JP2015075329A - Method and apparatus for measuring circular dichroism - Google Patents

Method and apparatus for measuring circular dichroism Download PDF

Info

Publication number
JP2015075329A
JP2015075329A JP2013209345A JP2013209345A JP2015075329A JP 2015075329 A JP2015075329 A JP 2015075329A JP 2013209345 A JP2013209345 A JP 2013209345A JP 2013209345 A JP2013209345 A JP 2013209345A JP 2015075329 A JP2015075329 A JP 2015075329A
Authority
JP
Japan
Prior art keywords
axis
light
respect
polarizing plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013209345A
Other languages
Japanese (ja)
Other versions
JP6239335B2 (en
Inventor
浩 里園
Hiroshi Satozono
浩 里園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2013209345A priority Critical patent/JP6239335B2/en
Publication of JP2015075329A publication Critical patent/JP2015075329A/en
Application granted granted Critical
Publication of JP6239335B2 publication Critical patent/JP6239335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To more accurately and easily measure circular dichroism of a sample.SOLUTION: Artifact components included in conventional circular dichroism measurement results are removed by obtaining a matrix element S02 and a matrix element S20 of a Mueller matrix, then calculating circular dichroism based on the obtained matrix elements. The circular dichroism therefore can be measured more accurately by measuring the matrix element S02 and matrix element S20 using an apparatus 1 for measuring a circular dichroism and by calculating circular dichroism using the measurement result. In a method for measuring a circular dichroism using the apparatus 1 for measuring a circular dichroism, a process for avoiding influence of polarization characteristics of light from a light source is performed when calculating the matrix elements S02 and S20, so that more accurate measurement of circular dichroism can be performed since even when there are present horizontal and vertical polarization components in the light from the light source, the measurement is not affected by the presence of the horizontal and vertical polarization components.

Description

本発明は、円二色性計測方法及び円二色性計測装置に関する。   The present invention relates to a circular dichroism measuring method and a circular dichroism measuring apparatus.

円二色性(CD:Circular Dichroism)は、分子の光学活性(キラリティ)によって起こる現象であり、左右の円偏光に対する吸光度の違いとして定義される。この円二色性のスペクトル情報は、分子の高次構造を反映していることから、特に生理活性物質の高次構造の解析等によく適用される。この円二色性は、左右の円偏光をそれぞれ試料に照射し、透過光の強度差から吸光度の差を求める方法が一般的に用いられる。   Circular dichroism (CD) is a phenomenon caused by optical activity (chirality) of a molecule, and is defined as a difference in absorbance with respect to left and right circularly polarized light. Since this circular dichroism spectral information reflects the higher order structure of the molecule, it is often applied particularly to analysis of higher order structures of physiologically active substances. For this circular dichroism, a method is generally used in which a sample is irradiated with left and right circularly polarized light, and the difference in absorbance is obtained from the difference in intensity of transmitted light.

円二色性の計測は、試料が円二色性以外の光学活性、すなわち直線偏光に対する二色性や複屈折を持っていない場合にのみ成立し、試料が円二色性以外の光学活性を有している場合、この特性が円二色性とカップリングするために円二色性計測の際のアーチファクトになることが知られている。そして、このアーチファクトの影響のために、固体、膜、液晶等の巨視的な異方性を有する試料においては、円二色性の計測には適さないとされていた(例えば、非特許文献1参照)。このため、アーチファクトを除去するための種々の検討が行われている。例えば、特許文献1では、試料を45°回転させ、検光子を外して計測し、さらに試料を裏返して計測した後で、これらの二つの信号の平均を取る、等の工程が示されている。   Circular dichroism is measured only when the sample has an optical activity other than circular dichroism, i.e., has no dichroism or birefringence with respect to linearly polarized light, and the sample has optical activity other than circular dichroism. If so, this characteristic is known to be an artifact in circular dichroism measurement due to coupling with circular dichroism. Due to the influence of this artifact, a sample having macroscopic anisotropy such as a solid, a film, or a liquid crystal is not suitable for measurement of circular dichroism (for example, Non-Patent Document 1). reference). For this reason, various studies for removing artifacts have been performed. For example, Patent Document 1 shows a process in which a sample is rotated by 45 °, an analyzer is removed, measurement is performed, and the sample is turned upside down, and then the average of these two signals is taken. .

特許第4010760号Patent No. 4010760

神藤、分光研究、第34巻、第4号、215ページ(1985年)Kamito, Spectroscopic Research, Vol.34, No.4, p.215 (1985) Y.Shindo, Optical Engineering,Vol.34, No.12, 3369 (1995)Y. Shindo, Optical Engineering, Vol. 34, No. 12, 3369 (1995) Ho.P.Jensen, J.A.Schellman,T.Troxell, Applied Spectroscopy, Vol.32,No.2, 192 (1978)Ho.P.Jensen, J.A.Schellman, T.Troxell, Applied Spectroscopy, Vol.32, No.2, 192 (1978) G.E.Jellison Jr., F.A.Modine,Appl.Opt., Vol.36, 8184 (1997)G.E.Jellison Jr., F.A.Modine, Appl.Opt., Vol.36, 8184 (1997)

しかしながら、特許文献1記載の計測装置によれば光学系が複雑であり、且つ、測定方法が煩雑であるため、円二色性を迅速且つ簡便に計測できるとはいえない。   However, according to the measurement apparatus described in Patent Document 1, since the optical system is complicated and the measurement method is complicated, it cannot be said that circular dichroism can be measured quickly and easily.

本発明は上記を鑑みてなされたものであり、試料の円二色性をより正確且つ簡便に計測することが可能な円二色性計測方法及び円二色性計測装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a circular dichroism measuring method and a circular dichroism measuring apparatus capable of measuring the circular dichroism of a sample more accurately and simply. And

上記目的を達成するため、本発明に係る円二色性計測方法は、測定対象の試料に係るミュラー行列を下記の数式(A)

Figure 2015075329

としたときに、行列要素S02を計測するS02計測ステップと、上記の数式(A)における行列要素S20を計測するS20計測ステップと、前記S02計測ステップにおいて得られた行列要素S02と、前記S20計測ステップにおいて得られた行列要素S20とから円二色性を算出する算出ステップと、を有し、前記S02計測ステップにおいて、前記行列要素S02の計測に用いられる光源の偏光特性を除去する処理を行い、前記S20計測ステップにおいて、前記行列要素S20の計測に用いられる光源の偏光特性を除去する処理を行うことを特徴とする。 In order to achieve the above object, the circular dichroism measurement method according to the present invention uses the following formula (A) for the Mueller matrix related to the sample to be measured.
Figure 2015075329

S02 measurement step for measuring the matrix element S02, S20 measurement step for measuring the matrix element S20 in the above formula (A), the matrix element S02 obtained in the S02 measurement step, and the S20 measurement A calculation step of calculating circular dichroism from the matrix element S20 obtained in the step, and in the S02 measurement step, a process of removing the polarization characteristic of the light source used for the measurement of the matrix element S02 is performed. In the S20 measurement step, a process for removing the polarization characteristic of the light source used for the measurement of the matrix element S20 is performed.

また、本発明に係る円二色性計測装置は、測定対象の試料に係るミュラー行列を下記の数式(B)

Figure 2015075329

としたときに、行列要素S02を計測するS02計測手段と、上記の数式(B)における行列要素S20を計測するS20計測手段と、前記S02計測手段において得られた行列要素S02と、前記S20計測手段において得られた行列要素S20とから円二色性を算出する算出手段と、を有し、前記S02計測手段において、前記行列要素S02の計測に用いられる光源の偏光特性を除去する処理を行い、前記S20計測手段において、前記行列要素S20の計測に用いられる光源の偏光特性を除去する処理を行うことを特徴とする。 In addition, the circular dichroism measuring apparatus according to the present invention uses the following formula (B) for the Mueller matrix related to the sample to be measured.
Figure 2015075329

S02 measuring means for measuring the matrix element S02, S20 measuring means for measuring the matrix element S20 in the above equation (B), the matrix element S02 obtained by the S02 measuring means, and the S20 measurement Calculation means for calculating circular dichroism from the matrix element S20 obtained by the means, and the S02 measurement means performs processing for removing the polarization characteristics of the light source used for measurement of the matrix element S02. The S20 measuring means performs a process of removing the polarization characteristic of the light source used for the measurement of the matrix element S20.

発明者らの研究によれば、ミュラー行列の行列要素S02と行列要素S20とをそれぞれ求めた後、これに基づいて円二色性を算出することで、従来の円二色性の測定結果には含まれていたアーチファクト成分が除去されることが分かった。したがって、上記の円二色性計測方法及び円二色性計測装置に基づき、行列要素S02及び行列要素S20を測定し、これらの結果を用いて円二色性を算出する構成とすることで、より正確な円二色性の測定を行うことができる。また、従来は、より正確な円二色性を計測するために、円二色性以外の光学活性を有しない状態である溶液状態での測定を行ってきたが、上記の計測方法によれば、溶液状態以外の状態、例えば、固相、ゲル、液晶、膜状の試料の円二色性であっても、アーチファクト成分の除去が適切に行われるため、溶液状態ではない試料の円二色性の計測にも適用することが可能となる。   According to the research by the inventors, after obtaining the matrix element S02 and the matrix element S20 of the Mueller matrix, and calculating the circular dichroism based on the matrix element S02 and the matrix element S20, the conventional circular dichroism measurement result is obtained. Was found to remove the included artifact components. Therefore, based on the above circular dichroism measurement method and circular dichroism measurement device, the matrix element S02 and the matrix element S20 are measured, and the circular dichroism is calculated using these results. More accurate circular dichroism can be measured. In addition, conventionally, in order to measure more accurate circular dichroism, measurement has been performed in a solution state that is a state having no optical activity other than circular dichroism. In other states than the solution state, for example, the circular dichroism of the solid sample, gel, liquid crystal, and film sample, the artifact component is properly removed, so the circular dichroism of the sample that is not in the solution state. It can be applied to sex measurement.

そして、上記の円二色性計測方法及び円二色性計測装置によれば、行列要素S02及び行列S20の計測に用いられる光源の偏光特性を除去する処理が行われた上で円二色性の計測が行われるため、より正確に円二色性を計測することが可能となる。   And according to said circular dichroism measuring method and said circular dichroism measuring apparatus, after the process which removes the polarization characteristic of the light source used for the measurement of matrix element S02 and matrix S20 was performed, circular dichroism Therefore, the circular dichroism can be measured more accurately.

ここで、上記作用を効果的に奏する円二色性計測方法の一態様として、前記S02計測ステップは、特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、を備える第1計測装置において、第1光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うLx測定ステップと、前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸をX軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うLy測定ステップと、前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNa測定ステップと、前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸をX軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNb測定ステップと、を有し、前記S20計測ステップは、前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第2光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、を備える第2計測装置において、第2光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLx測定ステップと、前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLy測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK00測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK10測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK01測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK11測定ステップと、を有する構成が挙げられる。   Here, as one aspect of the circular dichroism measurement method that effectively exhibits the above-described operation, the S02 measurement step includes: a first light source that emits light of a specific wavelength; and light emitted from the first light source. A first polarizing plate that can rotate a polarization axis that enters and extracts linearly polarized light, and linearly polarized light that is extracted from the first polarizing plate are incident, and the wavelength of light from the first light source is λ, A first wave plate that emits a phase difference between two polarization components having a vibration plane different from the vibration plane of incident light and orthogonal to each other, and light emitted from the first wave plate as an electrical signal In a first measurement device comprising: a first light detection means that converts and detects the Z axis as an optical axis of light emitted from the first light source, and two axes orthogonal to the Z axis, When the X-axis and Y-axis are respectively set, the sample is removed from the first light source. In a state where the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, An Lx measurement step for measuring the intensity of light received by the first light detection means, the sample is removed from the optical path of light from the first light source, and the polarization axis of the first polarizing plate is taken as the X axis The Ly measurement step of measuring the intensity of light received by the first light detection means in a state where the angle of rotation relative to the X axis with respect to the fast axis of the first wave plate is 90 °. And the sample is disposed between the first wave plate and the first light detecting means on the optical path, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the first wave plate With the rotation angle of the fast axis with respect to the X axis being 45 °, the first light detecting means A Na measuring step for measuring the intensity of the received light, and the sample is disposed between the first wave plate and the first light detecting means on the optical path, and the polarization axis of the first polarizing plate is set The intensity of light received by the first light detection means is measured in a state where the angle is 90 ° with respect to the X axis and the rotation angle of the fast axis of the first wave plate with respect to the X axis is 45 °. Nb measurement step, and the S20 measurement step includes a second light source that emits light having the same wavelength as the first light source, and polarized light that takes out the light emitted from the second light source and extracts linearly polarized light. When a second polarizing plate that can rotate its axis and linearly polarized light extracted by the second polarizing plate are incident and the wavelength of light from the second light source is λ, the vibration is different from the vibration plane of the incident light. The phase difference between two polarization components having a plane and orthogonal to each other is expressed as 1 / a second wave plate that emits as λ, a third polarizing plate that can rotate the polarization axis that takes out light emitted from the second wave plate and takes out linearly polarized light, and light emitted from the third polarizing plate And a second light detecting means for detecting the light signal by converting it into an electrical signal, wherein the optical axis of the light emitted from the second light source is the Z axis, and two orthogonal to the Z axis When the axes are the X axis and the Y axis, respectively, the sample is removed from the optical path of the light from the second light source, the polarization axis of the second polarizing plate is set to 0 ° with respect to the X axis, and the first The light is received by the second light detection means in a state where the rotation angle with respect to the X axis with respect to the fast axis of the two-wavelength plate is 0 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. An Lx measurement step for measuring the intensity of the light, and the sample from the optical path of the light from the second light source. The polarization axis of the second polarizing plate is 90 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 90 °, and the polarization axis of the third polarizing plate is A Ly measurement step for measuring the intensity of light received by the second light detection means in a state of 90 ° with respect to the X axis; and the second polarizing plate and the second wavelength on the optical path of the sample. The polarization axis of the second polarizing plate is 0 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 45 °, and the third A K00 measurement step of measuring the intensity of light received by the second light detection means in a state where the polarization axis of the polarizing plate is 0 ° with respect to the X axis; and the second polarization on the optical path of the sample. Between the plate and the second wave plate, the polarization axis of the second polarizing plate is 90 degrees with respect to the X axis, The second light detection means receives light in a state where the rotation angle of the fast axis of the second wave plate with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. K10 measurement step for measuring the intensity of the emitted light, the sample is disposed between the second polarizing plate and the second wave plate on the optical path, and the polarization axis of the second polarizing plate is set to the X axis With respect to the fast axis of the second wave plate, the rotation angle with respect to the X axis is 45 °, and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. A K01 measurement step for measuring the intensity of light received by the two-light detection means; and the sample is disposed between the second polarizing plate and the second wave plate on the optical path, and the second polarizing plate The polarization axis is 90 ° with respect to the X axis, and the rotation of the second wave plate with respect to the X axis with respect to the fast axis A K11 measurement step of measuring the intensity of light received by the second light detection means in a state where the angle is 45 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. A configuration is mentioned.

また、上記の円二色性計測方法に対応する円二色性計測装置として、前記S02計測手段を構成する第1計測装置は、特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、を備え、前記S20計測手段を構成する第2計測装置は、前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第2光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、を備える態様が挙げられる。   As a circular dichroism measuring device corresponding to the above circular dichroism measuring method, the first measuring device constituting the S02 measuring means includes a first light source that emits light of a specific wavelength, and the first light source. A first polarizing plate that can rotate a polarization axis that takes out light emitted from a light source and takes out linearly polarized light, and linearly polarized light that is taken out from the first polarizing plate, enters the light from the first light source. When the wavelength is λ, a first wavelength plate that emits a phase difference between two polarization components having a vibration plane different from the vibration plane of incident light and orthogonal to each other is set to ¼λ, and the first wave plate First light detecting means for converting the emitted light into an electrical signal and detecting the second light, and the second measuring device constituting the S20 measuring means emits light having the same wavelength as that of the first light source. The light emitted from the light source and the second light source is incident to take linearly polarized light. A second polarizing plate capable of rotating a polarization axis to be emitted, and linearly polarized light extracted from the second polarizing plate are incident, and when the wavelength of light from the second light source is λ, the vibration plane of the incident light is A second wavelength plate that emits a phase difference between two polarization components that have different vibration planes and are orthogonal to each other, and a polarization axis that takes out light emitted from the second wavelength plate and extracts linearly polarized light. And a second light detecting means for detecting the light emitted from the third polarizing plate by converting it into an electric signal.

また、上記作用を効果的に奏する円二色性計測方法の一態様として、前記S02計測ステップは、特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、を備える第1計測装置において、第1光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とした状態で、前記光検出手段において受光される光の強度の計測を行うLx測定ステップと、   As one aspect of the circular dichroism measurement method that effectively exhibits the above-described operation, the S02 measurement step includes a first light source that emits light of a specific wavelength and light emitted from the first light source. Then, the first polarizing plate capable of rotating the polarization axis for extracting linearly polarized light and the linearly polarized light extracted from the first polarizing plate are incident, and the wavelength of light from the first light source is λ. A first wave plate that emits a phase difference between two polarized light components having a vibration plane different from that of the light and orthogonal to each other, and the light emitted from the first wave plate as an electrical signal In a first measurement device comprising: a first light detection means for detecting by conversion, the optical axis of light emitted from the first light source is the Z axis, and two axes orthogonal to the Z axis are respectively When the X axis and the Y axis are taken, the sample is removed from the first light source. In a state where the polarization axis of the first polarizing plate is 0 ° with respect to the X-axis, and the rotation angle with respect to the X-axis with respect to the X-axis with respect to the fast axis of the first wave plate is 0 °. An Lx measurement step for measuring the intensity of light received by the light detection means;

前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNa測定ステップと、前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を−45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNc測定ステップと、を有し、前記S20計測ステップは、前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、を備える第2計測装置において、第2光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLx測定ステップと、前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLy測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK00測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK10測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK01測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK11測定ステップと、を有する構成が挙げられる。   The sample is disposed between the first wave plate and the first light detection means on the optical path, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the speed of the first wave plate is increased. An Na measurement step for measuring the intensity of light received by the first light detection means in a state where the rotation angle of the axis with respect to the X axis is 45 °; and the first wavelength plate on the optical path of the sample. And the first light detecting means, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is − An Nc measurement step for measuring the intensity of light received by the first light detection means in a state of 45 °, and the S20 measurement step emits light having the same wavelength as that of the first light source. The second light source and the light emitted from the second light source is incident to extract linearly polarized light. When the second polarizing plate capable of rotating the optical axis and the linearly polarized light extracted from the second polarizing plate are incident and the wavelength of the light from the first light source is λ, it is different from the vibration plane of the incident light. A second wavelength plate that emits a phase difference between two polarization components that have vibration planes and are orthogonal to each other, and a polarization axis that takes out light emitted from the second wavelength plate and extracts linearly polarized light. In a second measurement device, comprising: a rotatable third polarizing plate; and second light detection means for detecting light converted from the third polarizing plate by converting it into an electrical signal. When the optical axis of light is the Z axis and the two axes orthogonal to the Z axis are the X axis and the Y axis, respectively, the sample is removed from the optical path of the light from the second light source, The polarization axis of the second polarizing plate is 0 ° with respect to the X axis, and the fast axis of the second wave plate The intensity of light received by the second light detection means is measured in a state where the rotation angle with respect to the X axis is 0 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. Lx measurement step, removing the sample from the optical path of the light from the second light source, setting the polarization axis of the second polarizing plate to 90 ° with respect to the X axis, and the fast axis of the second wave plate Ly measurement for measuring the intensity of light received by the second light detection means in a state where the rotation angle with respect to the X axis is 90 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. And the sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is set to 0 ° with respect to the X axis, and the second wave plate The rotation angle with respect to the X axis with respect to the fast axis is 45 °, and the polarization axis of the third polarizing plate is with respect to the X axis. A K00 measurement step for measuring the intensity of light received by the second light detection means in a state of 0 °, and the sample between the second polarizing plate and the second wave plate on the optical path The second polarizing plate has a polarization axis of 90 ° with respect to the X axis, a fast axis of the second wave plate of 45 ° with respect to the X axis, and a polarization axis of the third polarizing plate. K10 measurement step of measuring the intensity of light received by the second light detection means in a state where the angle is set to 0 ° with respect to the X axis, the second polarizing plate on the optical path of the sample and the second The second polarizing plate has a polarization axis of 0 ° with respect to the X axis, a rotation angle of the fast axis of the second wavelength plate with respect to the X axis is 45 °, In the state where the polarization axis of the three polarizing plates is 90 ° with respect to the X axis, the second light detection means receives the light. K01 measurement step for measuring the intensity of the light to be measured, the sample is disposed between the second polarizing plate and the second wave plate on the optical path, and the polarization axis of the second polarizing plate with respect to the X axis 90 ° with respect to the fast axis of the second wave plate, the rotation angle with respect to the X axis is 45 °, and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. And a K11 measurement step for measuring the intensity of light received by the light detection means.

