JP2015074798A - Ferritic stainless steel for lithium ion secondary battery electrolyte storage container and lithium ion secondary battery electrolyte storage container using the same - Google Patents

Ferritic stainless steel for lithium ion secondary battery electrolyte storage container and lithium ion secondary battery electrolyte storage container using the same Download PDF

Info

Publication number
JP2015074798A
JP2015074798A JP2013211013A JP2013211013A JP2015074798A JP 2015074798 A JP2015074798 A JP 2015074798A JP 2013211013 A JP2013211013 A JP 2013211013A JP 2013211013 A JP2013211013 A JP 2013211013A JP 2015074798 A JP2015074798 A JP 2015074798A
Authority
JP
Japan
Prior art keywords
mass
less
lithium ion
secondary battery
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211013A
Other languages
Japanese (ja)
Other versions
JP6243695B2 (en
JP2015074798A5 (en
Inventor
太一朗 溝口
Taichiro Mizoguchi
太一朗 溝口
汐月 勝幸
Katsuyuki Shiotsuki
勝幸 汐月
原田 和加大
Wakahiro Harada
和加大 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2013211013A priority Critical patent/JP6243695B2/en
Publication of JP2015074798A publication Critical patent/JP2015074798A/en
Publication of JP2015074798A5 publication Critical patent/JP2015074798A5/ja
Application granted granted Critical
Publication of JP6243695B2 publication Critical patent/JP6243695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a metallic material for lithium ion secondary battery electrolyte storage container and to manufacture an electrolyte storage container made by a ferritic stainless steel without disrupting uses of the container even when liquid spills out and contacts with air and then corrosion behavior of the electrolyte increases during handling of the electrolyte.SOLUTION: There is provided a ferritic stainless steel for a lithium ion secondary battery electrolyte storage container containing C:0.02 mass% or less, Si:0.80 mass% or less, Mn:0.80 mass% or less, P:0.04 mass% or less, S:0.010 mass% or less, Cr:16.0 to 35.0 mass%, N:0.025 mass% or less, Al:0.003 to 0.20 mass%, Nb:0.80 mass%, Ti:0.60 mass% or less and the balance Fe with inevitable impurities and further (Ti+Nb)≥7×(C+N) is satisfied.

Description

本発明は、リチウムイオン二次電池電解液保管容器向けの金属材料に関する。電解液の取扱いにおいて、液こぼれが起こった場合でも、十分な耐食性を有するフェライト系ステンレス鋼を提供するものである。   The present invention relates to a metal material for a lithium ion secondary battery electrolyte storage container. The present invention provides a ferritic stainless steel having sufficient corrosion resistance even when liquid spillage occurs during the handling of an electrolytic solution.

リチウムイオン二次電池は、エネルギー密度が高く、メモリー効果も小さいことから、携帯電話やハイブリッドカーを含めた電気自動車に用いられている。リチウムイオン二次電池の電解液は、エチレンカーボネート(EC)やジエチルカーボネート(DEC)などの有機溶媒に、電解質として6弗化リン酸リチウム(LiPF)を加えたものを主成分とする。なお6弗化リン酸リチウムは、空気中の酸素や水蒸気と反応し、弗酸を生じるため、電解液が空気と接触すると、腐食性が増すことが知られている。 Lithium ion secondary batteries are used for electric vehicles including mobile phones and hybrid cars because of their high energy density and low memory effect. The electrolyte solution of the lithium ion secondary battery is mainly composed of an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) added with lithium hexafluorophosphate (LiPF 6 ) as an electrolyte. It is known that lithium hexafluorophosphate reacts with oxygen and water vapor in the air to generate hydrofluoric acid, so that the corrosiveness increases when the electrolytic solution comes into contact with air.

電解液の保管や輸送に用いる容器(以下、「電解液保管容器」と称する。)として、かつては樹脂容器が用いられることもあったが、現在では、密閉性、耐久性に優れるステンレス鋼製の容器が主流となっている。   Resin containers were once used as containers for storing and transporting electrolytes (hereinafter referred to as “electrolyte storage containers”), but now they are made of stainless steel with excellent sealing and durability. The container has become mainstream.

容器の素材としては、SUS304、SUS316などのオーステナイト系ステンレス鋼が一般的に用いられている。オーステナイト系ステンレス鋼は耐食性が高いため、電解液の取扱いにおいて液がこぼれて空気と接触し、電解液の腐食性が増した場合であっても容器の使用に支障を生じるような腐食は起こりにくい。   As the material of the container, austenitic stainless steel such as SUS304 and SUS316 is generally used. Since austenitic stainless steel has high corrosion resistance, even when the electrolyte spills and comes into contact with air during handling of the electrolyte, corrosion that hinders the use of the container is unlikely to occur even if the corrosion of the electrolyte increases. .

一方、近年のリチウムイオン二次電池の生産量増加とともに、電解液保管容器のコストダウンの要求が高くなってきた。したがって、容器の大型化や形状の最適化、製造方法の改善が行われると同時に、素材の見直しが検討されている。   On the other hand, with the recent increase in production of lithium ion secondary batteries, the demand for cost reduction of electrolyte storage containers has increased. Therefore, the review of the material is being considered at the same time as the container is enlarged, the shape is optimized, and the manufacturing method is improved.

オーステナイト系ステンレス鋼よりも安価な鋼種として、フェライト系ステンレス鋼がある。しかし、一般的にフェライト系ステンレス鋼はオーステナイト系ステンレス鋼に比較して耐食性が劣ると考えられており、これまで使用されていなかった。そのため、空気と接触して腐食性が増した電解液に対する耐食性に優れるフェライト系ステンレス鋼が望まれていた。   Ferritic stainless steel is a cheaper steel type than austenitic stainless steel. However, in general, ferritic stainless steel is considered to be inferior in corrosion resistance compared to austenitic stainless steel, and has not been used so far. Therefore, a ferritic stainless steel that is excellent in corrosion resistance against an electrolytic solution that has increased corrosivity upon contact with air has been desired.

