JP7318781B2 - Pressure vessel and manufacturing method thereof - Google Patents

Pressure vessel and manufacturing method thereof Download PDF

Info

Publication number
JP7318781B2
JP7318781B2 JP2022133226A JP2022133226A JP7318781B2 JP 7318781 B2 JP7318781 B2 JP 7318781B2 JP 2022133226 A JP2022133226 A JP 2022133226A JP 2022133226 A JP2022133226 A JP 2022133226A JP 7318781 B2 JP7318781 B2 JP 7318781B2
Authority
JP
Japan
Prior art keywords
reinforcing
central axis
outer peripheral
peripheral surface
straight body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022133226A
Other languages
Japanese (ja)
Other versions
JP2022176187A (en
Inventor
統 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018150690A external-priority patent/JP7176287B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022133226A priority Critical patent/JP7318781B2/en
Publication of JP2022176187A publication Critical patent/JP2022176187A/en
Application granted granted Critical
Publication of JP7318781B2 publication Critical patent/JP7318781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、圧力容器及びその製造方法に関する。 The present invention relates to a pressure vessel and its manufacturing method.

直胴部と直胴部の両端を塞ぐ略半球状のドーム部とからなる金属製の容器本体に、強化繊維をヘリカル状に巻き付けて繊維強化樹脂層を形成した圧力容器において、ドーム部と繊維強化樹脂層との間に補強材としての強化繊維を製織した織物が設けられた構造は、従来から知られている(例えば、特許文献1参照)。 A pressure vessel in which a fiber-reinforced resin layer is formed by helically winding reinforcing fibers around a metal container body consisting of a straight body and a substantially hemispherical dome that closes both ends of the straight body, wherein the dome and the fiber A structure in which a woven fabric made of reinforced fibers as a reinforcing material is provided between the reinforced resin layer and the reinforced resin layer is conventionally known (see, for example, Patent Document 1).

特開2004-263827号公報JP 2004-263827 A

しかしながら、容器本体に対して固定された状態で配置された製造装置から繰り出される強化繊維をヘリカル状に巻き付けて繊維強化樹脂層を形成する際、その強化繊維がドーム部の外周面を滑らないようにするためには、ドーム部の測地線(最短距離)を通る巻付角度で強化繊維を巻き付けていく必要がある。そのため、容器本体に対する強化繊維の巻付角度に自由度がなく、所望の強度を得るためには、多量の強化繊維が必要となり、圧力容器の製造コストを増加させる一因となっている。 However, when forming the fiber-reinforced resin layer by helically winding the reinforcing fibers fed out from the manufacturing apparatus arranged in a state fixed to the container body, it is necessary to prevent the reinforcing fibers from slipping on the outer peripheral surface of the dome portion. In order to do so, it is necessary to wind the reinforcing fibers at a winding angle that passes through the geodesic line (shortest distance) of the dome portion. Therefore, there is no degree of freedom in the winding angle of the reinforcing fibers with respect to the container body, and a large amount of reinforcing fibers are required in order to obtain the desired strength, which is a factor in increasing the manufacturing cost of the pressure vessel.

そこで、本発明は、製造コストの増加を抑制できる圧力容器及びその製造方法を得ることを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a pressure vessel and a method of manufacturing the same that can suppress an increase in manufacturing cost.

上記の目的を達成するために、本発明に係る第1の態様の圧力容器は、円筒状の直胴部と該直胴部の両端に一体に形成された半球状の半球部を含むドーム部とを有する容器本体と、一方の前記ドーム部の外周面に所定の幅を有するテープ状の強化繊維が互い違いに編まれるように巻き付けられることで構成された第1補強部と、前記直胴部の外周面に前記第1補強部から連続して前記強化繊維がヘリカル状に巻き付けられることで構成された第2補強部と、他方の前記ドーム部の外周面に前記第2補強部から連続して前記強化繊維が互い違いに編まれるように巻き付けられることで構成された第3補強部と、を備えている。 In order to achieve the above object, a first aspect of the pressure vessel according to the present invention is a dome portion including a cylindrical straight body portion and hemispherical semispherical portions integrally formed at both ends of the straight body portion. a first reinforcing portion configured by winding tape-shaped reinforcing fibers having a predetermined width on the outer peripheral surface of one of the dome portions so as to be alternately woven; and the straight body. A second reinforcing portion formed by helically winding the reinforcing fibers continuously from the first reinforcing portion on the outer peripheral surface of the dome portion, and a second reinforcing portion on the outer peripheral surface of the other dome portion continuously from the second reinforcing portion. and a third reinforcing portion configured by winding the reinforcing fibers so as to be alternately woven.

第1の態様によれば、直胴部の外周面では、所定の幅を有するテープ状の強化繊維がヘリカル状に巻き付けられ、ドーム部の外周面では、その強化繊維が互い違いに編まれるように巻き付けられている。したがって、ドーム部の外周面において、強化繊維が滑るおそれがなく、そのため、測地線(最短距離)を通る巻付角度で強化繊維を巻き付ける必要がない。つまり、圧力容器を製造する際に、容器本体(直胴部)に対する強化繊維の巻付角度に自由度があり、必要最小限の強化繊維で所望の強度が得られる。よって、圧力容器において、製造コストの増加が抑制される。 According to the first aspect, tape-shaped reinforcing fibers having a predetermined width are helically wound on the outer peripheral surface of the straight body portion, and the reinforcing fibers are alternately woven on the outer peripheral surface of the dome portion. wrapped around. Therefore, there is no risk of the reinforcing fibers slipping on the outer peripheral surface of the dome portion, so there is no need to wind the reinforcing fibers at a winding angle passing through the geodesic line (shortest distance). That is, when manufacturing a pressure vessel, there is a degree of freedom in the winding angle of the reinforcing fibers with respect to the container body (straight body), and the desired strength can be obtained with the minimum number of reinforcing fibers. Therefore, an increase in the manufacturing cost of the pressure vessel is suppressed.

また、本発明に係る第2の態様の圧力容器は、第1の態様の圧力容器であって、前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部と前記ドーム部との境界部から前記中心軸の軸方向端部側で、前記第1補強部から前記第2補強部へ切り替わり、かつ前記第2補強部から前記第3補強部へ切り替わっている特徴を備えていてもよい。 Further, a pressure vessel of a second aspect according to the present invention is the pressure vessel of the first aspect, wherein the straight body portion and the dome when viewed from a direction perpendicular to the axial direction of the central axis of the vessel body The first reinforcing portion is switched to the second reinforcing portion, and the second reinforcing portion is switched to the third reinforcing portion, on the axial direction end side of the central axis from the boundary portion with the part. may be

第2の態様によれば、直胴部とドーム部との境界部から、容器本体における中心軸の軸方向端部側で、第1補強部から第2補強部へ切り替わり、かつ第2補強部から第3補強部へ切り替わっている。したがって、直胴部において、強化繊維が互い違いに編まれるように巻き付けられることがない。よって、直胴部も、強化繊維が互い違いに編まれるように巻き付けられる場合に比べて、必要となる強化繊維の量が低減され、製造コストの増加が更に抑制される。 According to the second aspect, the first reinforcing portion is switched to the second reinforcing portion on the axial end side of the central axis of the container body from the boundary portion between the straight body portion and the dome portion, and the second reinforcing portion to the third reinforcing part. Therefore, the reinforcing fibers are not alternately wound around the straight body portion. Therefore, compared to the case where the straight body portion is also wound with the reinforcing fibers alternately woven, the required amount of the reinforcing fibers is reduced, further suppressing an increase in the manufacturing cost.

また、本発明に係る第3の態様の圧力容器は、第2の態様の圧力容器であって、前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部に巻き付けられる前記強化繊維の前記中心軸に対する巻付角度で決められる前記半球部の外周面における特定部から前記中心軸の軸方向中央部側で、前記第1補強部から前記第2補強部へ切り替わり、かつ前記第2補強部から前記第3補強部へ切り替わっている特徴を備えていてもよい。 A pressure vessel according to a third aspect of the present invention is the pressure vessel according to the second aspect, wherein a The first reinforcing portion is switched to the second reinforcing portion on the axially central portion side of the central axis from a specific portion on the outer peripheral surface of the hemispherical portion determined by the winding angle of the reinforcing fibers with respect to the central axis, and The feature may be that the second reinforcing portion is switched to the third reinforcing portion.

