having both insulating properties and lithium ion conductivity, such as a solid electrolyte layer, a positive electrode layer, or a negative electrode layer, on a substrate by sputtering using a mask having a metal part, the underlying metal layer When the mask is mounted on the positive electrode or negative electrode current collecting layer, the metal portion of the mask contacts the base metal layer and is connected in a circuit.

そして、下地金属層上に絶縁性とリチウムイオン伝導性を併せ持つ層を成膜した場合にマスクと下地金属層と絶縁性とリチウムイオン伝導性を併せ持つ層とによって閉回路が形成され、その結果、絶縁性とリチウムイオン伝導性を併せ持つ層に発生する電場によりリチウムイオンの偏りが発生し、イオンマイグレーションによりデンドライト状の金属析出が発生する。   When a layer having both insulating properties and lithium ion conductivity is formed on the base metal layer, a closed circuit is formed by the mask, the base metal layer, and the layer having both insulating properties and lithium ion conductivity. An electric field generated in a layer having both insulating properties and lithium ion conductivity causes a bias of lithium ions, and dendritic metal deposition occurs due to ion migration.

これに対し、本発明においては、マスクの成膜側面のパターン形成用開口部に隣接する金属部分が下地金属層である正極又は負極集電層に接触しないように例えば隙間形成用凹部によって隙間を設けることにより、真空中でマスクのパターン形成用開口部を介してスパッタリングによって基板上に固体電解質層や正極層又は負極層のような絶縁性とリチウムイオン伝導性を併せ持つ層を形成する際に、マスクの金属部分と下地金属層の接触を阻止することができるので、下地金属層上に絶縁性とリチウムイオン伝導性を併せ持つ層を成膜した場合にマスクと下地金属層と絶縁性とリチウムイオン伝導性を併せ持つ層とによる閉回路の形成を防止することができる。   On the other hand, in the present invention, the gap is formed by, for example, a gap-forming recess so that the metal portion adjacent to the pattern-forming opening on the film-forming side surface of the mask does not come into contact with the positive electrode or the negative electrode current collecting layer as the base metal layer. By forming a layer having both insulating properties and lithium ion conductivity, such as a solid electrolyte layer and a positive electrode layer or a negative electrode layer, on a substrate by sputtering through a mask pattern formation opening in a vacuum, Since the contact between the metal part of the mask and the underlying metal layer can be prevented, when a layer having both insulating properties and lithium ion conductivity is formed on the underlying metal layer, the mask, the underlying metal layer, the insulating property and the lithium ion It is possible to prevent the formation of a closed circuit due to the layer having conductivity.

これにより、マスクと下地金属層間にデンドライト状の金属が析出することを防止できるので、負極、正極間の短絡が抑えられ、製造工程における歩留まりを向上させることができる。
また、本発明によれば、デンドライト状の金属析出物によって引き起こされる膜質の悪化を防止することができるので、電池の長期信頼性を向上させることができる。
Accordingly, it is possible to prevent the dendritic metal from being deposited between the mask and the base metal layer, so that a short circuit between the negative electrode and the positive electrode can be suppressed, and the yield in the manufacturing process can be improved.
In addition, according to the present invention, deterioration of film quality caused by dendritic metal deposits can be prevented, so that long-term reliability of the battery can be improved.

本発明の実施の形態のリチウム二次電池製造装置の内部構成を示す断面図Sectional drawing which shows the internal structure of the lithium secondary battery manufacturing apparatus of embodiment of this invention (a)(b):本実施の形態のマスクを示す平面図(A) (b): Plan views showing the mask of the present embodiment 本発明によって作成される薄膜リチウム二次電池の構成例を示す断面図Sectional drawing which shows the structural example of the thin film lithium secondary battery created by this invention 本実施の形態における正極集電層、正極層及び固体電解質層の大小関係を示す平面図The top view which shows the magnitude relationship of the positive electrode current collection layer in this Embodiment, a positive electrode layer, and a solid electrolyte layer (a):本実施の形態のマスクにおけるパターン形成用開口部及び隙間形成用凹部を示す平面図(b):図5(a)のA−A線断面図(A): Plan view showing a pattern forming opening and a gap forming recess in the mask of the present embodiment (b): AA line sectional view of FIG. 本実施の形態の原理の説明図で、図6(a)は、従来技術を説明するためのもの、図6(b)は、本実施の形態を示すものである。6A and 6B are explanatory diagrams of the principle of the present embodiment, in which FIG. 6A illustrates the prior art, and FIG. 6B illustrates the present embodiment.

