JP2015075325A - Waste treatment facilities and thermal insulation method of duct collector in waste treatment facilities - Google Patents

Waste treatment facilities and thermal insulation method of duct collector in waste treatment facilities Download PDF

Info

Publication number
JP2015075325A
JP2015075325A JP2014141848A JP2014141848A JP2015075325A JP 2015075325 A JP2015075325 A JP 2015075325A JP 2014141848 A JP2014141848 A JP 2014141848A JP 2014141848 A JP2014141848 A JP 2014141848A JP 2015075325 A JP2015075325 A JP 2015075325A
Authority
JP
Japan
Prior art keywords
steam
boiler
heat
pressure
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014141848A
Other languages
Japanese (ja)
Other versions
JP5918810B2 (en
Inventor
公司 皆川
Koji Minagawa
公司 皆川
雄基 小野
Yuki Ono
雄基 小野
亮一 浅井
Ryoichi Asai
亮一 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2014141848A priority Critical patent/JP5918810B2/en
Publication of JP2015075325A publication Critical patent/JP2015075325A/en
Application granted granted Critical
Publication of JP5918810B2 publication Critical patent/JP5918810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide waste treatment facilities with a plurality of treatment systems, capable of efficient thermal insulation of a dust collector in an inactive treatment system.SOLUTION: Waste treatment facilities include: a first treatment system 10A that includes a first combustion furnace 12A, a first boiler 14A, and a first dust collector 16A; a second treatment system 10B that includes a second combustion furnace 12B, a second boiler 14B, and a second dust collector 16B; a steam receiving unit 30 receiving steam generated by the boiler 14A or 14B; thermal insulation units 40A, 40B, and 50 condensing the steam received by this steam receiving unit 30 and thermally insulating the dust collector 16A or 16B in the inactive treatment system 10A or 10B; and a turbine 24 converting energy of the steam to power while dropping a pressure of the steam generated by the boiler 14A or 14B, the steam receiving unit 30 receives the steam at the pressure that is dropped by the turbine 24 and that is higher than an atmospheric pressure.

Description

本発明は、ごみ等の廃棄物を燃焼させ、その燃焼により生成した排ガスを集塵処理してから排出するための廃棄物処理設備、及び、その集塵のための集塵装置を保温する方法に関するものである。   The present invention relates to a waste treatment facility for burning waste such as garbage, collecting the exhaust gas generated by the combustion, and then discharging the waste, and a method for keeping warm the dust collector for the dust collection. It is about.

一般に、ごみ等の廃棄物を燃焼させることにより処理する廃棄物処理設備は、当該廃棄物を燃焼させるための燃焼炉と、その燃焼により生成された排ガスからダストを除去するための集塵装置と、を備え、その集塵後のガスが外部に排出される。この設備では、運転停止中での集塵装置の保温が重要な課題となる。具体的に、前記燃焼炉の運転が停止されると、その下流側での集塵装置の内部の温度が低下し、これにより低温腐食や使用薬剤(例えば消石灰)の潮解が発生し易くなるため、運転停止中でも集塵装置の内部は比較的高い温度(例えば110°〜120°C)に保たれることが、望ましい。   In general, a waste treatment facility for treating waste such as waste by burning includes a combustion furnace for burning the waste, and a dust collector for removing dust from the exhaust gas generated by the combustion. The gas after dust collection is discharged to the outside. In this facility, it is important to keep the dust collector warm while the operation is stopped. Specifically, when the operation of the combustion furnace is stopped, the temperature inside the dust collector on the downstream side of the combustion furnace is lowered, and this tends to cause low temperature corrosion and deliquescence of chemicals used (for example, slaked lime). It is desirable that the inside of the dust collector be kept at a relatively high temperature (for example, 110 ° to 120 ° C.) even when the operation is stopped.

従来、このような運転停止中での集塵装置の保温を行う装置として、特許文献1に記載されるように、当該集塵装置に空気を通しながら当該空気を循環させる手段と、その循環する空気を加熱するヒータと、を備えたものが知られている。しかし、この装置では集塵装置の保温のために大きな電力が消費されるという問題がある。   Conventionally, as described in Patent Document 1, as a device for maintaining the temperature of the dust collector during such operation stop, a means for circulating the air while passing the air through the dust collector, and the circulation What is provided with the heater which heats air is known. However, this apparatus has a problem that a large amount of power is consumed to keep the dust collector warm.

そこで、特許文献2には、前記燃焼炉及び前記集塵装置をそれぞれ含む複数の廃棄物処理系統を備えた設備において、停止中の系統に含まれる集塵装置に稼動中の系統を流れる排ガスの熱エネルギーを供給することにより、その停止中の系統に含まれる集塵装置を保温する技術が開示されている。具体的には、稼動中の系統を流れる排ガスの一部が停止中の系統に含まれる集塵装置に直接供給され、あるいは、停止中の系統に含まれる集塵装置を通してガスを循環させてこの循環ガスと稼動中の系統を流れる排ガスとの間で熱交換が行われる。   Therefore, in Patent Document 2, in the equipment having a plurality of waste treatment systems each including the combustion furnace and the dust collector, the exhaust gas flowing through the operating system to the dust collector included in the stopped system is disclosed. There is disclosed a technique for keeping a dust collector included in a stopped system by supplying thermal energy. Specifically, a part of the exhaust gas flowing through the operating system is supplied directly to the dust collector included in the stopped system, or the gas is circulated through the dust collector included in the stopped system. Heat exchange is performed between the circulating gas and the exhaust gas flowing through the operating system.

特許第3209913号公報Japanese Patent No. 3209913 特開2012−42155号公報JP 2012-42155 A

前記特許文献2に記載される技術では、稼動中の処理系統を流れる排ガスと停止中の処理系統における集塵装置(またはこの集塵装置を流れる熱媒体)との間で熱交換を行わせるために、大型の熱交換器及び大型の排ガス流通用配管が必要であり、これらによる設備全体の大型化は避けられない。しかも、前記熱交換器における熱交換で排ガスの温度が下がると当該排ガスの腐食性が高くなることから、これに起因する配管の腐食(前記熱交換器の下流側の配管の腐食)を回避するためには前記熱交換器の排ガスの出口温度をある程度高く維持しなければならない。つまり当該出口温度の降下に著しい制約がある。このような出口温度の著しい制約の下で、前記集塵装置の保温に十分な熱交換を行うためには、前記熱交換器における排ガスの流量をさらに大きくしなければならず、このことは熱交換器及び排ガス用配管のさらなる大型化につながる。   In the technique described in Patent Document 2, heat exchange is performed between the exhaust gas flowing through the operating processing system and the dust collector (or the heat medium flowing through the dust collector) in the stopped processing system. In addition, a large heat exchanger and a large exhaust gas distribution pipe are required, and the increase in the size of the entire equipment is unavoidable. In addition, when the temperature of the exhaust gas decreases due to heat exchange in the heat exchanger, the corrosiveness of the exhaust gas increases, and therefore, corrosion of the pipe (corrosion of the pipe on the downstream side of the heat exchanger) due to this is avoided. For this purpose, the exhaust gas outlet temperature of the heat exchanger must be kept high to some extent. In other words, there are significant restrictions on the drop in outlet temperature. In order to perform heat exchange sufficient to keep the dust collector warm under such severe restrictions on the outlet temperature, the flow rate of exhaust gas in the heat exchanger must be further increased. This leads to further enlargement of the exchanger and exhaust gas piping.

本発明は、このような事情に鑑み、複数の処理系統を備えた廃棄物処理設備であって、設備の大型化を抑えながら、停止中の処理系統における集塵装置の保温を効率良く行うことが可能なもの、及び、当該集塵装置を保温するための方法、を提供することを目的とする。   In view of such circumstances, the present invention is a waste treatment facility provided with a plurality of treatment systems, and efficiently keeps the temperature of the dust collector in the stopped treatment system while suppressing an increase in the size of the facility. It is an object of the present invention to provide a method capable of maintaining the temperature of the dust collecting device.

前記課題を解決するための手段として、本発明者らは、燃焼炉の後段に設けられるボイラに着目した。このボイラは、燃焼炉から排出される排ガスの熱によって水を沸騰させることにより、その気化潜熱を利用して当該排ガスの温度を効果的に下げてその後段の集塵装置を有効に保護することが可能なものであるが、さらに、当該ボイラで生成される蒸気の凝縮熱を利用することにより、停止中の処理系統における集塵装置の保温を比較的小規模な設備で効率よく行うことが可能になる。   As means for solving the above-mentioned problems, the present inventors paid attention to a boiler provided at the rear stage of the combustion furnace. In this boiler, water is boiled by the heat of the exhaust gas discharged from the combustion furnace, and the temperature of the exhaust gas is effectively lowered by using the latent heat of vaporization to effectively protect the subsequent dust collector. In addition, by using the heat of condensation of the steam generated in the boiler, it is possible to efficiently keep the temperature of the dust collector in the stopped processing system with relatively small equipment. It becomes possible.