リチウムイオン二次電池用途のフェライト系ステンレス鋼として、特許文献1に開示される技術が知られている。これは、リチウムイオン二次電池ケースとしてフェライト系ステンレス鋼を用いる技術であり、内面にポリプロピレンフィルムを付着させることを特徴としている。リチウムイオン二次電池ケースでは電解液が漏洩した際の耐食性までは要求されていないため、このような技術で十分であった。しかし電解液保管容器の場合は、電解液がこぼれることも想定しなければならず、特許文献1に開示される技術では十分な耐食性が得られなかった。   The technique disclosed in Patent Document 1 is known as a ferritic stainless steel for lithium ion secondary battery applications. This is a technology that uses ferritic stainless steel as a lithium ion secondary battery case, and is characterized in that a polypropylene film is adhered to the inner surface. Since lithium ion secondary battery cases do not require corrosion resistance when the electrolyte leaks, such a technique is sufficient. However, in the case of the electrolytic solution storage container, it must be assumed that the electrolytic solution is spilled, and the technique disclosed in Patent Document 1 cannot provide sufficient corrosion resistance.

なお、耐食性の他に、電解液容器の品質向上のための要素として、内面の清浄性がある。金属粉のようなパーティクルが電解液に混入すると、電池の性能を低下させる場合があり、対策として容器内面に酸洗、電解研磨を施している。従って、フェライト系ステンレス鋼を用いた電解液容器の品質向上のため、フェライト系ステンレス鋼に適した酸洗、電解研磨条件を把握することが好ましい。   In addition to corrosion resistance, there is cleanliness of the inner surface as an element for improving the quality of the electrolyte container. If particles such as metal powder are mixed in the electrolytic solution, the performance of the battery may be deteriorated. As a countermeasure, pickling and electrolytic polishing are performed on the inner surface of the container. Therefore, in order to improve the quality of the electrolytic solution container using ferritic stainless steel, it is preferable to grasp the pickling and electropolishing conditions suitable for the ferritic stainless steel.

特開2011−102423号公報JP 2011-102423 A

上記状況を踏まえ、本発明は、リチウムイオン二次電池の電解液保管容器のための耐食性に優れたフェライト系ステンレス鋼を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a ferritic stainless steel having excellent corrosion resistance for an electrolyte storage container of a lithium ion secondary battery.

さらに、得られたフェライト系ステンレス鋼から製造されたリチウムイオン二次電池の電解液保管容器の耐食性向上のための、最適の酸洗もしくは電解研磨条件を検討し、当該最適な条件で施術されたステンレス鋼製リチウムイオン二次電池電解液保管容器もまた提供する。   In addition, we investigated the optimum pickling or electropolishing conditions for improving the corrosion resistance of the electrolyte storage container of the lithium ion secondary battery manufactured from the ferritic stainless steel obtained, and the treatment was performed under the optimum conditions. A stainless steel lithium ion secondary battery electrolyte storage container is also provided.

上記目的を達成するために、本発明者らは鋭意検討の結果、特定の構成を有するフェライト系ステンレス鋼が、リチウムイオン二次電池の電解液で使用される6弗化リン酸リチウムを含む溶液に対して著しい耐食性を示すことを見出した。   In order to achieve the above object, as a result of intensive studies, the present inventors have determined that a ferritic stainless steel having a specific configuration contains a solution containing lithium hexafluorophosphate used in an electrolyte of a lithium ion secondary battery. It has been found that it exhibits remarkable corrosion resistance.

つまり、本発明は、電池の電解質で使用されるC:0.02質量%以下、Si:0.80質量%以下、Mn:0.80質量%以下、P:0.04質量%以下、S:0.010質量%以下、Cr:16.0〜35.0質量%、N:0.025質量%以下、Al:0.003〜0.20質量%、Nb:0.80質量%、Ti:0.60質量%以下を含有し、残部がFeおよび不可避的不純物からなり、さらに(Ti+Nb)≧7×(C+N)であるリチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼を提供することを目的とする。   That is, the present invention uses C: 0.02 mass% or less, Si: 0.80 mass% or less, Mn: 0.80 mass% or less, P: 0.04 mass% or less, S used in the battery electrolyte. : 0.010 mass% or less, Cr: 16.0 to 35.0 mass%, N: 0.025 mass% or less, Al: 0.003 to 0.20 mass%, Nb: 0.80 mass%, Ti : Ferrite stainless steel for lithium ion secondary battery electrolyte storage container containing 0.60% by mass or less, the balance being Fe and inevitable impurities, and further (Ti + Nb) ≧ 7 × (C + N) For the purpose.

さらに、上記フェライト系ステンレス鋼製リチウム二次電池電解液保管容器、さらに該容器の品質向上のための最適な酸洗または電解研磨条件を提供し、係る条件下で処理を施したリチウム二次電池電解液保管容器も提供する。   Furthermore, the lithium secondary battery electrolyte storage container made of the above ferritic stainless steel, further providing the optimum pickling or electropolishing conditions for improving the quality of the container, and the lithium secondary battery treated under such conditions An electrolyte storage container is also provided.

本発明により、空気と接触して腐食性が増したリチウムイオン二次電池電解液に対する耐食性が極めて良好なフェライト系ステンレス鋼が得られる。特に、リチウムイオン二次電池電解液に対する耐食性試験の結果が極めて良好であり、該鋼板を用いて製造された電解液保管容器は長期間使用することができる。   According to the present invention, a ferritic stainless steel having extremely good corrosion resistance against a lithium ion secondary battery electrolyte that is in contact with air and has increased corrosivity can be obtained. In particular, the result of the corrosion resistance test for the lithium ion secondary battery electrolyte is extremely good, and the electrolyte storage container manufactured using the steel sheet can be used for a long time.

Cr含有量と最大侵食深さの関係を示す図である。●は本発明鋼No.1−9、×はCr含有量が本発明の範囲を外れる比較鋼No.10およびNo.11、△はAl含有量が本発明の範囲を外れる比較鋼No.12およびNo.13を表す。It is a figure which shows the relationship between Cr content and the maximum erosion depth. ● indicates the steel No. of the present invention. 1-9 and x are comparative steel Nos. With Cr content outside the scope of the present invention. 10 and no. 11 and Δ are comparative steel Nos. With an Al content outside the scope of the present invention. 12 and no. 13 is represented.

本発明のフェライト系ステンレス鋼を構成する各合金元素について範囲選定理由について説明する。   The reason for selecting the range for each alloy element constituting the ferritic stainless steel of the present invention will be described.