以下、本発明の好ましい実施の形態を図面を参照して詳細に説明する。
図1は、本実施の形態のリチウム二次電池製造装置の内部構成を示す断面図である。
図1に示すように、本実施の形態のリチウム二次電池製造装置1は、例えばターボ分子ポンプ及びドライポンプを有する真空排気系2に接続され接地された真空槽3を有している。この真空槽3は、ガス導入源4を介して窒素ガス等のスパッタガスが導入されるように構成されている。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing the internal configuration of the lithium secondary battery manufacturing apparatus of the present embodiment.
As shown in FIG. 1, the lithium secondary battery manufacturing apparatus 1 of the present embodiment includes a vacuum chamber 3 connected to a vacuum exhaust system 2 having, for example, a turbo molecular pump and a dry pump. The vacuum chamber 3 is configured such that a sputtering gas such as nitrogen gas is introduced through a gas introduction source 4.

真空槽3内には、一体的に構成されスパッタリングターゲット5を有するカソード電極6が設けられている。
このカソード電極6は、真空槽3の外部に設けられた高周波電源7に接続され、スパッタリングターゲット5に対して例えば13.56Mhzの高周波電力が印加されるように構成されている。
In the vacuum chamber 3, a cathode electrode 6 that is integrally formed and has a sputtering target 5 is provided.
The cathode electrode 6 is connected to a high frequency power source 7 provided outside the vacuum chamber 3, and is configured to apply a high frequency power of, for example, 13.56 Mhz to the sputtering target 5.

真空槽3内のスパッタリングターゲット5と対向する位置にはステージ8が設けられ、このステージ8上に基板9が配置され、さらに、この基板9上には、後述するマスク10が配置されるようになっている。
なお、本実施の形態の場合、基板9は、フローティング電位となるように配置される。
A stage 8 is provided at a position facing the sputtering target 5 in the vacuum chamber 3, a substrate 9 is disposed on the stage 8, and a mask 10 to be described later is disposed on the substrate 9. It has become.
In the case of the present embodiment, the substrate 9 is arranged to have a floating potential.

図2(a)(b)は、本実施の形態のマスクを示す平面図であり、図2(a)はターゲット側面を示すもの、図2(b)は成膜側面を示すものである。
図2(a)(b)に示すように、本実施の形態のマスク10は、金属からなる例えば平板状のマスク本体11を有し、このマスク本体11に、複数のパターン形成用開口部12が設けられている。
2A and 2B are plan views showing the mask of the present embodiment. FIG. 2A shows the target side surface, and FIG. 2B shows the film formation side surface.
As shown in FIGS. 2A and 2B, the mask 10 of the present embodiment has a flat mask body 11 made of metal, for example, and a plurality of pattern forming openings 12 in the mask body 11. Is provided.

そして、本実施の形態では、マスク本体11のターゲット側面13と反対側の面である成膜側面14の、各パターン形成用開口部12の近傍に、後述する隙間形成用凹部15が設けられている。   In the present embodiment, a gap forming concave portion 15 to be described later is provided in the vicinity of each pattern forming opening 12 on the film forming side surface 14 which is the surface opposite to the target side surface 13 of the mask main body 11. Yes.

図3は、本発明によって作成される薄膜リチウム二次電池の構成例を示す断面図である。
図3に示すように、本発明によって作成される薄膜リチウム二次電池20は、上述した基板9上に、正極集電層21、正極層22、固体電解質層23、負極集電層24、負極層25、封止層26が順次形成されて構成されるものである。
FIG. 3 is a cross-sectional view showing a structural example of a thin film lithium secondary battery produced by the present invention.
As shown in FIG. 3, a thin film lithium secondary battery 20 produced according to the present invention includes a positive electrode current collecting layer 21, a positive electrode layer 22, a solid electrolyte layer 23, a negative electrode current collecting layer 24, a negative electrode on the substrate 9 described above. The layer 25 and the sealing layer 26 are sequentially formed.

基板9は、例えばガラスからなるもので、例えば矩形形状に形成されている。
基板9としてガラス基板を用いると、基板9上に形成される各層に対する反応性が低いことから好ましい。
The substrate 9 is made of, for example, glass, and is formed in, for example, a rectangular shape.
When a glass substrate is used as the substrate 9, it is preferable because reactivity with each layer formed on the substrate 9 is low.