本発明は、かかる観点に基いてなされたものであり、前記課題を解決することが可能な廃棄物処理設備を提供する。この設備は、廃棄物を燃焼させる第1燃焼炉、この第1燃焼炉での燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第1ボイラ、及びこの第1ボイラにより冷却された排ガス中のダストを除去する第1集塵装置を含む第1処理系統と、廃棄物を燃焼させる第2燃焼炉、この第2燃焼炉での燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第2ボイラ、及びこの第2ボイラにより冷却された排ガス中のダストを除去する第2集塵装置を含む第2処理系統と、前記第1ボイラ及び前記第2ボイラでそれぞれ生成された蒸気を受け入れる蒸気受入れ部と、この蒸気受入れ部が受け入れた蒸気を凝縮させ、その凝縮熱により、前記第1及び第2処理系統のうち停止中の処理系統における集塵装置の保温を行う保温部と、を備える。   This invention is made | formed based on this viewpoint, and provides the waste treatment facility which can solve the said subject. This facility includes a first combustion furnace for burning waste, a first boiler for generating steam by boiling water with heat of exhaust gas generated by combustion in the first combustion furnace, and cooling by the first boiler A first treatment system including a first dust collector for removing dust in the exhaust gas generated, a second combustion furnace for burning waste, and water from the heat of the exhaust gas generated by combustion in the second combustion furnace A second boiler for generating steam by boiling, a second treatment system including a second dust collector for removing dust in the exhaust gas cooled by the second boiler, and the first boiler and the second boiler. A steam receiving unit that receives each generated steam, and the steam received by the steam receiving unit is condensed, and the heat of condensation is retained by the heat of condensation in the stopped processing system of the first and second processing systems. Includes a heat insulation unit that performs, the.

なお、前記保温部について「その凝縮熱により、…保温を行う」とは、凝縮熱のみを用いて保温を行うものに限定する趣旨ではなく、少なくとも凝縮熱を利用して保温を行うものを広く含む趣旨である。従って、前記保温部は蒸気の凝縮熱(すなわち潜熱)と顕熱の双方を利用するものであってもよい。   In addition, with respect to the heat retaining unit, “the heat is retained by the heat of condensation” is not intended to be limited to the heat retaining only using the heat of condensation, and a wide range of materials that perform heat retaining at least using the heat of condensation. It is a purpose to include. Therefore, the heat retaining unit may utilize both the heat of condensation (that is, latent heat) of steam and sensible heat.

この設備によれば、前記第1ボイラ及び第2ボイラのうち稼動中の処理系統に属するボイラが生成する蒸気の凝縮熱すなわち潜熱を利用することにより、停止中の処理系統に属する集塵装置の加温を効率よく行うことができる。つまり、少ない蒸気流量で停止中の処理系統における集塵装置の加温に十分な熱交換を行うことが可能となる。従って、従来のように運転中の処理系統を流れる排ガスと集塵装置との間で熱交換を行う場合に比べ、小型の設備、例えば小流量仕様の熱交換器及び小径の配管、を用いて保温部を構成することができる。また、前記蒸気の温度が前記熱交換によって降下してもこれにより発生するのは水または湿り蒸気であり、低温化した排ガスに比べて腐食性はきわめて低い。   According to this facility, by using the condensation heat, that is, latent heat, of steam generated by the boiler belonging to the operating processing system of the first boiler and the second boiler, the dust collector belonging to the stopped processing system is used. Heating can be performed efficiently. That is, it is possible to perform heat exchange sufficient for heating the dust collector in the stopped processing system with a small steam flow rate. Therefore, compared to the conventional case where heat exchange is performed between the exhaust gas flowing through the processing system in operation and the dust collector, a small facility, for example, a heat exchanger with a small flow rate specification and a small-diameter pipe are used. A heat insulation part can be comprised. Further, even when the temperature of the steam drops due to the heat exchange, water or wet steam is generated due to this, and its corrosivity is extremely low as compared with exhaust gas whose temperature has been lowered.

本発明に係る廃棄物処理設備は、さらに、前記第1または第2ボイラで生成された蒸気の圧力を降下させながら当該蒸気のエネルギーを動力に変換するタービンを備え、前記蒸気受け入れ部は前記タービンによって圧力が降下した蒸気であって大気圧よりも高い圧力をもつ蒸気を受け入れるこの場合、当該蒸気は前記タービンの入口と出口との間の中段から抽出されるのが、よい。その抽出される蒸気の圧力の範囲としては、100°C以上の凝縮点を確保できる範囲が好ましく、例えばゲージ圧にして0.1MPa〜4MPa(より好ましくは0.2MPa〜1.2MPa)の範囲が好適である。 Waste disposal plant according to the present invention further example Bei the turbine the first or energy of the steam while lowering the pressure of the steam generated in the second boiler to convert the power, the vapor receiving part is the It accepts steam whose pressure has been lowered by the turbine and has a pressure higher than atmospheric pressure . In this case, the steam is preferably extracted from a middle stage between the inlet and the outlet of the turbine. The range of the pressure of the extracted steam is preferably a range in which a condensation point of 100 ° C. or higher can be secured, for example, a gauge pressure range of 0.1 MPa to 4 MPa (more preferably 0.2 MPa to 1.2 MPa). Is preferred.

このように、高圧の蒸気のもつエネルギーをまずタービンで動力に変換し、これにより圧力が降下した、つまり飽和蒸気圧に近づいた蒸気を凝縮させることで、当該蒸気から、動力(運動エネルギー)と、集塵装置の保温のための熱エネルギーと、の双方を効率よく回収することができる。   In this way, the energy of the high-pressure steam is first converted into power by the turbine, and by this condensing the steam whose pressure has dropped, that is, close to the saturated steam pressure, the power (kinetic energy) is converted from the steam. Both the thermal energy for heat retention of the dust collector can be efficiently recovered.

また本発明は、廃棄物を燃焼させる第1燃焼炉、この第1燃焼炉での燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第1ボイラ、及びこの第1ボイラにより冷却された排ガス中のダストを除去する第1集塵装置を含む第1処理系統と、廃棄物を燃焼させる第2燃焼炉、この第2燃焼炉での燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第2ボイラ、及びこの第2ボイラにより冷却された排ガス中のダストを除去する第2集塵装置を含む第2処理系統と、を備えた廃棄物処理設備における前記第1及び第2処理系統のうち運転が停止されている処理系統に属する集塵装置を保温対象としてこれを保温するための方法を提供する。この方法は、前記第1ボイラ及び前記第2ボイラのうち稼動している処理系統に属するボイラで生成された蒸気を凝縮させ、その凝縮熱により、前記第1及び第2処理系統のうち停止中の処理系統における集塵装置の保温を行うことを、含む。   The present invention also provides a first combustion furnace that burns waste, a first boiler that generates steam by boiling water with the heat of exhaust gas generated by combustion in the first combustion furnace, and the first boiler. A first treatment system including a first dust collector for removing dust in the cooled exhaust gas, a second combustion furnace for burning waste, and water generated by heat of the exhaust gas generated by combustion in the second combustion furnace And a second treatment system including a second dust collector for removing dust in the exhaust gas cooled by the second boiler. Provided is a method for keeping a dust collector belonging to a processing system of which operation is stopped among the first and second processing systems as a heat retaining object. This method condenses steam generated in a boiler belonging to an operating processing system among the first boiler and the second boiler, and is stopped in the first and second processing systems due to the heat of condensation. Insulating the dust collector in the processing system.

この方法では、前記第1又は第2ボイラによって生成された蒸気をタービンに導入することにより当該蒸気の圧力を降下させながら当該蒸気のエネルギーを動力に変換することをさらに含み、当該タービンによって圧力が降下した蒸気であって大気圧よりも高い圧力をもつ蒸気を当該タービンの入口と出口との間の中段から抽出してその抽出した蒸気を凝縮させる In this method, further comprising converting the raw made vapor by the first or second boiler energy of the steam while lowering the pressure of the steam by introducing the turbine power, the turbine The steam whose pressure has dropped by the above and having a pressure higher than the atmospheric pressure is extracted from the middle stage between the inlet and the outlet of the turbine, and the extracted steam is condensed .