第3の態様によれば、直胴部に巻き付けられる強化繊維の巻付角度で決められる半球部の外周面における特定部から、容器本体における中心軸の軸方向中央部側で、第1補強部から第2補強部へ切り替わり、かつ第2補強部から第3補強部へ切り替わっている。つまり、半球部の外周面と直胴部の外周面とには、同じ巻付角度で強化繊維が巻き付けられている。したがって、半球部の外周面から直胴部の外周面及び直胴部の外周面から半球部の外周面へ強化繊維を巻き付けるときの連続性が良好となり、圧力容器の生産性が向上される。 According to the third aspect, the first reinforcing portion is located on the side of the central portion in the axial direction of the central axis of the container body from the specific portion on the outer peripheral surface of the hemispherical portion determined by the winding angle of the reinforcing fiber wound around the straight body portion. to the second reinforcing portion, and from the second reinforcing portion to the third reinforcing portion. That is, the reinforcing fibers are wound at the same winding angle on the outer peripheral surface of the semispherical portion and the outer peripheral surface of the straight body portion. Therefore, the continuity when the reinforcing fibers are wound from the outer peripheral surface of the semispherical portion to the outer peripheral surface of the straight body portion and from the outer peripheral surface of the straight body portion to the outer peripheral surface of the semispherical portion is improved, and the productivity of the pressure vessel is improved.

また、本発明に係る第4の態様の圧力容器は、第3の態様の圧力容器であって、前記特定部は、前記容器本体における中心軸の軸方向と直交する方向から見て、前記境界部と前記中心軸との交点を通るように前記巻付角度で巻き付けられた前記強化繊維と、前記半球部の外周面との仮想交点を通る仮想円周部である特徴を備えていてもよい。 A pressure vessel according to a fourth aspect of the present invention is the pressure vessel according to the third aspect, wherein the specified portion is the boundary and the reinforcing fiber wound at the winding angle so as to pass through the intersection of the portion and the central axis, and the virtual circumference portion passing through the virtual intersection of the outer peripheral surface of the hemispherical portion. .

第4の態様によれば、特定部が、境界部と中心軸との交点を通るように上記巻付角度で巻き付けられた強化繊維と、半球部の外周面との仮想交点を通る仮想円周部とされている。したがって、特定部が、上記仮想円周部とされていない場合に比べて、半球部の外周面から直胴部の外周面及び直胴部の外周面から半球部の外周面へ強化繊維を巻き付けるときの連続性が更に良好となる。よって、圧力容器の生産性が向上される。 According to the fourth aspect, the specific portion is a virtual circle passing through the virtual intersection of the reinforcing fiber wound at the winding angle so as to pass through the intersection of the boundary portion and the central axis and the outer peripheral surface of the hemispherical portion. It is considered to be a department. Therefore, compared to the case where the specified portion is not the virtual circumference portion, the reinforcing fibers are wound from the outer peripheral surface of the semispherical portion to the outer peripheral surface of the straight body portion and from the outer peripheral surface of the straight body portion to the outer peripheral surface of the semispherical portion. The continuity of time becomes even better. Therefore, the productivity of the pressure vessel is improved.

また、本発明に係る第5の態様の圧力容器は、第1~第4の何れかの態様の圧力容器であって、前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部に巻き付けられる前記強化繊維の前記中心軸に対する巻付角度が54.7度±10度の範囲内である特徴を備えていてもよい。 Further, a pressure vessel according to a fifth aspect of the present invention is the pressure vessel according to any one of the first to fourth aspects, wherein the A winding angle of the reinforcing fibers wound around the straight body portion with respect to the central axis may be within a range of 54.7 degrees±10 degrees.

第5の態様によれば、直胴部に巻き付けられる強化繊維の巻付角度が54.7度±10度の範囲内とされている。ここで、この「54.7度」という値は、直胴部における周方向と軸方向の応力によって決められている。したがって、直胴部に巻き付けられる強化繊維の巻付角度が54.7度±10度の範囲内とされていない場合に比べて、直胴部がより適切に補強される。 According to the fifth aspect, the winding angle of the reinforcing fibers wound around the straight body portion is within the range of 54.7 degrees±10 degrees. Here, this value of "54.7 degrees" is determined by the stress in the circumferential and axial directions in the straight body. Therefore, the straight body portion is reinforced more appropriately than when the winding angle of the reinforcing fibers wound around the straight body portion is not within the range of 54.7 degrees±10 degrees.

また、本発明に係る第6の態様の圧力容器の製造方法は、円筒状の直胴部と該直胴部の両端に一体に形成された半球状の半球部を含むドーム部とを有する容器本体に所定の幅を有するテープ状の強化繊維を巻き付けて補強する圧力容器の製造方法であって、一方の前記ドーム部の外周面に強化繊維を互い違いに編まれるように巻き付ける第1工程と、前記直胴部の外周面に前記第1工程から連続して前記強化繊維をヘリカル状に巻き付ける第2工程と、他方の前記ドーム部の外周面に前記第2工程から連続して前記強化繊維を互い違いに編まれるように巻き付ける第3工程と、を有している。 A sixth aspect of the present invention provides a method for manufacturing a pressure vessel, comprising: a container having a cylindrical straight body portion and a dome portion including hemispherical hemispherical portions integrally formed at both ends of the straight body portion; A method for manufacturing a pressure vessel in which a main body is reinforced by winding tape-shaped reinforcing fibers having a predetermined width, comprising: a first step of winding the reinforcing fibers alternately around the outer peripheral surface of one of the dome portions; a second step of helically winding the reinforcing fibers around the outer peripheral surface of the straight body portion continuously from the first step; and the reinforcing fibers around the outer peripheral surface of the other dome portion continuously from the second step and a third step of winding in a staggered weave.

第6の態様によれば、直胴部の外周面では、所定の幅を有するテープ状の強化繊維がヘリカル状に巻き付けられ、ドーム部の外周面では、その強化繊維が互い違いに編まれるように巻き付けられる。したがって、ドーム部の外周面において、強化繊維が滑るおそれがなく、そのため、測地線(最短距離)を通る巻付角度で強化繊維を巻き付ける必要がない。つまり、圧力容器を製造する際に、容器本体(直胴部)に対する強化繊維の巻付角度に自由度があり、必要最小限の強化繊維で所望の強度が得られる。よって、圧力容器において、製造コストの増加が抑制される。 According to the sixth aspect, tape-shaped reinforcing fibers having a predetermined width are helically wound on the outer peripheral surface of the straight body portion, and the reinforcing fibers are alternately woven on the outer peripheral surface of the dome portion. wrapped around. Therefore, there is no risk of the reinforcing fibers slipping on the outer peripheral surface of the dome portion, so there is no need to wind the reinforcing fibers at a winding angle passing through the geodesic line (shortest distance). That is, when manufacturing a pressure vessel, there is a degree of freedom in the winding angle of the reinforcing fibers with respect to the container body (straight body), and the desired strength can be obtained with the minimum number of reinforcing fibers. Therefore, an increase in the manufacturing cost of the pressure vessel is suppressed.

また、本発明に係る第7の態様の圧力容器の製造方法は、第6の態様の圧力容器の製造方法であって、前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部と前記ドーム部との境界部から前記中心軸の軸方向端部側で、前記第1工程から前記第2工程へ切り替え、かつ前記第2工程から前記第3工程へ切り替える特徴を備えていてもよい。 A seventh aspect of the present invention is a pressure vessel manufacturing method according to the sixth aspect of the pressure vessel manufacturing method, wherein the The first step is switched to the second step and the second step is switched to the third step on the axial end side of the central axis from the boundary portion between the straight body portion and the dome portion. may be

第7の態様によれば、直胴部とドーム部との境界部から、容器本体における中心軸の軸方向端部側で、第1工程から第2工程へ切り替え、かつ第2工程から第3工程へ切り替える。したがって、直胴部において、強化繊維が互い違いに編まれるように巻き付けられない。よって、直胴部も、強化繊維が互い違いに編まれるように巻き付けられる場合に比べて、必要となる強化繊維の量が低減され、製造コストの増加が更に抑制される。 According to the seventh aspect, the first step is switched to the second step and the second step is switched to the third step on the axial end side of the central axis of the container body from the boundary portion between the straight body portion and the dome portion. Switch to process. Therefore, in the straight body portion, the reinforcing fibers are not wound so as to be alternately woven. Therefore, compared to the case where the straight body portion is also wound with the reinforcing fibers alternately woven, the required amount of the reinforcing fibers is reduced, further suppressing an increase in the manufacturing cost.