C:0.02質量%以下、N:0.025質量%以下
C、Nはステンレス鋼中に不可避的に含まれる元素である。C含有量およびN含有量を低減すると、炭化物、窒化物の生成が少なくなり、溶接性および溶接部の耐食性が向上する。しかし、低減のためには精錬時間が長くなり、ステンレス鋼製造のコスト上昇を招くため、Cは0.020質量%まで、Nは0.025質量%までの含有を許容することにした。
C: 0.02 mass% or less, N: 0.025 mass% or less C and N are elements inevitably contained in stainless steel. When the C content and the N content are reduced, the formation of carbides and nitrides is reduced, and the weldability and the corrosion resistance of the welded portion are improved. However, since the refining time becomes longer for the reduction and the cost of the stainless steel production increases, it was decided to allow the content of C up to 0.020 mass% and N up to 0.025 mass%.

Si:0.80質量%以下
Siはステンレス鋼の脱酸剤として添加される。しかし、過剰のSi含有はフェライト相を硬質化させ、加工性や靭性を劣化させる要因となることから、本発明においては上限を0.80質量%とする。
Si: 0.80 mass% or less Si is added as a deoxidizer for stainless steel. However, excessive Si content hardens the ferrite phase and causes deterioration of workability and toughness. Therefore, in the present invention, the upper limit is set to 0.80% by mass.

Mn:0.80質量%以下
Mnはステンレス鋼に不純物として含まれているSと結合し、化学的に不安定な硫化物であるMnSを形成して耐食性を低下させる。したがってMn含有量は低いほど好ましく、本発明においては、0.80質量%を上限とする。
Mn: 0.80% by mass or less Mn combines with S contained as an impurity in stainless steel to form MnS, which is a chemically unstable sulfide, and lowers the corrosion resistance. Therefore, the lower the Mn content, the better. In the present invention, the upper limit is 0.80% by mass.

P:0.04質量%以下
Pは、母材およびろう付け部の靭性を損なうので低い方が望ましい。ただし、含Cr鋼の溶製において精錬による脱Pは困難であることから、P含有量を極低化するには原料の厳選などに過剰なコスト増を伴う。したがって本発明では一般的なフェライト系ステンレス鋼と同様に、0.04質量%までのP含有を許容する。
P: 0.04% by mass or less P is preferably as low as possible because it impairs the toughness of the base material and the brazed part. However, since it is difficult to remove P by refining in the production of Cr-containing steel, excessively increasing the cost for selecting raw materials or the like is accompanied by extremely low P content. Therefore, in the present invention, the P content up to 0.04% by mass is allowed as in the general ferritic stainless steel.

S:0.010質量%以下
Sは、MnSを形成し、酸洗や電解研磨によってMnS周辺にピットが生じやすくなる。したがって、S含有量は低いほど好ましく、本発明では0.010質量%以下に規定される。
S: 0.010% by mass or less S forms MnS, and pits are easily generated around MnS by pickling or electrolytic polishing. Therefore, the lower the S content, the better. In the present invention, the S content is defined as 0.010% by mass or less.

Cr:16.0〜35.0質量%
Crは、不動態皮膜の主要構成元素であり、耐食性の向上をもたらす。電解液が空気と接触しない場合であれば、特許文献1に開示されているとおり、10質量%以上含有すれば良い。しかし、作業時の液こぼれ等によって大気に触れ、腐食性が増した場合には、Crを16.0質量%以上含有しなければ、耐食性を示すことができない。一方、Cr含有量が多くなるとC、Nの低減が難しくなり、機械的性質や靭性を損ね、かつコストを増大させる要因となる。したがって本発明ではCr含有量を16.0〜35質量%とする。
Cr: 16.0-35.0 mass%
Cr is a main constituent element of the passive film, and improves corrosion resistance. If the electrolytic solution is not in contact with air, it may be contained at 10% by mass or more as disclosed in Patent Document 1. However, in the case where the corrosiveness is increased by touching the atmosphere due to liquid spillage during work, the corrosion resistance cannot be exhibited unless Cr is contained at 16.0% by mass or more. On the other hand, when the Cr content is increased, it is difficult to reduce C and N, which deteriorates mechanical properties and toughness and increases costs. Therefore, in this invention, Cr content shall be 16.0-35 mass%.

Mo:2.5質量%以下
Moは耐食性を高めるのに有効な元素であり、必要に応じて添加される。過度の添加は加工性を損ね、かつコストを増大させる要因となる。したがって、添加する場合、本発明ではMo含有量を2.5質量%以下とする。なお、所望の効果を期待するためには、好ましくはMo含有量を0.02質量%以上とする。
Mo: 2.5 mass% or less Mo is an element effective for enhancing corrosion resistance, and is added as necessary. Excessive addition impairs processability and increases the cost. Therefore, when adding, in this invention, Mo content shall be 2.5 mass% or less. In addition, in order to expect a desired effect, Preferably Mo content shall be 0.02 mass% or more.

Ni:2.0質量%以下
Niは耐食性を高めるのに有効な元素であり、必要に応じて添加される。オーステナイト形成元素であり、過度に添加すると、フェライト単相組織を維持できなくなる。したがって、添加する場合、本発明ではNi含有量を2.0質量%以下とする。なお、所望の効果を期待するためには、好ましくはNi含有量を0.02質量%以上とする。
Ni: 2.0% by mass or less Ni is an element effective for enhancing corrosion resistance, and is added as necessary. It is an austenite forming element, and if it is added excessively, the ferrite single phase structure cannot be maintained. Therefore, when it adds, in this invention, Ni content shall be 2.0 mass% or less. In addition, in order to expect a desired effect, Preferably Ni content shall be 0.02 mass% or more.

Cu:2.0質量%以下
Cuは耐食性を高めるのに有効な元素であり、必要に応じて添加される。オーステナイト形成元素であり、過度に添加すると、フェライト単相組織を維持できなくなる。したがって、添加する場合、本発明ではCu含有量を2.0質量%以下とする。なお、所望の効果を期待するために、好ましくはCu含有量を0.02質量%以上とする。
Cu: 2.0% by mass or less Cu is an element effective for enhancing corrosion resistance, and is added as necessary. It is an austenite forming element, and if it is added excessively, the ferrite single phase structure cannot be maintained. Therefore, when adding, Cu content shall be 2.0 mass% or less in this invention. In addition, in order to expect a desired effect, Preferably Cu content shall be 0.02 mass% or more.