このように、高圧の蒸気のもつエネルギーをまずタービンで動力に変換し、これにより圧力が降下した、つまり飽和蒸気圧に近づいた蒸気を凝縮させることで、当該蒸気から、動力(運動エネルギー)と、集塵装置の保温のための熱エネルギーと、の双方を効率よく回収することができる。   In this way, the energy of the high-pressure steam is first converted into power by the turbine, and by this condensing the steam whose pressure has dropped, that is, close to the saturated steam pressure, the power (kinetic energy) is converted from the steam. Both the thermal energy for heat retention of the dust collector can be efficiently recovered.

以上のように、本発明によれば、複数の処理系統を備えた廃棄物処理設備であって、設備の大型化を抑えながら、停止中の処理系統における集塵装置の保温を効率良く行うことが可能なもの、及び、当該集塵装置を保温するための方法、を提供することができる。   As described above, according to the present invention, a waste treatment facility provided with a plurality of treatment systems can efficiently retain the temperature of a dust collector in a stopped treatment system while suppressing an increase in the size of the facility. Can be provided, and a method for keeping the dust collector warm.

本発明の実施の形態に係る廃棄物処理設備の全体構成を示すフローシートである。The overall configuration of a waste disposal plant according to the implementation of the embodiment of the present invention is a flow sheet showing. 前記廃棄物処理設備における第1及び第2空気循環装置並びに第1及び第2熱交換器の構成を示すフローシートである。It is a flow sheet which shows the composition of the 1st and 2nd air circulation device in the waste disposal facility, and the 1st and 2nd heat exchangers. 本発明の実施の形態とは別の参考形態に係る廃棄物処理設備の全体構成を示すフローシートである。 The implementation of the embodiment of the present invention is a flow sheet showing the overall structure of a waste disposal plant according to another reference embodiment.

本発明の好ましい実施の形態を、図面を参照しながら説明する。   Preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る廃棄物処理設備の全体構成を示す。この設備は、第1処理系統10Aと、第2処理系統10Bと、水循環系統20と、蒸気受入れ部である低圧蒸気だめ30と、第1空気循環装置40Aと、第2空気循環装置40Bと、熱交換部50と、を備える。 Figure 1 shows the overall configuration of a waste disposal plant according to the present onset Ming embodiment. This equipment includes a first processing system 10A, a second processing system 10B, a water circulation system 20, a low-pressure steam sump 30 that is a steam receiving unit, a first air circulation device 40A, a second air circulation device 40B, And a heat exchange unit 50.

前記第1及び第2処理系統10A,10Bは、それぞれ、ごみ等の廃棄物を燃焼処理するとともに、当該燃焼により生じた排ガスを処理して排出するものである。第1処理系統10Aは、前記廃棄物を燃焼させる第1燃焼炉12Aと、この第1燃焼炉12Aでの燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第1ボイラ14Aと、この第1ボイラ14Aにより冷却された排ガス中のダストを除去する第1集塵装置である第1バグフィルタ16Aと、第1バグフィルタ16Aを通過した後の排ガスを系外に排出する第1煙突18Aと、を含む。同様に、第2処理系統10Bは、前記廃棄物を燃焼させる第2燃焼炉12Bと、この第2燃焼炉12Bでの燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第2ボイラ14Bと、この第2ボイラ14Bにより冷却された排ガス中のダストを除去する第2集塵装置である第2バグフィルタ16Bと、第2バグフィルタ16Bを通過した後の排ガスを系外に排出する第2煙突18Bと、を含む。   Each of the first and second treatment systems 10A and 10B is for treating a waste such as waste as well as treating and discharging exhaust gas generated by the combustion. The first treatment system 10A includes a first combustion furnace 12A that combusts the waste, and a first boiler 14A that generates steam by boiling water with heat of exhaust gas generated by combustion in the first combustion furnace 12A. And a first bag filter 16A, which is a first dust collector for removing dust in the exhaust gas cooled by the first boiler 14A, and a first bag filter for discharging the exhaust gas after passing through the first bag filter 16A to the outside of the system. 1 chimney 18A. Similarly, the second treatment system 10B includes a second combustion furnace 12B that combusts the waste, and a steam that is generated by boiling water with the heat of exhaust gas generated by combustion in the second combustion furnace 12B. 2 boiler 14B, 2nd bag filter 16B which is the 2nd dust collector which removes the dust in the exhaust gas cooled by this 2nd boiler 14B, and exhaust gas after passing the 2nd bag filter 16B outside the system The second chimney 18B to be discharged.

前記第1及び第2処理系統10A,10Bは、同時に稼動される場合と、一方のみが稼動されて他方が休止(運転停止)される場合と、がある。後者の場合、その運転が停止している処理系統に属するバグフィルタ16Aまたは16Bについては、これを適当な温度
範囲(例えば110°C〜120°C)に保つ必要がある。このバグフィルタが、本発明に係る保温対象集塵装置に相当する。
The first and second processing systems 10A and 10B are operated at the same time, and only one is operated and the other is stopped (stopped). In the latter case, it is necessary to keep the bag filter 16A or 16B belonging to the processing system whose operation is stopped in an appropriate temperature range (for example, 110 ° C. to 120 ° C.). This bag filter corresponds to the heat collecting target dust collecting apparatus according to the present invention.

前記水循環系統20は、前記第1及び第2ボイラ14A,14Bで生成された蒸気のエネルギーにより動力を生成する、すなわち運動エネルギーとして回収する、とともに、当該蒸気を水として前記第1及び第2ボイラ14A,14Bに還元するものである。具体的に、この水循環系統20は、高圧蒸気溜め22と、タービン24と、復水器26と、脱気器付復水タンク27と、第1及び第2給水ポンプ28A,28Bと、を含む。前記高圧蒸気溜め22は、前記第1及び第2ボイラ14A,14Bで生成された高圧蒸気を受け入れて一時的に貯留する。前記タービン24は、当該高圧蒸気によって駆動されることにより動力を生成するとともに、当該高圧蒸気の圧力を低下させる。復水器26は、前記タービン24の出口から取り出される低圧の湿り蒸気を等圧冷却して凝縮させることにより低圧の飽和水に戻す。この飽和水は、脱気器付復水タンク27にて脱気処理されて貯留され、第1及び第2給水ポンプ28A,28Bにより第1及び第2ボイラ14A,14Bに還元される。   The water circulation system 20 generates power by the energy of the steam generated in the first and second boilers 14A and 14B, that is, recovers it as kinetic energy, and uses the steam as water for the first and second boilers. It is reduced to 14A and 14B. Specifically, the water circulation system 20 includes a high-pressure steam reservoir 22, a turbine 24, a condenser 26, a condensate tank 27 with a deaerator, and first and second feed water pumps 28A and 28B. . The high-pressure steam reservoir 22 receives and temporarily stores the high-pressure steam generated by the first and second boilers 14A and 14B. The turbine 24 is driven by the high-pressure steam to generate power and reduce the pressure of the high-pressure steam. The condenser 26 cools and condenses the low-pressure wet steam taken out from the outlet of the turbine 24 to the low-pressure saturated water. This saturated water is deaerated in the condensate tank 27 with a deaerator and stored, and is reduced to the first and second boilers 14A and 14B by the first and second feed water pumps 28A and 28B.

前記低圧蒸気溜め30は、本発明に係る蒸気受入れ部に相当するもので、前記タービン24から抽出される低圧蒸気を受け入れて一時的に貯留するものである。この低圧蒸気は、前記タービン24の入口と出口との間の部位である中段位置から抽出された蒸気であって、タービン24の入口に導入される高圧蒸気よりも低圧でかつタービン24の出口から取り出される湿り蒸気よりは高圧の(好ましくは大気圧以上の)蒸気、つまり前記高圧蒸気よりも凝縮しやすい蒸気である。この低圧蒸気の圧力の範囲としては、100°C以上の凝縮点を確保できる範囲が好ましく、一般にはゲージ圧にして0.1MPa〜4MPa(より好ましくは0.2MPa〜1.2MPa)の範囲で適宜決定することができる。   The low-pressure steam reservoir 30 corresponds to a steam receiving portion according to the present invention, and receives and temporarily stores the low-pressure steam extracted from the turbine 24. The low-pressure steam is steam extracted from a middle stage position between the inlet and the outlet of the turbine 24, and is lower in pressure than the high-pressure steam introduced into the inlet of the turbine 24 and from the outlet of the turbine 24. The steam is higher in pressure (preferably higher than atmospheric pressure) than the wet steam to be taken out, that is, steam that is more easily condensed than the high-pressure steam. The range of the pressure of the low-pressure steam is preferably a range in which a condensation point of 100 ° C. or higher can be secured, and generally in the range of 0.1 MPa to 4 MPa (more preferably 0.2 MPa to 1.2 MPa) in terms of gauge pressure. It can be determined as appropriate.