また、上記作用を効果的に奏する円二色性計測方法の他の態様として、前記S02計測ステップは、特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射して直線偏光を取り出す偏光軸を回転可能な第4偏光板と、前記第2偏光板において取出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、を備える第1計測装置において、第1光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第4偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うLx測定ステップと、前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第4偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うLy測定ステップと、前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第4偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNa測定ステップと、前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第4偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNa測定ステップと、を有し、前記S20計測ステップは、前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第2光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、を備える第2計測装置において、第2光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸を前記X軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第3偏光板の偏光軸を前記X軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLx測定ステップと、前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸を前記X軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第3偏光板の偏光軸を前記X軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLy測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸を前記X軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸を前記X軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK00測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸を前記X軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸を前記X軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK10測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸を前記X軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸を前記X軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK01測定ステップと、前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸を前記X軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸を前記X軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK11測定ステップと、を有する構成が挙げられる。   As another aspect of the circular dichroism measurement method that effectively exhibits the above-described operation, the S02 measurement step includes: a first light source that emits light of a specific wavelength; and light emitted from the first light source. A first polarizing plate that can rotate a polarization axis that is incident to extract linearly polarized light, and a fourth polarizing plate that is capable of rotating a polarizing axis that is incident on the linearly polarized light extracted by the first polarizing plate and extracts linearly polarized light. When the linearly polarized light extracted from the second polarizing plate is incident and the wavelength of the light from the first light source is λ, two polarization components having a vibration surface different from the vibration surface of the incident light and orthogonal to each other A first measuring device comprising: a first wave plate that emits with a phase difference of ¼λ between the first wave plate, and first light detection means that converts the light emitted from the first wave plate into an electrical signal and detects it. The optical axis of the light emitted from the first light source is the Z axis When the two axes orthogonal to the Z-axis are the X-axis and the Y-axis, respectively, the sample is removed from the optical path of the light from the first light source, and the polarization axis of the first polarizing plate Is 0 ° with respect to the X axis, the polarization axis of the fourth polarizing plate is 0 ° with respect to the X axis, and the rotation angle of the fast axis of the first wave plate with respect to the X axis is 0 °. In this state, the Lx measurement step for measuring the intensity of light received by the first light detection means, the sample is removed from the optical path of the light from the first light source, and the polarization axis of the first polarizing plate Is 90 ° with respect to the X axis, the polarization axis of the fourth polarizing plate is 90 ° with respect to the X axis, and the rotation angle of the fast axis of the first wave plate with respect to the X axis is 90 °. In this state, a Ly measurement step for measuring the intensity of light received by the first light detection means; The sample is disposed between the first wave plate and the first light detection means on the optical path, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the fourth polarizing plate Intensity of light received by the first light detection means in a state where the polarization axis is 0 ° with respect to the X-axis and the rotation angle of the fast axis of the first wave plate with respect to the X-axis is 45 °. A measurement step of measuring Na, and the sample is disposed between the first wave plate and the first light detection means on the optical path, and the polarization axis of the first polarizing plate is 90 with respect to the X axis. In the state where the polarization axis of the fourth polarizing plate is 90 ° with respect to the X axis, and the rotation angle of the fast axis of the first wave plate with respect to the X axis is 45 °, A Na measuring step for measuring the intensity of light received by the detecting means, and the S20 measuring step. Includes a second light source that emits light having the same wavelength as the first light source, a second polarizing plate that can rotate a polarization axis that receives light emitted from the second light source and extracts linearly polarized light, and the first light source. When the linearly polarized light extracted by the two polarizing plates is incident and the wavelength of the light from the second light source is λ, the vibration plane of the incident light is different from that of the two polarization components orthogonal to each other. A second wave plate that emits light with a phase difference of ¼λ, a third polarizing plate that can rotate a polarization axis that takes out light emitted from the second wave plate and extracts linearly polarized light, and the third polarizing plate And a second light detection means for detecting the light emitted from the second light source by converting it into an electrical signal, wherein the optical axis of the light emitted from the second light source is the Z axis, When the two orthogonal axes are the X axis and the Y axis, respectively, the sample is The optical axis is removed from the optical path of the light from the second light source, the polarization axis of the second polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0. And an Lx measurement step for measuring the intensity of light received by the second light detection means in a state where the polarization axis of the third polarizing plate is 0 ° with respect to the X axis, The optical axis is removed from the optical path of the light from the second light source, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 90 °. And a Ly measurement step for measuring the intensity of light received by the second light detecting means in a state where the polarization axis of the third polarizing plate is 90 ° with respect to the X axis, The second polarizing plate is disposed between the second polarizing plate and the second wave plate on the optical path. The axis is 0 ° with respect to the X axis, the rotation angle of the second wavelength plate with respect to the X axis is 45 °, and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. In this state, the K00 measuring step for measuring the intensity of light received by the second light detecting means, and the sample is disposed between the second polarizing plate and the second wave plate on the optical path. The polarization axis of the second polarizing plate is 90 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 45 °, and the polarization axis of the third polarizing plate is A K10 measurement step for measuring the intensity of light received by the second light detection means in a state of 0 ° with respect to the X axis, and the second polarizing plate and the second on the optical path of the sample. Between the wave plate, the polarization axis of the second polarizing plate is 0 ° with respect to the X-axis, Light is received by the second light detection means in a state where the rotation angle with respect to the X axis with respect to the fast axis of the wave plate is 45 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. A K01 measurement step for measuring light intensity; and the sample is disposed between the second polarizing plate and the second wave plate on an optical path, and a polarization axis of the second polarizing plate is set with respect to the X axis. 90 ° with respect to the fast axis of the second wave plate, the rotation angle with respect to the X axis being 45 °, and the polarization axis of the third polarizing plate being 90 ° with respect to the X axis. And a K11 measurement step for measuring the intensity of light received by the two-light detection means.

また、上記の円二色性計測方法に対応する円二色性計測装置として、前記S02計測手段を構成する第1計測装置は、特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射して直線偏光を取り出す偏光軸を回転可能な第4偏光板と、前記第2偏光板において取出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、を備え、前記S20計測手段を構成する第2計測装置は、前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第2光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、を備える態様が挙げられる。   As a circular dichroism measuring device corresponding to the above circular dichroism measuring method, the first measuring device constituting the S02 measuring means includes a first light source that emits light of a specific wavelength, and the first light source. A first polarizing plate capable of rotating a polarization axis that takes out light emitted from a light source and takes out linearly polarized light, and a polarization axis that takes out linearly polarized light taken out from the first polarizing plate and takes out linearly polarized light are rotated. When a possible fourth polarizing plate and linearly polarized light extracted from the second polarizing plate are incident and the wavelength of light from the first light source is λ, the surface has a vibration surface different from the vibration surface of the incident light. A first wave plate that emits a phase difference between two polarization components orthogonal to each other by ¼λ, and a first light detection unit that converts the light emitted from the first wave plate into an electrical signal and detects the light. And the second measuring device that constitutes the S20 measuring means, A second light source that emits light of the same wavelength as the first light source, a second polarizing plate that can rotate a polarization axis that takes out light emitted from the second light source and extracts linearly polarized light, and the second polarized light When the linearly polarized light extracted from the plate is incident and the wavelength of the light from the second light source is λ, the phase difference between the two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other Is emitted from the third polarizing plate, a second polarizing plate capable of rotating a polarization axis that takes out the linearly polarized light by entering the light emitted from the second wave plate, and the third polarizing plate. And a second light detecting means for converting the detected light into an electric signal and detecting the same.

また、上記作用を効果的に奏する円二色性計測方法の他の態様として、特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記S02計測ステップは、前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うLx1測定ステップと、前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うLy1測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN00測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN10測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN01測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN11測定ステップと、を有し、前記S20計測ステップは、前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うLx2測定ステップと、前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うLy2測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK00測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK10測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK01測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK11測定ステップと、を有する請求項1記載の円二色性計測方法。   Further, as another aspect of the circular dichroism measuring method that effectively exhibits the above-described operation, a light source that emits light of a specific wavelength, and a polarization axis that takes out the light emitted from the light source and extracts linearly polarized light are provided. When a rotatable first polarizing plate and linearly polarized light extracted from the first polarizing plate are incident and the wavelength of light from the first light source is λ, a vibration surface different from the vibration surface of the incident light is provided. A first wave plate that emits light having a phase difference of ¼λ between two polarization components that are orthogonal to each other and light from the first wave plate is incident, and the wavelength of light from the light source is λ A second wavelength plate that emits a phase difference between two polarization components having a vibration plane different from the vibration plane of incident light and orthogonal to each other; and light from the second wavelength plate is incident A second polarizing plate that can rotate the polarization axis for extracting linearly polarized light, and a second polarizing plate And a light detecting means for converting the detected light into an electrical signal and detecting the light, and the optical axis of the light emitted from the light source is a Z axis, and two axes orthogonal to the Z axis are When the X axis and the Y axis are respectively set, the S02 measurement step removes the sample from the optical path of the light from the light source, and sets the polarization axis of the first polarizing plate to 0 ° with respect to the X axis. The rotation angle with respect to the X axis about the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 0 °, and the polarization of the second polarizing plate Lx1 measurement step for measuring the intensity of light received by the light detection means in a state where the axis is 0 ° with respect to the X axis, and removing the sample from the optical path of the light from the light source, The polarization axis of the first polarizing plate is 90 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the fast axis of one wavelength plate is 90 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wavelength plate is 90 °, and the polarization axis of the second polarizing plate is A Ly1 measurement step for measuring the intensity of light received by the light detection means in a state of 90 ° with respect to the X axis; and the first wavelength plate on the optical path of the light from the light source; The first polarizing plate is disposed between the second wave plate, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the rotation angle of the fast axis of the first wave plate with respect to the X axis is 45 °. In the light detection means, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0 °, and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. An N00 measuring step for measuring the intensity of the received light; Disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the X axis is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0 °, and the polarization axis of the second polarizing plate is with respect to the X axis. N10 measurement step for measuring the intensity of light received by the light detection means in a state of 0 °, and the first wavelength plate and the second wavelength on the optical path of light from the light source. The polarization axis of the first polarizing plate is 0 ° with respect to the X axis, the rotation angle of the fast axis of the first wave plate with respect to the X axis is 45 °, The rotation angle with respect to the X axis about the fast axis of the two-wave plate is 90 °, and the polarization axis of the second polarizing plate is N01 measurement step for measuring the intensity of light received by the light detection means in a state of 90 ° with respect to the X axis, and the first wavelength plate on the optical path of the light from the light source. It is arranged between the second wave plate, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °. In the light detection means, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 90 °, and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis. N11 measurement step for measuring the intensity of received light, and the S20 measurement step removes the sample from the optical path of light from the light source, and sets the polarization axis of the first polarizing plate to the X X with respect to the fast axis of the first wave plate The rotation angle with respect to the second wavelength plate is 0 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 0 °, and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. , An Lx2 measurement step for measuring the intensity of light received by the light detection means, the sample is removed from the optical path of the light from the light source, and the polarization axis of the first polarizing plate with respect to the X axis 90 °, a rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 90 °, a rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 90 °, and the second polarization A Ly2 measurement step for measuring the intensity of light received by the light detection means in a state where the polarization axis of the plate is 90 ° with respect to the X axis, and the sample on the optical path of light from the light source Arranged between the first wave plate and the second wave plate, The polarization axis of the first polarizing plate is 0 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, and the fast axis of the second wave plate is K00 measurement step of measuring the intensity of light received by the light detection means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. And the sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the polarization axis of the first polarizing plate is 90 ° with respect to the X axis. The rotation angle with respect to the X axis about the fast axis of the first wave plate is 90 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 45 °, and the light of the second polarizing plate The intensity of light received by the light detection means with the axis being 0 ° with respect to the X axis. A K10 measurement step for performing measurement, and the sample is disposed between the first wave plate and the second wave plate on an optical path of light from the light source, and the polarization axis of the first polarizing plate is the X axis 0 ° with respect to the fast axis of the first wave plate, 0 ° with respect to the X axis, and 45 ° with respect to the X axis with respect to the fast axis of the second wave plate, A K01 measurement step for measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis; and It is arranged between the first wave plate and the second wave plate on the optical path, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, and the fast axis of the first wave plate The rotation angle with respect to the X axis is 90 °, and the X axis about the fast axis of the second wave plate K11 measurement step of measuring the intensity of light received by the light detection means in a state where the rotation angle is 45 ° and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis; The circular dichroism measurement method according to claim 1, wherein:

また、上記の円二色性計測方法に対応する円二色性計測装置として、前記S02計測手段及び前記S20計測手段を構成する計測装置は、特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、前記光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を有する構成が挙げられる。   As a circular dichroism measuring device corresponding to the above circular dichroism measuring method, the measuring device constituting the S02 measuring means and the S20 measuring means includes a light source that emits light of a specific wavelength, and the light source A first polarizing plate capable of rotating a polarization axis for taking out light emitted from the first polarizing plate and taking out linearly polarized light; and entering linearly polarized light taken out from the first polarizing plate, and setting the wavelength of light from the light source to λ. A first wave plate that emits a phase difference between two polarized light components having a vibration plane different from the vibration plane of incident light and orthogonal to each other, and light from the first wave plate is incident When the wavelength of the light from the first light source is λ, the second light is emitted with a phase difference between two polarization components having a vibration plane different from the vibration plane of incident light and orthogonal to each other as ¼λ. The light from the wave plate and the second wave plate is incident and linearly polarized A second polarizing plate that can rotates the polarization axis to take out, and light detecting means for detecting and converting light emitted from the second polarizer into an electrical signal, and a configuration having a.

また、上記作用を効果的に奏する円二色性計測方法の他の態様として、特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差を時間と共に変化させて出射する第1位相変調素子と、前記第1位相変調素子からの光を入射し、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差を時間と共に変化させて出射する第2位相変調素子と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記S02計測ステップは、前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光源から出射される光信号のうちのDC成分の強度の計測を行うLx1測定ステップと、前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光のうちのDC成分の強度の計測を行うLy1測定ステップと、前記試料を前記光源からの光の光路上の前記第1位相変調素子と前記第2位相変調素子との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を行い、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのsin成分の強度の計測を行うN00測定ステップと、前記試料を前記光源からの光の光路上の前記第1位相変調素子と前記第2位相変調素子との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を行い、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光のうちのsin成分の強度の計測を行うN01測定ステップと、を有し、前記S20計測ステップは、前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのDC成分の強度の計測を行うLx2測定ステップと、前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのDC成分の強度の計測を行うLy2測定ステップと、前記試料を前記光源からの光の光路上の前記第1位相変調素子と前記第2位相変調素子との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を行い、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのsin成分の強度の計測を行うK00測定ステップと、前記試料を前記光源からの光の光路上の前記第1位相変調素子と前記第2位相変調素子との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を行い、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのsin成分の強度の計測を行うK10測定ステップと、を有する態様が挙げられる。   Further, as another aspect of the circular dichroism measuring method that effectively exhibits the above-described operation, a light source that emits light of a specific wavelength, and a polarization axis that takes out the light emitted from the light source and extracts linearly polarized light are provided. The rotatable first polarizing plate and the linearly polarized light extracted from the first polarizing plate are incident, and a phase difference is generated between the vertical and horizontal polarized light perpendicular to the incident light. A first phase modulation element that emits light with a phase difference changed with time, and light from the first phase modulation element is incident on the polarized light in the vertical and horizontal directions perpendicular to the incident light. A second phase modulation element that generates a phase difference and emits the phase difference with time, and a second polarizing plate that can rotate a polarization axis that takes out light from the second wave plate and extracts linearly polarized light. Detecting light emitted from the second polarizing plate by converting it into an electrical signal In the measuring device including the step, when the optical axis of the light emitted from the light source is the Z axis and the two axes orthogonal to the Z axis are the X axis and the Y axis, respectively, the S02 In the measurement step, the sample is removed from the optical path of light from the light source, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, and phase modulation by the first phase modulation element is stopped, The phase modulation by the second phase modulation element is stopped, and the intensity of the DC component of the optical signal emitted from the light source is set in a state where the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. Lx1 measurement step for performing measurement, removing the sample from the optical path of light from the light source, setting the polarization axis of the first polarizing plate to 90 ° with respect to the X axis, and phase modulation by the first phase modulation element And stop the phase modulation by the second phase modulation element A Ly1 measuring step for measuring the intensity of the DC component of the light received by the light detection means in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis; and the sample Is disposed between the first phase modulation element and the second phase modulation element on the optical path of light from the light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, In the light detection means, the phase modulation by the first phase modulation element is performed, the phase modulation by the second phase modulation element is stopped, and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. N00 measuring step for measuring the intensity of the sin component of the received light, and arranging the sample between the first phase modulation element and the second phase modulation element on the optical path of the light from the light source The polarization axis of the first polarizing plate is 0 ° with respect to the X axis. The light detection is performed in a state where the phase modulation by the first phase modulation element is performed, the phase modulation by the second phase modulation element is stopped, and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis. N01 measurement step of measuring the intensity of the sine component of the light received by the means, wherein the S20 measurement step removes the sample from the optical path of the light from the light source, and the first polarized light The polarization axis of the plate is set to 0 ° with respect to the X axis, the phase modulation by the first phase modulation element is stopped, the phase modulation by the second phase modulation element is stopped, and the polarization axis of the second polarizing plate is Lx2 measurement step for measuring the intensity of the DC component of the light received by the light detection means in a state of 0 ° with respect to the X axis, and removing the sample from the optical path of the light from the light source The polarization axis of the first polarizing plate is in front The phase modulation by the first phase modulation element is stopped, the phase modulation by the second phase modulation element is stopped, and the polarization axis of the second polarizing plate is 0 with respect to the X axis. The Ly2 measurement step for measuring the intensity of the DC component of the light received by the light detection means in the state of °, and the first phase modulation element on the optical path of the light from the light source. The second phase modulation element is disposed between the second phase modulation element, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, and the phase modulation by the first phase modulation element is stopped. K00 measurement is performed to measure the intensity of the sine component of the light received by the light detection means in a state where the phase of the second polarizing plate is 0 ° with respect to the X axis. Step and before passing the sample on the optical path of light from the light source Arranged between the first phase modulation element and the second phase modulation element, the polarization axis of the first polarizing plate is set to 90 ° with respect to the X axis, and phase modulation by the first phase modulation element is stopped. The intensity of the sine component of the light received by the light detection means in a state where the phase is modulated by the second phase modulation element and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. The aspect which has K10 measurement step which measures this.

また、上記の円二色性計測方法に対応する円二色性計測装置として、前記S02計測手段及び前記S20計測手段を構成する計測装置は、特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差を時間と共に変化させて出射する第1位相変調素子と、前記第1位相変調素子からの光を入射し、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差を時間と共に変化させて出射する第2位相変調素子と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、
を備える態様が挙げられる。
As a circular dichroism measuring device corresponding to the above circular dichroism measuring method, the measuring device constituting the S02 measuring means and the S20 measuring means includes a light source that emits light of a specific wavelength, and the light source A first polarizing plate capable of rotating a polarization axis that takes out light emitted from the first polarizing plate and takes out linearly polarized light, and linearly polarized light extracted from the first polarizing plate, and is perpendicular to the incident light. A phase difference is generated with respect to the polarized light in the direction and the horizontal direction, the phase difference is changed with time, and the light is emitted from the first phase modulation element, and the incident light is incident on the incident light. A phase difference is produced with respect to vertical and horizontal polarized light, and the phase difference is changed with time. A second polarizing plate capable of rotating the polarization axis for extracting linearly polarized light, Light detecting means for detecting and converting into electrical signals the light emitted from the two polarizing plates,
The aspect provided with is mentioned.

また、上記作用を効果的に奏する円二色性計測方法の他の態様として、特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、前記光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記試料を前記光源からの光の光路上から外し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うL1測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN00測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して90°とし、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN10測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN01測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して90°とし、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN11測定ステップと、を有し、前記S20計測ステップは、前記試料を前記光源からの光の光路上から外し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うL2測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK00測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して90°とし、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK10測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK01測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して90°とし、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK11測定ステップと、を有する態様が挙げられる。   Further, as another aspect of the circular dichroism measuring method that effectively exhibits the above-described operation, a light source that emits light of a specific wavelength, and a polarization axis that takes out the light emitted from the light source and extracts linearly polarized light are provided. When the rotatable first polarizing plate and the linearly polarized light extracted from the first polarizing plate are incident and the wavelength of light from the light source is λ, each has a vibration surface different from the vibration surface of the incident light. A first wave plate that emits light having a phase difference of 1 / 4λ between two orthogonal polarization components and light from the first wave plate are incident, and the wavelength of light from the light source is λ. A second wavelength plate that emits a phase difference between two polarization components orthogonal to each other and having a vibration plane different from that of the light; and light from the second wavelength plate is incident and linearly polarized A second polarizing plate capable of rotating the polarization axis, and the light emitted from the second polarizing plate. And a light detecting means for detecting the light by converting the light into an electrical signal, the optical axis of the light emitted from the light source is the Z axis, and two axes orthogonal to the Z axis are When the X axis and the Y axis are respectively taken, the sample is removed from the optical path of the light from the light source, the light source is set to 0 ° with respect to the X axis, and the polarization axis of the first polarizing plate is the X axis. The rotation angle with respect to the X axis about the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 0 °, and An L1 measurement step for measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 0 ° with respect to the X axis; and Arranged between the first wave plate and the second wave plate on the optical path, the light source The first polarizing plate has a polarization axis of 0 ° with respect to the X axis, a rotation angle of the fast axis of the first wave plate with respect to the X axis is 45 °, Light received by the light detection means in a state where the rotation angle with respect to the X axis with respect to the fast axis of the two-wavelength plate is 0 ° and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. N00 measurement step for measuring the intensity of the light source, and placing the sample between the first wave plate and the second wave plate on the optical path of the light from the light source, the light source with respect to the X axis 90 °, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, the rotation angle of the fast axis of the first wave plate with respect to the X axis is 45 °, and the second wave plate The rotation angle of the fast axis with respect to the X axis is 0 °, and the polarization axis of the second polarizing plate is relative to the X axis. N10 measurement step for measuring the intensity of light received by the light detection means in a state of 0 °, and the first wavelength plate and the second wavelength on the optical path of light from the light source. The light source is set to 0 ° with respect to the X axis, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, and the fast axis of the first wave plate The rotation angle with respect to the X axis is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 90 °, and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis. In this state, the N01 measuring step for measuring the intensity of light received by the light detecting means, and the sample between the first wave plate and the second wave plate on the optical path of light from the light source. The light source is 90 ° with respect to the X axis, and the polarization axis of the first polarizing plate 90 ° with respect to the X axis, 45 ° with respect to the fast axis of the first wave plate, and 45 ° with respect to the X axis with respect to the fast axis of the second wave plate. And N11 measurement step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and S20 In the measurement step, the sample is removed from the optical path of light from the light source, the light source is set to 0 ° with respect to the X axis, and the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis. The rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 45 °, and the polarization axis of the second polarizing plate Is received by the light detection means in a state of 0 ° with respect to the X axis. An L2 measurement step for measuring the intensity of the emitted light, the sample is disposed between the first wave plate and the second wave plate on an optical path of light from the light source, and the light source is placed on the X axis The polarization axis of the first polarizing plate is 0 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, and the second With the rotation angle of the wave plate with respect to the X axis being 45 ° and the polarization axis of the second polarizing plate being 0 ° with respect to the X axis, A K00 measurement step for measuring the intensity; and the sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the light source is 90 with respect to the X axis. , The polarization axis of the first polarizing plate is 90 ° with respect to the X axis, and the fast axis of the first wave plate The rotation angle with respect to the X axis is 90 °, the rotation angle of the second wave plate with respect to the X axis is 45 °, and the optical axis of the second polarizing plate is 0 with respect to the X axis. K10 measurement step for measuring the intensity of light received by the light detection means in a state of °, and the first wave plate and the second wave plate on the optical path of light from the light source. The light source is set to 0 ° with respect to the X axis, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, and the X about the fast axis of the first wave plate The rotation angle with respect to the axis is 0 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 45 °, and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis And a K01 measurement step for measuring the intensity of light received by the light detection means, The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is 90 ° with respect to the X axis, and the polarization of the first polarizing plate The axis is 90 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 90 °, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is And a K11 measurement step of measuring the intensity of light received by the light detection means in a state of 45 ° and a polarization axis of the second polarizing plate being 90 ° with respect to the X axis. Can be mentioned.

