JP2015075173A - Pressure container and method of manufacturing the same - Google Patents

Pressure container and method of manufacturing the same Download PDF

Info

Publication number
JP2015075173A
JP2015075173A JP2013211942A JP2013211942A JP2015075173A JP 2015075173 A JP2015075173 A JP 2015075173A JP 2013211942 A JP2013211942 A JP 2013211942A JP 2013211942 A JP2013211942 A JP 2013211942A JP 2015075173 A JP2015075173 A JP 2015075173A
Authority
JP
Japan
Prior art keywords
liner
reinforcing
winding
prepreg
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211942A
Other languages
Japanese (ja)
Other versions
JP6223108B2 (en
Inventor
雄一郎 西
Yuichiro Nishi
雄一郎 西
幸文 外山
Yukifumi Toyama
幸文 外山
智浩 副田
Tomohiro Soeda
智浩 副田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013211942A priority Critical patent/JP6223108B2/en
Publication of JP2015075173A publication Critical patent/JP2015075173A/en
Application granted granted Critical
Publication of JP6223108B2 publication Critical patent/JP6223108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure container and a method of manufacturing the same such that a reinforcement layer having reinforcement fiber crossed can be easily formed on a surface.SOLUTION: A pressure container is provided with: a metallic liner 11 in a hollow doughnut shape; a first reinforcement layer 12 which covers the outside of the liner 11 by curing reinforcement fiber which is spirally continuous toward one side L in a peripheral direction B and an axial direction A of the liner 11 with resin; and a second reinforcement layer 13 which covers the outside of the liner 11 (first reinforcement layer 12) by curing reinforcement fiber which is spirally continuous toward the other side R in the peripheral direction B and the axial direction A of the liner 11 with resin.

Description

本発明は、ヘリウムや酸素など大気圧より高い圧力の流体を収容可能な圧力容器及びその製造方法に関するものである。   The present invention relates to a pressure vessel that can contain a fluid having a pressure higher than atmospheric pressure, such as helium and oxygen, and a method for manufacturing the same.

高圧流体を収容可能な圧力容器は、一般的に、口金部を有して中空形状をなす金属製のライナの外周面に、繊維強化プラスチックなどの補強層が形成されて構成されている。この場合、補強層は、フィラメントワインディング法により形成される。このフィラメントワインディング法は、樹脂を含浸させた強化繊維を、ライナの表面に張力を付与しながら交差するように巻き付け、樹脂を硬化させて成形する方法である。   A pressure vessel that can contain a high-pressure fluid is generally configured by forming a reinforcing layer such as a fiber reinforced plastic on the outer peripheral surface of a metal liner having a base portion and having a hollow shape. In this case, the reinforcing layer is formed by a filament winding method. This filament winding method is a method in which reinforcing fibers impregnated with a resin are wound so as to intersect while applying tension to the surface of the liner, and the resin is cured and molded.

従来の圧力容器及びその製造方法としては、例えば、下記特許文献1〜3に記載されたものが提案されている。   As a conventional pressure vessel and its manufacturing method, what was described in the following patent documents 1-3 is proposed, for example.

特許第4382536号公報Japanese Patent No. 4382536 特公平03−028301号公報Japanese Patent Publication No. 03-028301 特公平04−037773号公報Japanese Examined Patent Publication No. 04-037773

ところで、圧力容器の形状としては、従来、円筒形状が一般的である。しかし、この圧力容器を搭載する機器が円柱形状であるとき、円筒形状をなす圧力容器よりも中心部が空洞となるドーナツ形状の圧力容器の方が搭載性に有利な場合がある。しかし、ドーナツ形状の圧力容器を製造する場合、ドーナツ形状をなすライナの表面に張力を付与しながら強化繊維を交差するように巻き付けることは困難である。   By the way, as a shape of the pressure vessel, a cylindrical shape has been generally used. However, when the device on which the pressure vessel is mounted is a columnar shape, a donut-shaped pressure vessel having a hollow center may be more advantageous for mounting than a cylindrical pressure vessel. However, when manufacturing a doughnut-shaped pressure vessel, it is difficult to wind reinforcing fibers so as to cross while applying tension to the surface of the liner having a donut shape.

本発明は上述した課題を解決するものであり、表面に強化繊維が交差してなる強化層を容易に形成可能な圧力容器及びその製造方法を提供することを目的とする。   This invention solves the subject mentioned above, and it aims at providing the pressure vessel which can form easily the reinforcement layer which a reinforcement fiber cross | intersects on the surface, and its manufacturing method.

上記の目的を達成するための本発明の圧力容器は、中空ドーナツ形状をなす金属製のライナと、前記ライナの周方向で且つ軸方向における一方側に向ってらせん状に連続する強化繊維が樹脂により硬化されて前記ライナの外側を被覆する第1強化層と、前記ライナの周方向で且つ軸方向における他方側に向ってらせん状に連続する強化繊維が樹脂により硬化されて前記ライナの外側を被覆する第2強化層と、を備えることを特徴とするものである。   In order to achieve the above object, a pressure vessel according to the present invention comprises a metal liner having a hollow donut shape and a reinforcing fiber that is spirally continuous toward one side in the circumferential direction and the axial direction of the liner. A first reinforcing layer that is cured by the coating and covers the outer side of the liner, and reinforcing fibers that are spirally continuous in the circumferential direction of the liner and toward the other side in the axial direction are cured by the resin to cover the outer side of the liner And a second reinforcing layer to be coated.

従って、ライナの外周面に一方側に向ってらせん状に連続する強化繊維と、他方側に向ってらせん状に連続する強化繊維とを層状に巻き付けることで、第1強化層と第2強化層が積層に形成されることから、強化繊維が交差する2つの強化層を容易に形成することができる。   Therefore, the first reinforcing layer and the second reinforcing layer are wound around the outer peripheral surface of the liner in layers by reinforcing fibers continuous in a spiral toward one side and reinforcing fibers continuous in a spiral toward the other side. Is formed in a laminate, it is possible to easily form two reinforcing layers where reinforcing fibers intersect.

本発明の圧力容器では、前記第1強化層及び前記第2強化層を構成する強化繊維は、プリプレグにより構成されることを特徴としている。   In the pressure vessel of the present invention, the reinforcing fibers constituting the first reinforcing layer and the second reinforcing layer are constituted by a prepreg.