また、本発明に係る第8の態様の圧力容器の製造方法は、第7の態様の圧力容器の製造方法であって、前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部に巻き付ける前記強化繊維の前記中心軸に対する巻付角度で決められる前記半球部の外周面における特定部から前記中心軸の軸方向中央部側で、前記第1工程から前記第2工程へ切り替え、かつ前記第2工程から前記第3工程へ切り替える特徴を備えていてもよい。 A pressure vessel manufacturing method according to an eighth aspect of the present invention is the pressure vessel manufacturing method according to the seventh aspect, wherein when viewed from a direction perpendicular to the axial direction of the central axis of the container body, From the first step to the second step from a specific portion on the outer peripheral surface of the hemispherical portion determined by the winding angle with respect to the central axis of the reinforcing fiber wound around the straight body portion to the central portion side in the axial direction of the central axis. A feature of switching and switching from the second step to the third step may be provided.

第8の態様によれば、直胴部に巻き付けられる強化繊維の巻付角度で決められるドーム部の外周面における特定部から、容器本体における中心軸の軸方向中央部側で、第1工程から第2工程へ切り替え、かつ第2工程から第3工程へ切り替える。つまり、半球部の外周面と直胴部の外周面とには、同じ巻付角度で強化繊維が巻き付けられる。したがって、半球部の外周面から直胴部の外周面及び直胴部の外周面から半球部の外周面へ強化繊維を巻き付けるときの連続性が良好となり、圧力容器の生産性が向上される。 According to the eighth aspect, from the first step on the side of the central portion in the axial direction of the central axis of the container body from the specific portion on the outer peripheral surface of the dome portion determined by the winding angle of the reinforcing fiber wound around the straight body portion. Switching to the second process and switching from the second process to the third process. That is, the reinforcing fibers are wound at the same winding angle on the outer peripheral surface of the semispherical portion and the outer peripheral surface of the straight body portion. Therefore, the continuity when the reinforcing fibers are wound from the outer peripheral surface of the semispherical portion to the outer peripheral surface of the straight body portion and from the outer peripheral surface of the straight body portion to the outer peripheral surface of the semispherical portion is improved, and the productivity of the pressure vessel is improved.

また、本発明に係る第9の態様の圧力容器の製造方法は、第8の態様の圧力容器の製造方法であって、前記特定部は、前記容器本体における中心軸の軸方向と直交する方向から見て、前記境界部と前記中心軸との交点を通るように前記巻付角度で巻き付ける前記強化繊維と、前記半球部の外周面との仮想交点を通る仮想円周部である特徴を備えていてもよい。 Further, a pressure vessel manufacturing method of a ninth aspect according to the present invention is the pressure vessel manufacturing method of the eighth aspect, wherein the specific portion is arranged in a direction orthogonal to the axial direction of the central axis of the container body. viewed from above, the reinforcing fiber wound at the winding angle so as to pass through the intersection of the boundary and the central axis, and the virtual circumference passing through the virtual intersection of the outer peripheral surface of the hemispherical portion. may be

第9の態様によれば、特定部が、境界部と中心軸との交点を通るように上記巻付角度で巻き付ける強化繊維と、半球部の外周面との仮想交点を通る仮想円周部とされている。したがって、特定部が、上記仮想円周部とされていない場合に比べて、半球部の外周面から直胴部の外周面及び直胴部の外周面から半球部の外周面へ強化繊維を巻き付けるときの連続性が更に良好となる。よって、圧力容器の生産性が向上される。 According to the ninth aspect, the specific portion includes the reinforcing fiber wound at the winding angle so as to pass through the intersection of the boundary portion and the central axis, and the virtual circumference portion passing through the virtual intersection with the outer peripheral surface of the hemispherical portion. It is Therefore, compared to the case where the specified portion is not the virtual circumference portion, the reinforcing fibers are wound from the outer peripheral surface of the semispherical portion to the outer peripheral surface of the straight body portion and from the outer peripheral surface of the straight body portion to the outer peripheral surface of the semispherical portion. The continuity of time becomes even better. Therefore, the productivity of the pressure vessel is improved.

また、本発明に係る第10の態様の圧力容器の製造方法は、第6~第9の何れかの態様の圧力容器の製造方法であって、前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部に巻き付ける前記強化繊維の前記中心軸に対する巻付角度が54.7度±10度の範囲内である特徴を備えていてもよい。 A pressure vessel manufacturing method according to a tenth aspect of the present invention is the pressure vessel manufacturing method according to any one of the sixth to ninth aspects, wherein When viewed from the direction, the reinforcing fiber wound around the straight body may have a winding angle with respect to the central axis of 54.7 degrees ±10 degrees.

第10の態様によれば、直胴部に巻き付けられる強化繊維の巻付角度を54.7度±10度の範囲内としている。ここで、この「54.7度」という値は、直胴部における周方向と軸方向の応力によって決められている。したがって、直胴部に巻き付けられる強化繊維の巻付角度を54.7度±10度の範囲内としていない場合に比べて、直胴部がより適切に補強される。 According to the tenth aspect, the winding angle of the reinforcing fibers wound around the straight body portion is within the range of 54.7 degrees±10 degrees. Here, this value of "54.7 degrees" is determined by the stress in the circumferential and axial directions in the straight body. Therefore, the straight body portion is reinforced more appropriately than when the winding angle of the reinforcing fibers wound around the straight body portion is not set within the range of 54.7 degrees±10 degrees.

なお、前記ドーム部は、前記容器本体における中心軸の軸方向端部側へ突出する円筒部を含み、前記容器本体における中心軸の軸方向と直交する方向から見て、前記円筒部から前記半球部へ連なる曲面部における前記半球部側の終端を通る仮想接線の前記中心軸に対する角度が、前記直胴部に巻き付けられる前記強化繊維の前記中心軸に対する巻付角度以下とされている特徴を備えていてもよい。 The dome portion includes a cylindrical portion protruding toward the axial end side of the central axis of the container body. An imaginary tangent line passing through the terminal end of the hemispherical portion of the curved surface portion connecting to the portion has an angle with respect to the central axis that is equal to or less than the winding angle with respect to the central axis of the reinforcing fiber wound around the straight body portion. may be

これによれば、半球部の外周面に対して、直胴部の外周面に対する巻付角度で強化繊維を巻き付け易くなり、半球部の外周面から直胴部の外周面及び直胴部の外周面から半球部の外周面へ強化繊維を巻き付けるときの連続性が更に良好となる。よって、圧力容器の生産性が向上される。 According to this, it becomes easy to wind the reinforcing fibers around the outer peripheral surface of the hemispherical portion at a winding angle with respect to the outer peripheral surface of the straight body portion, and the outer peripheral surface of the straight body portion and the outer periphery of the straight body portion can be easily wound from the outer peripheral surface of the hemispherical portion. The continuity is further improved when the reinforcing fibers are wound from the surface to the outer peripheral surface of the hemispherical portion. Therefore, the productivity of the pressure vessel is improved.

本発明によれば、圧力容器において、製造コストの増加を抑制することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is a pressure vessel. WHEREIN: The increase in manufacturing cost can be suppressed.

本実施形態に係る圧力容器を模式的に示す正面図である。It is a front view which shows typically the pressure vessel which concerns on this embodiment. 本実施形態に係る圧力容器の構造を模式的に示す断面図である。It is a sectional view showing typically the structure of the pressure vessel concerning this embodiment. 本実施形態に係る圧力容器のドーム部における強化繊維の断面を示す図1におけるA-A線矢視図である。2 is a view taken along line AA in FIG. 1, showing a cross section of reinforcing fibers in the dome portion of the pressure vessel according to the present embodiment; FIG. 本実施形態に係る圧力容器の直胴部における強化繊維の断面を示す図1におけるB-B線矢視図である。FIG. 2 is a view taken along the line BB in FIG. 1, showing a cross section of reinforcing fibers in the straight body portion of the pressure vessel according to the present embodiment; 本実施形態に係る圧力容器のドーム部と直胴部との境界部を拡大して示す正面図である。It is a front view which expands and shows the boundary part of the dome part and straight body part of the pressure vessel which concerns on this embodiment. 本実施形態に係る圧力容器のドーム部と直胴部との別の境界部を拡大して示す正面図である。FIG. 4 is a front view showing another enlarged boundary portion between the dome portion and the straight body portion of the pressure vessel according to the present embodiment. 本実施形態に係る圧力容器を構成する容器本体のドーム部と直胴部との境界部を拡大して示す正面図である。FIG. 4 is a front view showing an enlarged boundary portion between a dome portion and a straight body portion of a container body that constitutes the pressure vessel according to the present embodiment; 本実施形態に係る圧力容器を構成する容器本体へ強化繊維を巻き付ける製造装置を示す模式図である。FIG. 3 is a schematic diagram showing a manufacturing apparatus for winding reinforcing fibers around a container body that constitutes the pressure vessel according to the present embodiment. (A)本実施形態に係る圧力容器のドーム部へ巻き付けるときの強化繊維の繰り出し位置を示す模式図である。(B)本実施形態に係る圧力容器の直胴部へ巻き付けるときの強化繊維の繰り出し位置を示す模式図である。(A) is a schematic diagram showing the feeding position of the reinforcing fiber when winding it around the dome portion of the pressure vessel according to the present embodiment. (B) is a schematic diagram showing the feeding position of the reinforcing fiber when winding it around the straight body portion of the pressure vessel according to the present embodiment.