また、上記作用を効果的に奏する円二色性計測方法の他の態様として、第1の方向の直線偏光である第1直線偏光を出射する偏光光源と、前記偏光光源からの前記第1直線偏光を入射し、当該第1直線偏光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/2λとして出射する1/2λ波長板と、前記1/2λ波長板から出射された光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記試料を前記光源からの光の光路上から外し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うL1測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN00測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN10測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN01測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN11測定ステップと、を有し、前記S20計測ステップは、前記試料を前記光源からの光の光路上から外し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うL1測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK00測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK10測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK01測定ステップと、前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK11測定ステップと、を有する態様が挙げられる。   Moreover, as another aspect of the circular dichroism measurement method that effectively exhibits the above action, a polarized light source that emits first linearly polarized light that is linearly polarized light in a first direction, and the first straight line from the polarized light source When polarized light is incident and the wavelength of the first linearly polarized light is λ, the phase difference between two polarized light components having a vibration surface different from the vibration surface of incident light and orthogonal to each other is emitted as 1 / 2λ. When the light emitted from the / 2λ wavelength plate and the light emitted from the 1 / 2λ wavelength plate are incident and the wavelength of the light from the first light source is λ, it has a vibration surface different from the vibration surface of the incident light and is orthogonal to each other. When the light from the first wavelength plate and the first wavelength plate that emits the phase difference between the two polarization components as 1 / 4λ, and the wavelength of the light from the first light source is λ, The position between two polarization components that have a vibration plane different from that of the incident light and are orthogonal to each other. A second wave plate that emits light with a difference of ¼λ, a second polarizing plate that can rotate the polarization axis that takes out light from the second wave plate and takes out linearly polarized light, and is emitted from the second polarizing plate. And a light detecting means for detecting the light by converting the light into an electrical signal, the optical axis of the light emitted from the light source is the Z axis, and two axes orthogonal to the Z axis are When the X axis and the Y axis are respectively set, the sample is removed from the optical path of the light from the light source, and the rotation angle of the 1 / 2λ wave plate with respect to the X axis with respect to the fast axis of the first wave plate is 0. , The rotation angle with respect to the X axis about the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 0 °, and the second polarizing plate In the state where the polarization axis is 0 ° with respect to the X axis, An L1 measurement step for measuring the intensity of light emitted; and the sample is disposed between the first wave plate and the second wave plate on an optical path of light from the light source, and the 1 / 2λ wavelength The rotation angle of the plate with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, and the second wave plate Measurement of the intensity of light received by the light detection means in a state where the rotation angle of the fast axis with respect to the X axis is 0 ° and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. N00 measurement step of performing the step of: arranging the sample between the first wave plate and the second wave plate on the optical path of the light from the light source, the half wave plate of the first wave plate The rotation angle of the fast axis with respect to the X axis is 45 °, and the fast axis of the first wave plate is The rotation angle with respect to the X axis is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0 °, and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. N10 measurement step for measuring the intensity of light received by the light detection means, and the sample between the first wave plate and the second wave plate on the optical path of light from the light source. The rotation angle of the 1 / 2λ wave plate with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 90 °, and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis. N01 measuring step of measuring the intensity of light received by the means, A material is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 90 °, and N11 measurement step for measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the S20 measurement step includes The sample is removed from the light path of the light from the light source, the rotation angle of the 1 / 2λ wavelength plate with respect to the X axis with respect to the fast axis of the first wavelength plate is 0 °, and the speed of the first wavelength plate is The rotation angle of the axis relative to the X axis is 0 °, and the second wave plate Measuring the intensity of light received by the light detection means with the rotation angle of the axis relative to the X axis being 0 ° and the polarization axis of the second polarizing plate being 0 ° with respect to the X axis. An L1 measurement step to be performed; and the sample is disposed between the first wave plate and the second wave plate on an optical path of light from the light source, and the speed of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X-axis with respect to the X-axis is 0 °, the rotation angle with respect to the X-axis with respect to the fast axis of the first wave plate is 0 °, and the rotation with respect to the X-axis with respect to the fast axis of the second wave plate A K00 measuring step for measuring the intensity of light received by the light detection means in a state where the angle is 45 ° and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis; The first wave plate and the second wave plate on the optical path of light from the light source The rotation angle of the 1 / 2λ wave plate with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate Is 90 °, the rotation angle of the second wavelength plate with respect to the X axis is 45 °, and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. A K10 measurement step for measuring the intensity of light received by the detecting means; and the sample is disposed between the first wave plate and the second wave plate on an optical path of light from the light source, The rotation angle of the / 2λ wave plate with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, and the second The rotation angle of the fast axis of the wave plate with respect to the X axis is 45 °, and the second polarization is K01 measurement step for measuring the intensity of light received by the light detection means in a state where the polarization axis of the plate is 90 ° with respect to the X axis, and the sample on the optical path of light from the light source The first wavelength plate is disposed between the first wavelength plate and the second wavelength plate, and the rotation angle of the 1 / 2λ wavelength plate with respect to the X axis with respect to the fast axis of the first wavelength plate is 45 °, and the first wavelength The rotation angle with respect to the X axis with respect to the fast axis of the plate is 90 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 45 °, and the polarization axis of the second polarizing plate is the X axis. And a K11 measurement step of measuring the intensity of light received by the light detection means in a state of 90 ° with respect to the angle.

また、上記の円二色性計測方法に対応する円二色性計測装置として、前記S02計測手段及び前記S20計測手段を構成する計測装置は、第1の方向の直線偏光である第1直線偏光を出射する偏光光源と、前記偏光光源からの前記第1直線偏光を入射し、当該第1直線偏光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/2λとして出射する1/2λ波長板と、前記1/2λ波長板から出射された光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える態様が挙げられる。   Moreover, as a circular dichroism measuring device corresponding to the above circular dichroism measuring method, the measuring device constituting the S02 measuring means and the S20 measuring means is a first linearly polarized light that is linearly polarized light in a first direction. When the first linearly polarized light from the polarized light source is incident and the wavelength of the first linearly polarized light is λ, the incident light has a vibration surface different from the vibration surface and is orthogonal to each other. A 1 / 2λ wave plate that emits light with a phase difference of 1 / 2λ between two polarization components and light emitted from the 1 / 2λ wave plate are incident, and the wavelength of light from the first light source is λ. A first wave plate that emits a phase difference between two polarization components having a vibration plane different from the vibration plane of incident light and orthogonal to each other, and light from the first wave plate is incident When the wavelength of light from the first light source is λ, vibration of incident light A second wavelength plate that emits a phase difference between two polarization components orthogonal to each other and having a vibration plane different from λ, and a polarization axis that takes out light from the second wavelength plate and extracts linearly polarized light And a light detection means for detecting the light emitted from the second polarizing plate by converting it into an electrical signal.

また、上記作用を効果的に奏する円二色性計測方法の他の態様として、第1の方向の直線偏光である第1直線偏光を出射する偏光光源と、前記偏光光源からの前記第1直線偏光を入射し、当該第1直線偏光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を変更して出射する第1可変波長板と、前記第1可変波長板から出射されて、試料により透過された透過光を入射し、当該透過光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を変更して出射する第2可変波長板と、前記第2可変波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、前記S02計測ステップは、前記円二色性測定装置において、前記第1の方向及び前記第2の方向を固定した状態で、前記試料を前記偏光光源からの光の光路上から外し、前記第1可変波長板において、速軸のX軸に対する回転角を0°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を0°とし、前記透過光の波長をλとしたとき前記位相差を1/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うL1測定ステップと、前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を0°とし、前記透過光の波長をλとしたとき前記位相差を1/2λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うN00測定ステップと、前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を3/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を0°とし、前記透過光の波長をλとしたとき前記位相差を1/2λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うN10測定ステップと、前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を1/2λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うN01測定ステップと、前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を3/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を1/2λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うN11測定ステップと、を有し、前記S20計測ステップは、前記円二色性測定装置において、前記第1の方向及び前記第2の方向を固定した状態で、前記試料を前記偏光光源からの光の光路上から外し、前記第1可変波長板において、速軸のX軸に対する回転角を0°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を0°とし、前記透過光の波長をλとしたとき前記位相差を1/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うL2測定ステップと、前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を0°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/2λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を1/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うK00測定ステップと、前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/2λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を1/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うK10測定ステップと、前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を0°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/2λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を3/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うK01測定ステップと、前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/2λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を3/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うK11測定ステップと、を有する態様が挙げられる。   Moreover, as another aspect of the circular dichroism measurement method that effectively exhibits the above action, a polarized light source that emits first linearly polarized light that is linearly polarized light in a first direction, and the first straight line from the polarized light source A first variable wavelength plate that emits polarized light and changes the phase difference between two polarization components that have a vibration plane different from that of the first linearly polarized light and are orthogonal to each other; and the first variable wavelength A second light that is emitted from the plate and transmitted by the sample is incident, and is emitted by changing the phase difference between two polarization components that have a vibration surface different from the vibration surface of the transmitted light and are orthogonal to each other. A variable wavelength plate, a second polarizing plate that allows light emitted from the second variable wavelength plate to enter and extract linearly polarized light, and a polarization axis that can rotate the polarization axis; and light emitted from the second polarizing plate as an electrical signal In a measuring device comprising: a light detecting means for converting and detecting When the optical axis of the light emitted from the light source is the Z axis and the two axes orthogonal to the Z axis are the X axis and the Y axis, respectively, the S02 measuring step includes the circular dichroism. In the measurement apparatus, in a state where the first direction and the second direction are fixed, the sample is removed from the optical path of the light from the polarized light source, and the first variable wavelength plate has a fast axis relative to the X axis. When the rotation angle is 0 ° and the wavelength of the first linearly polarized light is λ, the phase difference is ¼λ, and the rotation angle of the fast axis with respect to the X axis is 0 °. And an L1 measurement step for measuring the intensity of light received by the light detection means in a state where the phase difference is ¼λ when the wavelength of the transmitted light is λ, and the sample is the light source Said first variable wavelength on the optical path of light from When the rotation angle of the fast axis with respect to the X axis is 45 ° and the wavelength of the first linearly polarized light is λ, the phase difference is disposed between the first variable wavelength plate and the second variable wavelength plate. Is output as 1 / 4λ, and the second variable wavelength plate emits the phase difference as 1 / 2λ when the rotation angle of the fast axis with respect to the X axis is 0 ° and the wavelength of the transmitted light is λ. N00 measuring step of measuring the intensity of light received by the light detecting means in the state, and the sample between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source In the first variable wavelength plate, when the rotation angle of the fast axis with respect to the X-axis is 45 ° and the wavelength of the first linearly polarized light is λ, the phase difference is 3 / 4λ, In the second variable wavelength plate, the rotation of the fast axis relative to the X axis N10 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is 1 / 2λ when the rotation angle is 0 ° and the wavelength of the transmitted light is λ, The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 45 in the first variable wavelength plate. And when the wavelength of the first linearly polarized light is λ, the phase difference is ¼λ, and the rotation angle of the fast axis with respect to the X axis is 45 ° in the second variable wavelength plate. N01 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is ½λ when the wavelength of light is λ, and the sample is irradiated with light from the light source. The first variable wave plate and the second on the optical path When the rotation angle of the fast axis with respect to the X axis is 45 ° and the wavelength of the first linearly polarized light is λ, the phase difference is 3 / 4λ. In the second variable wavelength plate, when the rotation angle of the fast axis with respect to the X axis is 45 ° and the wavelength of the transmitted light is λ, the phase difference is ½λ, An N11 measurement step for measuring the intensity of light received by the light detection means, and the S20 measurement step is configured to determine the first direction and the second direction in the circular dichroism measurement device. In a fixed state, the sample is removed from the optical path of the light from the polarized light source, and in the first variable wavelength plate, the rotation angle of the fast axis with respect to the X axis is 0 °, and the wavelength of the first linearly polarized light is λ. The phase difference is set to 1 / 4λ. In addition, in the second variable wavelength plate, the light detection is performed in such a state that when the rotation angle of the fast axis with respect to the X axis is 0 ° and the wavelength of the transmitted light is λ, the phase difference is ¼λ. An L2 measurement step for measuring the intensity of light received by the means, and the sample is disposed between the first variable wavelength plate and the second variable wavelength plate on an optical path of light from the light source, In the first variable wavelength plate, when the rotation angle of the fast axis with respect to the X axis is 0 ° and the wavelength of the first linearly polarized light is λ, the phase difference is ½λ, and the second variable wavelength plate , The rotation angle of the fast axis with respect to the X-axis is 45 °, and the wavelength of the transmitted light is λ, and the phase difference is ¼λ, and the intensity of the light received by the light detection means is K00 measurement step for measuring, and the sample Is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 45 ° in the first variable wavelength plate. , When the wavelength of the first linearly polarized light is λ, the phase difference is ½λ, and the second variable wavelength plate has a rotation angle of 45 ° with respect to the X axis of the fast axis, A K10 measurement step for measuring the intensity of light received by the light detection means in a state where the phase difference is 1 / 4λ when the wavelength is λ, and the sample is placed on the optical path of light from the light source. The first variable wavelength plate is arranged between the first variable wavelength plate and the second variable wavelength plate. In the first variable wavelength plate, the rotation angle of the fast axis with respect to the X axis is 0 °, and the wavelength of the first linearly polarized light is When λ, the phase difference is emitted as 1 / 2λ, and In the second variable wavelength plate, when the rotation angle of the fast axis with respect to the X axis is 45 ° and the wavelength of the transmitted light is λ, the phase difference is 3 / 4λ and the light detection means receives the light. A K01 measurement step for measuring the intensity of light, and the sample is disposed between the first variable wavelength plate and the second variable wavelength plate on an optical path of light from the light source, and the first variable wavelength In the plate, when the rotation angle of the fast axis with respect to the X axis is 45 ° and the wavelength of the first linearly polarized light is λ, the phase difference is ½λ, and the second variable wavelength plate has a fast axis. The intensity of light received by the light detection means is measured in a state where the phase difference is 3 / 4λ when the rotation angle of the light beam with respect to the X axis is 45 ° and the wavelength of the transmitted light is λ. And a measuring step. It is.

また、上記の円二色性計測方法に対応する円二色性計測装置として、前記S02計測手段及び前記S20計測手段を構成する計測装置は、第1の方向の直線偏光である第1直線偏光を出射する偏光光源と、前記偏光光源からの前記第1直線偏光を入射し、当該第1直線偏光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を変更して出射する第1可変波長板と、前記第1可変波長板から出射されて、試料により透過された透過光を入射し、当該透過光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を変更して出射する第2可変波長板と、前記第2可変波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える態様が挙げられる。   Moreover, as a circular dichroism measuring device corresponding to the above circular dichroism measuring method, the measuring device constituting the S02 measuring means and the S20 measuring means is a first linearly polarized light that is linearly polarized light in a first direction. The phase difference between two polarized light components that are incident on the first linearly polarized light from the polarized light source and have a vibration plane different from that of the first linearly polarized light and orthogonal to each other. The first variable wavelength plate to be emitted and the transmitted light that has been emitted from the first variable wavelength plate and transmitted by the sample are incident, and have a vibration surface different from the vibration surface of the transmitted light and are orthogonal to each other. A second variable wavelength plate that emits light by changing the phase difference between the two polarization components, and a second polarizing plate that can rotate the polarization axis that receives light emitted from the second variable wavelength plate and extracts linearly polarized light And the light emitted from the second polarizing plate Light detecting means for detecting and converting into No. include embodiments comprising.

本発明によれば、試料の円二色性をより正確且つ簡便に計測することが可能な円二色性計測方法及び円二色性計測装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the circular dichroism measuring method and the circular dichroism measuring apparatus which can measure the circular dichroism of a sample more correctly and simply are provided.

本発明の第1及び第2実施形態に係る円二色性計測装置の構成を説明する図である。It is a figure explaining the structure of the circular dichroism measuring device which concerns on 1st and 2nd embodiment of this invention. 本発明の第1、第2及び第3実施形態に係る円二色性計測装置の構成を説明する図である。It is a figure explaining the structure of the circular dichroism measuring device which concerns on 1st, 2nd and 3rd embodiment of this invention. 本発明の第3実施形態に係る円二色性計測装置の構成を説明する図である。It is a figure explaining the structure of the circular dichroism measuring device which concerns on 3rd Embodiment of this invention. 本発明の第4及び第6実施形態に係る円二色性計測装置の構成を説明する図である。It is a figure explaining the structure of the circular dichroism measuring apparatus which concerns on 4th and 6th embodiment of this invention. 本発明の第5実施形態に係る円二色性計測装置の構成を説明する図である。It is a figure explaining the structure of the circular dichroism measuring device which concerns on 5th Embodiment of this invention. 本発明の第7実施形態に係る円二色性計測装置の構成を説明する図である。It is a figure explaining the structure of the circular dichroism measuring device which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る円二色性計測装置の構成を説明する図である。It is a figure explaining the structure of the circular dichroism measuring device which concerns on 8th Embodiment of this invention.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

(第1実施形態)
図1及び図2は、本発明の第1実施形態に係る円二色性計測装置の構成を説明する概略構成図である。図1に示す円二色性計測装置1(第1計測装置、S02計測手段)は、光源10、偏光板20、1/4λ波長板30、光検出器40(光検出手段)が光源10からの光学軸に沿ってこの順に配置され、1/4λ波長板30と光検出器40との間の光路上に試料100が配置されているものである。なお、以下の説明の簡略化のために、円二色性計測装置1において、光源10からの光の光学軸をZ軸とし、Z軸に対して垂直であり互いに直交する2つの軸を、それぞれX軸及びY軸とする。
(First embodiment)
1 and 2 are schematic configuration diagrams illustrating the configuration of the circular dichroism measuring apparatus according to the first embodiment of the present invention. The circular dichroism measuring device 1 (first measuring device, S02 measuring means) shown in FIG. 1 includes a light source 10, a polarizing plate 20, a quarter-wave plate 30, and a photodetector 40 (light detecting means) from the light source 10. The sample 100 is arranged on the optical path between the quarter λ wavelength plate 30 and the photodetector 40 in this order along the optical axis. For the simplification of the following description, in the circular dichroism measuring apparatus 1, the optical axis of the light from the light source 10 is the Z axis, and two axes perpendicular to the Z axis and perpendicular to each other are Let them be the X axis and Y axis, respectively.

光源10は、測定対象の試料に対して照射するための光を出射する。この光源10から出射される光は非偏光であり、例えば、波長280nmの光を出射する重水素ランプ等が光源10として用いられる。   The light source 10 emits light for irradiating the sample to be measured. The light emitted from the light source 10 is non-polarized light. For example, a deuterium lamp that emits light having a wavelength of 280 nm is used as the light source 10.

光源10から出射された光は、偏光板20に入射する。偏光板20では、光源10から出射された光のうち直線偏光が取り出される。偏光板30としては、例えば、グランテーラープリズムが用いられる。偏光板20は、ここでは、X軸に対して0°方向の直線偏光を取り出すものとする。   The light emitted from the light source 10 enters the polarizing plate 20. The polarizing plate 20 extracts linearly polarized light from the light emitted from the light source 10. For example, a Grand Taylor prism is used as the polarizing plate 30. Here, it is assumed that the polarizing plate 20 extracts linearly polarized light in the direction of 0 ° with respect to the X axis.

1/4λ波長板30は、透過光のX軸とY軸の位相差が1/4λとなる波長板であり、Z軸周りにX軸に対して45°回転させた状態で配置される。偏光板20を通過した直線偏光が1/4λ波長板30を通過することにより、直線偏光の振動面に対して直交する振動面をもつ偏光成分について、直線偏光の振動面と同じ振動面をもつ偏光成分に対して位相差を1/4λ(π/2)とされる。この結果、1/4λ波長板30を通過した光は右円偏光または左円偏光に変換されて出射される。   The 1 / 4λ wavelength plate 30 is a wavelength plate in which the phase difference between the X axis and the Y axis of the transmitted light is 1 / 4λ, and is arranged in a state rotated by 45 ° around the Z axis with respect to the X axis. When the linearly polarized light that has passed through the polarizing plate 20 passes through the quarter-wave plate 30, the polarization component having a vibration surface orthogonal to the vibration surface of the linearly polarized light has the same vibration surface as that of the linearly polarized light. The phase difference is set to 1 / 4λ (π / 2) with respect to the polarization component. As a result, the light that has passed through the quarter-wave plate 30 is converted into right circularly polarized light or left circularly polarized light and is emitted.

光検出器40は、1/4λ波長板30から出射されて、試料100を透過した透過光を電気信号に変換する機能を有する。円二色性の測定では、光検出器40により検出された電気信号を利用して、右円偏光による信号と左円偏光による信号との差分を求め、その演算結果をたとえば円二色性イメージとして出力する等により、測定結果を得ることができる。これらの円二色性の算出に係る処理(算出ステップ)は円二色性計測装置1の算出手段(図示せず)により行われる。   The photodetector 40 has a function of converting the transmitted light emitted from the ¼λ wavelength plate 30 and transmitted through the sample 100 into an electrical signal. In the measurement of circular dichroism, an electric signal detected by the photodetector 40 is used to obtain a difference between a signal by right circular polarization and a signal by left circular polarization, and the calculation result is obtained as, for example, a circular dichroism image. As a result, the measurement result can be obtained. The processing (calculation step) related to the calculation of the circular dichroism is performed by a calculation unit (not shown) of the circular dichroism measuring apparatus 1.

また、図2に示す円二色性計測装置2(第2計測装置/S20計測手段)は、光源10、第1偏光板22、1/4λ波長板30、第2偏光板24、光検出器40が光源10からの光学軸に沿ってこの順に配置され、第1偏光板22と1/4λ波長板30との間の光路上に試料100が配置されているものである。すなわち、図1の円二色性計測装置1と比較して、偏光板が2枚(第1偏光板22、第2偏光板24)になった点、と、試料100が1/4λ波長板30の前段に配置される点が相違する。   The circular dichroism measuring device 2 (second measuring device / S20 measuring means) shown in FIG. 2 includes a light source 10, a first polarizing plate 22, a quarter-wave plate 30, a second polarizing plate 24, and a photodetector. 40 is arranged in this order along the optical axis from the light source 10, and the sample 100 is arranged on the optical path between the first polarizing plate 22 and the quarter-wave plate 30. That is, as compared with the circular dichroism measuring apparatus 1 of FIG. 1, the number of polarizing plates is two (first polarizing plate 22 and second polarizing plate 24), and the sample 100 is a 1 / 4λ wavelength plate. The difference is that it is arranged in the preceding stage of 30.