下地金属層である正極集電層21は、例えば白金/チタン(Pt/Ti)合金等の金属によって形成され、接続端子側の端部21aが露出するように構成されている。
この正極集電層21は、例えば白金からなるターゲットと、チタンからなるターゲットとを用い、DCスパッタリングによって形成することができる。
The positive electrode current collecting layer 21 that is a base metal layer is formed of a metal such as a platinum / titanium (Pt / Ti) alloy, for example, and is configured such that the end 21a on the connection terminal side is exposed.
The positive electrode current collecting layer 21 can be formed by DC sputtering using, for example, a target made of platinum and a target made of titanium.

正極層22は、例えばコバルト酸リチウム(LiCoO2)によって形成されている。
この正極層22は、コバルト酸リチウムからなるスパッタリングターゲットを用い、RFスパッタリングによって形成することができる。
The positive electrode layer 22 is made of, for example, lithium cobalt oxide (LiCoO 2 ).
The positive electrode layer 22 can be formed by RF sputtering using a sputtering target made of lithium cobalt oxide.

絶縁性とリチウムイオン伝導性を併せ持つ層である固体電解質層23は、例えばリン酸リチウムオキシナイトライドガラス電解質(LIPON)によって形成されている。
この固体電解質層23は、リン酸リチウム(Li3PO4)からなるスパッタリングターゲットを用い、RFスパッタリングによって形成することができる。
The solid electrolyte layer 23 which is a layer having both insulating properties and lithium ion conductivity is formed of, for example, a lithium phosphate oxynitride glass electrolyte (LIPON).
The solid electrolyte layer 23 can be formed by RF sputtering using a sputtering target made of lithium phosphate (Li 3 PO 4 ).

下地金属層である負極集電層24は、例えばニッケル/クロム(Ni/Cr)合金等の金属によって形成されている。
この負極集電層24は、例えばニッケルからなるターゲットとクロムからなるターゲットとを用い、DCスパッタリングによって形成することができる。
The negative electrode current collecting layer 24 that is a base metal layer is formed of a metal such as a nickel / chromium (Ni / Cr) alloy.
The negative electrode current collecting layer 24 can be formed by DC sputtering using a target made of nickel and a target made of chromium, for example.

負極層25は、例えば金属リチウム(Li)によって形成されている。
この負極層25は、蒸発源として金属リチウムを用い、真空蒸着によって形成することができる。
The negative electrode layer 25 is made of, for example, metallic lithium (Li).
The negative electrode layer 25 can be formed by vacuum deposition using metallic lithium as an evaporation source.

封止層26は、例えばアルミナ(Al23)層27とポリ尿素層28が積層されて形成されている。
ここで、アルミナ層27は、例えば酸素(O2)ガス雰囲気下において、アルミニウム(Al)からなるターゲットを用い、RFスパッタリングによって形成することができる。
The sealing layer 26 is formed, for example, by laminating an alumina (Al 2 O 3 ) layer 27 and a polyurea layer 28.
Here, the alumina layer 27 can be formed by RF sputtering using a target made of aluminum (Al) in an oxygen (O 2 ) gas atmosphere, for example.

一方、ポリ尿素層28は、例えば蒸着重合法によって形成することができる。
この場合、蒸着重合用の原料モノマーとしては、ジアミンモノマーとして、例えば、1,12−ジアミノドデカン、酸成分モノマーとして、例えば、1,3−ビス(イソシアネートメチル)シクロヘキサンを好適に用いることができる。
On the other hand, the polyurea layer 28 can be formed, for example, by vapor deposition polymerization.
In this case, as a raw material monomer for vapor deposition polymerization, for example, 1,12-diaminododecane can be suitably used as a diamine monomer, and for example, 1,3-bis (isocyanatomethyl) cyclohexane can be suitably used as an acid component monomer.

図4は、本実施の形態における正極集電層、正極層及び固体電解質層の大小関係を示す平面図である。
図4に示すように、本実施の形態においては、長方形形状の正極集電層21の接続端子側の端部21aと反対側の部分に、正極集電層21より長手方向の長さが小さい正極層22が形成され、さらにこの正極層22を全面的に覆うように固体電解質層23が形成される。
FIG. 4 is a plan view showing the magnitude relationship among the positive electrode current collecting layer, the positive electrode layer, and the solid electrolyte layer in the present embodiment.
As shown in FIG. 4, in the present embodiment, the length in the longitudinal direction is smaller than that of the positive electrode current collector layer 21 at the portion opposite to the connection terminal side end 21 a of the rectangular positive electrode current collector layer 21. A positive electrode layer 22 is formed, and a solid electrolyte layer 23 is further formed so as to cover the entire surface of the positive electrode layer 22.