以下、本発明に係る実施の形態について、図面を基に詳細に説明する。なお、図1における矢印Xは、圧力容器10の中心軸CLの軸方向で、圧力容器10(容器本体12)の中心Oから離れる側を示しており、その離れる側を「軸方向端部側」とする。また、それとは逆に圧力容器10(容器本体12)の中心Oへ近づく側を「軸方向中央部側」とする。また、本実施形態に係る圧力容器10は、その内部に、例えば燃料としての水素が充填されるようになっており、燃料電池車(図示省略)等に搭載されるようになっている。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. The arrow X in FIG. 1 indicates the side away from the center O of the pressure vessel 10 (container body 12) in the axial direction of the central axis CL of the pressure vessel 10. ”. Conversely, the side closer to the center O of the pressure vessel 10 (container body 12) is defined as the "axial central portion side". The pressure vessel 10 according to the present embodiment is filled with, for example, hydrogen as a fuel, and is installed in a fuel cell vehicle (not shown) or the like.

図1、図2に示されるように、圧力容器10は、ライナと呼ばれる容器本体12を有している。容器本体12は、一例として、ガスバリア性に優れ、かつ寸法安定性に優れる液晶樹脂材でブロー成形されており、円筒状の直胴部14と、直胴部14の両端に一体に形成された略半球状の半球部16A、18Aを含むドーム部16、18と、を有している。 As shown in FIGS. 1 and 2, a pressure vessel 10 has a vessel body 12 called a liner. The container body 12 is, for example, blow-molded from a liquid crystal resin material having excellent gas barrier properties and excellent dimensional stability. and dome portions 16, 18 including substantially hemispherical hemispherical portions 16A, 18A.

そして、圧力容器10は、直胴部14の外周面とドーム部16、18の外周面とに、所定の幅を有するテープ状の強化繊維20が層状に巻き付けられて構成されている。詳細に説明すると、強化繊維20は、ガラス繊維、炭素繊維又はアラミド繊維等を含むFRP(Fiber Reinforced Plastics)製とされており、容器本体12の外周面に繊維強化樹脂層としてのFRP層を形成するようになっている。 The pressure vessel 10 is constructed by wrapping tape-shaped reinforcing fibers 20 having a predetermined width in layers around the outer peripheral surface of the straight body portion 14 and the outer peripheral surfaces of the dome portions 16 and 18 . More specifically, the reinforcing fiber 20 is made of FRP (Fiber Reinforced Plastics) containing glass fiber, carbon fiber, aramid fiber, or the like, and an FRP layer as a fiber reinforced resin layer is formed on the outer peripheral surface of the container body 12. It is designed to

具体的には、図1、図3に示されるように、一方のドーム部16の外周面には、強化繊維20が互い違いに編まれるように巻き付けられるようになっており(以下「ブレーディング巻き」という場合がある)、そのブレーディング巻きされた強化繊維20によってFRP層である第1補強部26が形成されるようになっている。 Specifically, as shown in FIGS. 1 and 3 , reinforcing fibers 20 are alternately wound around the outer peripheral surface of one dome portion 16 (hereinafter referred to as “braiding”). The braiding-wound reinforcing fibers 20 form the first reinforcing portion 26, which is an FRP layer.

同様に、他方のドーム部18の外周面にも、強化繊維20が互い違いに編まれるように巻き付けられるようになっており(以下「ブレーディング巻き」という場合がある)、そのブレーディング巻きされた強化繊維20によってFRP層である第3補強部28が形成されるようになっている。 Similarly, on the outer peripheral surface of the other dome portion 18, the reinforcing fibers 20 are wound so as to be alternately woven (hereinafter sometimes referred to as “braiding winding”), and the braiding winding is performed. A third reinforcing portion 28, which is an FRP layer, is formed by the reinforcing fibers 20. As shown in FIG.

更に、図1、図4に示されるように、直胴部14の外周面には、強化繊維20がヘリカル状に巻き付けられるようになっており(以下「ヘリカル巻き」という場合がある)、そのヘリカル巻きされた強化繊維20によってFRP層である第2補強部24が形成されるようになっている。 Further, as shown in FIGS. 1 and 4, the reinforcing fibers 20 are helically wound around the outer peripheral surface of the straight body portion 14 (hereinafter sometimes referred to as "helical winding"). The helically wound reinforcing fibers 20 form a second reinforcing portion 24 which is an FRP layer.

図5に示されるように、ヘリカル巻きとは、容器本体12の中心軸CLに対して所定の巻付角度θ(-θ)で強化繊維20を直胴部14の外周面全体に巻き付けた後、更に容器本体12の中心軸CLに対して所定の巻付角度θ(+θ)で強化繊維20をその上から(角度-θで巻き付けられた強化繊維20の上から)巻き付けることを指す。つまり、第2補強部24は、直胴部14の外周面に強化繊維20が所定の巻付角度-θ及び巻付角度+θで少なくとも2重に巻き付けられることで構成されている。 As shown in FIG. 5, helical winding refers to winding the reinforcing fibers 20 around the entire outer peripheral surface of the straight body portion 14 at a predetermined winding angle θ (−θ) with respect to the central axis CL of the container body 12. , and further means that the reinforcing fibers 20 are wound at a predetermined winding angle θ (+θ) with respect to the central axis CL of the container body 12 (over the reinforcing fibers 20 wound at the angle −θ). That is, the second reinforcing portion 24 is formed by winding the reinforcing fibers 20 at least twice around the outer peripheral surface of the straight body portion 14 at predetermined winding angles -θ and +θ.

ブレーディング巻きとは、上記したように、互い違いに編まれるように巻き付けられることであり、容器本体12の中心軸CLに対して所定の巻付角度-θ及び巻付角度+θで巻き付けられることを指す。つまり、ブレーディング巻きもヘリカル巻きも同じ巻付角度θで巻き付けられるようになっており、その巻付角度θは、公差を含め、θ=54.7度±10度の範囲内、好ましくはθ=54.7度±5度の範囲内、更に好ましくはθ=54.7度±1度の範囲内となっている。 Braiding winding is, as described above, winding in a staggered weave, and winding at a predetermined winding angle −θ and winding angle +θ with respect to the central axis CL of the container body 12. point to In other words, both braiding winding and helical winding are wound at the same winding angle θ, and the winding angle θ is within the range of θ = 54.7 degrees ± 10 degrees, preferably =54.7 degrees ±5 degrees, more preferably θ = 54.7 degrees ±1 degree.

なお、この巻付角度θは、直胴部14に所定の内圧が作用しているときの応力から導出される角度であり、軸方向の応力に対して周方向の応力が2倍であることに起因する角度である。すなわち、詳細な計算式は省略するが、ネッティング理論(Netting theory)により、応力に応じた巻付角度θを計算したとき、tanθ=2となることから、θ=54.7度(平衡角)が導出されるようになっている。 The winding angle θ is an angle derived from the stress when a predetermined internal pressure acts on the straight body portion 14, and the stress in the circumferential direction is twice the stress in the axial direction. is the angle caused by That is, although detailed calculation formulas are omitted, when the winding angle θ corresponding to the stress is calculated according to the netting theory, tan 2 θ=2, so θ=54.7 degrees (equilibrium angle) is derived.

また、ドーム部16、18は、直胴部14に比べて、内圧が作用しているときの応力が小さいため、直胴部14に比べて、補強する度合いが小さくて済む。したがって、ドーム部16、18では、ヘリカル巻きに比べて低強度となるブレーディング巻きとされ、直胴部14では、ブレーディング巻きに比べて高強度となるヘリカル巻きとされている。 In addition, since the dome portions 16 and 18 have less stress than the straight body portion 14 when the internal pressure is applied, the degree of reinforcement required is smaller than that of the straight body portion 14 . Therefore, the dome portions 16 and 18 are braided with a lower strength than the helical winding, and the straight body portion 14 is helically wound with a higher strength than the braiding.