Al:0.003〜0.20質量%
Alは電解液に対する耐食性を高めるために有効な成分である。Alが電解液中の6弗化リン酸リチウムと反応して安定な弗化物を形成し、Crを主体とする不動態皮膜とともに、耐食性を高めていると考えられる。その効果を発現するためには、0.003質量%以上の添加が必要である。しかし過剰のAl含有はフェライト相を硬質化させ、加工性や靭性を劣化させる要因となることから、本発明においてはAl量の上限は0.20質量%とする。
Al: 0.003 to 0.20 mass%
Al is an effective component for enhancing the corrosion resistance against the electrolytic solution. It is considered that Al reacts with lithium hexafluorophosphate in the electrolytic solution to form a stable fluoride and, together with a passive film mainly composed of Cr, enhances the corrosion resistance. In order to exhibit the effect, addition of 0.003% by mass or more is necessary. However, excessive Al content hardens the ferrite phase and causes deterioration of workability and toughness. Therefore, in the present invention, the upper limit of Al content is 0.20 mass%.

Nb:0.80質量%以下
NbはC、Nを固定し、加工性および耐食性を向上させる元素である。しかし、過剰のNb含有は、ステンレス鋼が硬質化し、加工性を損なうことから、本発明ではNb量の上限を0.80質量%とする。
Nb: 0.80% by mass or less Nb is an element that fixes C and N and improves workability and corrosion resistance. However, excessive Nb content hardens the stainless steel and impairs workability. Therefore, in the present invention, the upper limit of the Nb content is set to 0.80% by mass.

Ti:0.60質量%以下
TiはNbと同様に、C、Nを固定し、加工性および耐食性を向上させる元素である。しかし、過剰のNb含有は、ステンレス鋼が硬質化し、加工性を損なうことから、本発明ではTi量の上限を0.60質量%とする。
Ti: 0.60% by mass or less Ti, like Nb, is an element that fixes C and N and improves workability and corrosion resistance. However, excessive Nb content hardens the stainless steel and impairs workability. Therefore, in the present invention, the upper limit of Ti content is set to 0.60% by mass.

(Ti+Nb)≧7×(C+N)
TiおよびNbはC、Nを固定する目的で添加するものであるから、C、N量に応じた適量を添加する必要がある。本発明では、TiとNbをあわせて、7×(C+N)以上の添加を必要とする。
(Ti + Nb) ≧ 7 × (C + N)
Since Ti and Nb are added for the purpose of fixing C and N, it is necessary to add appropriate amounts according to the amounts of C and N. In the present invention, it is necessary to add 7 × (C + N) or more in combination of Ti and Nb.

以下に耐食性試験条件の選定理由を示す。
試験片形状
フェライト系ステンレス鋼は、乾湿繰り返し環境において、隙間腐食が進行しやすいことが知られている。したがって本発明においては、15mm×15mm×板厚1mmの小片および40mm×40mm×板厚1mmの大片をスポット溶接し、隙間を有する試験片を用いることとする。
The reasons for selecting the corrosion resistance test conditions are shown below.
It is known that the test piece-shaped ferritic stainless steel easily undergoes crevice corrosion in a wet and dry repeated environment. Accordingly, in the present invention, a small piece of 15 mm × 15 mm × plate thickness 1 mm and a large piece of 40 mm × 40 mm × plate thickness 1 mm are spot-welded, and a test piece having a gap is used.

電解液組成
リチウムイオン二次電池用の電解液としては種々の組成のものが開発されている。とはいえ、電解液の腐食性は、電解液が空気と触れ、6弗化リン酸リチウムと酸素あるいは水蒸気が反応して弗酸を形成することで生じるものであることから、本発明では、6弗化リン酸リチウムの濃度のみを規定し、その濃度を1mol/リットルとする。そのような電解液100マイクロリットルを試験片の隙間部に滴下する。
Electrolyte Compositions Various compositions have been developed as electrolyte solutions for lithium ion secondary batteries. Nonetheless, the corrosiveness of the electrolytic solution is caused by the fact that the electrolytic solution comes into contact with air and lithium hexafluorophosphate reacts with oxygen or water vapor to form hydrofluoric acid. Only the concentration of lithium hexafluorophosphate is defined, and the concentration is 1 mol / liter. 100 microliters of such electrolyte is dropped into the gap between the test pieces.

乾湿繰り返し条件
上述の通り、腐食性は電解液が空気と触れることで生じることから、試験は大気中で行う必要がある。また、乾燥と湿潤を繰り返すと、乾燥から湿潤および湿潤から乾燥に移行する際に、電解液中に生じた弗酸の濃度が高くなり、腐食性が増すことから、試験は乾湿を繰り返す方法とした。夏場の気温を想定し、試験温度は50℃とし、湿度は、種々検討した結果、最も腐食度が高かった相対湿度85%とした。以上より、乾湿繰り返し条件は、50℃、相対湿度85%で3時間、50℃、相対湿度30%で1時間保持する過程を1サイクルとし、100サイクル繰り返すこととする。
Repeated wet and dry conditions As described above, corrosiveness is caused by contact of the electrolyte with air, so the test must be performed in the atmosphere. In addition, when drying and wetting are repeated, the concentration of hydrofluoric acid generated in the electrolyte increases when shifting from drying to wetting and from moisture to drying. did. Assuming the summer temperature, the test temperature was set to 50 ° C., and the humidity was set to 85% relative humidity with the highest degree of corrosion as a result of various studies. From the above, the dry and wet conditions are 50 cycles at 50 ° C. and 85% relative humidity for 3 hours, 1 hour at 50 ° C. and 30% relative humidity for 1 cycle, and 100 cycles.

本発明のリチウムイオン二次電池電解液保管容器は、鋼板表面に存在するパーティクルを除去するために、その内面を酸洗浄もしくは電解研磨することが好ましい。
酸洗は、不動態皮膜を破壊した上で、Hイオンの還元作用によってステンレス鋼を溶解させることによって行うものである。
In the lithium ion secondary battery electrolyte storage container of the present invention, the inner surface thereof is preferably acid-washed or electropolished in order to remove particles present on the surface of the steel sheet.
Pickling is performed by breaking the passive film and dissolving stainless steel by the reducing action of H + ions.

弗酸:0.5質量%以上、硝酸:5質量%以上
硝酸はHの供給源として、5質量%以上添加する必要がある。ただし、硝酸には不動態を破壊する作用がないため、硝酸を用いる場合は合わせて0.5質量%以上の弗酸を用いる必要がある。なお、弗酸を過剰に添加するとFeイオンと反応してFeFとして沈殿し、むしろ効果が低くなることがあるため弗酸濃度は5質量%以下であることが好ましい。硝酸は過剰に添加しても添加量に見合う効果の上昇は見込めず、コストの上昇を招くのみであるため、硝酸は15質量%以下であることが好ましい。
Hydrofluoric acid: 0.5% by mass or more, Nitric acid: 5% by mass or more Nitric acid needs to be added by 5% by mass or more as a H + supply source. However, since nitric acid does not have an effect of destroying the passive state, when nitric acid is used, it is necessary to use 0.5% by mass or more of hydrofluoric acid. In addition, when hydrofluoric acid is added excessively, it reacts with Fe ions and precipitates as FeF 3 , and the effect is rather lowered. Therefore, the hydrofluoric acid concentration is preferably 5% by mass or less. Even if nitric acid is added excessively, an increase in effect commensurate with the amount of addition cannot be expected, and only an increase in cost is caused. Therefore, nitric acid is preferably 15% by mass or less.