前記第1空気循環装置40Aは、前記第1バグフィルタ16Aの内部を通るように空気を循環させるものであり、同様に、第2空気循環装置40Bは、前記第2バグフィルタ16Bの内部を通るように空気を循環させるものである。具体的に、前記各空気循環装置40A,40Bは、図2に示されるような循環用配管42と、ファン44と、排ガス用弁45,47と、循環用弁46,48と、を含む。   The first air circulation device 40A circulates air so as to pass through the inside of the first bag filter 16A. Similarly, the second air circulation device 40B passes through the inside of the second bag filter 16B. In this way, air is circulated. Specifically, each of the air circulation devices 40A and 40B includes a circulation pipe 42 as shown in FIG. 2, a fan 44, exhaust gas valves 45 and 47, and circulation valves 46 and 48.

前記循環用配管42は、前記排ガス用配管のうちバグフィルタ16A(16B)の入口側の配管15と出口側の配管17とを当該バグフィルタ16A(16B)をバイパスしながら接続する。ファン44は、前記循環用配管42の途中に設けられ、前記バグフィルタ16A(16B)の出口側から入口側に向かう空気の流れを形成する。   The circulation pipe 42 connects the pipe 15 on the inlet side of the bag filter 16A (16B) and the pipe 17 on the outlet side of the exhaust gas pipe while bypassing the bag filter 16A (16B). The fan 44 is provided in the middle of the circulation pipe 42 and forms a flow of air from the outlet side of the bag filter 16A (16B) toward the inlet side.

前記排ガス用弁45は、前記バグフィルタ16A(16B)の入口側の配管15のうち当該入口側配管15と前記循環用配管42との接続部位よりも上流側の位置に設けられ、排ガス用弁47は、前記バグフィルタ16A(16B)の出口側の配管17のうち当該出口側配管17と前記循環用配管42との接続部位よりも下流側の位置に設けられる。前記循環用弁46は、前記循環用配管42において当該循環用配管42とバグフィルタ16A(16B)の入口側配管との接続部位の近傍の部位に設けられ、前記循環用弁48は、前記循環用配管42において当該循環用配管42とバグフィルタ16A(16B)の出口側配管との接続部位の近傍の部位に設けられる。   The exhaust gas valve 45 is provided at a position upstream of the connection site between the inlet side pipe 15 and the circulation pipe 42 in the inlet side pipe 15 of the bag filter 16A (16B). 47 is provided at a position downstream of the connection portion between the outlet side pipe 17 and the circulation pipe 42 in the outlet side pipe 17 of the bag filter 16A (16B). The circulation valve 46 is provided in a part of the circulation pipe 42 in the vicinity of a connection part between the circulation pipe 42 and the inlet side pipe of the bag filter 16A (16B), and the circulation valve 48 is provided in the circulation pipe 42. In the piping 42 for piping, it is provided in the site | part of the vicinity of the connection site | part of the piping 42 for the said circulation and the exit side piping of bag filter 16A (16B).

前記各空気循環装置40A,40Bは、前記各弁45〜48の開閉により、バグフィルタ使用状態と空気循環状態とに切換えられることが可能である。具体的に、前記排ガス用弁45,47が開かれて前記循環用弁46,48が閉じられることにより、排ガスがバグフィルタ16A(16B)を通過することが可能なバグフィルタ使用状態が形成される。逆に前記排ガス用弁45,47が閉じられて前記循環用弁46,48が開かれることによ
り、前記ファン44の作動で前記バグフィルタ16A(16B)の内部を通るように空気が循環する空気循環状態が形成される。
The air circulation devices 40A and 40B can be switched between a bag filter use state and an air circulation state by opening and closing the valves 45 to 48. Specifically, when the exhaust gas valves 45 and 47 are opened and the circulation valves 46 and 48 are closed, a bag filter use state in which the exhaust gas can pass through the bag filter 16A (16B) is formed. The On the contrary, when the exhaust gas valves 45 and 47 are closed and the circulation valves 46 and 48 are opened, the air circulates through the inside of the bag filter 16A (16B) by the operation of the fan 44. A circulating state is formed.

前記熱交換部50は、前記第1空気循環装置40Aが循環させる第1循環空気または第2空気循環装置40Bが循環させる第2循環空気と前記低圧蒸気溜め30に溜められた蒸気との間で熱交換を行わせることにより、当該蒸気を凝縮させるとともにその凝縮熱で前記循環空気を加温するものである。具体的に、この実施の形態に係る熱交換部50は、第1蒸気供給配管51Aと、第2蒸気供給配管51Bと、第1蒸気熱交換器52Aと、第2蒸気熱交換器52Bと、第1供給切換弁54Aと、第2供給切換弁54Bと、を含む。   The heat exchanging part 50 is between the first circulating air circulated by the first air circulating device 40A or the second circulating air circulated by the second air circulating device 40B and the steam stored in the low pressure steam reservoir 30. By performing heat exchange, the steam is condensed and the circulating air is heated by the condensation heat. Specifically, the heat exchange unit 50 according to this embodiment includes a first steam supply pipe 51A, a second steam supply pipe 51B, a first steam heat exchanger 52A, a second steam heat exchanger 52B, The first supply switching valve 54A and the second supply switching valve 54B are included.

前記第1及び第2蒸気供給配管51A,51Bは、前記低圧蒸気溜め30に貯留された低圧蒸気を前記第1蒸気熱交換器52A,52Bの蒸気入口にそれぞれ供給するように配置される。前記第1及び第2供給切換弁54A,54Bは、前記第1及び第2蒸気供給配管51A,51Bの途中にそれぞれ設けられ、当該第1及び第2供給切換弁54A,54Bの開閉によって低圧蒸気の供給先の切換が行われる。具体的に、第1供給切換弁54Aが開かれて第2供給切換弁54Bが閉じられることにより、前記低圧蒸気溜め30内の蒸気が第1蒸気熱交換器52Aに供給される状態が形成され、逆に、第2供給切換弁54Bが開かれて第1供給切換弁54Aが閉じられることにより、前記低圧蒸気溜め30内の蒸気が第2蒸気熱交換器52Bに供給される状態が形成される。さらに、この実施の形態に係る供給切換弁54A,54Bは、単なる開閉だけでなく、その開度の変化により、前記蒸気熱交換器52A,52Bを流れる蒸気の流量を変化させることが可能な流量調節弁つまり流量操作部としても機能する。   The first and second steam supply pipes 51A and 51B are arranged to supply the low-pressure steam stored in the low-pressure steam reservoir 30 to the steam inlets of the first steam heat exchangers 52A and 52B, respectively. The first and second supply switching valves 54A and 54B are provided in the middle of the first and second steam supply pipes 51A and 51B, respectively, and low pressure steam is generated by opening and closing the first and second supply switching valves 54A and 54B. The supply destination is switched. Specifically, when the first supply switching valve 54A is opened and the second supply switching valve 54B is closed, a state is formed in which the steam in the low-pressure steam reservoir 30 is supplied to the first steam heat exchanger 52A. Conversely, when the second supply switching valve 54B is opened and the first supply switching valve 54A is closed, a state in which the steam in the low-pressure steam reservoir 30 is supplied to the second steam heat exchanger 52B is formed. The Furthermore, the supply switching valves 54A and 54B according to this embodiment are not only open / closed, but also can change the flow rate of the steam flowing through the steam heat exchangers 52A and 52B by changing the opening. It also functions as a control valve, that is, a flow rate control unit.

前記第1蒸気熱交換器52Aは、前記第1空気循環装置40Aが形成する第1循環空気と、前記第1蒸気供給配管51Aを通じて供給される低圧蒸気との間で熱交換を行わせるように配置され、同様に、前記第2蒸気熱交換器52Bは、前記第1空気循環装置40Aが形成する第2循環空気と、前記第1蒸気供給配管51Aを通じて供給される低圧蒸気との間で熱交換を行わせるように配置される。これらの蒸気熱交換器52A,52Bは、いずれも、前記熱交換によって前記蒸気の少なくとも一部を凝縮させ、その凝縮熱により前記第1または第2循環空気を加熱する。また、凝縮により生成された飽和水は、前記復水器26で生成された飽和水と同様に脱気器付復水タンク27に送られる。   The first steam heat exchanger 52A performs heat exchange between the first circulating air formed by the first air circulation device 40A and the low-pressure steam supplied through the first steam supply pipe 51A. Similarly, the second steam heat exchanger 52B heats between the second circulating air formed by the first air circulation device 40A and the low-pressure steam supplied through the first steam supply pipe 51A. Arranged to cause exchange. These steam heat exchangers 52A and 52B both condense at least a part of the steam by the heat exchange and heat the first or second circulating air by the condensation heat. Further, the saturated water generated by the condensation is sent to the condensate tank 27 with a deaerator in the same manner as the saturated water generated by the condenser 26.