また、図5に示されるように、第1補強部26から第2補強部24へ切り替わる部位は、容器本体12における中心軸CLの軸方向と直交する方向から見て、それぞれ直胴部14とドーム部16との境界部22(後述する第1仮想円周部32上)になっている。しかしながら、第1補強部26から第2補強部24へ切り替わる部位は、これに限定されるものではない。 Further, as shown in FIG. 5, the portions where the first reinforcing portion 26 is switched to the second reinforcing portion 24 are the straight body portion 14 and the straight body portion 14, respectively, when viewed from the direction orthogonal to the axial direction of the central axis CL of the container body 12. It forms a boundary portion 22 (on a first imaginary circumference portion 32 described later) with the dome portion 16 . However, the portion where the first reinforcing portion 26 is switched to the second reinforcing portion 24 is not limited to this.

例えば、図6に示されるように、容器本体12における中心軸CLの軸方向と直交する方向から見て、直胴部14とドーム部16との境界部22よりも軸方向端部側(一点鎖線Tで示す部位)で第1補強部26から第2補強部24へ切り替わるようになっていてもよい。なお、ここで言う境界部22とは、直胴部14とドーム部16との仮想境界点Ks(曲率が無くなる点)を通る第1仮想円周部32上を指す。 For example, as shown in FIG. 6, when viewed from the direction perpendicular to the axial direction of the central axis CL of the container body 12, the boundary 22 between the straight body portion 14 and the dome portion 16 is closer to the axial end (one point). The first reinforcing portion 26 may be switched to the second reinforcing portion 24 at the portion indicated by the chain line T). The boundary portion 22 here refers to the first imaginary circumference portion 32 passing through the imaginary boundary point Ks (the point where the curvature disappears) between the straight body portion 14 and the dome portion 16 .

また、図5、図6に示されるように、第1補強部26から第2補強部24へ切り替わる部位は、容器本体12における中心軸CLの軸方向と直交する方向から見て、直胴部14に巻き付けられる強化繊維20の中心軸CLに対する巻付角度θ(±θ)で決められる半球部16Aの外周面における特定部30から軸方向中央部側になっている。 Further, as shown in FIGS. 5 and 6, the portion where the first reinforcing portion 26 is switched to the second reinforcing portion 24 is the straight body portion when viewed from the direction orthogonal to the axial direction of the central axis CL of the container body 12. It is axially central from a specific portion 30 on the outer peripheral surface of the hemispherical portion 16A determined by the winding angle θ (±θ) of the reinforcing fiber 20 wound around the center axis CL with respect to the central axis CL.

ここで言う特定部30とは、容器本体12における中心軸CLの軸方向と直交する方向から見て、巻付角度θで巻かれる強化繊維20のうち、第1仮想円周部32と中心軸CLとの交点Cpを軸方向端部側の辺縁部20Bが通る強化繊維20A(ドットで示す)の辺縁部20Bと半球部16Aの外周面との仮想交点Kpを通る第2仮想円周部34上を指す。 The specified portion 30 referred to here is the first imaginary circumferential portion 32 and the central axis of the reinforcing fibers 20 wound at the winding angle θ when viewed from the direction orthogonal to the axial direction of the central axis CL of the container body 12. A second imaginary circumference passing through the imaginary intersection point Kp between the edge portion 20B of the reinforcing fiber 20A (indicated by dots) through which the edge portion 20B on the axial end side passes through the intersection point Cp with CL and the outer peripheral surface of the hemispherical portion 16A It points to the top of section 34 .

つまり、第1補強部26から第2補強部24へ切り替わる部位は、図5、図6に示されるように、第2仮想円周部34と第1仮想円周部32との間(特定部30を含み、そこから軸方向中央部側で、かつ、境界部22を含み、そこから軸方向端部側)の領域E内であればよい。なお、図示は省略するが、第2補強部24から第3補強部28へ切り替わる場合も、上記と同様である。 5 and 6, the portion where the first reinforcing portion 26 is switched to the second reinforcing portion 24 is between the second virtual circumference portion 34 and the first virtual circumference portion 32 (specific portion 30 on the axial center side, and on the axial end side from there including the boundary portion 22 ). Although illustration is omitted, the same applies when the second reinforcing portion 24 is switched to the third reinforcing portion 28 .

また、図2に示されるように、ドーム部16、18は、その軸心部に容器本体12における中心軸CLの軸方向端部側へ突出する円筒部16B、18Bを含んでいる。一例として、一方の円筒部16Bには、封止プラグ46が嵌合され、他方の円筒部18Bには、口金プラグ48が嵌合されるようになっており、その口金プラグ48には、バルブ(図示省略)が装着されるようになっている。 Further, as shown in FIG. 2, the dome portions 16 and 18 include cylindrical portions 16B and 18B that protrude toward the ends in the axial direction of the central axis CL of the container body 12 at their axial centers. As an example, one cylindrical portion 16B is fitted with a sealing plug 46, and the other cylindrical portion 18B is fitted with a base plug 48. The base plug 48 is fitted with a valve. (not shown) is attached.

そして、図7に示されるように、容器本体12における中心軸CLの軸方向と直交する方向から見て、ドーム部16における円筒部16Bから半球部16Aへ連なる曲面部36の半球部16A側の終端Npを通る仮想接線Ktの中心軸CLに対する角度αが、直胴部14に巻き付けられる強化繊維20の中心軸CLに対する巻付角度θ以下(α≦θ)となっている。 As shown in FIG. 7, when viewed from the direction orthogonal to the axial direction of the central axis CL of the container body 12, the curved surface portion 36 extending from the cylindrical portion 16B to the hemispherical portion 16A of the dome portion 16 has a The angle α of the imaginary tangent line Kt passing through the terminal end Np with respect to the central axis CL is less than or equal to the winding angle θ (α≦θ) with respect to the central axis CL of the reinforcing fiber 20 wound around the straight body portion 14 .

なお、ドーム部18も同様である。すなわち、ドーム部18における円筒部18Bから半球部18Aへ連なる曲面部38(図2参照)の半球部18A側の終端Npを通る仮想接線Ktの中心軸CLに対する角度αが、直胴部14に巻き付けられる強化繊維20の中心軸CLに対する巻付角度θ以下(α≦θ)となっている。また、ここで言う「終端Np」には、曲面部36と半球部16Aとの変曲点及び曲面部38と半球部18Aとの変曲点が含まれる。 Note that the dome portion 18 is also the same. That is, the angle α with respect to the central axis CL of the imaginary tangent line Kt passing through the end Np on the side of the hemispherical portion 18A of the curved surface portion 38 (see FIG. 2) extending from the cylindrical portion 18B to the hemispherical portion 18A in the dome portion 18 is It is equal to or less than the winding angle θ (α≦θ) with respect to the central axis CL of the reinforcing fiber 20 to be wound. In addition, the term "terminus Np" referred to here includes an inflection point between the curved surface portion 36 and the semispherical portion 16A and an inflection point between the curved surface portion 38 and the semispherical portion 18A.

また、図8に示されるように、強化繊維20は、公知の製造装置40により、容器本体12の外周面に巻き付けられるようになっている。製造装置40は、図9に示されるように、円周上に2列で配置された複数のボビン42、44を有しており、各列の複数のボビン42、44から繰り出される強化繊維20が、中心軸CLの軸方向(図8における左方向)へ移動する容器本体12の一方のドーム部16の外周面、直胴部14の外周面、他方のドーム部18の外周面に順に巻き付けられていくようになっている。 Further, as shown in FIG. 8 , the reinforcing fibers 20 are wound around the outer peripheral surface of the container body 12 by a known manufacturing device 40 . As shown in FIG. 9, the manufacturing apparatus 40 has a plurality of bobbins 42, 44 arranged in two rows on the circumference, and the reinforcing fibers 20 unwound from the plurality of bobbins 42, 44 in each row. is wound in order on the outer peripheral surface of one dome portion 16, the outer peripheral surface of the straight body portion 14, and the outer peripheral surface of the other dome portion 18 of the container body 12 moving in the axial direction of the central axis CL (left direction in FIG. 8). It is becoming more and more.

なお、一方のドーム部16及び他方のドーム部18に強化繊維20をブレーディング巻きする際には、図9(A)に示されるように、実線で結ばれている複数のボビン42と仮想線で結ばれている複数のボビン44とが周方向に、かつ径方向内側と径方向外側に交互になるように配置される。そして、実線で結ばれている複数のボビン42と仮想線で結ばれている複数のボビン44とが互いに逆方向に移動しながら、それらの各ボビン42、44が径方向内側から径方向外側及び径方向外側から径方向内側へ順次入れ替わるように、製造装置40が駆動される。 When braiding the reinforcing fibers 20 on one dome portion 16 and the other dome portion 18, as shown in FIG. A plurality of bobbins 44 connected with each other are arranged in the circumferential direction alternately radially inwardly and radially outwardly. While the plurality of bobbins 42 connected by the solid lines and the plurality of bobbins 44 connected by the virtual lines move in opposite directions, the respective bobbins 42 and 44 move from the radially inner side to the radially outer side. The manufacturing apparatus 40 is driven so as to sequentially switch from the radially outer side to the radially inner side.