従って、プリプレグを用いることで、強化繊維をライナの外周面に容易にらせん状に巻き付けることができる。   Therefore, by using the prepreg, the reinforcing fiber can be easily wound around the outer peripheral surface of the liner in a spiral shape.

また、本発明の圧力容器の製造方法は、中空ドーナツ形状をなす金属製のライナの表面に該ライナの周方向で且つ軸方向における一方側に向って樹脂が含浸された第1強化繊維をらせん状に巻き付ける工程と、前記第1強化繊維の表面に前記ライナの周方向で且つ軸方向における他方側に向って樹脂が含浸された第2強化繊維をらせん状に巻き付ける工程と、前記第1強化繊維と前記第2強化繊維が巻き付けられた前記ライナを硬化させることで第1強化層及び第2強化層を形成する工程と、を有することを特徴とするものである。   Further, the pressure vessel manufacturing method of the present invention spirals the first reinforcing fiber impregnated with resin on the surface of a metal liner having a hollow donut shape in the circumferential direction of the liner and toward one side in the axial direction. A step of winding the second reinforcing fiber impregnated with resin around the surface of the first reinforcing fiber in the circumferential direction of the liner toward the other side in the axial direction, and the first reinforcing fiber Forming a first reinforcing layer and a second reinforcing layer by curing the liner on which the fiber and the second reinforcing fiber are wound.

従って、ライナの外周面に一方側に向って強化繊維をらせん状に巻き付け、その上に他方側に向って強化繊維をらせん状に巻き付け、これを硬化することで、第1強化層と第2強化層が積層して形成されることから、強化繊維が交差する2つの強化層を容易に形成することができる。   Accordingly, the reinforcing fiber is spirally wound around the outer peripheral surface of the liner toward one side, and the reinforcing fiber is wound spirally toward the other side of the liner. Since the reinforcing layers are formed by lamination, two reinforcing layers where the reinforcing fibers intersect can be easily formed.

また、本発明の圧力容器の製造方法は、中空ドーナツ形状をなす金属製のライナの表面全周に樹脂が含浸された強化繊維を巻回した後に硬化する圧力容器の製造方法であって、強化繊維をライナの周方向に対して軸方向に傾斜させて、所定幅らせん状に巻き付ける一部巻き付け工程を、一連の強化繊維により前記ライナの軸方向に所定間隔をおいて連続的に繰り返すことにより、前記ライナの表面全周に第1強化繊維層を巻回する第1巻回工程と、強化繊維を前記第1巻回工程の傾斜方向とは逆方向に傾斜させて、所定幅らせん状に巻き付ける一部巻き付け工程を、一連の強化繊維により前記ライナの軸方向に所定間隔をおいて連続的に繰り返すことにより、前記ライナの表面全周に第2強化繊維層を巻回する第2巻回工程と、を有することを特徴とするものである。   The pressure vessel manufacturing method of the present invention is a method of manufacturing a pressure vessel that is cured after winding reinforcing fibers impregnated with resin around the entire surface of a metal liner having a hollow donut shape, By repeating the partial winding process of inclining the fibers in the axial direction with respect to the circumferential direction of the liner and winding the fibers in a predetermined width spirally with a series of reinforcing fibers at a predetermined interval in the axial direction of the liner. The first winding step of winding the first reinforcing fiber layer around the entire surface of the liner, and the reinforcing fiber is inclined in a direction opposite to the inclination direction of the first winding step to form a spiral having a predetermined width. A second winding in which the second reinforcing fiber layer is wound around the entire surface of the liner by continuously repeating the partial winding step of winding with a series of reinforcing fibers at a predetermined interval in the axial direction of the liner. And having a process It is an feature.

従って、ライナに対する一部巻き付け工程における強化繊維の所定幅のらせん巻き付けは、傾斜していることから強化繊維の張力を保つことができ、また、強化繊維の緩みが生じない範囲での所定幅であり、らせん状に繊維相互が接するように密に巻き付けることができる。そのため、一部巻き付け工程を、一連の強化繊維によりライナの軸方向に間隔をおいて連続的に繰り返すことにより、強化繊維を緩み無く中空ドーナツ形状のライナに巻回することができる。この場合、一部巻き付け工程での軸方向の間隔は、強化繊維の巻き付け張力を保ったまま、巻回し得る間隔位置であり、当該間隔の一連の強化繊維もライナ表面に接して張設されることとなる。また、一部巻き付け工程での強化繊維の所定幅の巻き付けは密な巻きつけであり、一部巻き付け工程相互間の巻き付けはこの密な巻き付けに比べて疎の巻き付けであり、一部巻き付け工程を、一連の強化繊維によりライナの周方向に間隔をおいて連続的に多数回繰り返すことにより、ライナの表面全周に第1強化繊維層及び第2強化繊維層を隙間無く巻回することができる。   Accordingly, the spiral winding of the reinforcing fiber with the predetermined width in the partial winding process around the liner can maintain the tension of the reinforcing fiber because it is inclined, and the predetermined width within the range in which the reinforcing fiber does not loosen. Yes, it can be tightly wound so that the fibers are in contact with each other in a spiral. Therefore, the reinforcing fiber can be wound around the hollow donut-shaped liner without loosening by continuously repeating the partial winding step with a series of reinforcing fibers at intervals in the axial direction of the liner. In this case, the axial interval in the partial winding step is an interval position where the reinforcing fiber can be wound while maintaining the winding tension of the reinforcing fiber, and a series of reinforcing fibers of the interval are also stretched in contact with the liner surface. It will be. In addition, the winding of the reinforcing fiber with a predetermined width in the partial winding process is a dense winding, and the winding between the partial winding processes is a sparse winding compared to the dense winding, and the partial winding process The first reinforcing fiber layer and the second reinforcing fiber layer can be wound around the entire circumference of the liner without any gaps by repeating a number of times continuously with a series of reinforcing fibers at intervals in the circumferential direction of the liner. .

本発明の圧力容器及びその製造方法によれば、中空ドーナツ形状をなすライナの外側に強化繊維が交差する2つの強化層を容易に形成することができる。   According to the pressure vessel and the manufacturing method thereof of the present invention, two reinforcing layers in which reinforcing fibers intersect can be easily formed on the outside of a liner having a hollow donut shape.