塩酸:5質量%以上
塩酸はHイオンの供給源であり、さらにClイオンによる不動態皮膜の破壊作用があることから、単独添加で5質量%以上添加すれば良い。なお、塩酸は過剰に添加しても添加量に見合う効果の上昇は見込めず、コストの上昇を招くのみであるため、塩酸濃度は15質量%以下であることが好ましい。
Hydrochloric acid: 5% by mass or more Hydrochloric acid is a supply source of H + ions, and further has a destructive action on the passive film by Cl ions, so it may be added alone by 5% by mass or more. In addition, even if hydrochloric acid is added excessively, an increase in effect commensurate with the amount added cannot be expected, and only an increase in cost is caused. Therefore, the hydrochloric acid concentration is preferably 15% by mass or less.

硫酸:10質量%以上
硫酸はHイオンの供給源であり、不動態皮膜を破壊する作用はあるが、塩酸に比べるとその作用は小さいことから、10質量%以上が必要である。なお、硫酸は過剰に添加しても添加量に見合う効果の上昇は見込めず、コストの上昇を招くのみであるため、硫酸濃度は25質量%以下であることが好ましい。
Sulfuric acid: 10% by mass or more Sulfuric acid is a source of H + ions and has an effect of destroying the passive film, but its effect is small compared with hydrochloric acid, and thus 10% by mass or more is necessary. In addition, even if it adds sulfuric acid excessively, since the raise of the effect corresponding to the addition amount cannot be anticipated, and it causes only a raise of cost, it is preferable that a sulfuric acid concentration is 25 mass% or less.

上述した組成の酸洗液を電解液保管容器の内部に注入、あるいは酸洗液を満たした槽に、電解液保管容器を浸漬し、1分以上保持することにより、ステンレス鋼表面が溶解し、それに伴って表面の付着物が除去される。温度は常温でかまわないが、必要に応じて80℃まで加温しても良い。
また、酸洗浄に要する時間は、酸洗液の酸の濃度や温度に依存するが所望の表面粗さが得られる時間であれば特に制限されない。しかし、通常は、1〜10分、好ましくは1〜5分である。
By injecting the pickling solution having the above-described composition into the inside of the electrolytic solution storage container, or immersing the electrolytic solution storage container in a tank filled with the pickling solution and holding it for 1 minute or more, the stainless steel surface is dissolved, Along with this, surface deposits are removed. The temperature may be room temperature, but may be heated to 80 ° C. if necessary.
Further, the time required for the acid cleaning depends on the acid concentration and temperature of the pickling solution, but is not particularly limited as long as a desired surface roughness can be obtained. However, it is usually 1 to 10 minutes, preferably 1 to 5 minutes.

電解研磨は、電流を流すことでステンレス鋼を電気化学的に溶解させる方法である。特にリン酸を用いると、ステンレス鋼の表面に電気抵抗の高い液膜が形成され、平滑な表面性状を得ることができるものである。
具体的に、下記の溶液を満たした槽に電極を入れ、電解液保管容器を浸漬し、電流密度20〜500mA/cmで、1分以上保持することにより、ステンレス鋼表面が溶解し、それに伴って表面の付着物が除去される。槽の溶液の温度は常温でかまわないが、必要に応じて80℃まで加温しても良い。
また、電解研磨に要する時間は、電流密度や電解研磨に使用する溶液の酸の濃度に依存するが、所望の表面粗さが得られる時間であれば特に制限されない。しかし、通常1〜10分、好ましくは1〜5分である。
Electropolishing is a method in which stainless steel is dissolved electrochemically by passing an electric current. In particular, when phosphoric acid is used, a liquid film having high electrical resistance is formed on the surface of stainless steel, and smooth surface properties can be obtained.
Specifically, an electrode is put in a tank filled with the following solution, an electrolytic solution storage container is immersed, and held at a current density of 20 to 500 mA / cm 2 for 1 minute or more, thereby dissolving the stainless steel surface. At the same time, surface deposits are removed. The temperature of the solution in the tank may be room temperature, but may be heated up to 80 ° C. if necessary.
The time required for electropolishing depends on the current density and the acid concentration of the solution used for electropolishing, but is not particularly limited as long as the desired surface roughness can be obtained. However, it is usually 1 to 10 minutes, preferably 1 to 5 minutes.

リン酸:10質量%以上
リン酸水溶液中で電解研磨を行う場合、リン酸濃度は10質量%以上にする必要がある。これよりも低い濃度の場合は、ステンレス鋼表面に電気抵抗の高い液膜を形成することができず、平滑な表面性状を得ることができない。なお、リン酸は比較的広い濃度範囲で良好な表面性状が得られるが、極端に濃度を高くすることはコスト上昇を招くため、リン酸濃度は90質量%以下であることが好ましい。
Phosphoric acid: 10 mass% or more When performing electropolishing in a phosphoric acid aqueous solution, the phosphoric acid concentration needs to be 10 mass% or more. When the concentration is lower than this, a liquid film having a high electric resistance cannot be formed on the stainless steel surface, and a smooth surface property cannot be obtained. Phosphoric acid can provide good surface properties in a relatively wide concentration range, but it is preferable that the concentration of phosphoric acid is 90% by mass or less because an extremely high concentration causes an increase in cost.

硫酸:1質量%以上
リン酸水溶液に硫酸を添加すると、表面性状が向上することから、必要に応じて硫酸を加えても良い。効果を得るために必要な硫酸濃度は1質量%以上である。なお、硫酸は過剰に添加しても添加量に見合う効果の上昇は見込めず、コストの上昇を招くのみであるため、硫酸濃度は40質量%以下であることが好ましい。
Sulfuric acid: When sulfuric acid is added to a phosphoric acid aqueous solution of 1% by mass or more , the surface properties are improved. The sulfuric acid concentration necessary for obtaining the effect is 1% by mass or more. In addition, even if sulfuric acid is added excessively, an increase in the effect corresponding to the addition amount cannot be expected and only an increase in cost is caused. Therefore, the sulfuric acid concentration is preferably 40% by mass or less.