このような構成においては、上述したマスク10を用いて固体電解質層23を形成する際に、マスク本体11のパターン形成用開口部12の外側の領域、すなわち、正極集電層21の接続端子側の露出領域21bが、マスク10の成膜側面14と対向することになる。   In such a configuration, when the solid electrolyte layer 23 is formed using the mask 10 described above, the region outside the pattern forming opening 12 of the mask body 11, that is, the connection terminal side of the positive electrode current collecting layer 21. The exposed region 21b of the mask 10 faces the film formation side surface 14 of the mask 10.

そして、成膜の際に正極集電層21の露出領域21bがマスク10に接触すると、マスク10と正極集電層21間にデンドライト状の金属が析出する原因となる。
そこで、本実施の形態においては、マスク10に以下のような手段を設けるようにしている。
When the exposed region 21 b of the positive electrode current collecting layer 21 comes into contact with the mask 10 during film formation, a dendritic metal is deposited between the mask 10 and the positive electrode current collecting layer 21.
Therefore, in the present embodiment, the mask 10 is provided with the following means.

図5(a)は、本実施の形態のマスクにおけるパターン形成用開口部及び隙間形成用凹部を示す平面図、図5(b)は、図5(a)のA−A線断面図である。
図5(a)(b)に示すように、本実施の形態のマスク10では、上述した正極集電層21の露出領域21bに対応するように、マスク本体11の成膜側面14側でパターン形成用開口部12に隣接する部分、即ち正極集電層21の接続端子側の露出領域21bと対応する部分に、所定の深さの隙間形成用凹部15が設けられている。
FIG. 5A is a plan view showing a pattern forming opening and a gap forming recess in the mask of the present embodiment, and FIG. 5B is a cross-sectional view taken along line AA of FIG. 5A. .
As shown in FIGS. 5A and 5B, in the mask 10 of the present embodiment, the pattern is formed on the side surface 14 of the mask body 11 so as to correspond to the exposed region 21b of the positive electrode current collecting layer 21 described above. A gap forming recess 15 having a predetermined depth is provided in a portion adjacent to the forming opening 12, that is, a portion corresponding to the exposed region 21 b on the connection terminal side of the positive electrode current collecting layer 21.

この場合、マスク10に設ける隙間形成用凹部15の深さは特に限定されることはないが、この深さが所定の値より大きくなると、成膜時のスパッタ粒子の回り込みにより正極集電層21が絶縁体膜によって覆われて抵抗値が大きくなってしまう場合がある。   In this case, the depth of the gap forming recess 15 provided in the mask 10 is not particularly limited. However, when the depth exceeds a predetermined value, the cathode current collecting layer 21 is caused by the wraparound of sputtered particles during film formation. May be covered with an insulating film and the resistance value may increase.

したがって、本発明の場合、正極集電層21の露出領域21bがマスク10に接触せず、かつ、成膜時のスパッタ粒子の回り込みを防止する観点からは、マスク10の隙間形成用凹部15の深さ(図5(b)に示すマスク10の成膜側面14と隙間形成用凹部15の底面の距離d)は、固体電解質層23の厚さより大きく、かつ、1mm以下となるように構成することがより好ましい。
なお、本発明における固体電解質層23は、1〜10μmの範囲で形成されるものである。
Therefore, in the case of the present invention, from the viewpoint of preventing the exposed region 21b of the positive electrode current collecting layer 21 from coming into contact with the mask 10 and preventing spattering of sputtered particles during film formation, The depth (the distance d between the film-forming side surface 14 of the mask 10 and the bottom surface of the gap forming recess 15 shown in FIG. 5B) is configured to be greater than the thickness of the solid electrolyte layer 23 and 1 mm or less. It is more preferable.
In addition, the solid electrolyte layer 23 in this invention is formed in the range of 1-10 micrometers.

また、本発明の場合、マスク10の隙間形成用凹部15の縁部と正極集電層21の露出領域21bの縁部との距離(図5(a)に示す距離p)は特に限定されることはないが、成膜時のデンドライト状の金属の析出を確実に防止する観点からは、0.1〜30mmに設定することがより好ましい。   In the case of the present invention, the distance between the edge of the gap forming recess 15 of the mask 10 and the edge of the exposed region 21b of the positive electrode current collecting layer 21 (distance p shown in FIG. 5A) is particularly limited. However, it is more preferably set to 0.1 to 30 mm from the viewpoint of reliably preventing the precipitation of dendritic metal during film formation.