図1は、本発明の一実施例に係る圧力容器を表す一部切欠概略図である。FIG. 1 is a partially cutaway schematic view showing a pressure vessel according to an embodiment of the present invention. 図2は、本実施例の圧力容器の製造方法の手順を表すフローチャートである。FIG. 2 is a flowchart showing the procedure of the pressure vessel manufacturing method of the present embodiment. 図3は、本実施例の圧力容器の製造方法を表す概略図である。FIG. 3 is a schematic view showing a method for manufacturing the pressure vessel of the present embodiment.

以下に添付図面を参照して、本発明に係る圧力容器及びその製造方法の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではない。   Exemplary embodiments of a pressure vessel and a method for manufacturing the same according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example.

図1は、本発明の一実施例に係る圧力容器を表す一部切欠概略図、図2は、本実施例の圧力容器の製造方法の手順を表すフローチャート、図3は、本実施例の圧力容器の製造方法を表す概略図である。   FIG. 1 is a partially cutaway schematic view showing a pressure vessel according to one embodiment of the present invention, FIG. 2 is a flowchart showing the procedure of the pressure vessel manufacturing method of this embodiment, and FIG. 3 is the pressure of this embodiment. It is the schematic showing the manufacturing method of a container.

本実施例の圧力容器は、流体を充填するものであり、ドーナツ形状をなしている。この場合、ドーナツ形状をなす圧力容器は、中央部が空洞となっていることから、ここに各種機器を配置することができる。また、ドーナツ形状をなす圧力容器は、複数積層すると共に各容器を連通して使用することもできる。なお、圧力容器内に充填する流体としては、作動流体や燃料などとして利用可能なヘリウム、水素、酸素などがある。   The pressure vessel of the present embodiment is filled with fluid and has a donut shape. In this case, since the central part of the pressure vessel having a donut shape is hollow, various devices can be arranged here. In addition, a plurality of pressure vessels having a donut shape can be stacked and used in communication with each other. Note that the fluid filled in the pressure vessel includes helium, hydrogen, oxygen, and the like that can be used as a working fluid or fuel.

本実施例にて、図1に示すように、圧力容器10は、中空ドーナツ形状をなす金属製のライナ11と、このライナの周方向Bで且つ軸方向Aにおける一方側Lに向ってらせん状に連続する強化繊維が樹脂により硬化されてライナ11の外側を被覆する第1強化層12と、ライナ11の周方向Bで且つ軸方向Aにおける他方側Rに向ってらせん状に連続する強化繊維が樹脂により硬化されてライナ11(第1強化層12)の外側を被覆する第2強化層13とにより構成されている。   In this embodiment, as shown in FIG. 1, the pressure vessel 10 includes a metal liner 11 having a hollow donut shape and a spiral shape in the circumferential direction B and the one side L in the axial direction A of the liner. First reinforcing layer 12 that is hardened with resin to cover the outer side of the liner 11, and a reinforcing fiber that is spirally continuous in the circumferential direction B of the liner 11 and toward the other side R in the axial direction A Is hardened with a resin and is composed of a second reinforcing layer 13 covering the outside of the liner 11 (first reinforcing layer 12).

なお、上述した軸方向Aとは、圧力容器10が中央部に空洞部を有し、本体が周方向に連続するドーナツ形状(リング形状)をなすことから、その円周に沿った方向である。また、周方向Bとは、圧力容器10の軸方向Aに直交(交差)する断面がほぼ円形断面(子午面)をなすことから、この円形断面にて外周方向に沿った方向である。   In addition, the axial direction A mentioned above is a direction along the circumference since the pressure vessel 10 has a hollow portion in the center and the main body has a donut shape (ring shape) continuous in the circumferential direction. . Further, the circumferential direction B is a direction along the outer circumferential direction in this circular cross section because the cross section orthogonal to (crossing) the axial direction A of the pressure vessel 10 forms a substantially circular cross section (meridian plane).

ライナ11は、チタンやアルミニウムなどの金属材料から構成され、上部に2つの孔部21,22が形成されている。この孔部21,22は、内部に流体を供給する供給口、または、内部の流体を排出する排出口として利用される。なお、孔部21,22は、1つでも、3つ以上であってもよい。   The liner 11 is made of a metal material such as titanium or aluminum, and two holes 21 and 22 are formed in the upper portion. The holes 21 and 22 are used as a supply port for supplying fluid to the inside or a discharge port for discharging the fluid inside. The number of the holes 21 and 22 may be one or three or more.

第1強化層12は、強化繊維としての第1プリプレグをライナ11の外周面に周方向Bで、且つ、軸方向Aにおける一方側Lに向ってらせん状に巻き付け、これを硬化することでこのライナ11の外側を被覆して強化するものである。   The first reinforcing layer 12 is formed by winding a first prepreg as a reinforcing fiber in a spiral shape around the outer peripheral surface of the liner 11 in the circumferential direction B and toward one side L in the axial direction A, and curing this. The outer side of the liner 11 is covered and reinforced.

第2強化層13は、強化繊維としての第2プリプレグをライナ11の外周面、ここでは、第1プリプレグの外側に周方向Bで、且つ、軸方向Aにおける他方側Rに向ってらせん状に巻き付け、これを硬化することでこのライナ11の外側を被覆して強化するものである。   The second reinforcing layer 13 has a second prepreg as a reinforcing fiber formed in a spiral shape in the circumferential direction B on the outer peripheral surface of the liner 11, here the outer side of the first prepreg and toward the other side R in the axial direction A. The outer side of the liner 11 is covered and reinforced by winding and curing.

ここで、プリプレグとは、炭素繊維(またはガラス繊維など)を同じ方向にそろえた帯状または短冊状の炭素繊維帯状物に、樹脂(エポキシ樹脂など)を含浸させ、半硬化させて成形したものである。   Here, the prepreg is formed by impregnating a resin (epoxy resin, etc.) into a strip-like or strip-like carbon fiber strip with carbon fibers (or glass fibers) aligned in the same direction and semi-curing it. is there.

ここで、本実施例の圧力容器の製造方法について、図2のフローチャート及び図3の概略図を用いて説明する。   Here, the manufacturing method of the pressure vessel of a present Example is demonstrated using the flowchart of FIG. 2, and the schematic of FIG.