本発明のリチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼は、上記のように含有成分が制御されていれば、製造方法に制限はない。通常、フェライト系ステンレス鋼に施される熱延,冷延及び焼鈍等を組み合わせて所望板厚の鋼板とした後、適宜の加工手段を用いて所望の電解液保管容器を製造する。また、必要に応じて、容器内面を酸洗及び/又は電解研磨を施す。   The ferritic stainless steel for the lithium ion secondary battery electrolyte storage container of the present invention is not limited in its production method as long as the components are controlled as described above. Usually, after combining the hot rolling, cold rolling, annealing, and the like applied to ferritic stainless steel into a steel plate having a desired thickness, a desired electrolyte storage container is manufactured using an appropriate processing means. Further, the inner surface of the container is pickled and / or electropolished as necessary.

本発明のリチウムイオン二次電池電解液保管容器が収容する電解液は、電解質塩を溶媒に溶かしたものが挙げられる。ここで、電解質塩としては、特に制限されない。具体的には、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiSbF、LiAlCl、Li10Cl10、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN等の無機酸陰イオン塩、LiCFSO、Li(CFSON、LiBOB(リチウムビスオキサイドボレート)等の有機酸陰イオン塩などが挙げられる。これらの電解質塩は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等が挙げられるがこれに限定されない。以上の溶媒を1種もしくは2種以上使用することができる。 As for the electrolyte solution which the lithium ion secondary battery electrolyte storage container of this invention accommodates, what melt | dissolved electrolyte salt in the solvent is mentioned. Here, the electrolyte salt is not particularly limited. Specifically, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiSbF 6, LiAlCl 4, Li 2 B 10 Cl 10, LiI, LiBr, LiCl, LiAlCl, LiHF 2, inorganic acid anions such as LiSCN Examples include ionic salts, organic acid anion salts such as LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, and LiBOB (lithium bisoxide borate). These electrolyte salts may be used alone or in the form of a mixture of two or more. Examples of the solvent include, but are not limited to, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. One or more of the above solvents can be used.

表1に示す成分組成のフェライト系ステンレス鋼を、真空溶製によって30kgインゴットを作成した。インゴットから40mm厚みの熱延用ブロックを採取し、1230℃の電気炉内に2h保持した後、熱間圧延にて板厚3mmの熱延板を作成した。熱延板を1050℃で焼鈍し、弗酸1.1質量%及び硝酸7.0質量%含む酸洗液を用いて、液温30℃で5分間の酸洗によって酸化スケールを除去した後、冷間圧延にて板厚1.0mmの冷延板とした。冷延板を結晶粒径が20〜40μmになるよう、950〜1050℃で焼鈍し、酸洗によって酸化スケールを除去して発明鋼No.1〜9、比較鋼No.10〜13を得た。   A 30 kg ingot was produced by vacuum melting the ferritic stainless steel having the composition shown in Table 1. A 40 mm thick hot rolling block was collected from the ingot, held in an electric furnace at 1230 ° C. for 2 hours, and then a hot rolled plate having a thickness of 3 mm was prepared by hot rolling. After annealing the hot-rolled sheet at 1050 ° C. and using a pickling solution containing 1.1% by mass of hydrofluoric acid and 7.0% by mass of nitric acid, the oxide scale was removed by pickling at a temperature of 30 ° C. for 5 minutes. A cold rolled sheet having a thickness of 1.0 mm was formed by cold rolling. The cold-rolled sheet was annealed at 950 to 1050 ° C. so that the crystal grain size was 20 to 40 μm, and the oxide scale was removed by pickling, so 1-9, comparative steel no. 10-13 were obtained.

試験例1
表1に示す板厚1.0mmのフェライト系ステンレス鋼を用い、本発明で規定するとおり、15mm×15mmの小片と40mm×40mmの大片をスポット溶接した。スポット溶接の径はφ5mmのものを用いた。電解液は、エチレンカーボネートとジエチルカーボネートを1:1で混合した溶媒に、1mol/リットルの6弗化リン酸リチウムを加えたものを用いた。電解液100マイクロリットルを試験片の隙間部に滴下し、その後、50℃、相対湿度85%で3時間、50℃、相対湿度30%で1時間保持する過程を100サイクル繰り返した。
Test example 1
Using ferritic stainless steel with a plate thickness of 1.0 mm shown in Table 1, as specified in the present invention, a small piece of 15 mm × 15 mm and a large piece of 40 mm × 40 mm were spot welded. The diameter of spot welding was 5 mm. As the electrolytic solution, a solution obtained by adding 1 mol / liter of lithium hexafluorophosphate to a solvent obtained by mixing ethylene carbonate and diethyl carbonate in a ratio of 1: 1 was used. 100 microliters of the electrolytic solution was dropped into the gap between the test pieces, and then the process of holding at 50 ° C. and a relative humidity of 85% for 3 hours and at 50 ° C. and a relative humidity of 30% for 1 hour was repeated 100 cycles.

Figure 2015074798
Figure 2015074798

試験後の試験片のスポット溶接部に穴を開けて小片と大片を離し、硝酸を用いて除銹を行った後、光学顕微鏡を用いた焦点深度法によって侵食深さを測定した。各鋼種について4検体ずつの試験を行い、各鋼種の最大侵食深さを求めた。その結果を表1および図1に示す。   A hole was made in the spot welded portion of the test piece after the test, the small piece and the large piece were separated from each other, the nitric acid was used to remove the debris, and then the erosion depth was measured by a depth of focus method using an optical microscope. Four specimens were tested for each steel type, and the maximum erosion depth of each steel type was determined. The results are shown in Table 1 and FIG.

Cr含有量が多いほど、最大侵食深さが小さくなる傾向を示した。特にCr含有量が16質量%以上になると最大侵食深さは大幅に減少し、ほとんどの鋼種の最大侵食深さが0.2mm以下であった。ただし、Al含有量が0.003質量%未満の場合は、Cr量が16質量%以上であっても、最大侵食深さが0.2mmを超えていた。   As the Cr content increased, the maximum erosion depth tended to decrease. In particular, when the Cr content was 16% by mass or more, the maximum erosion depth was greatly reduced, and the maximum erosion depth of most steel types was 0.2 mm or less. However, when the Al content was less than 0.003% by mass, the maximum erosion depth exceeded 0.2 mm even when the Cr content was 16% by mass or more.