また、直胴部14に強化繊維20をヘリカル巻きする際には、図9(B)に示されるように、実線で結ばれている複数のボビン42と仮想線で結ばれている複数のボビン44とが周方向に、かつ径方向外側と径方向内側に配置される。そして、実線で結ばれている複数のボビン42と仮想線で結ばれている複数のボビン44とが互いに逆方向に移動するように、製造装置40が駆動される。 Further, when the reinforcing fibers 20 are helically wound around the straight body portion 14, as shown in FIG. 44 are arranged circumferentially and radially outwardly and radially inwardly. The manufacturing apparatus 40 is driven so that the plurality of bobbins 42 connected by solid lines and the plurality of bobbins 44 connected by virtual lines move in opposite directions.

以上のような構成とされた本実施形態に係る圧力容器10において、次にその作用について説明する。 Next, the operation of the pressure vessel 10 according to this embodiment configured as described above will be described.

図8、図9に示されるように、本実施形態に係る圧力容器10は、容器本体12の外周面に強化繊維20を巻き付けることで構成される。すなわち、複数のボビン42、44から順次強化繊維20が繰り出され、まず一方のドーム部16の外周面に、その強化繊維20がブレーディング巻きされて第1補強部26が形成される(第1工程)。 As shown in FIGS. 8 and 9 , the pressure vessel 10 according to this embodiment is constructed by winding reinforcing fibers 20 around the outer peripheral surface of the vessel body 12 . That is, the reinforcing fibers 20 are sequentially fed from the plurality of bobbins 42 and 44, and the reinforcing fibers 20 are braided around the outer peripheral surface of one dome portion 16 to form the first reinforcing portion 26 (the first reinforcing portion 26). process).

したがって、一方のドーム部16の外周面において、強化繊維20が滑るおそれがなく、そのため、測地線(最短距離)を通る巻付角度で強化繊維20を巻き付ける必要がない。つまり、圧力容器10を製造する際に、容器本体12(直胴部14)に対する強化繊維20の巻付角度に自由度があり、必要最小限の強化繊維20で所望の強度が得られる。よって、圧力容器10において、製造コストの増加及び質量の増加を抑制することができる。 Therefore, there is no risk that the reinforcing fibers 20 will slip on the outer peripheral surface of the one dome portion 16, so there is no need to wind the reinforcing fibers 20 at a winding angle passing through the geodesic line (shortest distance). In other words, when manufacturing the pressure vessel 10, there is a degree of freedom in the winding angle of the reinforcing fibers 20 around the container body 12 (straight body portion 14), and the desired strength can be obtained with the minimum number of reinforcing fibers 20 necessary. Therefore, in the pressure vessel 10, an increase in manufacturing cost and an increase in mass can be suppressed.

一方のドーム部16の外周面に対する強化繊維20のブレーディング巻きが終了したら、それに続いて、直胴部14の外周面に強化繊維20がヘリカル巻きされて第2補強部24が形成される(第2工程)。なお、ドーム部16におけるブレーディング巻きから、直胴部14におけるヘリカル巻きへの切り替えは、第2仮想円周部34(特定部30)と第1仮想円周部32(境界部22)との間の領域Eで行われる。 When the braiding winding of the reinforcing fibers 20 on the outer peripheral surface of one dome portion 16 is completed, subsequently, the reinforcing fibers 20 are helically wound on the outer peripheral surface of the straight body portion 14 to form the second reinforcing portion 24 ( second step). It should be noted that the switching from the braiding winding in the dome portion 16 to the helical winding in the straight body portion 14 is performed between the second virtual circumference portion 34 (specific portion 30) and the first virtual circumference portion 32 (boundary portion 22). in the region E between.

ここで、第2仮想円周部34は、強化繊維20の直胴部14に対する最適な巻付角度θで決められる仮想交点Kpを含む。したがって、上記領域Eにおいて、強化繊維20は、ブレーディング巻きからヘリカル巻きへ同じ巻付角度θでスムーズに切り替わることができる。つまり、半球部16Aの外周面から直胴部14の外周面へ強化繊維20を巻き付けるときの連続性が良好となり、圧力容器10の生産性を向上させることができる。 Here, the second imaginary circumference portion 34 includes an imaginary intersection point Kp determined by the optimum winding angle θ of the reinforcing fiber 20 with respect to the straight body portion 14 . Therefore, in the region E, the reinforcing fibers 20 can be smoothly switched from the braiding winding to the helical winding at the same winding angle θ. That is, the continuity when the reinforcing fibers 20 are wound from the outer peripheral surface of the semispherical portion 16A to the outer peripheral surface of the straight body portion 14 is improved, and the productivity of the pressure vessel 10 can be improved.

また、ドーム部16において、円筒部16Bから半球部16Aへ連なる曲面部36における半球部16A側の終端Npを通る仮想接線Ktの中心軸CLに対する角度αが、直胴部14に巻き付けられる強化繊維20の中心軸CLに対する巻付角度θ以下となっている(図7参照)。 Further, in the dome portion 16, the angle α with respect to the central axis CL of the imaginary tangent line Kt passing through the end Np on the side of the hemispherical portion 16A in the curved surface portion 36 connecting from the cylindrical portion 16B to the hemispherical portion 16A is the reinforcing fiber wound around the straight body portion 14. 20 with respect to the central axis CL (see FIG. 7).

したがって、半球部16Aの外周面に対して、直胴部14の外周面に対する巻付角度θで強化繊維20を巻き付け易くなり、半球部16Aの外周面から直胴部14の外周面へ強化繊維20を巻き付けるときの連続性が更に良好となる、よって、圧力容器10の生産性を更に向上させることができる。 Therefore, the reinforcing fibers 20 are easily wound around the outer peripheral surface of the semispherical portion 16A at the winding angle θ with respect to the outer peripheral surface of the straight body portion 14, and the reinforcing fibers 20 are easily wound from the outer peripheral surface of the semispherical portion 16A to the outer peripheral surface of the straight body portion 14. The continuity when winding 20 is further improved, and thus the productivity of the pressure vessel 10 can be further improved.

また、直胴部14は、ブレーディング巻きではなく、ヘリカル巻きされるため、直胴部14も、ブレーディング巻きされる場合に比べて、必要となる強化繊維20の量を低減することができる。よって、圧力容器10において、製造コストの増加及び質量の増加を更に抑制することができる。また、これにより、直胴部14においては、強化繊維20が屈曲されないため、最も強度が必要となる第2補強部24において、その強度が適切に確保される(直胴部14を適切に補強することができる)。 In addition, since the straight body portion 14 is helically wound instead of being braided, the required amount of the reinforcing fibers 20 can be reduced compared to the case where the straight body portion 14 is also braided. . Therefore, in the pressure vessel 10, an increase in manufacturing cost and an increase in mass can be further suppressed. In addition, since the reinforcing fibers 20 are not bent in the straight body portion 14, the strength of the second reinforcement portion 24, which requires the most strength, is appropriately ensured (the straight body portion 14 is appropriately reinforced). can do).

直胴部14の外周面に対する強化繊維20のヘリカル巻きが終了したら、それに続いて、他方のドーム部18の外周面に強化繊維20がブレーディング巻きされて第3補強部28が形成される(第3工程)。したがって、他方のドーム部18の外周面においても、強化繊維20が滑るおそれがなく、そのため、測地線(最短距離)を通る巻付角度で強化繊維20を巻き付ける必要がない。 After the helical winding of the reinforcing fibers 20 on the outer peripheral surface of the straight body portion 14 is completed, subsequently, the reinforcing fibers 20 are braided on the outer peripheral surface of the other dome portion 18 to form the third reinforcing portion 28 ( 3rd step). Therefore, there is no risk that the reinforcing fibers 20 will slip on the outer peripheral surface of the other dome portion 18, so that it is not necessary to wind the reinforcing fibers 20 at a winding angle passing through the geodesic line (shortest distance).