本実施例の圧力容器の製造方法は、図2に示すように、中空ドーナツ形状をなす金属製のライナ11を製造する工程(S11)と、このライナ11の表面にライナ11の周方向Bで且つ軸方向Aにおける一方側Lに向って樹脂が含浸された第1プリプレグをらせん状に巻き付ける工程(S12〜S13)と、第1プリプレグの表面にライナ11の周方向Bで且つ軸方向Aにおける他方側Rに向って樹脂が含浸された第2プリプレグをらせん状に巻き付ける工程(S14)と、第1プリプレグと第2プリプレグが巻き付けられたライナ11を硬化させることで第1強化層12及び第2強化層13を形成する工程(S15〜S16)とから構成されている。   As shown in FIG. 2, the pressure vessel manufacturing method of the present embodiment includes a step (S 11) of manufacturing a metal liner 11 having a hollow donut shape, and a circumferential surface B of the liner 11 on the surface of the liner 11. And the process (S12-S13) of winding the 1st prepreg impregnated with resin toward the one side L in the axial direction A in a spiral shape, the circumferential direction B of the liner 11 on the surface of the first prepreg, and in the axial direction A The step of winding the second prepreg impregnated with the resin toward the other side R in a spiral manner (S14), and curing the liner 11 around which the first prepreg and the second prepreg are wound, thereby hardening the first reinforcing layer 12 and the first prepreg. 2 and the step of forming the reinforcing layer 13 (S15 to S16).

即ち、まず、工程(S11)にて、チタンや他の材料を用いて中空ドーナツ形状をなすライナ11を製造し、上部に2つの孔部21,22を形成する。次に、図3に示すように、工程(S12)にて、帯状の第1、第2プリプレグ31,32を所定の幅にカット(切断)する。そして、工程(S13)にて、所定幅の第1プリプレグ31をライナ11の外周面に周方向Bで且つ軸方向Aにおける一方側Lに向って第1プリプレグ31をらせん状(ヘリカル状)に沿って巻き付ける。つまり、ライナ11の外周面に第1プリプレグ31を左回り(一方側L)でらせん状に巻き付ける。   That is, first, in step (S11), a liner 11 having a hollow donut shape is manufactured using titanium or another material, and two holes 21 and 22 are formed in the upper part. Next, as shown in FIG. 3, in the step (S12), the strip-shaped first and second prepregs 31 and 32 are cut (cut) into a predetermined width. In the step (S13), the first prepreg 31 having a predetermined width is spirally (helical) formed on the outer peripheral surface of the liner 11 in the circumferential direction B and toward the one side L in the axial direction A. Wrap along. That is, the first prepreg 31 is wound around the outer peripheral surface of the liner 11 in a spiral manner counterclockwise (one side L).

更に、工程(S14)にて、所定幅の第2プリプレグ32をライナ11の外周面に周方向Bで且つ軸方向Aにおける他方側Rに向って第2プリプレグ32をらせん状(ヘリカル状)に沿って巻き付ける。つまり、ライナ11の外周面に第2プリプレグ32を右回り(他方側R)でらせん状に巻き付ける。   Further, in the step (S14), the second prepreg 32 having a predetermined width is formed on the outer peripheral surface of the liner 11 in the circumferential direction B and toward the other side R in the axial direction A in a spiral shape (helical shape). Wrap along. That is, the second prepreg 32 is wound around the outer peripheral surface of the liner 11 in a spiral manner clockwise (the other side R).

即ち、第1プリプレグ31をライナ11の周方向Bに対して軸方向Aに所定角度傾斜させて、所定幅らせん状に巻き付ける一部巻き付け工程を、一連の第1プリプレグ31によりライナ11の軸方向Bに所定間隔をおいて連続的に繰り返すことにより、ライナ11の表面全周に第1強化繊維層を巻回する第1巻回工程と、第2プリプレグ32を第1巻回工程の傾斜方向とは逆方向に傾斜させて、所定幅らせん状に巻き付ける一部巻き付け工程を、一連の強化繊維によりライナ11の軸方向Bに所定間隔をおいて連続的に繰り返すことにより、ライナ11の表面全周に第2強化繊維層を巻回する第2巻回工程とにより構成している。   That is, the partial winding process in which the first prepreg 31 is inclined at a predetermined angle in the axial direction A with respect to the circumferential direction B of the liner 11 and spirally wound with a predetermined width is performed by the series of first prepregs 31 in the axial direction of the liner 11. The first winding step of winding the first reinforcing fiber layer around the entire surface of the liner 11 by repeating the step B continuously at a predetermined interval and the inclination direction of the first winding step of the second prepreg 32 The partial winding process of inclining in the opposite direction and winding in a spiral shape with a predetermined width is continuously repeated at a predetermined interval in the axial direction B of the liner 11 with a series of reinforcing fibers, thereby making the entire surface of the liner 11 uniform. It is comprised by the 2nd winding process which winds a 2nd reinforcing fiber layer around.

具体的に説明すると、図3にて、第1巻回工程では、第1プリプレグ31をテープ(図示略)によりライナ11の表面に仮止めし、この第1プリプレグ31をライナ11の周方向Bに対して軸方向Aに所定角度傾斜させた状態でらせん状に巻き付ける。このとき、第1プリプレグ31をライナ11の表面にらせん状に巻き付けると、1周目の第1プリプレグ31aに対して2周目の第1プリプレグ31bは、ライナ11の軸方向Bに所定間隔だけ離れた位置となる。続いて、2周目の第1プリプレグ31bに対して3周目の第1プリプレグ31cは、ライナ11の軸方向Bに所定間隔だけ離れた位置となり、続いて、3周目の第1プリプレグ31cに対して4周目の第1プリプレグ31dは、ライナ11の軸方向Bに所定間隔だけ離れた位置となる。そして、4周目の第1プリプレグ31dに対して5周目の第1プリプレグ31eは、ライナ11の軸方向Bに所定間隔だけ離れると共に、1周目の第1プリプレグ31aと隙間なく密に接した位置となる。つまり、ライナ11の表面を軸方向Aに4つの領域に分け、各領域に対して第1プリプレグ31を連続して巻き付けていくこととなる。   Specifically, in FIG. 3, in the first winding step, the first prepreg 31 is temporarily fixed to the surface of the liner 11 with a tape (not shown), and the first prepreg 31 is moved in the circumferential direction B of the liner 11. Is spirally wound in a state inclined at a predetermined angle in the axial direction A. At this time, when the first prepreg 31 is spirally wound around the surface of the liner 11, the first prepreg 31 b in the second turn is a predetermined interval in the axial direction B of the liner 11 with respect to the first prepreg 31 a in the first turn. It will be a distant position. Subsequently, the first prepreg 31c in the third turn is located at a predetermined distance in the axial direction B of the liner 11 with respect to the first prepreg 31b in the second turn, and then the first prepreg 31c in the third turn. On the other hand, the first prepreg 31d in the fourth turn is positioned at a predetermined interval in the axial direction B of the liner 11. The first prepreg 31e in the fifth turn is separated from the first prepreg 31d in the fourth turn by a predetermined distance in the axial direction B of the liner 11 and is in close contact with the first prepreg 31a in the first turn without any gap. It becomes the position. That is, the surface of the liner 11 is divided into four regions in the axial direction A, and the first prepreg 31 is continuously wound around each region.