前記蒸気熱交換器52A,52Bの具体的な構成は、循環空気との熱交換により蒸気を凝縮させることが可能なものであれば、特に限定されない。具体的には、フィンチューブ式熱交換器やボアチューブ式熱交換器が好適である。   The specific configuration of the steam heat exchangers 52A and 52B is not particularly limited as long as the steam can be condensed by heat exchange with the circulating air. Specifically, a fin tube type heat exchanger and a bore tube type heat exchanger are suitable.

本発明では、第1及び第2処理系統10A,10Bの配置によっては、前記第1及び第2蒸気熱交換器52A,52Bに代え、単一の蒸気熱交換器が両空気循環装置40A,40Bについて共用されることも可能である。この場合、前記供給切換弁54A,54Bの併用は不要となる。逆に、第1及び第2処理系統10A,10Bの配置によっては、前記高圧蒸気溜め22やタービン24が当該処理系統ごとに設けられてもよい。   In the present invention, depending on the arrangement of the first and second processing systems 10A and 10B, instead of the first and second steam heat exchangers 52A and 52B, a single steam heat exchanger may be used for both the air circulation devices 40A and 40B. Can be shared. In this case, the combined use of the supply switching valves 54A and 54B becomes unnecessary. Conversely, depending on the arrangement of the first and second processing systems 10A and 10B, the high-pressure steam reservoir 22 and the turbine 24 may be provided for each processing system.

この実施の形態に係る廃棄物処理設備は、さらに、第1及び第2バグフィルタ16A,16Bの内部の温度を制御するための手段として、第1及び第2内部温度計60A,60Bと、第1及び第2蒸気出口温度計62A,62Bと、を備える。   The waste treatment facility according to this embodiment further includes first and second internal thermometers 60A and 60B as means for controlling the temperature inside the first and second bag filters 16A and 16B, 1 and second steam outlet thermometers 62A and 62B.

第1及び第2内部温度計60A,60Bは、それぞれ、第1及び第2バグフィルタ16A,16Bの内部の温度を検出するとともに、当該内部温度計60A,60Bに対応する空気循環装置40A(40B)が空気循環状態にある場合に、その検出した温度(バグフィルタ内部温度)が予め設定された目標温度(例えば120°C)に近づくように、前記
供給切換弁54A(54B)に指令信号を入力して蒸気流量の調節を行う。
The first and second internal thermometers 60A and 60B detect the internal temperatures of the first and second bag filters 16A and 16B, respectively, and the air circulation devices 40A (40B corresponding to the internal thermometers 60A and 60B). ) Is in an air circulation state, a command signal is sent to the supply switching valve 54A (54B) so that the detected temperature (bag filter internal temperature) approaches a preset target temperature (for example, 120 ° C.). Input to adjust the steam flow rate.

なお、前記内部温度計60A,60Bの温度感知部は、必ずしも各バグフィルタ16A,16Bの内部に配置されていなくてもよく、実質的に当該バグフィルタ16A,16Bの内部の温度についての情報を取得できる位置に設けられればよい。例えば、当該温度感知部は前記バグフィルタ16A,16Bの入口ダクトまたは出口ダクトに設けられて当該ダクト内を流れる空気の温度を感知するものであってもよい。   It should be noted that the temperature sensing units of the internal thermometers 60A and 60B do not necessarily have to be disposed inside the bag filters 16A and 16B, and substantially contain information on the temperature inside the bag filters 16A and 16B. What is necessary is just to be provided in the position which can be acquired. For example, the temperature sensing unit may be provided in an inlet duct or an outlet duct of the bag filters 16A and 16B to sense the temperature of air flowing in the duct.

前記第1及び第2蒸気出口温度計62A,62Bは、前記第1及び第2蒸気熱交換器52A,52Bの出口側の蒸気の温度をそれぞれ検出する。前記内部温度計60A,60Bは、前記の検出内部温度に基づく制御に加え、対応する蒸気出口温度計62A(62B)の検出する温度が予め設定された温度範囲(前記バグフィルタ内部の目標温度よりもやや高い温度範囲:例えば130〜150°C)に収まるように、前記供給切換弁54A,54Bによる蒸気流量の調節を行う。この制御は、当該供給切換弁54A,54Bの極端な開閉動作を防ぐためのものであり、適宜省略が可能である。   The first and second steam outlet thermometers 62A and 62B detect the temperature of steam on the outlet side of the first and second steam heat exchangers 52A and 52B, respectively. In addition to the control based on the detected internal temperature, the internal thermometers 60A and 60B have a temperature range in which the temperature detected by the corresponding steam outlet thermometer 62A (62B) is set in advance (from the target temperature inside the bag filter). The supply flow control valves 54A and 54B adjust the steam flow rate so as to be within a slightly higher temperature range (for example, 130 to 150 ° C.). This control is for preventing an extreme opening / closing operation of the supply switching valves 54A and 54B, and can be omitted as appropriate.

次に、この廃棄物処理設備において行われるバグフィルタ(集塵装置)の保温について、説明する。ここでは、例として、第1及び第2処理系統10A,10Bのうちの第1処理系統10Aの運転が停止されていて第2処理系統10Bのみが稼動している場合、つまり、第1バグフィルタ16Aが保温対象集塵装置である場合、について説明する。   Next, heat insulation of the bag filter (dust collector) performed in this waste treatment facility will be described. Here, as an example, when the operation of the first processing system 10A out of the first and second processing systems 10A and 10B is stopped and only the second processing system 10B is operating, that is, the first bug filter A case where 16A is a heat retention target dust collector will be described.

この場合、前記第2処理系統10Bにおいては、第2循環装置40Bのファン44が停止されるとともに、排ガス用弁45,47が開かれて循環用弁46,48が閉じられる。従って、第2燃焼炉12Bでの廃棄物の燃焼により生成された排ガスは、第2ボイラ14Bで水と熱交換することにより当該水を気化させて自らは冷却された後、第2バグフィルタ16Bを通り、ここで集塵された後に第2煙突18Bが排出される。   In this case, in the second processing system 10B, the fan 44 of the second circulation device 40B is stopped, the exhaust gas valves 45 and 47 are opened, and the circulation valves 46 and 48 are closed. Therefore, after the exhaust gas generated by the combustion of the waste in the second combustion furnace 12B is cooled by self-evaporating the water by exchanging heat with the water in the second boiler 14B, the second bag filter 16B. The second chimney 18B is discharged after being collected here.

前記第2ボイラ14Bで生成された高圧蒸気は、高圧蒸気溜め22に溜められた後、タービン24に供給されてこれを駆動することにより動力を生成するとともに降圧する。そして、当該蒸気の一部が前記タービン24の中段から抽出されて低圧蒸気として低圧蒸気溜め30に受け入れられる一方、残りの蒸気は湿り蒸気としてタービン24の出口から排出され、復水器26で凝縮した後、脱気器付復水タンク27及び第2給水ポンプ28Bを経由して前記第2ボイラ14Bに還元される。   The high-pressure steam generated in the second boiler 14B is stored in the high-pressure steam reservoir 22, and then supplied to the turbine 24 to drive it, thereby generating power and reducing the pressure. A part of the steam is extracted from the middle stage of the turbine 24 and received as low-pressure steam in the low-pressure steam reservoir 30, while the remaining steam is discharged as wet steam from the outlet of the turbine 24 and condensed in the condenser 26. After that, it is returned to the second boiler 14B via the deaerator-equipped condensate tank 27 and the second feed water pump 28B.