この円二色性計測装置2では、光源10から出射された光が第1偏光板22を通過した後、試料100に照射される。このうち試料を透過した光が、1/4λ波長板30を通過して円偏光に変換されたのち、第2偏光板24を通過した光が光検出器40によって電気信号に変換される。   In the circular dichroism measuring device 2, the light emitted from the light source 10 passes through the first polarizing plate 22 and is then irradiated onto the sample 100. Of these, the light that has passed through the sample passes through the quarter-wave plate 30 and is converted into circularly polarized light, and then the light that has passed through the second polarizing plate 24 is converted into an electrical signal by the photodetector 40.

本実施形態に係る円二色性計測では、上記の円二色性計測装置1,2を用いて円二色性の測定を行うことにより、試料の円二色性をより正確且つ簡便に計測することが可能となる。この点について、以下説明をする。   In the circular dichroism measurement according to this embodiment, the circular dichroism is measured more accurately and easily by measuring the circular dichroism using the circular dichroism measuring devices 1 and 2 described above. It becomes possible to do. This will be described below.

まず、円二色性の測定において発生するアーチファクトについて説明する。円二色性計測は、円二色性以外の光学活性を持たない状態である溶液状態での計測が、従来から一般的に行われてきた。しかしながら固相、ゲル、液晶、膜状試料の円二色性計測は産業上からも重要であり、これらの試料が円二色性以外の光学活性を持ってことから、上記アーチファクトが円二色性を計測する上で大きな障害となっているものである。非特許文献1によれば、光学活性をもつ試料のミュラー行列は、以下の数式(1)により表される。

Figure 2015075329
First, artifacts that occur in circular dichroism measurement will be described. As for circular dichroism measurement, measurement in a solution state, which is a state having no optical activity other than circular dichroism, has been generally performed. However, the measurement of circular dichroism of solid phase, gel, liquid crystal, and film samples is important from the industry. This is a major obstacle in measuring sex. According to Non-Patent Document 1, the Mueller matrix of a sample having optical activity is represented by the following formula (1).
Figure 2015075329

上記の数式(1)において、CDは円二色性、CBは円偏光複屈折、LDは直線偏光二色性、LBは直線偏光複屈折、θは試料のX軸に対する回転角をそれぞれ示している。また、数式(1)において各特性を示す単語に「’」を付している場合は、試料を45°傾けた場合について記載したものである。以下では、上記の数式(1)を数式(2)のように省略して記載する。なお、数式(1)において記載されている行列の係数e−Aeについては、以下の検討には影響を与えない係数であるため、省略する。

Figure 2015075329
In the above formula (1), CD is circular dichroism, CB is circular polarization birefringence, LD is linear polarization dichroism, LB is linear polarization birefringence, and θ is the rotation angle of the sample with respect to the X axis. Yes. In addition, in the formula (1), when “′” is added to the word indicating each characteristic, it describes the case where the sample is inclined by 45 °. Hereinafter, the above mathematical formula (1) is omitted as represented by the mathematical formula (2). Note that the coefficient e- Ae of the matrix described in Equation (1) is omitted because it is a coefficient that does not affect the following examination.
Figure 2015075329

この数式(2)で記載される試料に対して左円偏光もしくは右円偏光を照射すると、試料を透過した透過光のストークスベクトルは、ミュラー行列S(θ)と、円偏光のストークスベクトルとの積により求めることができる。その結果は、左円偏光の場合は数式(3)、右円偏光の場合は数式(4)のように記載される。

Figure 2015075329

Figure 2015075329
When left circularly polarized light or right circularly polarized light is irradiated to the sample described in Equation (2), the Stokes vector of the transmitted light that has passed through the sample is the Mueller matrix S (θ) and the circularly polarized Stokes vector. It can be obtained by product. The result is expressed as Equation (3) for left circularly polarized light and Equation (4) for right circularly polarized light.
Figure 2015075329

Figure 2015075329

ここで、光強度はストークスベクトルの第1項で表現されていることから、左円偏光に対する透過光強度は、数式(3)よりS00−S02と示され、右円偏光に対する透過光強度は数式(4)よりS00+S02となることがわかる。円二色性はこれら透過光強度の差と定義されているため、最終的に数式(5)で示される式で計算される。   Here, since the light intensity is expressed by the first term of the Stokes vector, the transmitted light intensity with respect to the left circularly polarized light is expressed as S00-S02 from Expression (3), and the transmitted light intensity with respect to the right circularly polarized light is expressed by the expression. It can be seen from (4) that S00 + S02. Since the circular dichroism is defined as the difference between the transmitted light intensities, the circular dichroism is finally calculated by the equation (5).

Figure 2015075329
Figure 2015075329

数式(5)では、左円偏光の透過光強度と右円偏光の透過光強度との差を求めた結果には、CD(円二色性)の成分だけではなく、LD(直線偏光二色性)とLB(直線偏光複屈折)に由来する成分が含まれることが示されている。LDとLBとの積がCDと比較して無視できる程度に小さい場合は、直線偏光成分が含まれない純粋な円二色性に係る情報を得ることができる。しかしながら、LDとLBとの積がCDと比較して無視できない程度の大きさである場合には、純粋な円二色性の測定ができているとは言えず、アーチファクトの影響を受けるという問題がある。   In the formula (5), the difference between the transmitted light intensity of the left circularly polarized light and the transmitted light intensity of the right circularly polarized light is not only the CD (circular dichroism) component but also the LD (linearly polarized dichroic). And components derived from LB (linearly polarized birefringence). When the product of LD and LB is small enough to be ignored as compared with CD, information on pure circular dichroism that does not include a linearly polarized light component can be obtained. However, when the product of LD and LB is a size that cannot be ignored compared to CD, it cannot be said that pure circular dichroism has been measured and is affected by artifacts. There is.

ところで、発明者は、特許文献1において光学活性をもつ試料のミュラー行列として示された数式と非特許文献2で示されたミュラー行列として示された数式とを比較すると符号や記号等が一部相違していることに着目し、非特許文献2,3に記載のミュラー行列の導出方法に基づいて、ミュラー行列を新たに求めた。ここで、非特許文献3によれば、ミュラー行列の一般式は以下の数式(6),(7)で示される。

Figure 2015075329
By the way, when the inventor compares the mathematical formula shown as the Mueller matrix of the sample having optical activity in Patent Document 1 and the mathematical formula shown as the Mueller matrix shown in Non-Patent Document 2, some of the symbols, symbols, etc. Focusing on the difference, the Mueller matrix was newly obtained based on the Mueller matrix derivation method described in Non-Patent Documents 2 and 3. Here, according to Non-Patent Document 3, the general formula of the Mueller matrix is expressed by the following formulas (6) and (7).
Figure 2015075329

そして、上記の数式を展開すると、数式(8),(9)が得られる。

Figure 2015075329
Then, when the above mathematical formula is expanded, mathematical formulas (8) and (9) are obtained.
Figure 2015075329

さらに、上記の数式(8),(9)を、非特許文献2に従って2次の項まで展開すると、以下の数式(10)が得られる。

Figure 2015075329
Further, when the above formulas (8) and (9) are expanded to the second order term according to Non-Patent Document 2, the following formula (10) is obtained.
Figure 2015075329

数式(10)に含まれるパラメータのうち、CDとCBとは、LDおよびLBと比較して10−3から10−5程度小さな値になるので、CDとCBの2乗の項は無視できると考え、数式(10)を簡略化した結果、数式(11)が得られる。

Figure 2015075329
Of the parameters included in Equation (10), CD and CB are about 10 −3 to 10 −5 smaller than LD and LB, so that the square terms of CD and CB can be ignored. As a result of simplifying Equation (10), Equation (11) is obtained.
Figure 2015075329

ここで、試料の回転角をθとすると、試料の回転を考慮したミュラー行列は以下の数式(12)で表すことができる。

Figure 2015075329
Here, when the rotation angle of the sample is θ, the Mueller matrix considering the rotation of the sample can be expressed by the following formula (12).
Figure 2015075329

数式(12)におけるRは回転のための行列であり、以下の数式(13)と表される。また、R−1は、Rの逆行列であり、数式(14)と表される。

Figure 2015075329
R in Equation (12) is a matrix for rotation and is expressed as Equation (13) below. R −1 is an inverse matrix of R, and is represented by Expression (14).
Figure 2015075329

以上の結果、ミュラー行列の行列要素S02は数式(15)になり、S20は数式(16)となる。

Figure 2015075329
As a result of the above, the matrix element S02 of the Mueller matrix is expressed by Equation (15), and S20 is expressed by Equation (16).
Figure 2015075329

ここでS02とS20を数式(17)に従って計算する。

Figure 2015075329
Here, S02 and S20 are calculated according to Equation (17).
Figure 2015075329

上記の数式(17)に依れば、S02とS20に含まれているLDやLBといったアーチファクト成分が打ち消され、純粋なCD成分のみが残る。したがって、S02及びS20を個別に計測し、数式(17)に従って計算することで、純粋なCDの計測値を得ることができる。   According to the above equation (17), artifact components such as LD and LB included in S02 and S20 are canceled, and only a pure CD component remains. Therefore, by measuring S02 and S20 individually and calculating according to Equation (17), a pure CD measurement value can be obtained.

本実施形態に係る円二色性計測装置1を用いた円二色性計測方法の詳細について説明する。以降の説明では、数式の簡略化のために、光源及び光学素子のミュラー行列を以下のように略記する。   The details of the circular dichroism measuring method using the circular dichroism measuring apparatus 1 according to the present embodiment will be described. In the following description, the Mueller matrix of the light source and the optical element is abbreviated as follows to simplify the mathematical formula.

X軸方向にセットされた、全ての偏光成分を有する光源:Lg

Figure 2015075329

X軸方向に偏光軸をセットした透過率Tの偏光子:P(0)
Figure 2015075329

Y軸方向に偏光軸をセットした透過率Tの偏光子:P(90)
Figure 2015075329

X軸に対してZ軸周りに45度回転した遅延量1/4λの波長板:R(45)
Figure 2015075329

X軸に対してZ軸周りに−45度回転した遅延量1/4λの波長板:R(−45)
Figure 2015075329
Light source having all polarization components set in the X-axis direction: Lg
Figure 2015075329

Polarizer having transmittance T with the polarization axis set in the X-axis direction: P (0)
Figure 2015075329

Polarizer having transmittance T with the polarization axis set in the Y-axis direction: P (90)
Figure 2015075329

Wavelength plate with a delay amount of 1 / 4λ rotated by 45 degrees around the Z axis with respect to the X axis: R (45)
Figure 2015075329

Wavelength plate with a delay amount of 1 / 4λ rotated by −45 degrees around the Z axis with respect to the X axis: R (−45)
Figure 2015075329

(S02の計測)
ここで、円二色性計測装置1を用いた行列要素S02の計測方法について説明する。円二色性計測装置1による円二色性計測方法では、表1のマトリックスにしたがって、偏光板20の偏光軸、1/4λ波長板30の速軸についてのX軸に対する回転角、試料100の有無を設定し、計測項目Lx,Ly、Na、Nbを計測する。なお偏光板20の透過率をTとする。なお、表1に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。

Figure 2015075329
(Measurement of S02)
Here, a method for measuring the matrix element S02 using the circular dichroism measuring apparatus 1 will be described. In the circular dichroism measuring method by the circular dichroism measuring apparatus 1, the rotation axis with respect to the X axis with respect to the polarization axis of the polarizing plate 20, the fast axis of the ¼λ wavelength plate 30, the sample 100 Presence / absence is set, and measurement items Lx, Ly, Na, and Nb are measured. Note that the transmittance of the polarizing plate 20 and T 1. Each measurement item shown in Table 1 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment.
Figure 2015075329

ここで、ミュラー行列法により、測定項目Naで検出される光のストークスベクトルは、次の行列計算の数式(23)で求められる。

Figure 2015075329

したがって、Naで検出される光強度は、上記第1項となり、数式(24)で示される。
Figure 2015075329
Here, the Stokes vector of the light detected by the measurement item Na by the Mueller matrix method is obtained by the following matrix calculation formula (23).
Figure 2015075329

Therefore, the light intensity detected by Na becomes the first term and is expressed by the formula (24).
Figure 2015075329

同様に、測定項目Nbで検出される光のストークスベクトルは、数式(25)の行列計算で求められ、Nbで検出される光強度は数式(25)の第1項から数式(26)と示すことができる。

Figure 2015075329
Similarly, the Stokes vector of the light detected by the measurement item Nb is obtained by matrix calculation of Formula (25), and the light intensity detected by Nb is expressed by the first term to Formula (26) of Formula (25). be able to.
Figure 2015075329

同様に、測定項目Lxで検出される光のストークスベクトルは、数式(27)の行列計算で求められ、Lxで検出される光強度は数式(27)の第1項から数式(28)と示すことができる。

Figure 2015075329
Similarly, the Stokes vector of the light detected by the measurement item Lx is obtained by matrix calculation of Equation (27), and the light intensity detected by Lx is expressed by the first term to Equation (28) of Equation (27). be able to.
Figure 2015075329

同様に、測定項目Lyで検出される光のストークスベクトルは、数式(29)の行列計算で求められ、Lyで検出される光強度は数式(29)の第1項から数式(30)と示すことができる。

Figure 2015075329
Similarly, the Stokes vector of light detected by the measurement item Ly is obtained by matrix calculation of Equation (29), and the light intensity detected by Ly is expressed by the first term to Equation (30) of Equation (29). be able to.
Figure 2015075329

上記測定項目のうち、Lx及びLyは光源の偏光特性を示し、Na及びNbは試料の光学特性を示している。Lx,Ly,Na,Nbの測定結果から、次の数式(31)を用いて計算することで、行列要素S02を算出することができる。

Figure 2015075329
Among the measurement items, Lx and Ly indicate the polarization characteristics of the light source, and Na and Nb indicate the optical characteristics of the sample. The matrix element S02 can be calculated by calculating from the measurement results of Lx, Ly, Na, and Nb using the following formula (31).
Figure 2015075329

(S20の計測)
次に、円二色性計測装置2を用いた行列要素S20の計測方法について説明する。円二色性計測装置2による円二色性計測方法では、表2のマトリックスにしたがって、第1偏光板22の偏光軸、試料100の有無、1/4λ波長板30の速軸についてのX軸に対する回転角、第2偏光板24の偏光軸を設定し、計測項目Lx,Ly、K00、K10、K01、K11を計測する。なお、第1偏光板22の透過率をTとし、第2偏光板24の透過率をTとする。表2に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。

Figure 2015075329
(Measurement of S20)
Next, a method for measuring the matrix element S20 using the circular dichroism measuring device 2 will be described. In the circular dichroism measuring method by the circular dichroism measuring device 2, the X axis about the polarization axis of the first polarizing plate 22, the presence or absence of the sample 100, and the fast axis of the ¼λ wavelength plate 30 according to the matrix in Table 2. And the measurement items Lx, Ly, K00, K10, K01, and K11 are measured. Incidentally, the transmittance of the first polarizing plate 22 and T 1, a transmittance of the second polarizing plate 24 and T 2. Each measurement item shown in Table 2 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment.
Figure 2015075329

ここで、ミュラー行列法により、測定項目K00で検出される光のストークスベクトルは、次の行列計算の数式(32)で求められる、K00で検出される光強度は数式(32)の第1項となり数式(33)と示すことができる。

Figure 2015075329
Here, the Stokes vector of the light detected by the measurement item K00 by the Mueller matrix method is obtained by the following matrix calculation formula (32), and the light intensity detected by K00 is the first term of the formula (32). And can be expressed as Equation (33).
Figure 2015075329

同様に、測定項目K10で検出される光のストークスベクトルは、次の行列計算の数式(34)で求められる、K10で検出される光強度は数式(34)の第1項となり数式(35)と示すことができる。

Figure 2015075329
Similarly, the Stokes vector of the light detected by the measurement item K10 is obtained by the following matrix calculation formula (34). The light intensity detected by K10 is the first term of the formula (34), and the formula (35). Can be shown.
Figure 2015075329

同様に、測定項目K01で検出される光のストークスベクトルは、次の行列計算の数式(36)で求められる、K01で検出される光強度は数式(36)の第1項となり数式(37)と示すことができる。

Figure 2015075329
Similarly, the Stokes vector of the light detected by the measurement item K01 is obtained by the following matrix calculation formula (36). The light intensity detected by K01 is the first term of the formula (36), and the formula (37). Can be shown.
Figure 2015075329

同様に、測定項目K11で検出される光のストークスベクトルは、次の行列計算の数式(38)で求められる、K11で検出される光強度は数式(38)の第1項となり数式(39)と示すことができる。

Figure 2015075329
Similarly, the Stokes vector of the light detected by the measurement item K11 is obtained by the following matrix calculation formula (38). The light intensity detected by K11 is the first term of the formula (38), and the formula (39). Can be shown.
Figure 2015075329

同様に、測定項目Lxで検出される光のストークスベクトルは、次の行列計算の数式(40)で求められる、Lxで検出される光強度は数式(40)の第1項となり数式(41)と示すことができる。

Figure 2015075329
Similarly, the Stokes vector of the light detected by the measurement item Lx is obtained by the following matrix calculation formula (40). The light intensity detected by Lx is the first term of the formula (40), and the formula (41). Can be shown.
Figure 2015075329

同様に、測定項目Lyで検出される光のストークスベクトルは、次の行列計算の数式(42)で求められる、Lyで検出される光強度は数式(42)の第1項となり数式(43)と示すことができる。

Figure 2015075329
Similarly, the Stokes vector of the light detected by the measurement item Ly is obtained by the following matrix calculation formula (42). The light intensity detected by Ly is the first term of the formula (42), and the formula (43). Can be shown.
Figure 2015075329

上記測定項目のうち、Lx及びLyは光源の偏光特性を示し、K00,K10,K01,K11は試料の光学特性を示している。Lx,Ly,K00,K10,K01,K11の測定結果から、次の数式(44)を用いて計算することで、行列要素S20を算出することができる。

Figure 2015075329
Among the measurement items, Lx and Ly indicate the polarization characteristics of the light source, and K00, K10, K01, and K11 indicate the optical characteristics of the sample. The matrix element S20 can be calculated by calculating from the measurement results of Lx, Ly, K00, K10, K01, and K11 using the following mathematical formula (44).
Figure 2015075329

(CDの計算)
上記の計測により求められたS02とS20に対して、数式(17)を適用することで、S02とS20に含まれているアーチファクト成分が打ち消され、純粋なCD成分のみが残り、純粋なCDの計測値を得ることができる。
(Calculation of CD)
By applying Expression (17) to S02 and S20 obtained by the above measurement, the artifact component included in S02 and S20 is canceled, and only the pure CD component remains, and the pure CD Measurement values can be obtained.

以上のように、本実施形態に係る円二色性計測装置1,2及びこの円二色性計測装置1,2を用いた円二色性計測方法によれば、ミュラー行列の行列要素S02と行列要素S20とをそれぞれ求めた後、これに基づいて円二色性を算出することで、従来の円二色性の測定結果には含まれていたアーチファクト成分が除去される。したがって、上記の円二色性計測装置1,2及びこの円二色性計測装置1,2を用いた円二色性計測方法に基づき、行列要素S02及び行列要素S20を測定し、これらの結果を用いて円二色性を算出する構成とすることで、より正確な円二色性の測定を行うことができる。   As described above, according to the circular dichroism measurement devices 1 and 2 and the circular dichroism measurement method using the circular dichroism measurement devices 1 and 2 according to the present embodiment, the matrix element S02 of the Mueller matrix and After obtaining each matrix element S20, the circular dichroism is calculated based on the matrix element S20, thereby removing the artifact component included in the conventional circular dichroism measurement result. Therefore, the matrix element S02 and the matrix element S20 are measured based on the circular dichroism measuring apparatuses 1 and 2 and the circular dichroism measuring method using the circular dichroism measuring apparatuses 1 and 2, and the results thereof are obtained. By using the configuration for calculating the circular dichroism using, more accurate circular dichroism can be measured.

そして、従来から、上記の特許文献1及び非特許文献1〜4に記載のように、円二色性を測定する方法が種々検討されていた。しかしながら、例えば特許文献1記載の方法では、複雑な光学系と計測手順とが要求されることから、円二色性を迅速に簡便に計測できる方法とはいえなかった。これに対して本実施形態に係る円二色性計測装置1,2及びこの円二色性計測装置1,2を用いた円二色性計測方法は、円二色性の計測を簡便に行うことが可能となる。   Conventionally, various methods for measuring circular dichroism have been studied as described in Patent Document 1 and Non-Patent Documents 1 to 4 described above. However, for example, the method described in Patent Document 1 requires a complicated optical system and measurement procedure, and thus cannot be said to be a method capable of quickly and simply measuring circular dichroism. On the other hand, the circular dichroism measuring devices 1 and 2 and the circular dichroism measuring method using the circular dichroic measuring devices 1 and 2 according to the present embodiment simply measure the circular dichroism. It becomes possible.

また、非特許文献4によれば、Two-Modulator GeneralizedEllipsometer(2-MGE)と呼ばれる、試料のミュラー行列の測定装置の例が示されている。この装置を使うことで、一般的なCD計測で計測される試料のミュラー行列の行列要素S02を計測することができると考えられる。また試料のミュラー行列の行列要素S20のような、CD成分を含む他の行列要素の計測も可能であると考えられる。しかしながら、この装置だけでは、S02やS20に含まれるLDやLBといったアーチファクト成分を除去することはできないという問題があった。   Non-Patent Document 4 shows an example of a sample Mueller matrix measurement device called a two-modulator generalized ellipsometer (2-MGE). By using this apparatus, it is considered that the matrix element S02 of the Mueller matrix of the sample measured by general CD measurement can be measured. It is also possible to measure other matrix elements including the CD component, such as the matrix element S20 of the sample Mueller matrix. However, this apparatus alone has a problem that artifact components such as LD and LB included in S02 and S20 cannot be removed.

これに対して、本実施形態に係る円二色性計測装置1及びこの円二色性計測装置1を用いた円二色性計測方法によれば、光源の偏光特性を計測することで得られた光源の偏光特性に基づいて、光源の偏光特性が円二色性の算出に影響を与えないように補正する処理を行うことで、正確な円二色性を計測することができる。   On the other hand, according to the circular dichroism measuring device 1 and the circular dichroism measuring method using the circular dichroic measuring device 1 according to the present embodiment, it is obtained by measuring the polarization characteristics of the light source. Based on the polarization characteristics of the light source, a process for correcting the polarization characteristics of the light source so as not to affect the calculation of the circular dichroism can be performed, whereby accurate circular dichroism can be measured.

なお、上記第1実施形態において、必要に応じて単色フィルタもしくは分光器を光源10の直後に挿入し、特定波長のCDを計測することもできる。また、単色フィルタもしくは分光器を、光検出器40の直前に設置しても同じ効果が得られる。   In the first embodiment, a monochromatic filter or a spectroscope may be inserted immediately after the light source 10 as necessary to measure a CD having a specific wavelength. Further, the same effect can be obtained by installing a monochromatic filter or a spectroscope immediately before the photodetector 40.