板厚2mmの発明鋼1〜3および比較鋼10〜12を用い、現在、リチウムイオン二次電池の電解液保管容器として一般的に用いられている形態の容器を作製し、電解液製造所と電池製造所間の電解液の輸送、保管容器として1年間使用した。なお電解液製造所では、容器外面に付着した電解液を洗浄するが、電池製造所において付着した電解液は洗浄せずに放置した。従って、電池製造所から電解液製造所に戻るまでの期間で腐食が進行する状況である。   Using the invention steels 1 to 3 and the comparative steels 10 to 12 having a thickness of 2 mm, a container of a form generally used as an electrolyte storage container for a lithium ion secondary battery is currently manufactured, Used as a transport and storage container for electrolyte between battery factories for one year. In the electrolyte manufacturing plant, the electrolytic solution adhering to the outer surface of the container was washed, but the electrolytic solution adhering to the battery manufacturing plant was left without being washed. Therefore, the corrosion progresses during the period from the battery factory to the electrolyte solution factory.

1年経過後に、発明鋼No.1〜No.3、比較鋼No.10〜No.12で作製したそれぞれの容器を解体し、腐食状況を調査したところ、発明鋼No.1〜No.3の最大侵食深さはNo.1,2が0.05mm、No.3が0.03mmであった。使用年数に比例して侵食が深くなると想定すると、板厚貫通に至るのは40年後以上であり、本用途での耐用年数としては満足できるものである。一方、比較鋼の侵食深さはNo.10が0.70mm、No.11が0.65mm、No.12が0.50mmであった。板厚貫通まで、2.8〜4年と推察され、耐用年数としては満足できる水準ではなかった。   After one year, the invention steel No. 1-No. 3, comparative steel No. 10-No. 12 was disassembled and the corrosion situation was investigated. 1-No. The maximum erosion depth of No. 3 is no. Nos. 1 and 2 are 0.05 mm. 3 was 0.03 mm. Assuming that erosion deepens in proportion to the service life, it is not less than 40 years after the plate thickness has been penetrated, and the service life in this application is satisfactory. On the other hand, the erosion depth of the comparative steel was No. 10 is 0.70 mm, no. 11 is 0.65 mm, no. 12 was 0.50 mm. It was estimated that 2.8 to 4 years until the plate thickness penetrated, and the service life was not satisfactory.

試験例2
発明鋼1の組成を有し、酸洗を行わなかったこと以外は上記製法と同じ条件で処理された鋼板を用いて、電解液容器を作製し、内面に種々の酸洗および電解研磨を施した。電解液の品質への影響を確認するため、電解液容器に電解液を1週間入れておき、その電解液を用いてリチウムイオン電池を作製し、充放電特性について調査した。
Test example 2
An electrolytic solution container is prepared using a steel plate having the composition of Invention Steel 1 and processed under the same conditions as those described above except that pickling is not performed, and various pickling and electropolishing are performed on the inner surface. did. In order to confirm the influence on the quality of the electrolytic solution, the electrolytic solution was put in an electrolytic solution container for one week, a lithium ion battery was produced using the electrolytic solution, and the charge / discharge characteristics were investigated.

充放電試験は、1Aで4Vまでの充電、1時間の休止、1Aで3Vまでの放電、1時間の休止を1サイクルとし、500サイクルまで継続した。1サイクルにおける容量を基準に、500サイクル後の容量の比率を求め、充放電特性とした。   In the charge / discharge test, charging up to 4 V at 1 A, resting for 1 hour, discharging to 3 V at 1 A, and resting for 1 hour were taken as one cycle and continued up to 500 cycles. Based on the capacity in one cycle, the ratio of the capacity after 500 cycles was determined and used as charge / discharge characteristics.

表2に電解液容器内面の酸洗条件と、その容器で保管した電解液を用いたリチウムイオン電池の充放電特性の関係を示す。本発明の好ましい範囲の酸洗条件では、充放電特性80〜82%が得られた。一方、本発明の好ましい範囲外の酸洗条件では、充放電特性が77%であり、電池性能の低下が早かった。   Table 2 shows the relationship between the pickling conditions on the inner surface of the electrolytic solution container and the charge / discharge characteristics of the lithium ion battery using the electrolytic solution stored in the container. Under the pickling conditions within the preferred range of the present invention, charge / discharge characteristics of 80 to 82% were obtained. On the other hand, under the pickling conditions outside the preferred range of the present invention, the charge / discharge characteristics were 77%, and the battery performance was rapidly reduced.

Figure 2015074798
Figure 2015074798

表3に電解液容器内面の電解研磨条件と、その容器で保管した電解液を用いたリチウムイオン電池の充放電特性の関係を示す。本発明の好ましい範囲の電解研磨条件では、充放電特性80〜82%が得られた。一方、本発明の好ましい範囲外の電解研磨条件では、充放電特性が77%であり、電池性能の低下が早かった。   Table 3 shows the relationship between the electrolytic polishing conditions on the inner surface of the electrolytic solution container and the charge / discharge characteristics of the lithium ion battery using the electrolytic solution stored in the container. Under the electropolishing conditions within the preferred range of the present invention, charge / discharge characteristics of 80 to 82% were obtained. On the other hand, under the electropolishing conditions outside the preferred range of the present invention, the charge / discharge characteristics were 77%, and the battery performance was rapidly reduced.

Figure 2015074798
Figure 2015074798

以上のように、本発明範囲の成分を有するフェライト系ステンレス鋼を用いることで、また任意に酸洗浄や電解研磨を施すことで、安価なフェライト系ステンレス鋼をリチウムイオン電池の電解液保管容器に用いることができる。   As described above, by using a ferritic stainless steel having components within the scope of the present invention, and by optionally performing acid cleaning or electrolytic polishing, an inexpensive ferritic stainless steel can be used as an electrolyte storage container for a lithium ion battery. Can be used.