このように所定幅らせん状に巻き付ける一部巻き付け工程を、一連の第1プリプレグ31によりライナ11の軸方向Bに所定間隔をおいて連続的に繰り返すことにより、ライナ11の表面全周に第1強化繊維層を巻回することができる。   In this manner, the partial winding process of winding in a predetermined width spiral is continuously repeated at a predetermined interval in the axial direction B of the liner 11 by the series of first prepregs 31, so that the first winding is performed on the entire surface of the liner 11. The reinforcing fiber layer can be wound.

一方、第2巻回工程では、第2プリプレグ32をテープ(図示略)によりライナ11の外側に形成された第1強化繊維層の表面に仮止めし、この第2プリプレグ32をライナ11の周方向Bに対して軸方向Aに所定角度傾斜させた状態でらせん状に巻き付ける。この場合、第2プリプレグ32を巻き付ける傾斜方向は、第1プリプレグ31を巻き付ける傾斜方向と対称となる逆方向である。このとき、第2プリプレグ32を第1強化繊維層の表面にらせん状に巻き付けると、1周目の第2プリプレグ32aに対して2周目の第2プリプレグ32bは、ライナ11の軸方向Bに所定間隔だけ離れた位置となる。続いて、2周目の第2プリプレグ32bに対して3周目の第2プリプレグ32cは、ライナ11の軸方向Bに所定間隔だけ離れた位置となり、続いて、3周目の第2プリプレグ32cに対して4周目の第2プリプレグ32dは、ライナ11の軸方向Bに所定間隔だけ離れた位置となる。そして、4周目の第2プリプレグ32dに対して5周目の第2プリプレグ32eは、ライナ11の軸方向Bに所定間隔だけ離れると共に、1周目の第2プリプレグ32aと隙間なく密に接した位置となる。つまり、ライナ11の表面を軸方向Aに4つの領域に分け、各領域に対して第2プリプレグ32を連続して巻き付けていくこととなる。   On the other hand, in the second winding step, the second prepreg 32 is temporarily fixed to the surface of the first reinforcing fiber layer formed outside the liner 11 with a tape (not shown), and the second prepreg 32 is wound around the liner 11. It is wound in a spiral shape in a state where it is inclined at a predetermined angle in the axial direction A with respect to the direction B. In this case, the inclination direction in which the second prepreg 32 is wound is a reverse direction that is symmetrical to the inclination direction in which the first prepreg 31 is wound. At this time, when the second prepreg 32 is spirally wound around the surface of the first reinforcing fiber layer, the second prepreg 32b in the second turn is in the axial direction B of the liner 11 with respect to the second prepreg 32a in the first turn. The positions are separated by a predetermined interval. Subsequently, the second prepreg 32c in the third turn is located at a predetermined distance in the axial direction B of the liner 11 with respect to the second prepreg 32b in the second turn, and then the second prepreg 32c in the third turn. On the other hand, the second prepreg 32d in the fourth turn is located at a predetermined distance in the axial direction B of the liner 11. The second prepreg 32e in the fifth turn is separated from the second prepreg 32d in the fourth turn by a predetermined distance in the axial direction B of the liner 11, and is in close contact with the second prepreg 32a in the first turn without any gap. It becomes the position. That is, the surface of the liner 11 is divided into four regions in the axial direction A, and the second prepreg 32 is continuously wound around each region.

このように所定幅らせん状に巻き付ける一部巻き付け工程を、一連の第2プリプレグ32によりライナ11の軸方向Bに所定間隔をおいて連続的に繰り返すことにより、ライナ11における第1強化繊維層の表面全周に第2強化繊維層を巻回することができる。   In this way, the partial winding step of winding in a spiral shape with a predetermined width is continuously repeated at a predetermined interval in the axial direction B of the liner 11 by a series of second prepregs 32, thereby forming the first reinforcing fiber layer in the liner 11. The second reinforcing fiber layer can be wound around the entire surface.

この場合、第1巻回工程にて、ライナ11に対する一部巻き付け工程における第1プリプレグ31の所定幅のらせん巻き付けは、傾斜していることから第1プリプレグ31の張力を保つことができ、また、第1プリプレグ31の緩みが生じない範囲での所定幅であり、らせん状に繊維相互が接するように密に巻き付けることができる。そのため、一部巻き付け工程を、一連の第1プリプレグ31によりライナ11の軸方向Bに間隔をおいて連続的に繰り返すことにより、第1プリプレグ31を緩み無く中空ドーナツ形状のライナ11に巻回することができる。この場合、一部巻き付け工程での軸方向Bの間隔は、第1プリプレグ31の巻き付け張力を保ったまま、巻回し得る間隔位置であり、当該間隔の一連の第1プリプレグ31もライナ11の表面に接して張設されることとなる。また、一部巻き付け工程での第1プリプレグ31の所定幅の巻き付けは密な巻き付けであり、一部巻き付け工程相互間の巻き付けはこの密な巻き付けに比べて疎の巻き付けであり、一部巻き付け工程を、一連の第1プリプレグ31によりライナの周方向に間隔をおいて連続的に多数回繰り返すことにより、ライナ11の表面全周に第1強化繊維層を隙間無く巻回することができる。   In this case, in the first winding process, the spiral winding of the predetermined width of the first prepreg 31 in the partial winding process with respect to the liner 11 is inclined, so that the tension of the first prepreg 31 can be maintained. The first prepreg 31 has a predetermined width within a range in which the first prepreg 31 is not loosened, and can be tightly wound so that the fibers are in contact with each other in a spiral shape. Therefore, the first prepreg 31 is wound around the hollow donut-shaped liner 11 without loosening by repeating the partial winding process continuously with a series of first prepregs 31 spaced in the axial direction B of the liner 11. be able to. In this case, the interval in the axial direction B in the partial winding step is an interval position where the first prepreg 31 can be wound while maintaining the winding tension of the first prepreg 31. Will be stretched in contact with. Further, the winding of the predetermined width of the first prepreg 31 in the partial winding process is a dense winding, and the winding between the partial winding processes is a sparse winding compared to the dense winding, and the partial winding process The first reinforcing fiber layer can be wound around the entire surface of the liner 11 without a gap by repeating a number of times continuously with a series of first prepregs 31 at intervals in the circumferential direction of the liner.