よって、上記と同じく、圧力容器10において、製造コストの増加及び質量の増加を抑制することができる。なお、直胴部14におけるヘリカル巻きから、ドーム部18におけるブレーディング巻きへの切り替えも、第1仮想円周部32(境界部22)と第2仮想円周部34(特定部30)との間の領域Eで行われる。 Therefore, similarly to the above, in the pressure vessel 10, an increase in manufacturing cost and an increase in mass can be suppressed. The switching from the helical winding on the straight body portion 14 to the braiding winding on the dome portion 18 also involves in the region E between.

ここで、第2仮想円周部34は、強化繊維20の直胴部14に対する最適な巻付角度θで決められる仮想交点Kpを含む。したがって、上記領域Eにおいて、強化繊維20は、ヘリカル巻きからブレーディング巻きへ同じ巻付角度θでスムーズに切り替わることができる。つまり、直胴部14の外周面から半球部18Aの外周面へ強化繊維20を巻き付けるときの連続性が良好となり、圧力容器10の生産性を向上させることができる。 Here, the second imaginary circumference portion 34 includes an imaginary intersection point Kp determined by the optimum winding angle θ of the reinforcing fiber 20 with respect to the straight body portion 14 . Therefore, in the region E, the reinforcing fibers 20 can be smoothly switched from helical winding to braiding winding at the same winding angle θ. That is, the continuity when the reinforcing fibers 20 are wound from the outer peripheral surface of the straight body portion 14 to the outer peripheral surface of the hemispherical portion 18A is improved, and the productivity of the pressure vessel 10 can be improved.

また、ドーム部18において、円筒部18Bから半球部18Aへ連なる曲面部38における半球部18A側の終端Npを通る仮想接線Ktの中心軸CLに対する角度αが、直胴部14に巻き付けられる強化繊維20の中心軸CLに対する巻付角度θ以下となっている。 Further, in the dome portion 18, the angle α with respect to the central axis CL of the imaginary tangent line Kt passing through the terminal Np on the side of the hemispherical portion 18A in the curved surface portion 38 connecting from the cylindrical portion 18B to the hemispherical portion 18A is the reinforcing fiber wound around the straight body portion 14. 20 with respect to the central axis CL is less than or equal to the winding angle θ.

したがって、半球部18Aの外周面に対して、直胴部14の外周面に対する巻付角度θで強化繊維20を巻き付け易くなり、直胴部14の外周面から半球部18Aの外周面へ強化繊維20を巻き付けるときの連続性が更に良好となる。よって、圧力容器10の生産性を更に向上させることができる。 Therefore, the reinforcing fibers 20 are easily wound around the outer peripheral surface of the semispherical portion 18A at the winding angle θ with respect to the outer peripheral surface of the straight body portion 14, and the reinforcing fibers 20 are easily wound from the outer peripheral surface of the straight body portion 14 to the outer peripheral surface of the semispherical portion 18A. The continuity when winding 20 is further improved. Therefore, productivity of the pressure vessel 10 can be further improved.

また、直胴部14に巻き付ける強化繊維20の巻付角度θは、54.7度±10度の範囲内とされている。すなわち、この「54.7度」は、直胴部14に所定の内圧が作用しているときの応力から導出される角度(平衡角)とされている。また、「±10度」は、実際に強化繊維20を巻き付けるときに許容される公差である。したがって、直胴部14に巻き付けられる強化繊維20の巻付角度θが、54.7度±10度の範囲内とされていない場合に比べて、直胴部14をより適切に補強することができる。 The winding angle θ of the reinforcing fibers 20 wound around the straight body portion 14 is set within the range of 54.7°±10°. That is, this "54.7 degrees" is an angle (equilibrium angle) derived from stress when a predetermined internal pressure acts on the straight body portion 14 . Also, "±10 degrees" is a tolerance allowed when the reinforcing fibers 20 are actually wound. Therefore, the straight body portion 14 can be reinforced more appropriately than when the winding angle θ of the reinforcing fibers 20 wound around the straight body portion 14 is not within the range of 54.7 degrees ±10 degrees. can.

こうして、容器本体12に強化繊維20が巻き付けられて、第1補強部26、第2補強部24及び第3補強部28が形成されたら、第1補強部26、第2補強部24及び第3補強部28を構成する強化繊維20に熱硬化性樹脂を含浸させて加熱し、硬化させる。これにより、耐腐食性に優れるとともに、軽量化及び低コスト化が図れ、かつ運搬及び取り扱いが容易な圧力容器10が得られる。 Thus, when the reinforcing fibers 20 are wound around the container body 12 to form the first reinforcing portion 26, the second reinforcing portion 24 and the third reinforcing portion 28, the first reinforcing portion 26, the second reinforcing portion 24 and the third reinforcing portion 24 are formed. The reinforcing fibers 20 forming the reinforcing portion 28 are impregnated with a thermosetting resin and heated to be cured. As a result, it is possible to obtain the pressure vessel 10 that is excellent in corrosion resistance, is lightweight and inexpensive, and is easy to transport and handle.

以上、本実施形態に係る圧力容器10について、図面を基に説明したが、本実施形態に係る圧力容器10は、図示のものに限定されるものではなく、本発明の要旨を逸脱しない範囲内において、適宜設計変更可能なものである。例えば、容器本体12は、液晶樹脂製に限定されるものではない。 As described above, the pressure vessel 10 according to the present embodiment has been described based on the drawings, but the pressure vessel 10 according to the present embodiment is not limited to the illustrated one, and can be used within the scope of the present invention. , the design can be changed as appropriate. For example, the container body 12 is not limited to being made of liquid crystal resin.

容器本体12は、例えば高密度ポリエチレン等のガスバリア性を有する他の合成樹脂製であってもよいし、アルミニウム合金等の軽量金属製であってもよい。また、容器本体12は、ブロー成形によって製造されるものに限定されるものではなく、射出成形等によって製造されてもよい。 The container body 12 may be made of other synthetic resin having gas barrier properties such as high-density polyethylene, or may be made of lightweight metal such as aluminum alloy. Further, the container body 12 is not limited to one manufactured by blow molding, and may be manufactured by injection molding or the like.

10 圧力容器
12 容器本体
14 直胴部
16 ドーム部
16A 半球部
16B 円筒部
18 ドーム部
18A 半球部
18B 円筒部
20 強化繊維
22 境界部
24 第2補強部
26 第1補強部
28 第3補強部
30 特定部
34 第2仮想円周部(仮想円周部)
36 曲面部
38 曲面部
CL 中心線
Cp 交点
Kp 仮想交点
Kt 仮想接線
Np 終端
α 角度
θ 巻付角度
REFERENCE SIGNS LIST 10 pressure vessel 12 container body 14 straight body portion 16 dome portion 16A semispherical portion 16B cylindrical portion 18 dome portion 18A semispherical portion 18B cylindrical portion 20 reinforcing fiber 22 boundary portion 24 second reinforcing portion 26 first reinforcing portion 28 third reinforcing portion 30 Identification part 34 Second virtual circumference part (virtual circumference part)
36 curved surface portion 38 curved surface portion CL center line Cp intersection point Kp virtual intersection point Kt virtual tangent line Np terminal end α angle θ winding angle

Claims (8)