一方、保温対象集塵装置、すなわち運転停止中の第1処理系統10Aに属する第1集塵装置である第1バグフィルタ16Aについては、第1空気循環装置40Aのファン44が駆動されるとともに、排ガス用弁45,47が閉じられて循環用弁46,48が開かれることにより、当該第1バグフィルタ16Aの内部を通る空気の循環が形成される。熱交換部50では、第2供給切換弁54Bが閉じられて第1供給切換弁54Aが開かれることにより、低圧蒸気溜め30に溜められた低圧蒸気(すなわちタービン24の中段から抽出された蒸気)が第1蒸気熱交換器52Aに供給され、この第1蒸気熱交換器52Aにおいて当該低圧蒸気と前記第1空気循環装置40Aによる第1循環空気との間で熱交換が行われることにより、当該低圧蒸気が凝縮して少なくともその凝縮熱により前記第1循環空気が加熱される。このように、加熱した循環空気が第1バグフィルタ16Aの内部を流れることにより、当該第1バグフィルタ16Aの保温を効率よく行うことができる。また、保温に用いられる蒸気は、その少なくとも凝縮熱すなわち潜熱が利用されるものであることから、排ガスよりも単位体積当たりの保有熱量が大きく、よって、当該蒸気のための配管には排ガス用の配管よりも小径のものを用いることができる。また、各蒸気熱交換器52A,52Bについても、従来のように排ガスと保温対象の集塵装置(または循環熱媒体)との間で熱交換を行わせるための熱交換器に比べて小型のものを使用することができる。さ
らに、排ガスと集塵装置との熱交換により当該排ガスの温度が下がると当該排ガスの腐食性が高くなるおそれがあるが、前記各蒸気熱交換器52A,52Bから排出されるのは水または湿り蒸気であり、その腐食性は低温排ガスに比べてきわめて低い。
On the other hand, for the first bag filter 16A, which is a heat collecting target dust collecting device, that is, the first dust collecting device belonging to the first processing system 10A in operation stop, the fan 44 of the first air circulation device 40A is driven, When the exhaust gas valves 45 and 47 are closed and the circulation valves 46 and 48 are opened, a circulation of air passing through the inside of the first bag filter 16A is formed. In the heat exchange unit 50, the second supply switching valve 54B is closed and the first supply switching valve 54A is opened, so that the low-pressure steam stored in the low-pressure steam reservoir 30 (that is, steam extracted from the middle stage of the turbine 24). Is supplied to the first steam heat exchanger 52A, and heat exchange is performed between the low pressure steam and the first circulating air by the first air circulation device 40A in the first steam heat exchanger 52A. The low-pressure steam is condensed and the first circulating air is heated by at least the heat of condensation. Thus, the heated circulating air flows through the inside of the first bag filter 16A, so that the heat insulation of the first bag filter 16A can be performed efficiently. Further, since the steam used for heat retention uses at least the condensation heat, that is, latent heat, the retained heat amount per unit volume is larger than that of the exhaust gas. A thing with a smaller diameter than piping can be used. Also, each of the steam heat exchangers 52A and 52B is smaller than a heat exchanger for exchanging heat between the exhaust gas and the dust collector (or circulating heat medium) to be kept warm as in the past. Things can be used. Further, when the temperature of the exhaust gas decreases due to heat exchange between the exhaust gas and the dust collector, the corrosiveness of the exhaust gas may increase. However, the steam heat exchangers 52A and 52B are discharged from water or moisture. It is steam and its corrosivity is very low compared to low temperature exhaust gas.

さらに、この実施の形態では、第1バグフィルタ内部温度計60Aが第1バグフィルタ16Aの内部の温度を検出し、この検出した温度が予め設定された目標温度に近づくように前記第1供給切換弁54Aの開度を変化させて前記第1蒸気熱交換器52Aに供給される低圧蒸気の流量を調節することにより、当該第1バグフィルタ16Aの内部の温度が適正な範囲に制御される。   Further, in this embodiment, the first bag filter internal thermometer 60A detects the temperature inside the first bag filter 16A, and the first supply switching is performed so that the detected temperature approaches a preset target temperature. By adjusting the flow rate of the low-pressure steam supplied to the first steam heat exchanger 52A by changing the opening degree of the valve 54A, the temperature inside the first bag filter 16A is controlled within an appropriate range.

前記とは逆に、第1処理系統10Aが稼動して第2処理系統10Bの運転が停止されている場合でも、この場合の保温対象集塵装置である第2バグフィルタ16Bの保温を前記と全く同じ要領で行うことが、可能である。   Contrary to the above, even when the first processing system 10A is in operation and the operation of the second processing system 10B is stopped, the heat retention of the second bag filter 16B which is the heat collecting target dust collector in this case is It is possible to do exactly the same way.

記の実施の形態では、ボイラ14Aまたは14Bで生成された蒸気すなわち高い圧力を有する蒸気のもつエネルギーをまずタービン24で動力に変換し、これにより圧力が降下した、つまり飽和蒸気圧に近づいた蒸気を凝縮させることで、当該蒸気から、動力(運動エネルギー)と、集塵装置の保温のための熱エネルギーと、の双方を効率よく回収することが可能である。例えば、前記タービン24の入口に導入される高圧蒸気の圧力がゲージ圧にして2〜4MPaであり、出口から吐出される蒸気(湿り蒸気)の圧力が大気圧近傍の圧力である場合、当該タービン24の中段から例えば0.2MPa程度の圧力の蒸気を低圧蒸気として抽出すれば、前記高圧蒸気をそのまま凝縮させる場合に比べ、エネルギーの回収効率を大幅に高めることが可能である。 In the embodiment of the previous reporting, to convert the energy of steam with a steam or high pressure generated in the boiler 14A or 14B first in the power turbine 24, thereby the pressure drops, i.e. close to the saturated vapor pressure By condensing the steam, it is possible to efficiently recover both power (kinetic energy) and heat energy for keeping the dust collector warm from the steam. For example, when the pressure of high-pressure steam introduced into the inlet of the turbine 24 is 2 to 4 MPa in terms of gauge pressure, and the pressure of steam (wet steam) discharged from the outlet is a pressure near atmospheric pressure, the turbine If steam having a pressure of, for example, about 0.2 MPa is extracted from the middle stage of 24 as low-pressure steam, the energy recovery efficiency can be significantly increased as compared with the case where the high-pressure steam is condensed as it is.

ただし前記ボイラ14Aまたは14Bで生成された高圧蒸気をそのまま(タービン24で降圧させることなく)凝縮させることによってもバグフィルタ16A,16Bの保温を行うことが可能である。その例を参考形態として図3に示す。 However , the bag filters 16A and 16B can be kept warm by condensing the high-pressure steam generated by the boiler 14A or 14B as it is (without reducing the pressure by the turbine 24). An example thereof is shown in FIG. 3 as a reference form.

この図3に示す装置では、図1に示される前記低圧蒸気溜め30に代え、水循環系統20が、前記タービン24をバイパスしてその上流側の高圧蒸気溜め22と下流側の復水器26とを直接連通する第1及び第2バイパス配管23A,23Bと、その途中に設けられた第1及び第2バイパス流量調節弁25A,25Bと、を有する。   In the apparatus shown in FIG. 3, in place of the low-pressure steam reservoir 30 shown in FIG. 1, a water circulation system 20 bypasses the turbine 24 and has a high-pressure steam reservoir 22 on the upstream side and a condenser 26 on the downstream side. The first and second bypass pipes 23A and 23B that directly communicate with each other, and the first and second bypass flow rate control valves 25A and 25B provided in the middle thereof.

前記第1及び第2バイパス配管23A,23Bは、それぞれ、復水器26に接続されるように配管される。第1及び第2バイパス流量調節弁25A,25Bは、前記各バイパス配管23A,23Bでの高圧蒸気の流量を調節するように操作される。具体的に、各バイパス流量調節弁25A,25Bの開度は、タービン24がその故障などにより非常停止したときにボイラ14Aまたは14Bから高圧蒸気溜め22に供給される蒸気の全量を(タービン24をバイパスして)復水器26に逃がすために全開とされる一方、タービン24が正常に稼動している通常運転時には、前記非常時における急激な蒸気の導入による復水器26の破損やスチームハンマーの発生を避けるために、少量の高圧蒸気を復水器26に定常的に流すように操作される。   The first and second bypass pipes 23 </ b> A and 23 </ b> B are respectively connected to the condenser 26. The first and second bypass flow rate adjustment valves 25A and 25B are operated so as to adjust the flow rate of the high-pressure steam in each of the bypass pipes 23A and 23B. Specifically, the opening degree of each bypass flow rate control valve 25A, 25B is the total amount of steam supplied from the boiler 14A or 14B to the high-pressure steam reservoir 22 when the turbine 24 is stopped due to a failure or the like (the turbine 24 is turned on). During normal operation when the turbine 24 is operating normally, the condenser 26 is damaged due to the sudden introduction of steam in the emergency, or a steam hammer. In order to avoid the occurrence of the above, it is operated so that a small amount of high-pressure steam flows constantly to the condenser 26.

この参考形態では、当該熱交換部50の第1及び第2蒸気供給配管51A,51Bが、図1に示される低圧蒸気溜め30に代えて前記第1及び第2バイパス配管23A,23Bに接続されている。つまり、各第1及び第2バイパス配管23A,23Bを流れる高圧蒸気の一部が前記第1及び第2蒸気供給配管51A,51Bに分流するように配管されている。また、各蒸気熱交換器51A,51Bの出口は前記第1の実施の形態と同様に復水器26に接続されている。 In this reference embodiment, the first and second steam supply pipes 51A and 51B of the heat exchange unit 50 are connected to the first and second bypass pipes 23A and 23B in place of the low-pressure steam reservoir 30 shown in FIG. ing. That is, the high-pressure steam flowing through the first and second bypass pipes 23A and 23B is piped so as to be divided into the first and second steam supply pipes 51A and 51B. Further, the outlets of the respective steam heat exchangers 51A and 51B are connected to the condenser 26 as in the first embodiment.