また、光源として広い分光特性を持つ白色光とし、波長板に位相差の波長依存性の少ないアクロマティック波長板やフレネルロム波長板を使用し、光検出器として分光機能を有する検出器を用いることで、CDスペクトルを計測する構成も可能である。分光機能を有する検出器としては、ポリクロメータとCCDカメラの組み合わせが、例としてあげられる。   In addition, white light with broad spectral characteristics as a light source, an achromatic wave plate or Fresnel ROM wave plate with little wavelength dependence of retardation is used as a wave plate, and a detector having a spectroscopic function as a light detector A configuration for measuring the CD spectrum is also possible. An example of a detector having a spectroscopic function is a combination of a polychromator and a CCD camera.

(第2実施形態)
次に、本発明の第2実施形態に係る円二色性計測装置の構成について説明する。第2実施形態に係る円二色性計測装置では、行列要素S02の計測方法が第1実施形態と異なり、行列要素S20の計測装置及び計測方法は第1実施形態と同じである。したがって、以降では、S02の計測装置及び計測方法について説明する。
(Second Embodiment)
Next, the configuration of the circular dichroism measuring apparatus according to the second embodiment of the present invention will be described. In the circular dichroism measurement device according to the second embodiment, the measurement method of the matrix element S02 is different from the first embodiment, and the measurement device and measurement method of the matrix element S20 are the same as those of the first embodiment. Therefore, hereinafter, the measurement apparatus and measurement method of S02 will be described.

第2実施形態に係る行列要素S02の計測装置としては、図1に示す円二色性計測装置1が用いられ、計測方法のみが第1実施形態と相違する。   As the measuring device for the matrix element S02 according to the second embodiment, the circular dichroism measuring device 1 shown in FIG. 1 is used, and only the measuring method is different from the first embodiment.

(S02の測定)
円二色性計測装置1を用いた行列要素S02の計測方法について説明する。円二色性計測装置1による円二色性計測方法では、表3のマトリックスにしたがって、偏光板20の偏光軸、1/4λ波長板30の速軸についてのX軸に対する回転角、試料100の有無を設定し、計測項目Lx、Na、Ncを計測する。ここで偏光板20の透過率をTとする。表3に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。また、Lx及びNaは、第1実施形態における測定項目Lx,Naと共通である。

Figure 2015075329
(Measurement of S02)
A method for measuring the matrix element S02 using the circular dichroism measuring device 1 will be described. In the circular dichroism measuring method by the circular dichroism measuring apparatus 1, according to the matrix in Table 3, the polarization axis of the polarizing plate 20, the rotation angle with respect to the X axis with respect to the fast axis of the ¼λ wavelength plate 30, the sample 100 Presence / absence is set, and measurement items Lx, Na, and Nc are measured. Here is the transmittance of the polarizing plate 20 and T 1. Each measurement item shown in Table 3 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment. Lx and Na are common to the measurement items Lx and Na in the first embodiment.
Figure 2015075329

ここで、ミュラー行列法により、測定項目Ncで検出される光のストークスベクトルは、次の数式(45)と示すことができる。なお、計算の過程は省略する。

Figure 2015075329
Here, the Stokes vector of light detected by the measurement item Nc by the Mueller matrix method can be expressed as the following formula (45). The calculation process is omitted.
Figure 2015075329

計測されたLx,Na,Ncの測定結果から、次の数式(46)を用いて計算することで、行列要素S02を算出することができる。

Figure 2015075329
The matrix element S02 can be calculated by calculating from the measurement results of the measured Lx, Na, and Nc using the following formula (46).
Figure 2015075329

(CDの計算)
上記の計測により求められた行列要素S02と、第1実施形態と同様の方法により求められた行列要素S20に対して、数式(17)を適用することで、S02とS20に含まれているアーチファクト成分が打ち消され、純粋なCD成分のみが残り、純粋なCDの計測値を得ることができる。
(Calculation of CD)
By applying Equation (17) to the matrix element S02 obtained by the above measurement and the matrix element S20 obtained by the same method as in the first embodiment, artifacts included in S02 and S20 are obtained. The components are canceled and only the pure CD component remains, and a pure CD measurement can be obtained.

第2実施形態に係る円二色性計測方法によれば、行列要素S02の計測において、Lyを計測する必要がないことから、より迅速に円二色性の計測を行うことが可能となる。   According to the circular dichroism measurement method according to the second embodiment, since it is not necessary to measure Ly in the measurement of the matrix element S02, it becomes possible to measure the circular dichroism more quickly.

(第3実施形態)
次に、本発明の第3実施形態に係る円二色性計測装置の構成について説明する。第3実施形態に係る円二色性計測装置では、行列要素S02の計測方法が第1実施形態及び第2実施形態と異なり、行列要素S20の計測装置及び計測方法は第1実施形態と同じである。したがって、以降では、S02の計測装置及び計測方法について説明する。
(Third embodiment)
Next, the configuration of the circular dichroism measuring apparatus according to the third embodiment of the present invention will be described. In the circular dichroism measurement device according to the third embodiment, the measurement method of the matrix element S02 is different from the first embodiment and the second embodiment, and the measurement device and measurement method of the matrix element S20 are the same as those of the first embodiment. is there. Therefore, hereinafter, the measurement apparatus and measurement method of S02 will be described.

(S02の測定)
図3に示すように、第3実施形態に係る円二色性計測装置3(第1計測装置/S02計測手段)は、光源10、第1偏光板22、第2偏光板24、1/4λ波長板30、光検出器40が光源10からの光学軸に沿ってこの順に配置され、1/4λ波長板30と光検出器40との間の光路上に試料100が配置されているものである。すなわち、図1の円二色性計測装置1と比較して、偏光板が2枚(第1偏光板22、第2偏光板24)になり、これらが光源10の直後に連続して配置される点が相違する。
(Measurement of S02)
As shown in FIG. 3, the circular dichroism measuring device 3 (first measuring device / S02 measuring means) according to the third embodiment includes a light source 10, a first polarizing plate 22, a second polarizing plate 24, and 1 / 4λ. The wave plate 30 and the photodetector 40 are arranged in this order along the optical axis from the light source 10, and the sample 100 is arranged on the optical path between the ¼λ wave plate 30 and the photodetector 40. is there. That is, as compared with the circular dichroism measuring device 1 of FIG. 1, there are two polarizing plates (a first polarizing plate 22 and a second polarizing plate 24), which are continuously arranged immediately after the light source 10. Is different.

この円二色性計測装置3では、光源10から出射された光が第1偏光板22、第2偏光板24を通過した後、1/4λ波長板30を通過して円偏光に変換された後、試料100に照射される。このうち試料を透過した光が、光検出器40によって電気信号に変換される。   In the circular dichroism measuring device 3, the light emitted from the light source 10 passes through the first polarizing plate 22 and the second polarizing plate 24, then passes through the ¼λ wavelength plate 30 and is converted into circularly polarized light. Thereafter, the sample 100 is irradiated. Of these, the light transmitted through the sample is converted into an electrical signal by the photodetector 40.

上記の円二色性計測装置3を用いた行列要素S02の計測方法では、表4のマトリックスにしたがって、第1偏光板22及び第2偏光板24の偏光軸、1/4λ波長板30の速軸についてのX軸に対する回転角、試料100の有無を設定し、計測項目Lx,Ly、Na、Nbを計測する。なお、第1偏光板22の透過率をTとし、第2偏光板24の透過率をTとする。また、表4に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。

Figure 2015075329
In the measuring method of the matrix element S02 using the circular dichroism measuring device 3 described above, the polarization axes of the first polarizing plate 22 and the second polarizing plate 24, and the speed of the ¼λ wavelength plate 30 according to the matrix of Table 4. The rotation angle with respect to the X axis and the presence or absence of the sample 100 are set, and the measurement items Lx, Ly, Na, and Nb are measured. Incidentally, the transmittance of the first polarizing plate 22 and T 1, a transmittance of the second polarizing plate 24 and T 2. Each measurement item shown in Table 4 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment.
Figure 2015075329

ここで、ミュラー行列法により、測定項目Lx,Ly,Na,Nbで検出される光のストークスベクトルは、それぞれ次の数式(47)〜(50)と示すことができる。なお、計算の過程は省略する。

Figure 2015075329
Here, the Stokes vectors of the light detected by the measurement items Lx, Ly, Na, and Nb by the Mueller matrix method can be expressed by the following equations (47) to (50), respectively. The calculation process is omitted.
Figure 2015075329

計測されたLx,Ly,Na,Nbの測定結果から、次の数式(51)を用いて計算することで、行列要素S02を算出することができる。

Figure 2015075329
The matrix element S02 can be calculated by calculating from the measured results of Lx, Ly, Na, and Nb using the following formula (51).
Figure 2015075329

ここで、本実施形態の数式(49)として示されるLxは、第1実施形態のS20の計測における数式(41)に等しく、同様に数式(51)で示されるLyは、数式(43)に等しい。本実施形態におけるS20の計測は、第1実施形態で説明したものと同じ方法で行われるが、LxとLyについては、S02の計測で求められた値をそのままS20に適用できることから、S20の計測においてLx及びLyの計測は不要である。   Here, Lx shown as the mathematical formula (49) of the present embodiment is equal to the mathematical formula (41) in the measurement of S20 of the first embodiment. Similarly, Ly shown by the mathematical formula (51) is expressed by the mathematical formula (43). equal. The measurement of S20 in the present embodiment is performed by the same method as described in the first embodiment. However, for Lx and Ly, the values obtained in the measurement of S02 can be applied to S20 as they are, and therefore the measurement of S20 is performed. In this case, measurement of Lx and Ly is unnecessary.

(CDの計算)
上記の計測により求められた行列要素S02と、第1実施形態と同様の方法により求められた行列要素S20に対して、数式(17)を適用することで、S02とS20に含まれているアーチファクト成分が打ち消され、純粋なCD成分のみが残り、純粋なCDの計測値を得ることができる。
(Calculation of CD)
By applying Equation (17) to the matrix element S02 obtained by the above measurement and the matrix element S20 obtained by the same method as in the first embodiment, artifacts included in S02 and S20 are obtained. The components are canceled and only the pure CD component remains, and a pure CD measurement can be obtained.

第3実施形態に係る円二色性計測方法によれば、行列要素S02及びS20の計測に用いられるLx及びLyの計測を共通とすることができるため、より迅速に円二色性の計測を行うことが可能となる。   According to the circular dichroism measuring method according to the third embodiment, since the measurement of Lx and Ly used for the measurement of the matrix elements S02 and S20 can be made common, the circular dichroism can be measured more quickly. Can be done.

(第4実施形態)
次に、本発明の第4実施形態に係る円二色性計測装置の構成について説明する。第4実施形態に係る円二色性計測装置は、第1実施形態〜第3実施形態にて示した装置とは異なり、行列要素S02及びS20の計測に用いる装置を共通としている。
(Fourth embodiment)
Next, the configuration of the circular dichroism measuring apparatus according to the fourth embodiment of the present invention will be described. Unlike the devices shown in the first to third embodiments, the circular dichroism measuring device according to the fourth embodiment uses a common device for measuring the matrix elements S02 and S20.

図4に示す円二色性計測装置4(S02計測手段、S20計測手段)は、光源10、第1偏光板22、第1の1/4λ波長板32、第2の1/4λ波長板34、第2偏光板24、光検出器40(光検出手段)が光源10からの光学軸に沿ってこの順に配置され第1の1/4λ波長板32と第2の1/4λ波長板34との間の光路上に試料100が配置されているものである。   The circular dichroism measuring device 4 (S02 measuring means, S20 measuring means) shown in FIG. 4 includes a light source 10, a first polarizing plate 22, a first 1 / 4λ wavelength plate 32, and a second 1 / 4λ wavelength plate 34. The second polarizing plate 24 and the light detector 40 (light detecting means) are arranged in this order along the optical axis from the light source 10, and the first 1 / 4λ wavelength plate 32 and the second 1 / 4λ wavelength plate 34 are provided. The sample 100 is arranged on the optical path between the two.

(S02及びS20の測定)
上記の円二色性計測装置4を用いた行列要素S02及びS20の計測方法では、表5のマトリックスにしたがって、第1偏光板22及び第2偏光板24の偏光軸、第1の1/4λ波長板32及び第2の1/4λ波長板34の速軸についてのX軸に対する回転角、試料100の有無を設定し、計測項目Lx,Ly、N00、N10、N01、N11、K00、K10、K01、K11を計測する。なお、第1偏光板22の透過率をTとし、第2偏光板24の透過率をTとする。また、表5に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。なお測定項目Lxは、Lx1ステップ及びLx2ステップを兼ね、測定項目Lyは、Ly1ステップ及びLy2ステップを兼ね、る。すなわち、L1(Lx1,Ly1)ステップ及びL2(Ly1,Ly2)ステップは、下記の測定項目Lの測定により代用することができ、L(Lx,Ly)を一度測定することによりL1ステップ及びL2ステップを実施することができる。すなわち、測定項目Lx、Ly、N00、N10、N01、N11の測定がS02計測ステップに相当し、測定項目Lx、Ly、K00、K10、K01、K11の測定がS20計測ステップに相当する。この点は、S02計測手段とS20計測手段とが共通する以降の実施形態では全て同様である。

Figure 2015075329
(Measurement of S02 and S20)
In the measuring method of the matrix elements S02 and S20 using the circular dichroism measuring device 4 described above, the polarization axes of the first polarizing plate 22 and the second polarizing plate 24, the first 1 / 4λ, according to the matrix of Table 5. The rotation angle with respect to the X axis about the fast axis of the wave plate 32 and the second 1 / 4λ wave plate 34, the presence or absence of the sample 100 are set, and the measurement items Lx, Ly, N00, N10, N01, N11, K00, K10, K01 and K11 are measured. Incidentally, the transmittance of the first polarizing plate 22 and T 1, a transmittance of the second polarizing plate 24 and T 2. Each measurement item shown in Table 5 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment. The measurement item Lx also serves as the Lx1 step and the Lx2 step, and the measurement item Ly serves both as the Ly1 step and the Ly2 step. That is, the L1 (Lx1, Ly1) step and the L2 (Ly1, Ly2) step can be substituted by the measurement of the following measurement item L, and the L1 step and the L2 step are performed by measuring L (Lx, Ly) once. Can be implemented. That is, the measurement items Lx, Ly, N00, N10, N01, and N11 correspond to the S02 measurement step, and the measurement items Lx, Ly, K00, K10, K01, and K11 correspond to the S20 measurement step. This is the same in all subsequent embodiments in which the S02 measuring means and the S20 measuring means are common.
Figure 2015075329

ここで、ミュラー行列法により、測定項目Lx,Ly、N00、N10、N01、N11、K00、K10、K01、K11で検出される光のストークスベクトルは、それぞれ次の数式(52)〜(61)と示すことができる。なお、計算の過程は省略する。

Figure 2015075329
Here, the Stokes vectors of light detected by the measurement items Lx, Ly, N00, N10, N01, N11, K00, K10, K01, and K11 by the Mueller matrix method are respectively expressed by the following equations (52) to (61). Can be shown. The calculation process is omitted.
Figure 2015075329

計測されたLx,Ly、N00、N10、N01、N11、K00、K10、K01、K11の測定結果から、次の数式(62)を用いて計算することで行列要素S02を算出することができる。また、次の数式(63)を用いて計算することで行列要素S20を算出することができる。

Figure 2015075329
The matrix element S02 can be calculated from the measured Lx, Ly, N00, N10, N01, N11, K00, K10, K01, and K11 using the following mathematical formula (62). Further, the matrix element S20 can be calculated by calculating using the following formula (63).
Figure 2015075329

(CDの計算)
上記の計測により求められた行列要素S02及び行列要素S20に対して、数式(17)を適用することで、S02とS20に含まれているアーチファクト成分が打ち消され、純粋なCD成分のみが残り、純粋なCDの計測値を得ることができる。
(Calculation of CD)
By applying Equation (17) to the matrix element S02 and the matrix element S20 obtained by the above measurement, the artifact component included in S02 and S20 is canceled, and only the pure CD component remains, Pure CD measurements can be obtained.

第3実施形態に係る円二色性計測方法によれば、S02とS20の計測において、光学素子を入れ換える必要が無くなるため、よりシンプルで精度の高い光学設計が可能となる。   According to the circular dichroism measurement method according to the third embodiment, it is not necessary to exchange optical elements in the measurement of S02 and S20, and thus a simpler and more accurate optical design is possible.

(第5実施形態)
次に、本発明の第5実施形態に係る円二色性計測装置の構成について説明する。第5実施形態に係る円二色性計測装置では、波長板の代わりに位相変調素子を用いることが、第1実施形態から第4実施形態とは異っている。
(Fifth embodiment)
Next, the configuration of a circular dichroism measuring apparatus according to the fifth embodiment of the present invention will be described. The circular dichroism measurement device according to the fifth embodiment is different from the first embodiment to the fourth embodiment in that a phase modulation element is used instead of the wave plate.

図5に示す円二色性計測装置5(S02計測手段、S20計測手段)は、光源10、第1偏光板22、第1位相変調素子52、第2位相変調素子54、第2偏光板24、光検出器40(光検出手段)が光源10からの光学軸に沿ってこの順に配置され第1位相変調素子52と第2位相変調素子54との間の光路上に試料100が配置されているものである。   The circular dichroism measuring device 5 (S02 measuring means, S20 measuring means) shown in FIG. 5 includes a light source 10, a first polarizing plate 22, a first phase modulating element 52, a second phase modulating element 54, and a second polarizing plate 24. The light detector 40 (light detection means) is disposed in this order along the optical axis from the light source 10, and the sample 100 is disposed on the optical path between the first phase modulation element 52 and the second phase modulation element 54. It is what.

本実施形態の円二色性計測装置で用いられる位相変調素子とは、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差が時間と共に変化するという作用を持った光学素子である。位相変調素子の具体的な例としては、光弾性変調器(PEM)や液晶可変波長板(LCVR)やポッケルセルなどが挙げられる。第1位相変調素子52及び第2位相変調素子54は、位相変調素子ドライバ50からの変調信号に従って位相変調を行う。また、位相変調素子ドライバ50は第1位相変調素子52及び第2位相変調素子54のどちらか一方に変調信号を加えたり、両方の変調を止めたりすることができる。そして、光検出器40により検出された光強度の信号は、光検出器40に接続されたロックインアンプ60を用いて、位相変調素子ドライバ50から送信される変調信号(参照信号)に対するsin成分のみを抽出することができる。   The phase modulation element used in the circular dichroism measuring apparatus of the present embodiment generates a phase difference with respect to polarized light in the vertical and horizontal directions perpendicular to the incident light, and this phase difference with time. It is an optical element having the action of changing. Specific examples of the phase modulation element include a photoelastic modulator (PEM), a liquid crystal variable wavelength plate (LCVR), a Pockel cell, and the like. The first phase modulation element 52 and the second phase modulation element 54 perform phase modulation according to the modulation signal from the phase modulation element driver 50. Further, the phase modulation element driver 50 can add a modulation signal to one of the first phase modulation element 52 and the second phase modulation element 54 or stop both modulations. The light intensity signal detected by the photodetector 40 is a sine component for the modulation signal (reference signal) transmitted from the phase modulation element driver 50 using the lock-in amplifier 60 connected to the photodetector 40. Only can be extracted.

(S02及びS20の測定)
上記の円二色性計測装置5を用いた行列要素S02及びS20の計測方法では、表6のマトリックスにしたがって、第1偏光板22及び第2偏光板24の偏光軸、第1位相変調素子52及び第2位相変調素子54の変調の有無、試料100の有無を設定し、計測項目Lx,Ly、N00、N01、K00、K01を計測する。位相変調素子52,54の速軸はX軸方向からZ軸周りに45°の回転角に設定される。表6において、位相変調素子の欄の○印は変調を行い、×印は変調を止めることを意味する。また、計測欄の”DC”とは光信号のDC成分を、”sin”は光信号の、変調信号に対するsin成分を計測することを意味する。なお、第1偏光板22の透過率をTとし、第2偏光板24の透過率をTとする。また、表6に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。

Figure 2015075329
(Measurement of S02 and S20)
In the measuring method of the matrix elements S02 and S20 using the circular dichroism measuring device 5 described above, the polarization axes of the first polarizing plate 22 and the second polarizing plate 24, the first phase modulation element 52, according to the matrix of Table 6. Further, the presence or absence of modulation of the second phase modulation element 54 and the presence or absence of the sample 100 are set, and the measurement items Lx, Ly, N00, N01, K00, and K01 are measured. The fast axes of the phase modulation elements 52 and 54 are set to a rotation angle of 45 ° around the Z axis from the X axis direction. In Table 6, a circle mark in the column of the phase modulation element means that modulation is performed, and a cross mark means that the modulation is stopped. “DC” in the measurement column means that the DC component of the optical signal is measured, and “sin” means that the sin component of the optical signal with respect to the modulation signal is measured. Incidentally, the transmittance of the first polarizing plate 22 and T 1, a transmittance of the second polarizing plate 24 and T 2. Each measurement item shown in Table 6 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment.
Figure 2015075329

ここで、ミュラー行列法により、測定項目Lx,Ly、N00、N01、K00、K01で検出される光のストークスベクトルは、それぞれ次の数式(64)〜(69)と示すことができる。なお、計算の過程は省略する。

Figure 2015075329
Here, the Stokes vectors of the light detected by the measurement items Lx, Ly, N00, N01, K00, and K01 by the Mueller matrix method can be expressed as the following equations (64) to (69), respectively. The calculation process is omitted.
Figure 2015075329

計測されたLx,Ly、N00、N01、K00、K01の測定結果から、次の数式(70)を用いて計算することで行列要素S02を算出することができる。また、次の数式(71)を用いて計算することで行列要素S20を算出することができる。

Figure 2015075329
From the measured results of Lx, Ly, N00, N01, K00, and K01, the matrix element S02 can be calculated by calculating using the following formula (70). Further, the matrix element S20 can be calculated by calculating using the following formula (71).
Figure 2015075329

(CDの計算)
上記の計測により求められた行列要素S02及び行列要素S20に対して、数式(17)を適用することで、S02とS20に含まれているアーチファクト成分が打ち消され、純粋なCD成分のみが残り、純粋なCDの計測値を得ることができる。
(Calculation of CD)
By applying Equation (17) to the matrix element S02 and the matrix element S20 obtained by the above measurement, the artifact component included in S02 and S20 is canceled, and only the pure CD component remains, Pure CD measurements can be obtained.