このような構成を有する本実施の形態において、基板9上に固体電解質層23を形成する場合には、図1に示すスパッタリング装置を用い、予め正極集電層21及び正極層22を形成しておいた基板9を真空槽3内のステージ8上に配置し、この基板9に対して上述したマスク10を装着する。   In the present embodiment having such a configuration, when the solid electrolyte layer 23 is formed on the substrate 9, the positive electrode current collecting layer 21 and the positive electrode layer 22 are formed in advance using the sputtering apparatus shown in FIG. 1. The placed substrate 9 is placed on the stage 8 in the vacuum chamber 3, and the above-described mask 10 is attached to the substrate 9.

そして、真空排気系2を動作させて真空槽3内の圧力を超高真空状態にし、真空槽3内に窒素ガスを導入してマグネトロンスパッタリングを行い(例えば圧力0.3Pa、パワー2kW)、基板9上に絶縁性とリチウムイオン伝導性を併せ持つ固体電解質層23(LiPON膜)を形成する。
その後、固体電解質層23上に、上述した負極集電層24、負極層25、封止層26を形成し、これにより目的とする薄膜リチウム二次電池20を得る。
Then, the vacuum evacuation system 2 is operated to bring the pressure in the vacuum chamber 3 into an ultra-high vacuum state, nitrogen gas is introduced into the vacuum chamber 3 and magnetron sputtering is performed (for example, pressure 0.3 Pa, power 2 kW), and the substrate A solid electrolyte layer 23 (LiPON film) having both insulating properties and lithium ion conductivity is formed on the substrate 9.
Thereafter, the negative electrode current collecting layer 24, the negative electrode layer 25, and the sealing layer 26 described above are formed on the solid electrolyte layer 23, whereby the target thin film lithium secondary battery 20 is obtained.

以上述べた本実施の形態は、以下の効果を奏するものである。
すなわち、従来技術の場合、図6(a)に示すように、金属からなるマスク10を用いスパッタリングによって基板9上に絶縁性とリチウムイオン伝導性を併せ持つ固体電解質層23を形成する際に下地金属層である正極集電層21上にマスク10を装着することにより、マスク10の成膜側面14が正極集電層21の接続端子側の端部21aに接触して回路的に接続される。
The above-described embodiment has the following effects.
That is, in the case of the prior art, as shown in FIG. 6A, when forming the solid electrolyte layer 23 having both insulating properties and lithium ion conductivity on the substrate 9 by sputtering using the mask 10 made of metal, the base metal By mounting the mask 10 on the positive electrode current collecting layer 21, which is a layer, the film formation side surface 14 of the mask 10 comes into contact with the connection terminal side end 21 a of the positive electrode current collecting layer 21 and is connected in circuit.

そして、正極集電層21上に固体電解質層23を成膜した場合にマスク10と正極集電層21と固体電解質層23とによって閉回路が形成され、その結果、固体電解質層23に発生する電場によりリチウムイオンの偏りが発生し、固体電解質層23とマスク10の界面にイオンマイグレーションによりデンドライト状の金属30が析出する。   When the solid electrolyte layer 23 is formed on the positive electrode current collecting layer 21, a closed circuit is formed by the mask 10, the positive electrode current collecting layer 21, and the solid electrolyte layer 23, and as a result, the solid electrolyte layer 23 is generated. Lithium ions are biased by the electric field, and dendritic metal 30 is deposited by ion migration at the interface between the solid electrolyte layer 23 and the mask 10.