この装置によれば、高圧蒸気溜め22に溜められる高圧蒸気は、タービン24を経由することなく、バイパス流量調節弁25A(または25B)及び蒸気供給配管51A(または51B)を経由して蒸気熱交換器52A(または52B)に供給され、当該蒸気熱交換器で凝縮した後に復水器26に供給される。従って、この参考形態においては、前記高圧蒸気溜め22に受け入れられている高圧蒸気がそのまま熱交換の対象となる。また、この参考形態では、本来は復水器26に逃がされていた余剰の高圧蒸気を利用して保温対象集塵装置に相当するバグフィルタを保温することができる利点がある。 According to this apparatus, the high-pressure steam stored in the high-pressure steam reservoir 22 does not pass through the turbine 24, but passes through the bypass flow rate adjustment valve 25A (or 25B) and the steam supply pipe 51A (or 51B) to exchange steam heat. Is supplied to the condenser 52A (or 52B), condensed in the steam heat exchanger, and then supplied to the condenser 26. Therefore, in this reference embodiment, the high-pressure steam before Symbol accepted the high pressure steam reservoir 22 is directly subject to heat exchange. Moreover, in this reference form, there exists an advantage which can heat-retain the bag filter equivalent to a heat retention object dust collector using the excess high pressure steam which was originally escaped by the condenser 26. FIG.

本発明において、第1及び第2空気循環装置と熱交換部とを備える場合、当該熱交換部は、当該第1及び第2空気循環装置により形成される循環空気と蒸気との間で熱交換させるものに限られない。例えば、当該熱交換部は、当該循環空気とこれとは別の熱媒体流体との間で熱交換を行わせる循環空気用熱交換器と、当該熱媒体流体と前記蒸気との間で熱交換を行わせる蒸気熱交換器と、を併有するもの、つまり、複数段のもの、であってもよい。また、本発明の実施の形態とは異なる形態であるが、稼動中の処理系統における排ガス配管の周囲に熱媒体(例えば空気)の通路を形成し、当該排ガス配管を流れる排ガスと当該熱媒体との間の熱交換により当該熱媒体を加温してこの熱媒体の保有する熱で運転停止中の処理系統における集塵装置を保温することも、可能である。   In the present invention, when the first and second air circulation devices and the heat exchange unit are provided, the heat exchange unit performs heat exchange between the circulation air and the steam formed by the first and second air circulation devices. Not limited to what For example, the heat exchanging unit exchanges heat between the circulating air heat exchanger that causes heat exchange between the circulating air and another heat medium fluid, and the heat medium fluid and the steam. And a steam heat exchanger that performs the above-described operation, that is, a plurality of stages. Moreover, although it is a form different from embodiment of this invention, the channel | path of the heat medium (for example, air) is formed around the exhaust gas piping in the processing system in operation, and the exhaust gas flowing through the exhaust gas piping and the heat medium It is also possible to heat the heat medium by heat exchange between the two, and to keep the dust collector in the processing system stopped in operation with the heat held by the heat medium.

本発明は、第1及び第2集塵装置の内部を通る循環空気と蒸気との熱交換により当該蒸気を凝縮させるものに限られない。例えば、第1及び第2集塵装置が前記蒸気を凝縮させる凝縮器を内蔵しており、この凝縮器での前記蒸気の凝縮により発生した凝縮熱で当該凝縮器を内蔵する集塵装置が直接加温されてもよい。この場合も、例えば稼動中の処理系統を流れる排ガスの一部を運転停止中の処理系統における保温対象集塵装置の内部に形成された加温用通路に流す場合に比べて設備の大型化(熱交換部を内蔵する集塵装置の大型化も含む。)が効果的に抑制される。   This invention is not restricted to what condenses the said vapor | steam by heat exchange with the circulating air and vapor | steam which pass the inside of a 1st and 2nd dust collector. For example, the first and second dust collectors include a condenser that condenses the vapor, and the dust collector that incorporates the condenser directly by the condensation heat generated by the condensation of the vapor in the condenser directly It may be warmed. Also in this case, for example, compared with the case where a part of the exhaust gas flowing through the operating processing system is flowed to the heating passage formed inside the heat collecting target dust collector in the processing system in which the operation is stopped ( Including an increase in the size of the dust collector having a built-in heat exchanging portion).

また、本発明に係る廃棄物処理設備は、3以上の処理系統を有するもの、つまり、第1及び第2処理系統に加えて第3、第4…の処理系統を備えるものを除外しない。この場合も、運転停止中の処理系統に属する集塵装置の保温を、稼動中の処理系統に属するボイラにて生成された蒸気の凝縮熱を利用して効果的に行うことが、可能である。   Further, the waste treatment facility according to the present invention does not exclude those having three or more treatment systems, that is, those having third, fourth, etc. treatment systems in addition to the first and second treatment systems. In this case as well, it is possible to effectively perform the heat insulation of the dust collector belonging to the processing system that is not operating by using the condensation heat of the steam generated in the boiler belonging to the operating processing system. .

10A 第1処理系統
10B 第2処理系統
12A 第1燃焼炉
12B 第2燃焼炉
14A 第1ボイラ
14B 第2ボイラ
16A 第1バグフィルタ(第1集塵装置)
16B 第2バグフィルタ(第2集塵装置)
20 水循環系統
22 高圧蒸気溜め(蒸気受入れ部)
24 タービン
30 低圧蒸気溜め(蒸気受入れ部)
40A 第1空気循環装置
40B 第2空気循環装置
50 熱交換部
52A 第1蒸気熱交換器
52B 第2蒸気熱交換器
54A 第1供給切換弁
54B 第2供給切換弁
60A 第1バグフィルタ内部温度計(温度制御部)
60B 第2バグフィルタ内部温度計(温度制御部)
10A 1st processing system 10B 2nd processing system 12A 1st combustion furnace 12B 2nd combustion furnace 14A 1st boiler 14B 2nd boiler 16A 1st bag filter (1st dust collector)
16B Second bag filter (second dust collector)
20 Water circulation system 22 High-pressure steam reservoir (steam receiving part)
24 Turbine 30 Low pressure steam reservoir (steam receiving part)
40A 1st air circulation device 40B 2nd air circulation device 50 Heat exchange part 52A 1st steam heat exchanger 52B 2nd steam heat exchanger 54A 1st supply switching valve 54B 2nd supply switching valve 60A 1st bag filter internal thermometer (Temperature controller)
60B 2nd bag filter internal thermometer (temperature controller)

Claims (4)