一方、第2巻回工程では、第1強化繊維層が形成されたライナ11に対する一部巻き付け工程における第2プリプレグ32の所定幅のらせん巻き付けは、第1巻回工程と逆に傾斜していることから第2プリプレグ32の張力を保つことができ、また、第2プリプレグ32の緩みが生じない範囲での所定幅であり、らせん状に繊維相互が接するように密に巻き付けることができる。そのため、一部巻き付け工程を、一連の第2プリプレグ32によりライナ11の軸方向Bに間隔をおいて連続的に繰り返すことにより、第2プリプレグ32を緩み無く中空ドーナツ形状のライナ11に巻回することができる。この場合、一部巻き付け工程での軸方向Bの間隔は、第2プリプレグ32の巻き付け張力を保ったまま、巻回し得る間隔位置であり、当該間隔の一連の第2プリプレグ32もライナ11の表面に接して張設されることとなる。また、一部巻き付け工程での第2プリプレグ32の所定幅の巻き付けは密な巻き付けであり、一部巻き付け工程相互間の巻き付けはこの密な巻き付けに比べて疎の巻き付けであり、一部巻き付け工程を、一連の第2プリプレグ32によりライナの周方向に間隔をおいて連続的に多数回繰り返すことにより、ライナ11に形成された第1強化繊維層の表面全周に第2強化繊維層を隙間無く巻回することができる。   On the other hand, in the second winding step, the spiral winding of the predetermined width of the second prepreg 32 in the partial winding step with respect to the liner 11 on which the first reinforcing fiber layer is formed is inclined opposite to the first winding step. Therefore, the tension of the second prepreg 32 can be maintained, and the second prepreg 32 has a predetermined width within a range where the second prepreg 32 is not loosened, and can be tightly wound so that the fibers are in contact with each other in a spiral shape. For this reason, the second prepreg 32 is wound around the hollow donut-shaped liner 11 without loosening by repeating the partial winding process continuously with a series of second prepregs 32 at intervals in the axial direction B of the liner 11. be able to. In this case, the interval in the axial direction B in the partial winding step is an interval position where the second prepreg 32 can be wound while the winding tension of the second prepreg 32 is maintained. Will be stretched in contact with. Further, the winding of the predetermined width of the second prepreg 32 in the partial winding process is a dense winding, and the winding between the partial winding processes is a sparse winding compared to the dense winding, and the partial winding process Is repeated a number of times continuously with a series of second prepregs 32 at intervals in the circumferential direction of the liner, whereby the second reinforcing fiber layer is formed in a gap around the entire surface of the first reinforcing fiber layer formed on the liner 11. It can be wound without any problems.

その後、工程(S15)にて、第1プリプレグ31と第2プリプレグ32が巻き付けられたライナ11にて、樹脂を硬化させることで、このライナ11の外側を被覆する第1強化層12と第2強化層13を形成する。その後、工程(S16)にて、仕上げ加工を行うことで、圧力容器10が製造される。   Thereafter, in the step (S15), the resin is cured by the liner 11 around which the first prepreg 31 and the second prepreg 32 are wound, so that the first reinforcing layer 12 and the second layer covering the outside of the liner 11 are cured. The reinforcing layer 13 is formed. Then, the pressure vessel 10 is manufactured by performing a finishing process in a process (S16).

このように本実施例の圧力容器にあっては、中空ドーナツ形状をなす金属製のライナ11と、このライナ11の周方向Bで且つ軸方向Aにおける一方側Lに向ってらせん状に連続する強化繊維が樹脂により硬化されてライナ11の外側を被覆する第1強化層12と、ライナ11の周方向Bで且つ軸方向Aにおける他方側Rに向ってらせん状に連続する強化繊維が樹脂により硬化されてライナ11(第1強化層12)の外側を被覆する第2強化層13とを設けている。   As described above, in the pressure vessel according to the present embodiment, the metal liner 11 having a hollow donut shape is continuous with the spiral in the circumferential direction B and the one side L in the axial direction A of the liner 11. The first reinforcing layer 12 in which the reinforcing fiber is cured by the resin and covers the outer side of the liner 11, and the reinforcing fiber that spirally continues toward the other side R in the circumferential direction B and the axial direction A of the liner 11 is made of the resin. A second reinforcing layer 13 that is cured and covers the outside of the liner 11 (first reinforcing layer 12) is provided.

従って、ライナ11の外周面に一方側Lに向って第1プリプレグ31をらせん状に巻き付け、その上に他方側Rに向って第2プリプレグ32をらせん状に巻き付け、これを硬化することで、第1強化層12と第2強化層13が積層して形成されることから、強化繊維が交差する2つの強化層12,13を容易に形成することができる。   Therefore, the first prepreg 31 is spirally wound around the outer peripheral surface of the liner 11 toward the one side L, and the second prepreg 32 is wound spirally toward the other side R on the first prepreg 31. Since the 1st reinforcement layer 12 and the 2nd reinforcement layer 13 are laminated | stacked and formed, the two reinforcement layers 12 and 13 which a reinforcement fiber cross | intersect can be formed easily.

ライナ11の表面に炭素繊維が交差する少なくとも2つの強化層12,13を形成する場合、帯状の炭素繊維は、ライナ11の周方向Bに沿って巻き付けられるものの、ライナ11の軸方向Aに沿って巻き付けることは困難である。即ち、ライナ11の外周側には、所定の張力で軸方向Aに沿って炭素繊維を巻き付けることはできるものの、ライナ11の内周側には、所定の張力で軸方向Aに沿って炭素繊維を巻き付けることはできない。本実施例では、プリプレグ31,32を異なる2方向へ向ってらせん状に巻き付けることで、ライナ11の表面に炭素繊維が交差する少なくとも2つの強化層12,13を形成することができる。   When forming at least two reinforcing layers 12 and 13 in which carbon fibers intersect on the surface of the liner 11, the belt-like carbon fibers are wound along the circumferential direction B of the liner 11, but are along the axial direction A of the liner 11. It is difficult to wrap. That is, the carbon fiber can be wound around the outer periphery of the liner 11 along the axial direction A with a predetermined tension, but the carbon fiber along the axial direction A with a predetermined tension can be wound around the inner periphery of the liner 11. Cannot be wrapped. In this embodiment, the prepregs 31 and 32 are spirally wound in two different directions, whereby at least two reinforcing layers 12 and 13 in which carbon fibers intersect can be formed on the surface of the liner 11.