第5実施形態に係る円二色性計測方法によれば、S02とS20の計測において、光学素子を入れ換える必要が無い。また、位相変調素子を用いることで、第4実施形態に示した円二色性計測方法と比較して計測回数を4項目減らすことができるため、より迅速な計測が可能となる。   According to the circular dichroism measurement method according to the fifth embodiment, it is not necessary to replace the optical element in the measurement of S02 and S20. Further, by using the phase modulation element, the number of times of measurement can be reduced by four items as compared with the circular dichroism measurement method shown in the fourth embodiment, so that more rapid measurement is possible.

(第6実施形態)
次に、本発明の第6実施形態に係る円二色性計測方法について説明する。第6実施形態に係る円二色性計測方法は、第4実施形態に係る円二色性計測装置と同様の装置を用い、計測方法を変更することによって、アーチファクトとなる成分を除去した上で測定を行う。計測方法における相違点とは、具体的には、各測定項目において光源の角度も変更することである。
(Sixth embodiment)
Next, a circular dichroism measuring method according to a sixth embodiment of the present invention will be described. The circular dichroism measurement method according to the sixth embodiment uses the same device as the circular dichroism measurement device according to the fourth embodiment, and after removing components that become artifacts by changing the measurement method. Measure. Specifically, the difference in the measurement method is that the angle of the light source is also changed in each measurement item.

(S02及びS20の測定)   (Measurement of S02 and S20)

図4に示す円二色性計測装置4を用いた行列要素S02及びS20の計測方法では、表7のマトリックスにしたがって、第1偏光板22及び第2偏光板24の偏光軸、第1の1/4λ波長板32及び第2の1/4λ波長板34の速軸についてのX軸に対する回転角、試料100の有無を設定し、計測項目L、N00、N10、N01、N11、K00、K10、K01、K11を計測する。なお、第1偏光板22の透過率をTとし、第2偏光板24の透過率をTとする。また、表7に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。

Figure 2015075329
In the measuring method of the matrix elements S02 and S20 using the circular dichroism measuring device 4 shown in FIG. 4, according to the matrix of Table 7, the polarization axes of the first polarizing plate 22 and the second polarizing plate 24, the first 1 The rotation angle with respect to the X axis about the fast axis of the / 4λ wavelength plate 32 and the second 1 / 4λ wavelength plate 34, the presence / absence of the sample 100 are set, and the measurement items L, N00, N10, N01, N11, K00, K10, K01 and K11 are measured. Incidentally, the transmittance of the first polarizing plate 22 and T 1, a transmittance of the second polarizing plate 24 and T 2. Each measurement item shown in Table 7 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment.
Figure 2015075329

ここで、ミュラー行列法により、測定項目L、N00、N10、N01、N11、K00、K10、K01、K11で検出される光のストークスベクトルは、それぞれ次の数式(72)〜(80)と示すことができる。なお、計算の過程は省略する。

Figure 2015075329
Here, the Stokes vectors of light detected by the measurement items L, N00, N10, N01, N11, K00, K10, K01, and K11 by the Mueller matrix method are respectively expressed by the following equations (72) to (80). be able to. The calculation process is omitted.
Figure 2015075329

計測されたL、N00、N10、N01、N11、K00、K10、K01、K11の測定結果から、次の数式(81)を用いて計算することで行列要素S02を算出することができる。また、次の数式(82)を用いて計算することで行列要素S20を算出することができる。

Figure 2015075329
From the measured results of L, N00, N10, N01, N11, K00, K10, K01, and K11, the matrix element S02 can be calculated by calculating using the following formula (81). Further, the matrix element S20 can be calculated by calculating using the following mathematical formula (82).
Figure 2015075329

(CDの計算)
上記の計測により求められた行列要素S02及び行列要素S20に対して、数式(17)を適用することで、S02とS20に含まれているアーチファクト成分が打ち消され、純粋なCD成分のみが残り、純粋なCDの計測値を得ることができる。
(Calculation of CD)
By applying Equation (17) to the matrix element S02 and the matrix element S20 obtained by the above measurement, the artifact component included in S02 and S20 is canceled, and only the pure CD component remains, Pure CD measurements can be obtained.

第6実施形態に係る円二色性計測方法によれば、光源に水平垂直方向の偏光成分が存在したとしても、光源と、光源の光から直線偏光を取り出す偏光板との相対角度が変化しない光学配置とすることで、正確に円二色性を計測することが可能となる。   According to the circular dichroism measurement method according to the sixth embodiment, the relative angle between the light source and the polarizing plate that extracts linearly polarized light from the light from the light source does not change even if the light source has a horizontal and vertical polarization component. By using an optical arrangement, it is possible to accurately measure circular dichroism.

(第7実施形態)
次に、本発明の第7実施形態に係る円二色性計測方法について説明する。第7実施形態に係る円二色性計測方法は、図6に示す円二色性計測装置6を用いて行われる。円二色性計測装置6(S02計測手段、S20計測手段)は、第4実施形態(第6実施形態)に係る円二色性計測装置における第1偏光板22と第1の1/4λ波長板32との間に1/2λ波長板70を設ける点が円二色性計測装置4と相違する。そして、光源10と第1偏光板22を回転させる代わりに1/2λ波長板70を回転させることで、各測定項目の測定を行う。
(Seventh embodiment)
Next, a circular dichroism measuring method according to a seventh embodiment of the present invention will be described. The circular dichroism measuring method according to the seventh embodiment is performed using a circular dichroism measuring apparatus 6 shown in FIG. The circular dichroism measuring device 6 (S02 measuring means, S20 measuring means) includes the first polarizing plate 22 and the first 1 / 4λ wavelength in the circular dichroism measuring device according to the fourth embodiment (sixth embodiment). The difference from the circular dichroism measuring device 4 is that a 1 / 2λ wavelength plate 70 is provided between the plate 32 and the plate 32. Then, instead of rotating the light source 10 and the first polarizing plate 22, the measurement of each measurement item is performed by rotating the ½λ wavelength plate 70.

(S02及びS20の測定)
図6に示す円二色性計測装置6を用いた行列要素S02及びS20の計測方法では、表8のマトリックスにしたがって、第2偏光板24の偏光軸、第1の1/4λ波長板32及び第2の1/4λ波長板34の速軸についてのX軸に対する回転角、1/2λ波長板70の速軸についてのX軸に対する回転角、試料100の有無を設定し、計測項目L、N00、N10、N01、N11、K00、K10、K01、K11を計測する。なお、第1偏光板22の透過率をTとし、第2偏光板24の透過率をTとする。また、表8に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。

Figure 2015075329
(Measurement of S02 and S20)
In the measuring method of the matrix elements S02 and S20 using the circular dichroism measuring device 6 shown in FIG. 6, according to the matrix of Table 8, the polarization axis of the second polarizing plate 24, the first 1 / 4λ wavelength plate 32, and The rotation angle with respect to the X axis about the fast axis of the second 1 / 4λ wavelength plate 34, the rotation angle with respect to the X axis about the fast axis of the 1 / 2λ wavelength plate 70, and the presence or absence of the sample 100 are set. , N10, N01, N11, K00, K10, K01, K11 are measured. Incidentally, the transmittance of the first polarizing plate 22 and T 1, a transmittance of the second polarizing plate 24 and T 2. Each measurement item shown in Table 8 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment.
Figure 2015075329

上記の測定項目L、N00、N10、N01、N11、K00、K10、K01、K11で検出される光のストークスベクトルは、それぞれ第6実施形態にて示した数式(72)〜(80)となる。   The Stokes vectors of the light detected by the measurement items L, N00, N10, N01, N11, K00, K10, K01, and K11 are the equations (72) to (80) shown in the sixth embodiment, respectively. .

そして、第6実施形態と同様に行列要素S02を数式(81)から算出し、行列要素S20を数式(82)から算出することができる。   Similarly to the sixth embodiment, the matrix element S02 can be calculated from the formula (81), and the matrix element S20 can be calculated from the formula (82).

(CDの計算)
上記で求められた行列要素S02及び行列要素S20に対して、数式(17)を適用することで、S02とS20に含まれているアーチファクト成分が打ち消され、純粋なCD成分のみが残り、純粋なCDの計測値を得ることができる。
(Calculation of CD)
By applying Equation (17) to the matrix element S02 and the matrix element S20 obtained above, the artifact component included in S02 and S20 is canceled, and only the pure CD component remains, and the pure element CD measurement values can be obtained.

第7実施形態に係る円二色性計測方法によれば、円二色性計測の各測定項目の測定の際に回転させる光学素子が4つとなるため、高額な回転ステージの数を減らすことができる。   According to the circular dichroism measurement method according to the seventh embodiment, since there are four optical elements that are rotated when measuring each measurement item of circular dichroism measurement, the number of expensive rotary stages can be reduced. it can.

なお、上記実施形態における光源10及び第1偏光板22の代わりに、光源10から出射された後に第1偏光板22を経て出射される光と同等に、純粋な直線偏光を発する偏光光源を用いる構成としてもよい。   Instead of the light source 10 and the first polarizing plate 22 in the above embodiment, a polarized light source that emits pure linearly polarized light is used in the same manner as the light emitted from the light source 10 and then emitted through the first polarizing plate 22. It is good also as a structure.

(第8実施形態)
次に、本発明の第8実施形態に係る円二色性計測方法について説明する。第8実施形態に係る円二色性計測方法は、図7に示す円二色性計測装置7を用いて行われる。円二色性計測装置7(S02計測手段、S20計測手段)は、第4実施形態(第6実施形態)に係る円二色性計測装置における第1の1/4λ波長板32及び第2の1/4λ波長板34に代えて、それぞれ第1可変波長板82、第2可変波長板84を設けた点が円二色性計測装置4と相違する。
(Eighth embodiment)
Next, a circular dichroism measuring method according to an eighth embodiment of the present invention will be described. The circular dichroism measuring method according to the eighth embodiment is performed using a circular dichroism measuring apparatus 7 shown in FIG. The circular dichroism measuring device 7 (S02 measuring means, S20 measuring means) includes the first ¼λ wavelength plate 32 and the second dichroic wavelength measuring device in the circular dichroism measuring device according to the fourth embodiment (sixth embodiment). The difference from the circular dichroism measuring device 4 is that a first variable wavelength plate 82 and a second variable wavelength plate 84 are provided in place of the quarter-wave plate 34.

第1可変波長板及び第2可変波長板は、透過光の速軸と遅軸の位相差である遅延量を、任意に調整できるという機能を有するもので、具体的には液晶可変波長板(LCVR)が挙げられる。   The first variable wavelength plate and the second variable wavelength plate have a function of arbitrarily adjusting a delay amount that is a phase difference between a fast axis and a slow axis of transmitted light. Specifically, a liquid crystal variable wavelength plate ( LCVR).

(S02及びS20の測定)
図7に示す円二色性計測装置7を用いた行列要素S02及びS20の計測方法では、表9のマトリックスにしたがって、第1可変波長板82及び第2可変波長板84の速軸のX軸に対する回転角及び位相差、試料100の有無を設定し、計測項目L、N00、N10、N01、N11、K00、K10、K01、K11を計測する。本実施形態では、光源10、第1偏光板22及び第2偏光板23は固定される。なお、第1偏光板22の透過率をTとし、第2偏光板24の透過率をTとする。また、表8に示す各測定項目が、本実施形態に係る円二色性計測方法における測定ステップに対応する。

Figure 2015075329
(Measurement of S02 and S20)
In the measuring method of the matrix elements S02 and S20 using the circular dichroism measuring device 7 shown in FIG. 7, the fast axis X-axis of the first variable wavelength plate 82 and the second variable wavelength plate 84 according to the matrix of Table 9. The measurement items L, N00, N10, N01, N11, K00, K10, K01, and K11 are measured. In the present embodiment, the light source 10, the first polarizing plate 22, and the second polarizing plate 23 are fixed. Incidentally, the transmittance of the first polarizing plate 22 and T 1, a transmittance of the second polarizing plate 24 and T 2. Each measurement item shown in Table 8 corresponds to a measurement step in the circular dichroism measurement method according to the present embodiment.
Figure 2015075329

上記の測定項目L、N00、N10、N01、N11、K00、K10、K01、K11で検出される光のストークスベクトルは、それぞれ第6実施形態にて示した数式(72)〜(80)となる。   The Stokes vectors of the light detected by the measurement items L, N00, N10, N01, N11, K00, K10, K01, and K11 are the equations (72) to (80) shown in the sixth embodiment, respectively. .

そして、第6実施形態と同様に行列要素S02を数式(81)から算出し、行列要素S20を数式(82)から算出することができる。   Similarly to the sixth embodiment, the matrix element S02 can be calculated from the formula (81), and the matrix element S20 can be calculated from the formula (82).

(CDの計算)
上記で求められた行列要素S02及び行列要素S20に対して、数式(17)を適用することで、S02とS20に含まれているアーチファクト成分が打ち消され、純粋なCD成分のみが残り、純粋なCDの計測値を得ることができる。
(Calculation of CD)
By applying Equation (17) to the matrix element S02 and the matrix element S20 obtained above, the artifact component included in S02 and S20 is canceled, and only the pure CD component remains, and the pure element CD measurement values can be obtained.

第8実施形態に係る円二色性計測方法によれば、円二色性計測の各測定項目の測定の際に回転させる光学素子が2つとなるため、高額な回転ステージの数を減らすことができる。   According to the circular dichroism measurement method according to the eighth embodiment, two optical elements are rotated when measuring each measurement item of circular dichroism measurement, so the number of expensive rotary stages can be reduced. it can.

なお、上記実施形態における光源10及び第1偏光板22の代わりに、光源10から出射された後に第1偏光板22を経て出射される光と同等に、純粋な直線偏光を発する偏光光源を用いる構成としてもよい。   Instead of the light source 10 and the first polarizing plate 22 in the above embodiment, a polarized light source that emits pure linearly polarized light is used in the same manner as the light emitted from the light source 10 and then emitted through the first polarizing plate 22. It is good also as a structure.

以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されず、種々の変更を行うことができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be made.

例えば、必要に応じて単色フィルタもしくは分光器を光源10の直後に挿入することで、特定波長の光の円二色性を計測することもできる。なお、単色フィルタもしくは分光器を、光検出器40の直前に設置しても、同様に特定波長の光の円二色性を計測することができる。   For example, the circular dichroism of light of a specific wavelength can be measured by inserting a monochromatic filter or a spectroscope immediately after the light source 10 as necessary. Even if a monochromatic filter or a spectroscope is installed immediately before the photodetector 40, the circular dichroism of light of a specific wavelength can be similarly measured.

また、光源10として広い分光特性を持つ白色光を出射する白色光源を選択し、光検出器40として分光機能を有する検出器を用いることで、CDスペクトルを計測する構成も可能である。分光機能を有する検出器としては、ポリクロメータとCCDカメラの組み合わせが、例として挙げられる。   Further, it is possible to adopt a configuration in which a CD spectrum is measured by selecting a white light source that emits white light having a wide spectral characteristic as the light source 10 and using a detector having a spectroscopic function as the light detector 40. An example of a detector having a spectroscopic function is a combination of a polychromator and a CCD camera.

1,2,3,4,5,6,7…円二色性計測装置、10…光源、20…偏光板、22…第1偏光板、24…第2偏光板、30…1/4λ波長板、32…第1の1/4λ波長板、34…第2の1/4λ波長板、40…光検出器、52…第1位相変調素子、54…第2位相変調素子、70…1/2λ波長板、82…第1可変波長板、84…第2可変波長板、100…試料。   1, 2, 3, 4, 5, 6, 7 ... circular dichroism measuring device, 10 ... light source, 20 ... polarizing plate, 22 ... first polarizing plate, 24 ... second polarizing plate, 30 ... 1 / 4λ wavelength Plate 32... First quarter-wave plate 34. Second quarter-wave plate 40... Photodetector 52. First phase modulation element 54. Second phase modulation element 70. 2.lambda. Wavelength plate, 82 ... first variable wavelength plate, 84 ... second variable wavelength plate, 100 ... sample.

Claims (16)

測定対象の試料に係るミュラー行列を下記の数式(1)
Figure 2015075329

としたときに、行列要素S02を計測するS02計測ステップと、
上記の数式(1)における行列要素S20を計測するS20計測ステップと、
前記S02計測ステップにおいて得られた行列要素S02と、前記S20計測ステップにおいて得られた行列要素S20とから円二色性を算出する算出ステップと、
を有し、
前記S02計測ステップにおいて、前記行列要素S02の計測に用いられる光源の偏光特性を除去する処理を行い、
前記S20計測ステップにおいて、前記行列要素S20の計測に用いられる光源の偏光特性を除去する処理を行う
ことを特徴とする円二色性計測方法。
The Mueller matrix related to the sample to be measured is expressed by the following formula (1).
Figure 2015075329