円筒状の直胴部と該直胴部の両端に一体に形成された半球状の半球部を含むドーム部とを有する容器本体と、
一方の前記ドーム部の外周面に所定の幅を有するテープ状の強化繊維が互い違いに編まれるように巻き付けられることで構成された第1補強部と、
前記直胴部の外周面に前記第1補強部から連続して前記強化繊維がヘリカル状に巻き付けられることで構成された第2補強部と、
他方の前記ドーム部の外周面に前記第2補強部から連続して前記強化繊維が互い違いに編まれるように巻き付けられることで構成された第3補強部と、
を備え
前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部と前記ドーム部との境界部から前記中心軸の軸方向端部側で、前記第1補強部から前記第2補強部へ切り替わり、かつ前記第2補強部から前記第3補強部へ切り替わっている圧力容器。
a container body having a cylindrical straight body portion and a dome portion including hemispherical hemispherical portions integrally formed at both ends of the straight body portion;
a first reinforcing portion configured by winding tape-shaped reinforcing fibers having a predetermined width around the outer peripheral surface of one of the dome portions so as to be alternately woven;
a second reinforcing portion configured by helically winding the reinforcing fibers around the outer peripheral surface of the straight body portion continuously from the first reinforcing portion;
a third reinforcing portion configured by winding the reinforcing fibers continuously from the second reinforcing portion around the outer peripheral surface of the other dome portion so as to be alternately woven;
with
When viewed from the direction orthogonal to the axial direction of the central axis of the container body, from the boundary portion between the straight body portion and the dome portion to the axial direction end portion side of the central axis, from the first reinforcing portion to the second reinforcing portion. A pressure vessel switching to a reinforcement and switching from said second reinforcement to said third reinforcement .
前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部に巻き付けられる前記強化繊維の前記中心軸に対する巻付角度で決められる前記半球部の外周面における特定部から前記中心軸の軸方向中央部側で、前記第1補強部から前記第2補強部へ切り替わり、かつ前記第2補強部から前記第3補強部へ切り替わっている請求項1に記載の圧力容器。 When viewed from the direction perpendicular to the axial direction of the central axis of the container body, the distance from the specific portion on the outer peripheral surface of the hemispherical portion determined by the winding angle with respect to the central axis of the reinforcing fiber wound around the straight body portion to the center 2. The pressure vessel according to claim 1, wherein the first reinforcing portion is switched to the second reinforcing portion and the second reinforcing portion is switched to the third reinforcing portion on the axially central portion side of the shaft. 前記特定部は、前記容器本体における中心軸の軸方向と直交する方向から見て、前記境界部と前記中心軸との交点を通るように前記巻付角度で巻き付けられた前記強化繊維と、前記半球部の外周面との仮想交点を通る仮想円周部である請求項2に記載の圧力容器。 The specific portion includes the reinforcing fiber wound at the winding angle so as to pass through the intersection of the boundary portion and the central axis when viewed in a direction perpendicular to the axial direction of the central axis of the container body; 3. The pressure vessel according to claim 2 , which is an imaginary circular portion passing through an imaginary intersection with the outer peripheral surface of the hemispherical portion . 前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部に巻き付けられる前記強化繊維の前記中心軸に対する巻付角度が54.7度±10度の範囲内である請求項1~請求項3の何れか1項に記載の圧力容器。 A winding angle of the reinforcing fibers wound around the straight body portion with respect to the central axis is within a range of 54.7°±10° when viewed from a direction perpendicular to the axial direction of the central axis of the container body . The pressure vessel according to any one of claims 1 to 3. 円筒状の直胴部と該直胴部の両端に一体に形成された半球状の半球部を含むドーム部とを有する容器本体に所定の幅を有するテープ状の強化繊維を巻き付けて補強する圧力容器の製造方法であって、
一方の前記ドーム部の外周面に強化繊維を互い違いに編まれるように巻き付ける第1工程と、
前記直胴部の外周面に前記第1工程から連続して前記強化繊維をヘリカル状に巻き付ける第2工程と、
他方の前記ドーム部の外周面に前記第2工程から連続して前記強化繊維を互い違いに編まれるように巻き付ける第3工程と、
を有し、
前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部と前記ドーム部との境界部から前記中心軸の軸方向端部側で、前記第1工程から前記第2工程へ切り替え、かつ前記第2工程から前記第3工程へ切り替える圧力容器の製造方法
Pressure for reinforcing a container body having a cylindrical straight body portion and a dome portion including hemispherical hemispherical portions integrally formed at both ends of the straight body portion with tape-shaped reinforcing fibers having a predetermined width wound around the body. A method for manufacturing a container,
a first step of winding reinforcing fibers alternately around the outer peripheral surface of one of the dome portions;
a second step of helically winding the reinforcing fibers around the outer peripheral surface of the straight body portion continuously from the first step;
a third step of winding the reinforcing fibers around the outer peripheral surface of the other dome portion so as to be alternately woven continuously from the second step;
has
From the first step to the second step on the axial direction end side of the central axis from the boundary portion between the straight body portion and the dome portion when viewed from the direction perpendicular to the axial direction of the central axis of the container body. and switching from the second step to the third step .
前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部に巻き付ける前記強化繊維の前記中心軸に対する巻付角度で決められる前記半球部の外周面における特定部から前記中心軸の軸方向中央部側で、前記第1工程から前記第2工程へ切り替え、かつ前記第2工程から前記第3工程へ切り替える請求項5に記載の圧力容器の製造方法。 When viewed from the direction perpendicular to the axial direction of the central axis of the container body, the winding angle of the reinforcing fibers wound around the straight body portion with respect to the central axis is determined by the winding angle from the specific portion on the outer peripheral surface of the hemispherical portion to the central axis. 6. The method of manufacturing a pressure vessel according to claim 5, wherein the first step is switched to the second step and the second step is switched to the third step on the axially central portion side of the . 前記特定部は、前記容器本体における中心軸の軸方向と直交する方向から見て、前記境界部と前記中心軸との交点を通るように前記巻付角度で巻き付ける前記強化繊維と、前記半球部の外周面との仮想交点を通る仮想円周部である請求項6に記載の圧力容器の製造方法。 The specific portion includes the reinforcing fiber wound at the winding angle so as to pass through the intersection of the boundary portion and the central axis when viewed from a direction orthogonal to the axial direction of the central axis of the container body, and the hemispherical portion. 7. The method of manufacturing a pressure vessel according to claim 6 , wherein the imaginary circumference portion passes through an imaginary intersection with the outer peripheral surface of the . 前記容器本体における中心軸の軸方向と直交する方向から見て、前記直胴部に巻き付ける前記強化繊維の前記中心軸に対する巻付角度が54.7度±10度の範囲内である請求項5~請求項7の何れか1項に記載の圧力容器の製造方法。 6. A winding angle of the reinforcing fibers wound around the straight body portion with respect to the central axis is within a range of 54.7 degrees±10 degrees when viewed from a direction perpendicular to the axial direction of the central axis of the container body. The method for manufacturing a pressure vessel according to any one of claims 7 to 7 .
JP2022133226A 2018-08-09 2022-08-24 Pressure vessel and manufacturing method thereof Active JP7318781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022133226A JP7318781B2 (en) 2018-08-09 2022-08-24 Pressure vessel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018150690A JP7176287B2 (en) 2018-08-09 2018-08-09 Pressure vessel and manufacturing method thereof
JP2022133226A JP7318781B2 (en) 2018-08-09 2022-08-24 Pressure vessel and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018150690A Division JP7176287B2 (en) 2018-08-09 2018-08-09 Pressure vessel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2022176187A JP2022176187A (en) 2022-11-25
JP7318781B2 true JP7318781B2 (en) 2023-08-01

Family

ID=87469664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022133226A Active JP7318781B2 (en) 2018-08-09 2022-08-24 Pressure vessel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7318781B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176898A (en) 2002-09-30 2004-06-24 Toray Ind Inc High-pressure gas reservoir
CN1676985A (en) 2004-03-30 2005-10-05 华群 Fibre reinforced pressure vessel and its use
WO2016074952A1 (en) 2014-11-12 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft Pressure vessel, method for manufacturing a pressure vessel, and braiding machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936146B2 (en) * 1978-02-23 1984-09-01 川重防災工業株式会社 pressure vessel
JP3000868B2 (en) * 1994-10-04 2000-01-17 村田機械株式会社 Production method of cylinders
JPH10185089A (en) * 1996-12-27 1998-07-14 Nkk Corp Electric charge preventing frp pressure vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176898A (en) 2002-09-30 2004-06-24 Toray Ind Inc High-pressure gas reservoir
CN1676985A (en) 2004-03-30 2005-10-05 华群 Fibre reinforced pressure vessel and its use
WO2016074952A1 (en) 2014-11-12 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft Pressure vessel, method for manufacturing a pressure vessel, and braiding machine

Also Published As

Publication number Publication date
JP2022176187A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
JP7176287B2 (en) Pressure vessel and manufacturing method thereof
JP6254564B2 (en) Tank manufacturing method and tank
JP6354846B2 (en) High-pressure tank and high-pressure tank manufacturing method
US20160348839A1 (en) High-pressure composite vessel and the method of manufacturing high-pressure composite vessel
US11262023B2 (en) Pressure-resistant container
KR102639520B1 (en) Fiber Reinforced Pressure Vessel
JP7093010B2 (en) High pressure tank
CN110871577B (en) Method for manufacturing can
US11524447B2 (en) Pressure vessel and manufacturing method thereof
JP7439744B2 (en) High pressure tank and its manufacturing method
JP7318781B2 (en) Pressure vessel and manufacturing method thereof
US20200247070A1 (en) High-pressure tank and method of manufacturing the same
JP6696789B2 (en) Tank manufacturing method
US20230119246A1 (en) High-pressure tank and manufacturing method of the same
CN115507291B (en) Can and method of manufacturing can
JP2020175564A (en) Manufacturing method of high pressure tank
JP7533399B2 (en) Tank and manufacturing method thereof
JP2020128010A (en) Method for manufacturing high-pressure tank
JP2020002965A (en) High-pressure tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R151 Written notification of patent or utility model registration

Ref document number: 7318781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151