また、本実施例の圧力容器では、第1強化層12及び第2強化層13を構成する強化繊維を第1プリプレグ31と第2プリプレグ32により構成している。従って、プリプレグ31,32を用いることで、強化繊維をライナ11の外周面に容易にらせん状に巻き付けることができる。   Further, in the pressure vessel of this embodiment, the reinforcing fibers constituting the first reinforcing layer 12 and the second reinforcing layer 13 are constituted by the first prepreg 31 and the second prepreg 32. Therefore, by using the prepregs 31 and 32, the reinforcing fiber can be easily wound around the outer peripheral surface of the liner 11 in a spiral shape.

また、本実施例の圧力容器の製造方法にあっては、中空ドーナツ形状をなす金属製のライナ11を製造する工程(S11)と、ライナ11の表面に一方側Lに向って第1プリプレグ31をらせん状に巻き付ける工程(S12〜S13)と、第1プリプレグ31の表面に他方側Rに向って第2プリプレグ32をらせん状に巻き付ける工程(S14)と、第1プリプレグ31と第2プリプレグ32が巻き付けられたライナ11を硬化させることで第1強化層12及び第2強化層13を形成する工程(S15〜S16)とから構成されている。   In the method for manufacturing a pressure vessel according to the present embodiment, a step (S11) of manufacturing a metal liner 11 having a hollow donut shape, and the first prepreg 31 toward the one side L on the surface of the liner 11 are performed. , A step of winding the second prepreg 32 around the surface of the first prepreg 31 toward the other side R (S14), a first prepreg 31 and a second prepreg 32. Is formed from a step (S15 to S16) in which the first reinforcing layer 12 and the second reinforcing layer 13 are formed by curing the liner 11 on which is wound.

従って、ライナ11の外周面に一方側Lに向って第1プリプレグ31をらせん状に巻き付け、その上に他方側Rに向って第2プリプレグ32をらせん状に巻き付け、これを硬化することで、第1強化層12と第2強化層13が積層して形成されることから、強化繊維が交差する2つの強化層12,13を容易に形成することができ、製造工程の簡略化を可能とすることができる。   Therefore, the first prepreg 31 is spirally wound around the outer peripheral surface of the liner 11 toward the one side L, and the second prepreg 32 is wound spirally toward the other side R on the first prepreg 31. Since the 1st reinforcement layer 12 and the 2nd reinforcement layer 13 are laminated | stacked and formed, the two reinforcement layers 12 and 13 which a reinforcement fiber cross | intersect can be formed easily, and simplification of a manufacturing process is attained. can do.

なお、上述した実施例では、ライナ11の外側に2つの強化層12,13を形成したが、この数に限定されるものではなく、強化繊維が交差する方向に配列された2つの強化層があればよく、3層以上でもよいものである。また、上述した実施例では、ライナ11の表面を軸方向Aに4つの領域に分け、各領域に対して各プリプレグ31,32を連続して巻き付けていくようにしたが、領域の個数は、1つに限定されるものではなく、各プリプレグ31,32の巻き付け角度に応じて適宜設定すればよいものである。更に、ライナ11に対する第1プリプレグ31と第2プリプレグ32との巻き付け角度は、対称な角度であることが望ましい。   In the above-described embodiment, the two reinforcing layers 12 and 13 are formed on the outer side of the liner 11. However, the number of the reinforcing layers 12 and 13 is not limited to this number, and the two reinforcing layers arranged in the direction in which the reinforcing fibers intersect with each other. What is necessary is just three layers or more. Further, in the above-described embodiment, the surface of the liner 11 is divided into four regions in the axial direction A, and the prepregs 31 and 32 are continuously wound around each region. The number is not limited to one, and may be set as appropriate according to the winding angle of each prepreg 31, 32. Furthermore, the winding angle of the first prepreg 31 and the second prepreg 32 around the liner 11 is preferably a symmetric angle.

本発明に係る圧力容器及びその製造方法は、ライナの外側に強化繊維が交差する方向に配列された複数の強化層を容易に設けること可能なものであり、いずれの圧力容器にも適用することができる。   The pressure vessel and the manufacturing method thereof according to the present invention can be easily provided with a plurality of reinforcing layers arranged in the direction in which the reinforcing fibers intersect on the outside of the liner, and can be applied to any pressure vessel. Can do.

10 圧力容器
11 ライナ
12 第1強化層
13 第2強化層
31 第1プリプレグ(強化繊維)
32 第2プリプレグ(強化繊維)
DESCRIPTION OF SYMBOLS 10 Pressure vessel 11 Liner 12 1st reinforcement layer 13 2nd reinforcement layer 31 1st prepreg (reinforced fiber)
32 Second prepreg (reinforced fiber)

Claims (4)