S02 measurement step for measuring the matrix element S02,
S20 measurement step of measuring the matrix element S20 in the above mathematical formula (1);
A calculation step of calculating circular dichroism from the matrix element S02 obtained in the S02 measurement step and the matrix element S20 obtained in the S20 measurement step;
Have
In the S02 measurement step, a process of removing the polarization characteristic of the light source used for the measurement of the matrix element S02 is performed,
The circular dichroism measuring method characterized in that, in the S20 measuring step, a process of removing a polarization characteristic of a light source used for measuring the matrix element S20 is performed.
前記S02計測ステップは、
特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、を備える第1計測装置において、第1光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うLx測定ステップと、
前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸をX軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うLy測定ステップと、
前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNa測定ステップと、
前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸をX軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNb測定ステップと、
を有し、
前記S20計測ステップは、
前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第2光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、を備える第2計測装置において、第2光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLx測定ステップと、
前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLy測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK00測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK10測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK01測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK11測定ステップと、
を有する請求項1記載の円二色性計測方法。
The S02 measuring step includes
The first light source that emits light of a specific wavelength, the first polarizing plate that can rotate the polarization axis that takes out the light emitted from the first light source and takes out linearly polarized light, and the first polarizing plate. When the incident linearly polarized light is incident and the wavelength of the light from the first light source is λ, the phase difference between two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other is 1 /. In a first measurement apparatus, comprising: a first wave plate that emits as 4λ; and first light detection means that detects light that is emitted from the first wave plate by converting it into an electrical signal. When the optical axis of the light is the Z axis, and the two axes orthogonal to the Z axis are the X axis and the Y axis, respectively,
The sample is removed from the optical path of the light from the first light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate Lx measurement step for measuring the intensity of light received by the first light detection means in a state where is set to 0 °;
The sample is removed from the optical path of the light from the first light source, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate Ly measurement step for measuring the intensity of light received by the first light detection means in a state where the angle is 90 °,
The sample is disposed between the first wave plate and the first light detection means on the optical path, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the speed of the first wave plate is increased. A Na measurement step of measuring the intensity of light received by the first light detection means in a state where the rotation angle of the axis with respect to the X axis is 45 °;
The sample is disposed between the first wave plate and the first light detection means on the optical path, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, and the speed of the first wave plate is increased. An Nb measurement step of measuring the intensity of light received by the first light detection means in a state where the rotation angle of the axis with respect to the X axis is 45 °;
Have
The S20 measurement step includes
A second light source that emits light of the same wavelength as the first light source, a second polarizing plate that can rotate a polarization axis that takes out light emitted from the second light source and extracts linearly polarized light, and the second polarized light When the linearly polarized light extracted from the plate is incident and the wavelength of the light from the second light source is λ, the phase difference between the two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other Is emitted from the third polarizing plate, a second polarizing plate capable of rotating a polarization axis that takes out the linearly polarized light by entering the light emitted from the second wave plate, and the third polarizing plate. And a second light detection means for detecting the converted light by converting it into an electrical signal, wherein the optical axis of the light emitted from the second light source is the Z axis and is orthogonal to the Z axis When the two axes are X and Y axes,
The sample is removed from the optical path of the light from the second light source, the polarization axis of the second polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate Lx measurement step of measuring the intensity of light received by the second photodetecting means in a state where 0 is set to 0 ° and the polarization axis of the third polarizing plate is set to 0 ° with respect to the X axis;
The sample is removed from the optical path of the light from the second light source, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate Ly measurement step for measuring the intensity of light received by the second light detection means in a state where the second polarizing plate is 90 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis,
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 0 ° with respect to the X axis, and the fast axis of the second wave plate Measurement of the intensity of light received by the second light detection means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. A K00 measurement step to be performed;
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the fast axis of the second wave plate Measurement of the intensity of light received by the second light detection means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. Performing a K10 measurement step;
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 0 ° with respect to the X axis, and the fast axis of the second wave plate Measurement of the intensity of light received by the second light detecting means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. Performing the K01 measurement step;
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the fast axis of the second wave plate Measurement of the intensity of light received by the second light detecting means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. Performing a K11 measurement step;
The circular dichroism measurement method according to claim 1, wherein:
前記S02計測ステップは、
特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、を備える第1計測装置において、第1光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とした状態で、前記光検出手段において受光される光の強度の計測を行うLx測定ステップと、
前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNa測定ステップと、
前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸をX軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を−45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNc測定ステップと、
を有し、
前記S20計測ステップは、
前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、を備える第2計測装置において、第2光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLx測定ステップと、
前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLy測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK00測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK10測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK01測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸をX軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸をX軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK11測定ステップと、
を有する請求項1記載の円二色性計測方法。
The S02 measuring step includes
The first light source that emits light of a specific wavelength, the first polarizing plate that can rotate the polarization axis that takes out the light emitted from the first light source and takes out linearly polarized light, and the first polarizing plate. When the incident linearly polarized light is incident and the wavelength of the light from the first light source is λ, the phase difference between two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other is 1 /. In a first measurement apparatus, comprising: a first wave plate that emits as 4λ; and first light detection means that detects light that is emitted from the first wave plate by converting it into an electrical signal. When the optical axis of the light is the Z axis, and the two axes orthogonal to the Z axis are the X axis and the Y axis, respectively,
The sample is removed from the optical path of the light from the first light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate Lx measurement step for measuring the intensity of light received by the light detection means in a state where is set to 0 °;
The sample is disposed between the first wave plate and the first light detection means on the optical path, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the speed of the first wave plate is increased. A Na measurement step of measuring the intensity of light received by the first light detection means in a state where the rotation angle of the axis with respect to the X axis is 45 °;
The sample is disposed between the first wave plate and the first light detection means on the optical path, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the speed of the first wave plate is increased. An Nc measurement step of measuring the intensity of light received by the first light detection means in a state where the rotation angle of the axis with respect to the X axis is −45 °;
Have
The S20 measurement step includes
A second light source that emits light of the same wavelength as the first light source, a second polarizing plate that can rotate a polarization axis that takes out light emitted from the second light source and extracts linearly polarized light, and the second polarized light When the linearly polarized light extracted from the plate is incident and the wavelength of the light from the first light source is λ, the phase difference between two polarization components having a vibration plane different from that of the incident light and orthogonal to each other Is emitted from the third polarizing plate, a second polarizing plate capable of rotating a polarization axis that takes out the linearly polarized light by entering the light emitted from the second wave plate, and the third polarizing plate. And a second light detection means for detecting the converted light by converting it into an electrical signal, wherein the optical axis of the light emitted from the second light source is the Z axis and is orthogonal to the Z axis When the two axes are X and Y axes,
The sample is removed from the optical path of the light from the second light source, the polarization axis of the second polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate Lx measurement step of measuring the intensity of light received by the second photodetecting means in a state where 0 is set to 0 ° and the polarization axis of the third polarizing plate is set to 0 ° with respect to the X axis;
The sample is removed from the optical path of the light from the second light source, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate Ly measurement step for measuring the intensity of light received by the second light detection means in a state where the second polarizing plate is 90 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis,
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 0 ° with respect to the X axis, and the fast axis of the second wave plate Measurement of the intensity of light received by the second light detection means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. A K00 measurement step to be performed;
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the fast axis of the second wave plate Measurement of the intensity of light received by the second light detection means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. Performing a K10 measurement step;
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 0 ° with respect to the X axis, and the fast axis of the second wave plate Measurement of the intensity of light received by the second light detecting means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. Performing the K01 measurement step;
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the fast axis of the second wave plate Measurement of the intensity of light received by the second light detecting means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. Performing a K11 measurement step;
The circular dichroism measurement method according to claim 1, wherein:
前記S02計測ステップは、
特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射して直線偏光を取り出す偏光軸を回転可能な第4偏光板と、前記第2偏光板において取出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、を備える第1計測装置において、第1光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第4偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うLx測定ステップと、
前記試料を前記第1光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第4偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うLy測定ステップと、
前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第4偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNa測定ステップと、
前記試料を光路上の前記第1波長板と前記第1光検出手段との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第4偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とした状態で、前記第1光検出手段において受光される光の強度の計測を行うNb測定ステップと、
を有し、
前記S20計測ステップは、
前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第2光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、を備える第2計測装置において、第2光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸を前記X軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第3偏光板の偏光軸を前記X軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLx測定ステップと、
前記試料を前記第2光源からの光の光路上から外し、前記第2偏光板の偏光軸を前記X軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第3偏光板の偏光軸を前記X軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うLy測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸を前記X軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸を前記X軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK00測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸を前記X軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸を前記X軸に対して0°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK10測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸を前記X軸に対して0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸を前記X軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK01測定ステップと、
前記試料を光路上の前記第2偏光板と前記第2波長板との間に配置し、前記第2偏光板の偏光軸を前記X軸に対して90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第3偏光板の偏光軸を前記X軸に対して90°とした状態で、前記第2光検出手段において受光される光の強度の計測を行うK11測定ステップと、
を有する円二色性計測方法。
The S02 measuring step includes
The first light source that emits light of a specific wavelength, the first polarizing plate that can rotate the polarization axis that takes out the light emitted from the first light source and takes out linearly polarized light, and the first polarizing plate. A fourth polarizing plate capable of rotating the polarization axis for taking out the linearly polarized light and taking out the linearly polarized light, and the linearly polarized light extracted from the second polarizing plate are incident, and the wavelength of light from the first light source is λ , The first wave plate that emits the phase difference between two polarization components that have a vibration plane different from the vibration plane of the incident light and are orthogonal to each other, and is emitted from the first wave plate. And a first light detection unit that detects light by converting it into an electrical signal, and the optical axis of the light emitted from the first light source is the Z axis, and is orthogonal to the Z axis. When the two axes are the X axis and the Y axis, respectively,
The sample is removed from the optical path of light from the first light source, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, and the polarization axis of the fourth polarizing plate is set to the X axis. An Lx measurement step of measuring the intensity of light received by the first light detection means in a state in which the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °;
The sample is removed from the optical path of light from the first light source, the polarization axis of the first polarizing plate is set to 90 ° with respect to the X axis, and the polarization axis of the fourth polarizing plate is set to the X axis. A Ly measurement step of measuring the intensity of light received by the first light detection means in a state of 90 ° and a rotation angle of the fast axis of the first wave plate with respect to the X axis being 90 °;
The sample is disposed between the first wave plate and the first light detection means on the optical path, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the fourth polarizing plate Intensity of light received by the first light detection means in a state where the polarization axis is 0 ° with respect to the X-axis and the rotation angle of the fast axis of the first wave plate with respect to the X-axis is 45 °. Na measurement step for measuring
The sample is disposed between the first wave plate and the first light detection means on the optical path, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, and the fourth polarizing plate The intensity of light received by the first light detection means in a state where the polarization axis is 90 ° with respect to the X axis and the rotation angle of the fast axis of the first wave plate with respect to the X axis is 45 °. Nb measurement step for measuring
Have
The S20 measurement step includes
A second light source that emits light of the same wavelength as the first light source, a second polarizing plate that can rotate a polarization axis that takes out light emitted from the second light source and extracts linearly polarized light, and the second polarized light When the linearly polarized light extracted from the plate is incident and the wavelength of the light from the second light source is λ, the phase difference between the two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other Is emitted from the third polarizing plate, a second polarizing plate capable of rotating a polarization axis that takes out the linearly polarized light by entering the light emitted from the second wave plate, and the third polarizing plate. And a second light detection means for detecting the converted light by converting it into an electrical signal, wherein the optical axis of the light emitted from the second light source is the Z axis and is orthogonal to the Z axis When the two axes are X and Y axes,
The sample is removed from the optical path of light from the second light source, the polarization axis of the second polarizing plate is set to 0 ° with respect to the X axis, and the fast axis of the second wave plate is rotated with respect to the X axis. An Lx measurement step for measuring the intensity of light received by the second photodetecting means in a state where the angle is 0 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis;
The sample is removed from the optical path of the light from the second light source, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the fast axis of the second wavelength plate is rotated with respect to the X axis. A Ly measurement step of measuring the intensity of light received by the second light detection means in a state where the angle is 90 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis;
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is set to 0 ° with respect to the X axis, and the speed of the second wave plate is set. The intensity of light received by the second photodetecting means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. K00 measurement step for measuring,
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the speed of the second wave plate is increased. The intensity of light received by the second photodetecting means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 0 ° with respect to the X axis. A K10 measurement step for measuring,
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is set to 0 ° with respect to the X axis, and the speed of the second wave plate is set. The intensity of light received by the second photodetecting means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. K01 measurement step for measuring,
The sample is disposed between the second polarizing plate and the second wave plate on the optical path, the polarization axis of the second polarizing plate is 90 ° with respect to the X axis, and the speed of the second wave plate is increased. The intensity of light received by the second photodetecting means in a state where the rotation angle with respect to the X axis is 45 ° and the polarization axis of the third polarizing plate is 90 ° with respect to the X axis. A K11 measurement step for measuring,
Circular dichroism measuring method having
特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記S02計測ステップは、
前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うLx1測定ステップと、
前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うLy1測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN10測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN01測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN11測定ステップと、
を有し、
前記S20計測ステップは、
前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うLx2測定ステップと、
前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うLy2測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK10測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK01測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK11測定ステップと、
を有する請求項1記載の円二色性計測方法。
A light source that emits light of a specific wavelength, a first polarizing plate that can rotate a polarization axis that takes out light emitted from the light source and takes out linearly polarized light, and linearly polarized light extracted from the first polarizing plate. When the wavelength of light incident from the first light source is λ, the phase difference between two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other is output as ¼λ. When light from one wavelength plate and the first wavelength plate is incident and the wavelength of the light from the light source is λ, two polarization components having a vibration surface different from the vibration surface of the incident light and orthogonal to each other. A second wave plate that emits light with a phase difference of 1 / 4λ between the second wave plate, a second polarizing plate that can rotate a polarization axis that takes out light from the second wave plate and takes out linearly polarized light, and a second polarizing plate A light detection means for detecting the light emitted by converting the emitted light into an electrical signal. In location, the optical axis of light emitted from the light source is Z axis, the two axes orthogonal to the Z axis, when the X-axis and Y-axis respectively,
The S02 measuring step includes
The sample is removed from the optical path of the light from the light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is The light detection is performed in a state where the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0 ° and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. An Lx1 measurement step for measuring the intensity of light received by the means;
The sample is removed from the optical path of light from the light source, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 90 °, the rotation angle of the second wavelength plate with respect to the X axis is 90 °, and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis. A Ly1 measuring step for measuring the intensity of light received by the means;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0 °, and the polarization axis of the second polarizing plate is N00 measurement step for measuring the intensity of light received by the light detection means in a state of 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0 °, and the polarization axis of the second polarizing plate is An N10 measurement step for measuring the intensity of light received by the light detection means in a state of 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 90 °, and the polarization axis of the second polarizing plate is A N01 measurement step for measuring the intensity of light received by the light detection means in a state of 90 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 90 °, and the polarization axis of the second polarizing plate is An N11 measurement step of measuring the intensity of light received by the light detection means in a state of 90 ° with respect to the X axis;
Have
The S20 measurement step includes
The sample is removed from the optical path of the light from the light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is The light detection is performed in a state where the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0 ° and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. An Lx2 measurement step for measuring the intensity of light received by the means;
The sample is removed from the optical path of light from the light source, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, and the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 90 °, the rotation angle of the second wavelength plate with respect to the X axis is 90 °, and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis. A Ly2 measurement step for measuring the intensity of light received by the means;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 45 °, and the polarization axis of the second polarizing plate is A K00 measurement step for measuring the intensity of light received by the light detection means in a state of 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 90 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 45 °, and the optical axis of the second polarizing plate is A K10 measurement step of measuring the intensity of light received by the light detection means in a state of 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 0 ° with respect to the X axis, The rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 45 °, and the polarization axis of the second polarizing plate is A K01 measurement step for measuring the intensity of light received by the light detection means in a state of 90 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the polarization axis of the first polarizing plate is 90 ° with respect to the X axis, The rotation angle with respect to the X axis about the fast axis of the first wave plate is 90 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 45 °, and the polarization axis of the second polarizing plate is A K11 measurement step for measuring the intensity of light received by the light detection means in a state of 90 ° with respect to the X axis;
The circular dichroism measurement method according to claim 1, wherein:
特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差を時間と共に変化させて出射する第1位相変調素子と、前記第1位相変調素子からの光を入射し、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差を時間と共に変化させて出射する第2位相変調素子と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記S02計測ステップは、
前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光源から出射される光信号のうちのDC成分の強度の計測を行うLx1測定ステップと、
前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光のうちのDC成分の強度の計測を行うLy1測定ステップと、
前記試料を前記光源からの光の光路上の前記第1位相変調素子と前記第2位相変調素子との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を行い、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのsin成分の強度の計測を行うN00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1位相変調素子と前記第2位相変調素子との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を行い、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光のうちのsin成分の強度の計測を行うN01測定ステップと、
を有し、
前記S20計測ステップは、
前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのDC成分の強度の計測を行うLx2測定ステップと、
前記試料を前記光源からの光の光路上から外し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を停止し、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのDC成分の強度の計測を行うLy2測定ステップと、
前記試料を前記光源からの光の光路上の前記第1位相変調素子と前記第2位相変調素子との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を行い、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのsin成分の強度の計測を行うK00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1位相変調素子と前記第2位相変調素子との間に配置し、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1位相変調素子による位相変調を停止し、第2位相変調素子による位相変調を行い、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光のうちのsin成分の強度の計測を行うK10測定ステップと、
を有する請求項1記載の円二色性計測方法。
A light source that emits light of a specific wavelength, a first polarizing plate that can rotate a polarization axis that takes out light emitted from the light source and takes out linearly polarized light, and linearly polarized light extracted from the first polarizing plate. A first phase modulation element that is incident and generates a phase difference with respect to polarized light in a vertical direction and a horizontal direction perpendicular to the incident light, and changes the phase difference with time to emit, and the first phase A second phase modulation element that receives light from the modulation element, generates a phase difference with respect to polarized light in the vertical direction and the horizontal direction perpendicular to the incident light, and emits the phase difference with time. And a second polarizing plate capable of rotating the polarization axis that takes out light from the second wave plate and takes out linearly polarized light, and light detection for detecting light emitted from the second polarizing plate by converting it into an electrical signal And an optical axis of light emitted from the light source A Z-axis, the two axes orthogonal to the Z axis, when the X-axis and Y-axis respectively,
The S02 measuring step includes
The sample is removed from the optical path of the light from the light source, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, phase modulation by the first phase modulation element is stopped, and second phase modulation is performed. Lx1 for measuring the intensity of the DC component of the optical signal emitted from the light source in a state where the phase modulation by the element is stopped and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis Measuring steps;
The sample is removed from the optical path of the light from the light source, the polarization axis of the first polarizing plate is set to 90 ° with respect to the X axis, phase modulation by the first phase modulation element is stopped, and second phase modulation is performed Phase modulation by the element is stopped, and the intensity of the DC component of the light received by the light detection means is measured in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis. A Ly1 measurement step;
The sample is disposed between the first phase modulation element and the second phase modulation element on an optical path of light from the light source, and a polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis. The light detection is performed with the phase modulation by the first phase modulation element, the phase modulation by the second phase modulation element being stopped, and the polarization axis of the second polarizing plate being 0 ° with respect to the X axis. A N00 measuring step for measuring the intensity of the sin component of the light received by the means;
The sample is disposed between the first phase modulation element and the second phase modulation element on an optical path of light from the light source, and a polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis. The light detection is performed in a state where the phase modulation by the first phase modulation element is performed, the phase modulation by the second phase modulation element is stopped, and the polarization axis of the second polarizing plate is 90 ° with respect to the X axis. A N01 measurement step for measuring the intensity of the sin component of the light received by the means;
Have
The S20 measurement step includes
The sample is removed from the optical path of the light from the light source, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, phase modulation by the first phase modulation element is stopped, and second phase modulation is performed. The phase modulation by the element is stopped, and the intensity of the DC component of the light received by the light detection means is measured in a state where the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. Lx2 measurement step;
The sample is removed from the optical path of the light from the light source, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, phase modulation by the first phase modulation element is stopped, and second phase modulation is performed. The phase modulation by the element is stopped, and the intensity of the DC component of the light received by the light detection means is measured in a state where the polarization axis of the second polarizing plate is 0 ° with respect to the X axis. Ly2 measurement step;
The sample is disposed between the first phase modulation element and the second phase modulation element on an optical path of light from the light source, and a polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis. The light detection is performed in a state where phase modulation by the first phase modulation element is stopped, phase modulation is performed by the second phase modulation element, and a polarization axis of the second polarizing plate is set to 0 ° with respect to the X axis. A K00 measuring step for measuring the intensity of the sin component of the light received by the means;
The sample is disposed between the first phase modulation element and the second phase modulation element on the optical path of light from the light source, and the polarization axis of the first polarizing plate is 90 ° with respect to the X axis. The light detection is performed in a state where phase modulation by the first phase modulation element is stopped, phase modulation is performed by the second phase modulation element, and a polarization axis of the second polarizing plate is set to 0 ° with respect to the X axis. A K10 measurement step for measuring the intensity of the sin component of the light received by the means;
The circular dichroism measurement method according to claim 1, wherein:
特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、前記光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記試料を前記光源からの光の光路上から外し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うL1測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して90°とし、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN10測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN01測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して90°とし、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN11測定ステップと、
を有し、
前記S20計測ステップは、
前記試料を前記光源からの光の光路上から外し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うL2測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して90°とし、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK10測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して0°とし、前記第1偏光板の偏光軸を前記X軸に対して0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK01測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記光源を前記X軸に対して90°とし、前記第1偏光板の偏光軸を前記X軸に対して90°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK11測定ステップと、
を有する請求項1記載の円二色性計測方法。
A light source that emits light of a specific wavelength, a first polarizing plate that can rotate a polarization axis that takes out light emitted from the light source and takes out linearly polarized light, and linearly polarized light extracted from the first polarizing plate. A first wavelength that is incident and is emitted with a phase difference between two polarization components orthogonal to each other having a vibration plane different from the vibration plane of the incident light when the wavelength of the light from the light source is λ. When light from the plate and the first wave plate is incident and the wavelength of the light from the light source is λ, the vibration plane of the incident light is different from that of the two polarization components orthogonal to each other. A second wave plate that emits with a phase difference of ¼λ, a second polarizing plate that can rotate the polarization axis that takes out light from the second wave plate and takes out linearly polarized light, and is emitted from the second polarizing plate. And a light detection means for converting the detected light into an electrical signal for detection. Fraud and mitigating risk optical axis of light emitted from the light source is Z axis, the two axes orthogonal to the Z axis, when the X-axis and Y-axis respectively,
The sample is removed from the optical path of light from the light source, the light source is set to 0 ° with respect to the X axis, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, and the first wavelength The rotation angle with respect to the X axis with respect to the fast axis of the plate is 0 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 0 °, and the polarization axis of the second polarizing plate is the X axis. L1 measurement step for measuring the intensity of light received by the light detection means in a state of 0 ° with respect to
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is set to 0 ° with respect to the X axis, and the polarization of the first polarizing plate An axis is 0 ° with respect to the X axis, a rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, and a rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is N00 measurement step of measuring the intensity of light received by the light detection means in a state where the second polarizing plate has a polarization axis of 0 ° with respect to the X axis,
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is 90 ° with respect to the X axis, and the polarization of the first polarizing plate The axis is 90 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is N10 measurement step of measuring the intensity of light received by the light detection means in a state in which the light axis is 0 ° and the polarization axis of the second polarizing plate is 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is set to 0 ° with respect to the X axis, and the polarization of the first polarizing plate An axis is 0 ° with respect to the X axis, a rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, and a rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is N01 measurement step of measuring the intensity of light received by the light detection means in a state of 90 ° and the polarization axis of the second polarizing plate being 90 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is 90 ° with respect to the X axis, and the polarization of the first polarizing plate The axis is 90 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 45 °, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is N11 measurement step of measuring the intensity of light received by the light detection means in a state of 90 ° and the polarization axis of the second polarizing plate being 90 ° with respect to the X axis;
Have
The S20 measurement step includes
The sample is removed from the optical path of light from the light source, the light source is set to 0 ° with respect to the X axis, the polarization axis of the first polarizing plate is set to 0 ° with respect to the X axis, and the first wavelength The rotation angle with respect to the X axis with respect to the fast axis of the plate is 0 °, the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is 45 °, and the polarization axis of the second polarizing plate is the X axis. L2 measurement step for measuring the intensity of light received by the light detection means in a state of 0 ° with respect to
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is set to 0 ° with respect to the X axis, and the polarization of the first polarizing plate An axis is 0 ° with respect to the X axis, a rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, and a rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is A K00 measurement step of measuring the intensity of light received by the light detection means in a state of 45 ° and the polarization axis of the second polarizing plate being 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is 90 ° with respect to the X axis, and the polarization of the first polarizing plate The axis is 90 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 90 °, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is A K10 measurement step of measuring the intensity of light received by the light detection means in a state of 45 ° and the optical axis of the second polarizing plate being 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is set to 0 ° with respect to the X axis, and the polarization of the first polarizing plate An axis is 0 ° with respect to the X axis, a rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, and a rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is A K01 measurement step of measuring the intensity of light received by the light detection means in a state of 45 ° and the polarization axis of the second polarizing plate being 90 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, the light source is 90 ° with respect to the X axis, and the polarization of the first polarizing plate The axis is 90 ° with respect to the X axis, the rotation angle with respect to the X axis with respect to the fast axis of the first wave plate is 90 °, and the rotation angle with respect to the X axis with respect to the fast axis of the second wave plate is A K11 measurement step of measuring the intensity of light received by the light detection means in a state of 45 ° and a polarization axis of the second polarizing plate being 90 ° with respect to the X axis;
The circular dichroism measurement method according to claim 1, wherein:
第1の方向の直線偏光である第1直線偏光を出射する偏光光源と、前記偏光光源からの前記第1直線偏光を入射し、当該第1直線偏光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/2λとして出射する1/2λ波長板と、前記1/2λ波長板から出射された光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記試料を前記光源からの光の光路上から外し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うL1測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うN10測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN01測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うN11測定ステップと、
を有し、
前記S20計測ステップは、
前記試料を前記光源からの光の光路上から外し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うL1測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して0°とした状態で、前記光検出手段において受光される光の強度の計測を行うK10測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第1波長板の速軸についての前記X軸に対する回転角を0°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK01測定ステップと、
前記試料を前記光源からの光の光路上の前記第1波長板と前記第2波長板との間に配置し、前記1/2λ波長板の前記第1波長板の速軸についての前記X軸に対する回転角を45°とし、前記第1波長板の速軸についての前記X軸に対する回転角を90°とし、前記第2波長板の速軸についての前記X軸に対する回転角を45°とし、前記第2偏光板の偏光軸を前記X軸に対して90°とした状態で、前記光検出手段において受光される光の強度の計測を行うK11測定ステップと、
を有する請求項1記載の円二色性計測方法。
When a polarized light source that emits first linearly polarized light that is linearly polarized light in the first direction and the first linearly polarized light from the polarized light source are incident and the wavelength of the first linearly polarized light is λ, A 1 / 2λ wavelength plate that emits a phase difference between two polarization components that have a vibration surface different from the vibration surface and are orthogonal to each other, and a light emitted from the 1 / 2λ wavelength plate is incident, A first wavelength plate that emits a phase difference between two polarized light components having a vibration plane different from the vibration plane of incident light and orthogonal to each other when the wavelength of light from the first light source is λ. And when the light from the first wave plate is incident and the wavelength of the light from the first light source is λ, between the two polarization components orthogonal to each other having a vibration plane different from the vibration plane of the incident light A second wave plate that emits with a phase difference of 1 / 4λ, and light from the second wave plate In a measuring apparatus comprising: a second polarizing plate capable of rotating a polarization axis that takes out linearly polarized light upon incidence; and light detection means that detects light converted from the second polarizing plate by converting it into an electrical signal. When the optical axis of the light emitted from the light source is the Z axis and the two axes orthogonal to the Z axis are the X axis and the Y axis, respectively,
The sample is removed from the optical path of light from the light source, the rotation angle of the 1 / 2λ wave plate with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, and the fast axis of the first wave plate The rotation angle of the second polarizer with respect to the X axis is 0 °, the fast axis of the second wave plate is 0 ° with respect to the X axis, and the polarization axis of the second polarizing plate is 0 with respect to the X axis. An L1 measuring step for measuring the intensity of light received by the light detection means in a state of °;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X axis about the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 0 °, N00 measuring step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X axis about the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 0 °, N10 measurement step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X axis about the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 90 °, N01 measurement step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X axis about the fast axis of the first wave plate is 45 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 90 °, N11 measurement step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis;
Have
The S20 measurement step includes
The sample is removed from the optical path of light from the light source, the rotation angle of the 1 / 2λ wave plate with respect to the X axis with respect to the fast axis of the first wave plate is 0 °, and the fast axis of the first wave plate The rotation angle of the second polarizer with respect to the X axis is 0 °, the fast axis of the second wave plate is 0 ° with respect to the X axis, and the polarization axis of the second polarizing plate is 0 with respect to the X axis. An L1 measuring step for measuring the intensity of light received by the light detection means in a state of °;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X axis about the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 45 °, A K00 measurement step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X axis about the fast axis of the first wave plate is 90 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 45 °, A K10 measurement step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 0 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X axis about the fast axis of the first wave plate is 0 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 45 °, A K01 measurement step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis;
The sample is disposed between the first wave plate and the second wave plate on the optical path of light from the light source, and the X axis about the fast axis of the first wave plate of the 1 / 2λ wave plate The rotation angle with respect to the X axis about the fast axis of the first wave plate is 90 °, the rotation angle with respect to the X axis about the fast axis of the second wave plate is 45 °, A K11 measurement step of measuring the intensity of light received by the light detection means in a state where the polarization axis of the second polarizing plate is 90 ° with respect to the X axis;
The circular dichroism measurement method according to claim 1, wherein:
第1の方向の直線偏光である第1直線偏光を出射する偏光光源と、前記偏光光源からの前記第1直線偏光を入射し、当該第1直線偏光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を変更して出射する第1可変波長板と、前記第1可変波長板から出射されて、試料により透過された透過光を入射し、当該透過光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を変更して出射する第2可変波長板と、前記第2可変波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、を備える計測装置において、前記光源から出射される光の光軸をZ軸とし、前記Z軸に対して直交する2つの軸を、それぞれX軸及びY軸としたときに、
前記S02計測ステップは、
前記円二色性測定装置において、前記第1の方向及び前記第2の方向を固定した状態で、
前記試料を前記偏光光源からの光の光路上から外し、前記第1可変波長板において、速軸のX軸に対する回転角を0°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を0°とし、前記透過光の波長をλとしたとき前記位相差を1/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うL1測定ステップと、
前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を0°とし、前記透過光の波長をλとしたとき前記位相差を1/2λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うN00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を3/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を0°とし、前記透過光の波長をλとしたとき前記位相差を1/2λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うN10測定ステップと、
前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を1/2λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うN01測定ステップと、
前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を3/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を1/2λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うN11測定ステップと、
を有し、
前記S20計測ステップは、
前記円二色性測定装置において、前記第1の方向及び前記第2の方向を固定した状態で、
前記試料を前記偏光光源からの光の光路上から外し、前記第1可変波長板において、速軸のX軸に対する回転角を0°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/4λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を0°とし、前記透過光の波長をλとしたとき前記位相差を1/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うL2測定ステップと、
前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を0°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/2λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を1/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うK00測定ステップと、
前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/2λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を1/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うK10測定ステップと、
前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を0°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/2λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を3/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うK01測定ステップと、
前記試料を前記光源からの光の光路上の前記第1可変波長板と前記第2可変波長板との間に配置し、前記第1可変波長板において、速軸のX軸に対する回転角を45°とし、前記第1直線偏光の波長をλとしたとき前記位相差を1/2λとして出射すると共に、前記第2可変波長板において、速軸のX軸に対する回転角を45°とし、前記透過光の波長をλとしたとき前記位相差を3/4λとして出射する状態で、前記光検出手段において受光される光の強度の計測を行うK11測定ステップと、
を有する請求項1記載の円二色性計測方法。
A polarized light source that emits first linearly polarized light that is linearly polarized light in a first direction and the first linearly polarized light from the polarized light source are incident on each other and have vibration surfaces different from the vibration surface of the first linearly polarized light. A first variable wavelength plate that emits by changing the phase difference between two orthogonal polarization components, and transmitted light that is emitted from the first variable wavelength plate and transmitted by the sample is incident. A second variable wavelength plate that emits light by changing the phase difference between two polarization components that have a vibration surface different from the vibration surface and are orthogonal to each other, and light that is emitted from the second variable wavelength plate is incident and straight In a measuring device comprising: a second polarizing plate capable of rotating a polarization axis for extracting polarized light; and a light detecting means for detecting light converted from the second polarizing plate by converting it into an electrical signal. The optical axis of the light to be transmitted is the Z axis and is orthogonal to the Z axis The two axes that, when the X-axis and Y-axis respectively,
The S02 measuring step includes
In the circular dichroism measuring device, with the first direction and the second direction fixed,
When the sample is removed from the optical path of light from the polarized light source, the rotation angle of the fast axis with respect to the X axis is 0 °, and the wavelength of the first linearly polarized light is λ in the first variable wavelength plate. The phase difference is ¼λ, and the second variable wavelength plate emits the phase difference as ¼λ when the rotation angle of the fast axis with respect to the X axis is 0 ° and the wavelength of the transmitted light is λ. An L1 measurement step for measuring the intensity of light received by the light detection means in a state of
The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 45 in the first variable wavelength plate. When the wavelength of the first linearly polarized light is λ, the phase difference is ¼λ, and the second variable wavelength plate has a rotation angle of 0 ° with respect to the X axis of the fast axis, and the transmission N00 measuring step for measuring the intensity of light received by the light detection means in a state where the phase difference is 1 / 2λ when the wavelength of light is λ,
The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 45 in the first variable wavelength plate. And the phase difference is 3 / 4λ when the wavelength of the first linearly polarized light is λ, and the rotation angle of the fast axis with respect to the X axis is 0 ° in the second variable wavelength plate. N10 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is 1 / 2λ when the wavelength of light is λ,
The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 45 in the first variable wavelength plate. And when the wavelength of the first linearly polarized light is λ, the phase difference is ¼λ, and the rotation angle of the fast axis with respect to the X axis is 45 ° in the second variable wavelength plate. N01 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is 1 / 2λ when the wavelength of light is λ,
The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 45 in the first variable wavelength plate. And the phase difference is 3 / 4λ when the wavelength of the first linearly polarized light is λ, and the rotation angle of the fast axis with respect to the X-axis is 45 ° in the second variable wavelength plate. N11 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is 1 / 2λ when the wavelength of light is λ,
Have
The S20 measurement step includes
In the circular dichroism measuring device, with the first direction and the second direction fixed,
When the sample is removed from the optical path of light from the polarized light source, the rotation angle of the fast axis with respect to the X axis is 0 °, and the wavelength of the first linearly polarized light is λ in the first variable wavelength plate. The phase difference is ¼λ, and the second variable wavelength plate emits the phase difference as ¼λ when the rotation angle of the fast axis with respect to the X axis is 0 ° and the wavelength of the transmitted light is λ. An L2 measuring step for measuring the intensity of light received by the light detection means in a state of
The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 0 in the first variable wavelength plate. When the wavelength of the first linearly polarized light is λ, the phase difference is 1 / 2λ, and the rotation angle of the fast axis with respect to the X axis is 45 ° in the second variable wavelength plate. A K00 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is ¼λ when the wavelength of light is λ;
The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 45 in the first variable wavelength plate. When the wavelength of the first linearly polarized light is λ, the phase difference is 1 / 2λ, and the rotation angle of the fast axis with respect to the X axis is 45 ° in the second variable wavelength plate. A K10 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is ¼λ when the wavelength of light is λ,
The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 0 in the first variable wavelength plate. When the wavelength of the first linearly polarized light is λ, the phase difference is 1 / 2λ, and the rotation angle of the fast axis with respect to the X axis is 45 ° in the second variable wavelength plate. A K01 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is 3 / 4λ when the wavelength of light is λ;
The sample is disposed between the first variable wavelength plate and the second variable wavelength plate on the optical path of light from the light source, and the rotation angle of the fast axis with respect to the X axis is 45 in the first variable wavelength plate. When the wavelength of the first linearly polarized light is λ, the phase difference is 1 / 2λ, and the rotation angle of the fast axis with respect to the X axis is 45 ° in the second variable wavelength plate. A K11 measurement step of measuring the intensity of light received by the light detection means in a state where the phase difference is 3 / 4λ when the wavelength of light is λ;
The circular dichroism measurement method according to claim 1, wherein:
測定対象の試料に係るミュラー行列を下記の数式(2)
Figure 2015075329