これに対し、本実施の形態においては、図6(b)に示すように、マスク10の成膜側面14側でパターン形成用開口部12に隣接する部分が下地金属層である正極集電層21に接触しないように隙間形成用凹部15を設けることにより、真空中でマスク10のパターン形成用開口部12を介してスパッタリングによって基板9上に絶縁性とリチウムイオン伝導性を併せ持つ固体電解質層23を形成する際に、マスク10と正極集電層21の接続端子側の端部21aの接触を阻止することができるので、正極集電層21上に固体電解質層23を成膜した場合にマスク10と正極集電層21と固体電解質層23とによる閉回路の形成を防止することができる。   In contrast, in the present embodiment, as shown in FIG. 6B, the positive electrode current collecting layer in which the portion adjacent to the pattern forming opening 12 on the film formation side surface 14 side of the mask 10 is a base metal layer By providing the gap forming recess 15 so as not to come into contact with 21, the solid electrolyte layer 23 having both insulating properties and lithium ion conductivity on the substrate 9 by sputtering through the pattern forming opening 12 of the mask 10 in vacuum. Since the contact between the mask 10 and the end portion 21a on the connection terminal side of the positive current collecting layer 21 can be prevented, the mask is formed when the solid electrolyte layer 23 is formed on the positive current collecting layer 21. 10, the positive electrode current collecting layer 21 and the solid electrolyte layer 23 can be prevented from forming a closed circuit.

その結果、マスク10と正極集電層21間にデンドライト状の金属30が析出することを防止できるので、負極、正極間の短絡が抑えられ、製造工程における歩留まりを向上させることができ、また、デンドライト状の金属析出物によって引き起こされる膜質の悪化を防止することができるので、電池の長期信頼性を向上させることができる。   As a result, it is possible to prevent the dendrite-like metal 30 from being deposited between the mask 10 and the positive electrode current collecting layer 21, so that a short circuit between the negative electrode and the positive electrode can be suppressed, and the yield in the manufacturing process can be improved. Since deterioration of film quality caused by dendritic metal deposits can be prevented, long-term reliability of the battery can be improved.

なお、本発明は上述した実施の形態に限られることなく、種々の変更を行うことができる。
例えば、上記実施の形態では、絶縁性とリチウムイオン伝導性を併せ持つ層の材料としてリン酸リチウムオキシナイトライドガラス電解質(LIPON)からなる固体電解質の場合を例にとって説明したが、本発明はこれに限られず、リチウムを含む全ての固体電解質(例えばLi2O−B25+N,Li2S−P25,Li2S−SiS等のガラス系固体電解質や、Li2Ti37,Li3N,La0.5Li0.5TiO3等の結晶系固体電解質)、また、絶縁性とリチウムイオン伝導性を併せ持つ材料である例えばリン酸鉄リチウム(LiFePO4)からなる正極層やチタン酸リチウム(Li4Ti512)からなる負極層を成膜する際に適用することができる。
The present invention is not limited to the above-described embodiment, and various changes can be made.
For example, in the above-described embodiment, the case of a solid electrolyte made of lithium phosphate oxynitride glass electrolyte (LIPON) is described as an example of the material of the layer having both insulating properties and lithium ion conductivity. Without limitation, all solid electrolytes containing lithium (for example, Li 2 O—B 2 O 5 + N, Li 2 S—P 2 S 5 , Li 2 S—SiS and other glass-based solid electrolytes, Li 2 Ti 3 O 7 , Li 3 N, La 0.5 Li 0.5 TiO 3, etc., and materials having both insulating properties and lithium ion conductivity, such as a positive electrode layer made of lithium iron phosphate (LiFePO 4 ) or lithium titanate It can be applied when forming a negative electrode layer made of (Li 4 Ti 5 O 12 ).

また、上記実施の形態では、マスクが金属材料からなる場合を例にとって説明したが、本発明はこれに限られず、マスクが例えばセラミックスからなり、成膜側面に金属部分を有するマスクにも適用することができる。   In the above-described embodiment, the case where the mask is made of a metal material has been described as an example. However, the present invention is not limited to this, and the present invention is also applicable to a mask made of, for example, ceramics and having a metal portion on a film formation side surface. be able to.

すなわち、従来技術では、セラミックスからなるマスクを固定する金属と例えば固体電解質層との間においてデンドライト状の金属析出が発生し、パーティクルが発生したり、膜の応力が増加する等の課題があるが、本発明によれば、このような課題を解決することができる。   That is, in the prior art, there are problems such as dendrite-like metal precipitation between the metal that fixes the mask made of ceramics and, for example, the solid electrolyte layer, generating particles and increasing the stress of the film. According to the present invention, such a problem can be solved.