中空ドーナツ形状をなす金属製のライナと、
前記ライナの周方向で且つ軸方向における一方側に向ってらせん状に連続する強化繊維が樹脂により硬化されて前記ライナの外側を被覆する第1強化層と、
前記ライナの周方向で且つ軸方向における他方側に向ってらせん状に連続する強化繊維が樹脂により硬化されて前記ライナの外側を被覆する第2強化層と、
を備えることを特徴とする圧力容器。
A metal liner in the shape of a hollow donut,
A first reinforcing layer in which a reinforcing fiber that is spirally continuous toward one side in the circumferential direction and the axial direction of the liner is cured by a resin and covers the outer side of the liner;
A second reinforcing layer in which a reinforcing fiber that is spirally continuous toward the other side in the circumferential direction and the axial direction of the liner is cured by a resin and covers the outside of the liner;
A pressure vessel comprising:
前記第1強化層及び前記第2強化層を構成する強化繊維は、プリプレグにより構成されることを特徴とする請求項1に記載の圧力容器。   The pressure vessel according to claim 1, wherein the reinforcing fibers constituting the first reinforcing layer and the second reinforcing layer are constituted by a prepreg. 中空ドーナツ形状をなす金属製のライナの表面に該ライナの周方向で且つ軸方向における一方側に向って樹脂が含浸された第1強化繊維をらせん状に巻き付ける工程と、
前記第1強化繊維の表面に前記ライナの周方向で且つ軸方向における他方側に向って樹脂が含浸された第2強化繊維をらせん状に巻き付ける工程と、
前記第1強化繊維と前記第2強化繊維が巻き付けられた前記ライナを硬化させることで第1強化層及び第2強化層を形成する工程と、
を有することを特徴とする圧力容器の製造方法。
Winding the first reinforcing fiber impregnated with the resin spirally around the surface of the metal liner having a hollow donut shape in the circumferential direction of the liner and toward one side in the axial direction;
Winding the second reinforcing fiber impregnated with resin spirally around the surface of the first reinforcing fiber in the circumferential direction of the liner and toward the other side in the axial direction;
Forming the first reinforcing layer and the second reinforcing layer by curing the liner around which the first reinforcing fiber and the second reinforcing fiber are wound;
A method for producing a pressure vessel, comprising:
中空ドーナツ形状をなす金属製のライナの表面全周に樹脂が含浸された強化繊維を巻回した後に硬化する圧力容器の製造方法であって、
強化繊維をライナの周方向に対して軸方向に傾斜させて、所定幅らせん状に巻き付ける一部巻き付け工程を、一連の強化繊維により前記ライナの軸方向に所定間隔をおいて連続的に繰り返すことにより、前記ライナの表面全周に第1強化繊維層を巻回する第1巻回工程と、
強化繊維を前記第1巻回工程の傾斜方向とは逆方向に傾斜させて、所定幅らせん状に巻き付ける一部巻き付け工程を、一連の強化繊維により前記ライナの軸方向に所定間隔をおいて連続的に繰り返すことにより、前記ライナの表面全周に第2強化繊維層を巻回する第2巻回工程と、
を有することを特徴とする圧力容器の製造方法。
A method for producing a pressure vessel that cures after winding a reinforcing fiber impregnated with a resin around the entire surface of a metal liner having a hollow donut shape,
The partial winding process in which the reinforcing fibers are inclined in the axial direction with respect to the circumferential direction of the liner and wound in a spiral shape with a predetermined width is continuously repeated with a series of reinforcing fibers at predetermined intervals in the axial direction of the liner. A first winding step of winding the first reinforcing fiber layer around the entire surface of the liner;
A part winding process in which the reinforcing fiber is inclined in a direction opposite to the inclination direction of the first winding process and wound in a spiral shape with a predetermined width is continuously performed at a predetermined interval in the axial direction of the liner by a series of reinforcing fibers. The second winding step of winding the second reinforcing fiber layer around the entire circumference of the surface of the liner,
A method for producing a pressure vessel, comprising:
JP2013211942A 2013-10-09 2013-10-09 Pressure vessel and method for manufacturing the same Active JP6223108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211942A JP6223108B2 (en) 2013-10-09 2013-10-09 Pressure vessel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211942A JP6223108B2 (en) 2013-10-09 2013-10-09 Pressure vessel and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2015075173A true JP2015075173A (en) 2015-04-20
JP6223108B2 JP6223108B2 (en) 2017-11-01

Family

ID=53000182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211942A Active JP6223108B2 (en) 2013-10-09 2013-10-09 Pressure vessel and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6223108B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286745A (en) * 2019-08-07 2022-04-05 日进海索斯株式会社 Pressure vessel and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512804A (en) * 1995-09-23 1999-11-02 イギリス国 Gas storage device
JP2010236587A (en) * 2009-03-31 2010-10-21 Jfe Container Co Ltd Fiber-reinforced plastic pressure vessel
JP2012031938A (en) * 2010-07-30 2012-02-16 Mitsubishi Heavy Ind Ltd Pressure vessel and method for manufacturing the same
JP2012201002A (en) * 2011-03-25 2012-10-22 Shikibo Ltd Dry preform, annular structure made of composite material and method of manufacturing annular structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512804A (en) * 1995-09-23 1999-11-02 イギリス国 Gas storage device
JP2010236587A (en) * 2009-03-31 2010-10-21 Jfe Container Co Ltd Fiber-reinforced plastic pressure vessel
JP2012031938A (en) * 2010-07-30 2012-02-16 Mitsubishi Heavy Ind Ltd Pressure vessel and method for manufacturing the same
JP2012201002A (en) * 2011-03-25 2012-10-22 Shikibo Ltd Dry preform, annular structure made of composite material and method of manufacturing annular structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286745A (en) * 2019-08-07 2022-04-05 日进海索斯株式会社 Pressure vessel and method for manufacturing the same

Also Published As

Publication number Publication date
JP6223108B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
KR101829127B1 (en) Manufacturing method of tank
JP5238577B2 (en) Composite container and method for manufacturing composite container
US9683698B2 (en) High pressure tank
JP5831464B2 (en) Manufacturing method of high-pressure gas tank
JP2020520828A (en) Polar cap reinforced pressure vessel
US11384902B2 (en) Pressure vessel and method for winding filament
JP2020026817A (en) Pressure vessel and its manufacturing method
WO2006110754A3 (en) Side-ported filament wound pressure vessels
WO2013001348A3 (en) High pressure gas tank and manufacturing method of high pressure gas tank
JP2008143029A (en) Manufacturing method of molded body, molded body and tank
JPWO2017073108A1 (en) Composite container
US20220065400A1 (en) Tank production method and tank
JP2008169893A (en) Pressure vessel, and its manufacturing method
US8991641B2 (en) Pressure vessel and method of manufacturing the same
JP6223108B2 (en) Pressure vessel and method for manufacturing the same
US11524447B2 (en) Pressure vessel and manufacturing method thereof
JP6266293B2 (en) Pressure vessel and method for manufacturing the same
JP6726408B2 (en) High pressure tank manufacturing method and high pressure tank
JP2007320193A (en) Container and its manufacturing method and manufacturing equipment
JP7318781B2 (en) Pressure vessel and manufacturing method thereof
JP2011144840A (en) Pressure vessel
EP4353455A1 (en) Method for winding filament and pressure vessel manufactured thereby
JP2013053729A (en) High pressure gas tank and method of manufacturing the same
JPH09203496A (en) Method of manufacturing high pressure tank
JP2020159474A (en) Manufacturing method of gas tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6223108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150