としたときに、行列要素S02を計測するS02計測手段と、
上記の数式(2)における行列要素S20を計測するS20計測手段と、
前記S02計測手段において得られた行列要素S02と、前記S20計測手段において得られた行列要素S20とから円二色性を算出する算出手段と、
を有し、
前記S02計測手段において、前記行列要素S02の計測に用いられる光源の偏光特性を除去する処理を行い、
前記S20計測手段において、前記行列要素S20の計測に用いられる光源の偏光特性を除去する処理を行うことを特徴とする円二色性計測装置。
The Mueller matrix related to the sample to be measured is expressed by the following formula (2)
Figure 2015075329

S02 measuring means for measuring the matrix element S02,
S20 measuring means for measuring the matrix element S20 in the above mathematical formula (2);
Calculating means for calculating circular dichroism from the matrix element S02 obtained by the S02 measuring means and the matrix element S20 obtained by the S20 measuring means;
Have
The S02 measuring means performs a process of removing the polarization characteristics of the light source used for the measurement of the matrix element S02,
The circular dichroism measuring apparatus characterized in that the S20 measuring means performs a process of removing a polarization characteristic of a light source used for measurement of the matrix element S20.
前記S02計測手段を構成する第1計測装置は、
特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、
を備え、
前記S20計測手段を構成する第2計測装置は、
前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第2光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、
を備えることを特徴とする請求項10記載の円二色性計測装置。
The first measuring device constituting the S02 measuring means is:
The first light source that emits light of a specific wavelength, the first polarizing plate that can rotate the polarization axis that takes out the light emitted from the first light source and takes out linearly polarized light, and the first polarizing plate. When the incident linearly polarized light is incident and the wavelength of the light from the first light source is λ, the phase difference between two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other is 1 /. A first wavelength plate that emits as 4λ, and first light detection means that converts light detected from the first wavelength plate into an electrical signal and detects the electrical signal,
With
The second measuring device constituting the S20 measuring means is
A second light source that emits light of the same wavelength as the first light source, a second polarizing plate that can rotate a polarization axis that takes out light emitted from the second light source and extracts linearly polarized light, and the second polarized light When the linearly polarized light extracted from the plate is incident and the wavelength of the light from the second light source is λ, the phase difference between the two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other Is emitted from the third polarizing plate, a second polarizing plate capable of rotating a polarization axis for taking out the linearly polarized light by entering the light emitted from the second wave plate, and the third polarizing plate. Second light detecting means for converting the detected light into an electrical signal and detecting it,
The circular dichroism measuring device according to claim 10, comprising:
前記S02計測手段を構成する第1計測装置は、
特定の波長の光を出射する第1光源と、前記第1光源から出射された光を入射しして直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取り出された直線偏光を入射して直線偏光を取り出す偏光軸を回転可能な第4偏光板と、前記第2偏光板において取出された直線偏光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板から出射された光を電気信号に変換して検出する第1光検出手段と、
を備え、
前記S20計測手段を構成する第2計測装置は、
前記第1光源と同じ波長の光を出射する第2光源と、前記第2光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板において取り出された直線偏光を入射し、前記第2光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第3偏光板と、前記第3偏光板から出射された光を電気信号に変換して検出する第2光検出手段と、
を備えることを特徴とする請求項10記載の円二色性計測装置。
The first measuring device constituting the S02 measuring means is:
The first light source that emits light of a specific wavelength, the first polarizing plate that can rotate the polarization axis that takes out the light emitted from the first light source and takes out linearly polarized light, and the first polarizing plate. A fourth polarizing plate capable of rotating the polarization axis for taking out the linearly polarized light and taking out the linearly polarized light, and the linearly polarized light extracted from the second polarizing plate are incident, and the wavelength of the light from the first light source is λ , The first wave plate that emits the phase difference between two polarization components that have a vibration plane different from the vibration plane of the incident light and are orthogonal to each other, and is emitted from the first wave plate. First light detection means for detecting light by converting light into an electrical signal;
With
The second measuring device constituting the S20 measuring means is
A second light source that emits light of the same wavelength as the first light source, a second polarizing plate that can rotate a polarization axis that takes out light emitted from the second light source and extracts linearly polarized light, and the second polarized light When the linearly polarized light extracted from the plate is incident and the wavelength of the light from the second light source is λ, the phase difference between the two polarization components having a vibration plane different from the vibration plane of the incident light and orthogonal to each other Is emitted from the third polarizing plate, a second polarizing plate capable of rotating a polarization axis for taking out the linearly polarized light by entering the light emitted from the second wave plate, and the third polarizing plate. Second light detecting means for converting the detected light into an electrical signal and detecting it,
The circular dichroism measuring device according to claim 10, comprising:
前記S02計測手段及び前記S20計測手段を構成する計測装置は、
特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、前記光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、
を備えることを特徴とする請求項10記載の円二色性計測装置。
The measuring devices constituting the S02 measuring means and the S20 measuring means are:
A light source that emits light of a specific wavelength, a first polarizing plate that can rotate a polarization axis that takes out light emitted from the light source and takes out linearly polarized light, and linearly polarized light extracted from the first polarizing plate. A first wavelength that is incident and emitted with a phase difference between two polarization components orthogonal to each other having a vibration plane different from the vibration plane of the incident light when the wavelength of the light from the light source is λ. When the light from the plate and the first wave plate is incident and the wavelength of the light from the first light source is λ, the two polarization components orthogonal to each other have a vibration plane different from the vibration plane of the incident light. A second wave plate that emits light with a phase difference of 1 / 4λ between the second wave plate, a second polarizing plate that can rotate a polarization axis that takes out light from the second wave plate and takes out linearly polarized light, and a second polarizing plate Photodetection means for converting the emitted light into an electrical signal for detection; and
The circular dichroism measuring device according to claim 10, comprising:
前記S02計測手段及び前記S20計測手段を構成する計測装置は、
特定の波長の光を出射する光源と、前記光源から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第1偏光板と、前記第1偏光板において取出された直線偏光を入射し、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差を時間と共に変化させて出射する第1位相変調素子と、前記第1位相変調素子からの光を入射し、入射光に対して垂直な、縦の方向と横の方向の偏光に対して位相差を生じ、この位相差を時間と共に変化させて出射する第2位相変調素子と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、
を備えることを特徴とする請求項10記載の円二色性計測装置。
The measuring devices constituting the S02 measuring means and the S20 measuring means are:
A light source that emits light of a specific wavelength, a first polarizing plate that can rotate a polarization axis that takes out light emitted from the light source and takes out linearly polarized light, and linearly polarized light extracted from the first polarizing plate. A first phase modulation element that is incident and generates a phase difference with respect to polarized light in a vertical direction and a horizontal direction perpendicular to the incident light, and changes the phase difference with time to emit, and the first phase A second phase modulation element that receives light from the modulation element, generates a phase difference with respect to polarized light in the vertical direction and the horizontal direction perpendicular to the incident light, and emits the phase difference with time. And a second polarizing plate capable of rotating the polarization axis that takes out light from the second wave plate and takes out linearly polarized light, and light detection for detecting light emitted from the second polarizing plate by converting it into an electrical signal Means,
The circular dichroism measuring device according to claim 10, comprising:
前記S02計測手段及び前記S20計測手段を構成する計測装置は、
第1の方向の直線偏光である第1直線偏光を出射する偏光光源と、前記偏光光源からの前記第1直線偏光を入射し、当該第1直線偏光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/2λとして出射する1/2λ波長板と、前記1/2λ波長板から出射された光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第1波長板と、前記第1波長板からの光を入射し、前記第1光源からの光の波長をλとしたとき、入射光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を1/4λとして出射する第2波長板と、前記第2波長板からの光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、
を備えることを特徴とする請求項10記載の円二色性計測装置。
The measuring devices constituting the S02 measuring means and the S20 measuring means are:
When a polarized light source that emits first linearly polarized light that is linearly polarized light in the first direction and the first linearly polarized light from the polarized light source are incident and the wavelength of the first linearly polarized light is λ, A 1 / 2λ wavelength plate that emits a phase difference between two polarization components that have a vibration surface different from the vibration surface and are orthogonal to each other, and a light emitted from the 1 / 2λ wavelength plate is incident, A first wavelength plate that emits a phase difference between two polarized light components having a vibration plane different from the vibration plane of incident light and orthogonal to each other when the wavelength of light from the first light source is λ. And when the light from the first wave plate is incident and the wavelength of the light from the first light source is λ, between the two polarization components orthogonal to each other having a vibration plane different from the vibration plane of the incident light A second wave plate that emits with a phase difference of 1 / 4λ, and light from the second wave plate A second polarizing plate capable of rotating a polarization axis that takes out linearly polarized light upon incidence, and light detection means for detecting light by converting the light emitted from the second polarizing plate into an electrical signal;
The circular dichroism measuring device according to claim 10, comprising:
前記S02計測手段及び前記S20計測手段を構成する計測装置は、
第1の方向の直線偏光である第1直線偏光を出射する偏光光源と、前記偏光光源からの前記第1直線偏光を入射し、当該第1直線偏光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を変更して出射する第1可変波長板と、前記第1可変波長板から出射されて、試料により透過された透過光を入射し、当該透過光の振動面とは異なる振動面を持ち互いに直交する2つの偏光成分の間の位相差を変更して出射する第2可変波長板と、前記第2可変波長板から出射された光を入射して直線偏光を取り出す偏光軸を回転可能な第2偏光板と、前記第2偏光板から出射された光を電気信号に変換して検出する光検出手段と、
を備えることを特徴とする請求項10記載の円二色性計測装置。
The measuring devices constituting the S02 measuring means and the S20 measuring means are:
A polarized light source that emits first linearly polarized light that is linearly polarized light in a first direction and the first linearly polarized light from the polarized light source are incident on each other and have vibration surfaces different from the vibration surface of the first linearly polarized light. A first variable wavelength plate that emits by changing the phase difference between two orthogonal polarization components, and transmitted light that is emitted from the first variable wavelength plate and transmitted by the sample is incident. A second variable wavelength plate that emits light by changing the phase difference between two polarization components that have a vibration surface different from the vibration surface and are orthogonal to each other; A second polarizing plate capable of rotating a polarization axis for extracting polarized light; and a light detecting means for detecting light emitted from the second polarizing plate by converting it into an electrical signal;
The circular dichroism measuring device according to claim 10, comprising:
JP2013209345A 2013-10-04 2013-10-04 Circular dichroism measuring method and circular dichroic measuring device Active JP6239335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013209345A JP6239335B2 (en) 2013-10-04 2013-10-04 Circular dichroism measuring method and circular dichroic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013209345A JP6239335B2 (en) 2013-10-04 2013-10-04 Circular dichroism measuring method and circular dichroic measuring device

Publications (2)

Publication Number Publication Date
JP2015075329A true JP2015075329A (en) 2015-04-20
JP6239335B2 JP6239335B2 (en) 2017-11-29

Family

ID=53000304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013209345A Active JP6239335B2 (en) 2013-10-04 2013-10-04 Circular dichroism measuring method and circular dichroic measuring device

Country Status (1)

Country Link
JP (1) JP6239335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007024A (en) * 2016-07-01 2018-01-11 キヤノン株式会社 Control device, imaging device, imaging control method, program, and recording medium
JP2019120501A (en) * 2017-12-28 2019-07-22 日本ビジュアルサイエンス株式会社 Picture-taking system, image processing device, and image processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193049A (en) * 1985-02-08 1986-08-27 ザ リージエンツ オブ ザ ユニヴアーシテイ オブ カリフオルニア Virus identification device
US20120268740A1 (en) * 2010-07-22 2012-10-25 Phillip Walsh Methods and apparatus for vacuum ultraviolet (vuv) or shorter wavelength circular dichroism spectroscopy
JP2013015443A (en) * 2011-07-05 2013-01-24 Fujifilm Corp Method and device for measuring optical characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193049A (en) * 1985-02-08 1986-08-27 ザ リージエンツ オブ ザ ユニヴアーシテイ オブ カリフオルニア Virus identification device
US20120268740A1 (en) * 2010-07-22 2012-10-25 Phillip Walsh Methods and apparatus for vacuum ultraviolet (vuv) or shorter wavelength circular dichroism spectroscopy
JP2013015443A (en) * 2011-07-05 2013-01-24 Fujifilm Corp Method and device for measuring optical characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007024A (en) * 2016-07-01 2018-01-11 キヤノン株式会社 Control device, imaging device, imaging control method, program, and recording medium
JP2019120501A (en) * 2017-12-28 2019-07-22 日本ビジュアルサイエンス株式会社 Picture-taking system, image processing device, and image processing method
JP7142201B2 (en) 2017-12-28 2022-09-27 日本ビジュアルサイエンス株式会社 Imaging system, image processing device, and image processing method

Also Published As

Publication number Publication date
JP6239335B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
Soni et al. Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system
JP4926957B2 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
TW200925566A (en) Single-polarizer focused-beam ellipsometer
JP2014522986A5 (en)
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP6239336B2 (en) Circular dichroism measuring method and circular dichroic measuring device
JP6239335B2 (en) Circular dichroism measuring method and circular dichroic measuring device
Ju et al. Method for Mueller matrix acquisition based on a division-of-aperture simultaneous polarimetric imaging technique
JP6013102B2 (en) Circular dichroism measuring method and circular dichroic measuring device
Arteaga et al. Snapshot circular dichroism measurements
Madden et al. Mining the polarization-dependence of nonlinear optical measurements
JP5446644B2 (en) Bonding angle measuring device for elliptical polarizing plate
CN110631805A (en) Device and method for measuring performance of broadband wave plate by using AOTF monochromatic light
JP2007286011A (en) Device and method for measuring optical characteristics
Chen et al. Alternative method for measuring the phase retardation and fast axis of a wave plate
JP3940376B2 (en) Spectrometer for gel sample
JP6306438B2 (en) Circular dichroism measuring method and circular dichroic measuring device
Boulbry et al. Identification of error parameters and calibration of a double-crystal birefringent wave plate with a broadband spectral light source
CN113654996A (en) Device and method for measuring phase retardation of composite achromatic wave plate
Zhu et al. Design and analysis of a novel noncollinear acousto-optic tunable filter
JP5991230B2 (en) Phase difference measuring method and apparatus
TW200928348A (en) Device for synchronous measurement of optical rotation angle and phase delay and method thereof
Li et al. Ultracompact focal plane snapshot spectropolarimeter
Narra et al. Calibration of Spectropolarimetry Package for Visible Emission Line Coronagraph (VELC) on Board Aditya-L1 Mission.
JP2010271279A (en) Measuring apparatus and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171101

R150 Certificate of patent or registration of utility model

Ref document number: 6239335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150