さらに、上記実施の形態では、マスクの成膜側面に隙間形成用凹部を設けることにより、マスクの成膜側面のパターン形成用開口部に隣接する金属部分が絶縁性とリチウムイオン伝導性を併せ持つ層に接触しないように隙間を設けるようにしたが、本発明はこれに限られず、例えばマスクに突起状のスペーサを設けることにより、マスクの成膜側面のパターン形成用開口部に隣接する金属部分が絶縁性とリチウムイオン伝導性を併せ持つ層に接触しないように構成することも可能である。   Furthermore, in the above-described embodiment, a gap forming recess is provided on the mask film forming side surface so that the metal portion adjacent to the pattern forming opening on the film forming side surface of the mask has both insulating properties and lithium ion conductivity. However, the present invention is not limited to this. For example, by providing a protrusion-like spacer on the mask, the metal portion adjacent to the pattern forming opening on the side surface of the mask forming film can be provided. It is also possible to configure so as not to contact a layer having both insulating properties and lithium ion conductivity.

1…リチウム二次電池製造装置
3…真空槽
9…基板
10…マスク
11…マスク本体
12…パターン形成用開口部
14…成膜側面
15…隙間形成用凹部
20…薄膜リチウム二次電池
21…正極集電層
22…正極層
23…固体電解質層
24…負極集電層
25…負極層
26…封止層
DESCRIPTION OF SYMBOLS 1 ... Lithium secondary battery manufacturing apparatus 3 ... Vacuum chamber 9 ... Substrate 10 ... Mask 11 ... Mask main body 12 ... Pattern formation opening 14 ... Film-forming side surface 15 ... Gap formation recessed part 20 ... Thin film lithium secondary battery 21 ... Positive electrode Current collecting layer 22 ... Positive electrode layer 23 ... Solid electrolyte layer 24 ... Negative electrode current collecting layer 25 ... Negative electrode layer 26 ... Sealing layer

Claims (5)

基板上に、正極集電層、正極層、固体電解質層、負極集電層、負極層を有する薄膜リチウム二次電池を製造する方法であって、
前記基板上において下地金属層である前記正極集電層又は前記負極集電層上に絶縁性とリチウムイオン伝導性を併せ持つ層を形成する工程を有し、
真空中でマスクのパターン形成用開口部を介してスパッタリングによって前記基板上に前記絶縁性とリチウムイオン伝導性を併せ持つ層を形成する際、前記マスクの成膜側面の前記パターン形成用開口部に隣接する金属部分が前記下地金属層に接触しないように当該金属部分と当該下地金属層との間に隙間を設けて成膜を行う工程を有する薄膜リチウム二次電池製造方法。
A method for producing a thin film lithium secondary battery having a positive electrode current collecting layer, a positive electrode layer, a solid electrolyte layer, a negative electrode current collecting layer, and a negative electrode layer on a substrate,
Forming a layer having both insulating properties and lithium ion conductivity on the positive electrode current collecting layer or the negative electrode current collecting layer which is a base metal layer on the substrate;
When forming a layer having both insulation and lithium ion conductivity on the substrate by sputtering through a mask pattern formation opening in a vacuum, adjacent to the pattern formation opening on the side of the film formation of the mask A method for producing a thin film lithium secondary battery, comprising: forming a film by providing a gap between the metal part and the base metal layer so that the metal part to be touched does not contact the base metal layer.
前記絶縁性とリチウムイオン伝導性を併せ持つ層が、前記正極層、前記固体電解質層、前記負極層からなる群から選択される1又は2以上の層である請求項1記載の薄膜リチウム二次電池製造方法。   2. The thin film lithium secondary battery according to claim 1, wherein the layer having both insulating properties and lithium ion conductivity is one or more layers selected from the group consisting of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer. Production method. 前記固体電解質層が、リン酸リチウムオキシナイトライドガラス電解質からなる請求項1又は2のいずれか1項記載の薄膜リチウム二次電池製造方法。   The method for producing a thin film lithium secondary battery according to claim 1, wherein the solid electrolyte layer is made of a lithium phosphate oxynitride glass electrolyte. 請求項1乃至3のいずれか1項記載の薄膜リチウム二次電池製造方法を実施するためのマスクであって、
当該マスクの成膜側面の前記パターン形成用開口部に隣接する金属部分に、所定の深さの隙間形成用凹部が設けられているマスク。
A mask for carrying out the method for producing a thin film lithium secondary battery according to claim 1,
A mask in which a gap forming recess having a predetermined depth is provided in a metal portion adjacent to the pattern forming opening on the film forming side surface of the mask.
スパッタリング用の真空槽を有し、当該真空槽内において、請求項4記載のマスクが基板に対して近接配置するように構成されている薄膜リチウム二次電池製造装置。   An apparatus for manufacturing a thin film lithium secondary battery, comprising: a vacuum chamber for sputtering, wherein the mask according to claim 4 is arranged close to the substrate in the vacuum chamber.
JP2012189203A 2012-08-29 2012-08-29 Thin film lithium secondary battery manufacturing method, mask, thin film lithium secondary battery manufacturing apparatus Active JP6170657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189203A JP6170657B2 (en) 2012-08-29 2012-08-29 Thin film lithium secondary battery manufacturing method, mask, thin film lithium secondary battery manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189203A JP6170657B2 (en) 2012-08-29 2012-08-29 Thin film lithium secondary battery manufacturing method, mask, thin film lithium secondary battery manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2014049205A true JP2014049205A (en) 2014-03-17
JP6170657B2 JP6170657B2 (en) 2017-07-26