廃棄物処理設備であって、
廃棄物を燃焼させる第1燃焼炉、この第1燃焼炉での燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第1ボイラ、及びこの第1ボイラにより冷却された排ガス中のダストを除去する第1集塵装置を含む第1処理系統と、
廃棄物を燃焼させる第2燃焼炉、この第2燃焼炉での燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第2ボイラ、及びこの第2ボイラにより冷却された排ガス中のダストを除去する第2集塵装置を含む第2処理系統と、
前記第1ボイラ及び前記第2ボイラでそれぞれ生成された蒸気を受け入れる蒸気受入れ部と、
この蒸気受入れ部が受け入れた蒸気を凝縮させ、その凝縮熱により、前記第1及び第2処理系統のうち停止中の処理系統における集塵装置の保温を行う保温部と
前記第1または第2ボイラで生成された蒸気の圧力を降下させながら当該蒸気のエネルギーを動力に変換するタービンと、を備え、前記蒸気受け入れ部は前記タービンによって圧力が降下した蒸気であって大気圧よりも高い圧力をもつ蒸気を受け入れる、廃棄物処理設備。
A waste treatment facility,
In a first combustion furnace for burning waste, a first boiler for generating steam by boiling water with heat of exhaust gas generated by combustion in the first combustion furnace, and exhaust gas cooled by the first boiler A first processing system including a first dust collector for removing the dust of
In a second combustion furnace for burning waste, a second boiler for generating steam by boiling water with heat of exhaust gas generated by combustion in the second combustion furnace, and in exhaust gas cooled by the second boiler A second processing system including a second dust collector for removing the dust of
A steam receiving section for receiving steam generated by the first boiler and the second boiler,
The steam receiving unit condenses the steam received, and by the condensation heat, a heat retaining unit that retains the temperature of the dust collector in the stopped processing system among the first and second processing systems ,
A turbine that converts the energy of the steam into motive power while lowering the pressure of the steam generated in the first or second boiler, and the steam receiving section is a steam whose pressure is reduced by the turbine. A waste treatment facility that accepts steam with a pressure higher than atmospheric pressure .
請求項1記載の廃棄物処理設備であって、前記蒸気は前記タービンの入口と出口との間の中段から抽出される、廃棄物処理設備。 The waste treatment facility according to claim 1, wherein the steam is extracted from a middle stage between an inlet and an outlet of the turbine. 廃棄物を燃焼させる第1燃焼炉、この第1燃焼炉での燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第1ボイラ、及びこの第1ボイラにより冷却された排ガス中のダストを除去する第1集塵装置を含む第1処理系統と、廃棄物を燃焼させる第2燃焼炉、この第2燃焼炉での燃焼により生成される排ガスの熱により水を沸騰させて蒸気を発生させる第2ボイラ、及びこの第2ボイラにより冷却された排ガス中のダストを除去する第2集塵装置を含む第2処理系統と、を備えた廃棄物処理設備における前記第1及び第2処理系統のうち運転が停止されている処理系統に属する集塵装置を保温対象としてこれを保温するための方法であって、
前記第1ボイラ及び前記第2ボイラのうち稼動している処理系統に属するボイラで生成された蒸気を凝縮させ、その凝縮熱により、前記第1及び第2処理系統のうち停止中の処理系統における集塵装置の保温を行うことと、
前記第1又は第2ボイラによって生成された蒸気をタービンに導入することにより当該蒸気の圧力を降下させながら当該蒸気のエネルギーを動力に変換することと、を含み、当該タービンによって圧力が降下した蒸気であって大気圧よりも高い圧力をもつ蒸気を当該タービンの入口と出口との間の中段から抽出してその抽出した蒸気を凝縮させる、廃棄物処理設備の集塵装置の保温方法。
In a first combustion furnace for burning waste, a first boiler for generating steam by boiling water with heat of exhaust gas generated by combustion in the first combustion furnace, and exhaust gas cooled by the first boiler A first treatment system including a first dust collecting device for removing dust, a second combustion furnace for burning waste, and steam obtained by boiling water by heat of exhaust gas generated by combustion in the second combustion furnace And a second treatment system including a second dust collecting device for removing dust in the exhaust gas cooled by the second boiler, and the first and second in a waste treatment facility. A method for keeping a dust collector belonging to a processing system of which operation is stopped among the processing systems as a heat retention target,
The steam generated in the boiler belonging to the operating processing system of the first boiler and the second boiler is condensed, and by the heat of condensation, in the processing system that is stopped among the first and second processing systems. Keeping the dust collector warm ,
Converting steam energy into motive power while lowering the pressure of the steam by introducing steam generated by the first or second boiler into the turbine, and steam whose pressure has dropped by the turbine A method of keeping warm in a dust collector of a waste treatment facility, wherein steam having a pressure higher than atmospheric pressure is extracted from a middle stage between an inlet and an outlet of the turbine and the extracted steam is condensed .
請求項3記載の廃棄物処理設備の集塵装置の保温方法であって、前記タービンの中段からゲージ圧にして0.1MPa〜4MPaの圧力をもつ蒸気が抽出される、廃棄物処理設備の集塵装置の保温方法。
The method for keeping warm in a dust collector of a waste treatment facility according to claim 3, wherein steam having a pressure of 0.1 MPa to 4 MPa is extracted from the middle stage of the turbine as a gauge pressure. How to keep the dust device warm.
JP2014141848A 2014-07-10 2014-07-10 Waste treatment facility and heat retention method for dust collector Active JP5918810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141848A JP5918810B2 (en) 2014-07-10 2014-07-10 Waste treatment facility and heat retention method for dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141848A JP5918810B2 (en) 2014-07-10 2014-07-10 Waste treatment facility and heat retention method for dust collector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013212545A Division JP5596216B1 (en) 2013-10-10 2013-10-10 Waste treatment facility

Publications (2)

Publication Number Publication Date
JP2015075325A true JP2015075325A (en) 2015-04-20
JP5918810B2 JP5918810B2 (en) 2016-05-18

Family

ID=53000302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141848A Active JP5918810B2 (en) 2014-07-10 2014-07-10 Waste treatment facility and heat retention method for dust collector

Country Status (1)

Country Link
JP (1) JP5918810B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310832A (en) * 1996-05-22 1997-12-02 Kubota Corp Starting control method of garbage incinerator and garbage incinerator
JPH1047638A (en) * 1996-08-05 1998-02-20 Hitachi Ltd Exhaust gas treating method and apparatus and garbage incineration power generation plant
JPH11264528A (en) * 1998-03-19 1999-09-28 Kubota Corp Waste treatment facility
JP2001173927A (en) * 1999-12-14 2001-06-29 Nkk Corp Waste incinerating system and method of heating bag filters therefor
JP2001347120A (en) * 2000-06-06 2001-12-18 Kubota Corp Corrosion preventive mechanism of dust collector and bag filter device
JP2002001034A (en) * 2000-06-21 2002-01-08 Nippon Spindle Mfg Co Ltd Method for controlling temperature of bag filter-type dust collector and device therefor
JP2002372207A (en) * 2001-06-18 2002-12-26 Kubota Corp Heat utilization system
JP2009162452A (en) * 2008-01-09 2009-07-23 Takuma Co Ltd Operating method for waste disposal facility with power generation facility
JP2012042155A (en) * 2010-08-20 2012-03-01 Kobelco Eco-Solutions Co Ltd Method of operating waste treatment facility, heat insulating device and the waste treatment facility
JP2013002393A (en) * 2011-06-17 2013-01-07 Takuma Co Ltd Power generation facility for refuse incinerator, and control method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310832A (en) * 1996-05-22 1997-12-02 Kubota Corp Starting control method of garbage incinerator and garbage incinerator
JPH1047638A (en) * 1996-08-05 1998-02-20 Hitachi Ltd Exhaust gas treating method and apparatus and garbage incineration power generation plant
JPH11264528A (en) * 1998-03-19 1999-09-28 Kubota Corp Waste treatment facility
JP2001173927A (en) * 1999-12-14 2001-06-29 Nkk Corp Waste incinerating system and method of heating bag filters therefor
JP2001347120A (en) * 2000-06-06 2001-12-18 Kubota Corp Corrosion preventive mechanism of dust collector and bag filter device
JP2002001034A (en) * 2000-06-21 2002-01-08 Nippon Spindle Mfg Co Ltd Method for controlling temperature of bag filter-type dust collector and device therefor
JP2002372207A (en) * 2001-06-18 2002-12-26 Kubota Corp Heat utilization system
JP2009162452A (en) * 2008-01-09 2009-07-23 Takuma Co Ltd Operating method for waste disposal facility with power generation facility
JP2012042155A (en) * 2010-08-20 2012-03-01 Kobelco Eco-Solutions Co Ltd Method of operating waste treatment facility, heat insulating device and the waste treatment facility
JP2013002393A (en) * 2011-06-17 2013-01-07 Takuma Co Ltd Power generation facility for refuse incinerator, and control method thereof

Also Published As

Publication number Publication date
JP5918810B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5050071B2 (en) Boiler equipment
JP5832102B2 (en) Boiler plant and operation method thereof
JP5636955B2 (en) Heat recovery system
TWI646286B (en) Thermally integrated coal-fired oxygen plant
JP2009008365A (en) Steam power plant
EP2375009A2 (en) Steam turbine plant
KR20150128597A (en) Coal fired oxy plant with heat integration
KR101584418B1 (en) Boiler plant
JP4794229B2 (en) Gas turbine power generator and gas turbine combined power generation system
JPH03124902A (en) Combined cycle power plant and operating method therefor
JP2014009624A (en) Waste heat utilization method, waste heat utilization system and treatment method of boiler exhaust gas
JP4999992B2 (en) Gas turbine combined power generation system
JP2007085294A (en) Steam turbine plant and its operating method
KR101878536B1 (en) Oxy boiler power plant with a heat integrated air separation unit
JP5596216B1 (en) Waste treatment facility
JP5918810B2 (en) Waste treatment facility and heat retention method for dust collector
JP2017500492A (en) Steam power plant with liquid-cooled generator
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
Bode et al. Performance Analysis of Regenerative Feed Water Heating System in 270 MW Thermal Power Plant
JP2014009835A (en) Exhaust gas treatment apparatus
WO2015060169A1 (en) Power generation plant
JP6985038B2 (en) Thermal energy recovery device
CN105444152B (en) Steam power plant&#39;s heating steam degree of superheat of heating boiler Secondary Air utilizes system
KR20160016012A (en) Cooling system using sea water, and cooling method thereof
JP2024068443A (en) Heat utilization system, waste treatment plant, and operational method of heat utilization system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R150 Certificate of patent or registration of utility model

Ref document number: 5918810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250