Family

ID=50608700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189203A Active JP6170657B2 (en) 2012-08-29 2012-08-29 Thin film lithium secondary battery manufacturing method, mask, thin film lithium secondary battery manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6170657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533538A (en) * 2014-08-28 2017-11-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Special LiPON mask to improve LiPON ion conductivity and TFB manufacturing yield
WO2023047795A1 (en) * 2021-09-22 2023-03-30 東レエンジニアリング株式会社 Lithium ion battery with barrier film and method for producing lithium ion battery with barrier film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226201A (en) * 1994-02-10 1995-08-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2000239840A (en) * 1999-02-23 2000-09-05 Nec Kagoshima Ltd Mask for preventing abnormal film formation
WO2003021706A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Method for manufacturing electrochemical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226201A (en) * 1994-02-10 1995-08-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2000239840A (en) * 1999-02-23 2000-09-05 Nec Kagoshima Ltd Mask for preventing abnormal film formation
WO2003021706A1 (en) * 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Method for manufacturing electrochemical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533538A (en) * 2014-08-28 2017-11-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Special LiPON mask to improve LiPON ion conductivity and TFB manufacturing yield
WO2023047795A1 (en) * 2021-09-22 2023-03-30 東レエンジニアリング株式会社 Lithium ion battery with barrier film and method for producing lithium ion battery with barrier film

Also Published As

Publication number Publication date
JP6170657B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US7846579B2 (en) Thin film battery with protective packaging
US20180351164A1 (en) Masking device for use in a lithium deposition process in the manufacturing of thin film batteries, apparatus configured for a lithium deposition process, method for manufacturing electrodes of thin film batteries, and thin film battery
KR100964017B1 (en) Thin film battery having enhanced surface area of electrode and enhanced contact area between electrode and electrolyte and method for producing the same
WO2010090124A1 (en) Solid state thin film lithium ion secondary battery and manufacturing method therefor
EP2975671B1 (en) Thin film battery structure and manufacturing method thereof
JP2010205718A (en) Thin-film solid lithium-ion secondary battery and its manufacturing method
US10008739B2 (en) Solid-state lithium battery with electrolyte
JP2016523441A (en) Substrate for solid state battery
KR101069257B1 (en) Mathod of preparing thin film battery minimizing use of shadow mask
JP3677509B2 (en) Solid electrolyte and all solid state battery using the same
JP6331282B2 (en) Solid electrolyte composite, all solid-state ion battery, and method for producing solid electrolyte composite
JP2006179241A (en) Solid battery
JP6194675B2 (en) All-solid secondary battery, method for producing the same, and electronic device
JP5148902B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
JP5497538B2 (en) Solid type secondary battery
JP6170657B2 (en) Thin film lithium secondary battery manufacturing method, mask, thin film lithium secondary battery manufacturing apparatus
KR20090061269A (en) Thin film battery having enhanced surface area of electrode and enhanced contact area between electrode and electrolyte and method for producing the same
JP6580077B2 (en) Power storage system having plate-like discrete elements, plate-like discrete elements, method for producing the same, and use thereof
JP2012122084A (en) Method for manufacturing thin battery
JP5794869B2 (en) Mask for forming solid electrolyte membrane and method for producing lithium secondary battery
JP5980603B2 (en) Dielectric film forming method, thin film secondary battery manufacturing method, dielectric film forming apparatus, and thin film secondary battery manufacturing apparatus
CN108695541B (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
KR101131555B1 (en) Pattern mask for thin film battery, thin film battery and method of manufacturing the same
TWI577072B (en) Double-sided all-solid-state thin-film lithium battery and manufacturing method thereof
WO2021106242A1 (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160610

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170117

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6170657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250