Claims (8)

C:0.02質量%以下、Si:0.80質量%以下、Mn:0.80質量%以下、P:0.04質量%以下、S:0.010質量%以下、Cr:16.0〜35.0質量%、N:0.025質量%以下、Al:0.003〜0.20質量%、Nb:0.80質量%、Ti:0.60質量%以下を含有し、残部がFeおよび不可避的不純物からなり、さらに(Ti+Nb)≧7×(C+N)である、リチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼。   C: 0.02 mass% or less, Si: 0.80 mass% or less, Mn: 0.80 mass% or less, P: 0.04 mass% or less, S: 0.010 mass% or less, Cr: 16.0 -35.0 mass%, N: 0.025 mass% or less, Al: 0.003-0.20 mass%, Nb: 0.80 mass%, Ti: 0.60 mass% or less, the balance being A ferritic stainless steel for an electrolyte storage container for a lithium ion secondary battery, comprising Fe and unavoidable impurities, and further (Ti + Nb) ≧ 7 × (C + N). 請求項1に記載のリチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼であって、15mm×15mmの小片および40mm×40mmの大片をスポット溶接したものを試験片として用い、その隙間部に電解質として6弗化リン酸リチウム1mol/リットルを含む電解液100マイクロリットルを滴下し、その状態で、温度50℃、相対湿度85%の湿潤環境に3時間、50℃、相対湿度30%の乾燥環境に1時間保持するサイクルを100サイクル繰り返す耐食性試験において、最大侵食深さが0.2mm以下である、該フェライト系ステンレス鋼。   A ferritic stainless steel for an electrolyte storage container for a lithium ion secondary battery according to claim 1, wherein a 15 mm × 15 mm small piece and a 40 mm × 40 mm large piece are spot-welded, and used as a test piece. 100 microliters of an electrolytic solution containing 1 mol / liter of lithium hexafluorophosphate as an electrolyte was dropped, and in that state, drying was performed at a temperature of 50 ° C. and a relative humidity of 85% for 3 hours at 50 ° C. and a relative humidity of 30%. The ferritic stainless steel having a maximum erosion depth of 0.2 mm or less in a corrosion resistance test in which a cycle of holding in the environment for 1 hour is repeated 100 cycles. Mo:2.5質量%以下、Ni:2.0質量%以下、Cu:2.0質量%以下のいずれかの1種または2種以上を更に含む、請求項1または2に記載のリチウムイオン二次電池電解液保管容器用フェライト系ステンレス鋼。   The lithium ion according to claim 1 or 2, further comprising one or more of Mo: 2.5% by mass or less, Ni: 2.0% by mass or less, and Cu: 2.0% by mass or less. Ferritic stainless steel for secondary battery electrolyte storage containers. 請求項1〜3のいずれか1項に記載されるフェライト系ステンレス鋼によって製造されるリチウムイオン二次電池電解液保管容器。   The lithium ion secondary battery electrolyte solution storage container manufactured with the ferritic stainless steel as described in any one of Claims 1-3. 容器内面に、酸洗及び/または電解研磨を施した、請求項4に記載のリチウムイオン二次電池電解液保管容器。   The lithium ion secondary battery electrolyte storage container according to claim 4, wherein pickling and / or electrolytic polishing is performed on the inner surface of the container. 容器内面に、酸洗を施した後、電解研磨を施した、請求項5に記載のリチウムイオン二次電池電解液保管容器。   The lithium ion secondary battery electrolyte storage container according to claim 5, wherein the inner surface of the container is subjected to pickling and then subjected to electrolytic polishing. 前記酸洗の酸洗液として、弗酸0.5質量%以上および硝酸5質量%以上含む水溶液、塩酸5質量%以上を含む水溶液、または硫酸10質量%以上を含む水溶液を用い、1分以上の酸洗を施した、請求項5または6に記載のリチウムイオン二次電池電解液保管容器。   As the pickling solution for pickling, an aqueous solution containing 0.5% by mass or more of hydrofluoric acid and 5% by mass or more of nitric acid, an aqueous solution containing 5% by mass or more of hydrochloric acid, or an aqueous solution containing 10% by mass or more of sulfuric acid is used for 1 minute or more. The lithium ion secondary battery electrolyte storage container according to claim 5 or 6, which has been pickled. リン酸10質量%以上含む水溶液または、リン酸10質量%以上と硫酸1質量%以上を含む水溶液を用い、表面の平均電流密度として20mA/cm以上の電流を30秒以上通電する電解研磨を施した、請求項5〜7のいずれか1項に記載のリチウムイオン二次電池電解液保管容器。 Electrolytic polishing in which an aqueous solution containing 10% by mass or more of phosphoric acid or an aqueous solution containing 10% by mass or more of phosphoric acid and 1% by mass or more of sulfuric acid is applied with an electric current of 20 mA / cm 2 or more as an average surface current density for 30 seconds or more. The lithium ion secondary battery electrolyte solution storage container of any one of Claims 5-7 given.
JP2013211013A 2013-10-08 2013-10-08 Ferritic stainless steel for lithium ion secondary battery electrolyte storage container and lithium ion secondary battery electrolyte storage container using the stainless steel Active JP6243695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211013A JP6243695B2 (en) 2013-10-08 2013-10-08 Ferritic stainless steel for lithium ion secondary battery electrolyte storage container and lithium ion secondary battery electrolyte storage container using the stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211013A JP6243695B2 (en) 2013-10-08 2013-10-08 Ferritic stainless steel for lithium ion secondary battery electrolyte storage container and lithium ion secondary battery electrolyte storage container using the stainless steel

Publications (3)

Publication Number Publication Date
JP2015074798A true JP2015074798A (en) 2015-04-20
JP2015074798A5 JP2015074798A5 (en) 2016-11-10
JP6243695B2 JP6243695B2 (en) 2017-12-06

Family

ID=52999907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211013A Active JP6243695B2 (en) 2013-10-08 2013-10-08 Ferritic stainless steel for lithium ion secondary battery electrolyte storage container and lithium ion secondary battery electrolyte storage container using the stainless steel

Country Status (1)

Country Link
JP (1) JP6243695B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030148A1 (en) * 2015-08-19 2017-02-23 新日鉄住金マテリアルズ株式会社 Stainless steel foil
WO2020241161A1 (en) * 2019-05-31 2020-12-03 株式会社日本触媒 Electrolyte composition, solvent composition, non-aqueous electrolyte, and use thereof
KR20220017406A (en) 2019-06-05 2022-02-11 샌트랄 글래스 컴퍼니 리미티드 Container for non-aqueous electrolyte and storage method for non-aqueous electrolyte

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296100A (en) * 1995-04-27 1996-11-12 Nippon Steel Corp Method for electropolishing ferritic stainless steel at high speed
JPH1050296A (en) * 1996-08-02 1998-02-20 Sony Corp Impregnating method and device for electrolyte
JP2000144461A (en) * 1998-11-13 2000-05-26 Sumitomo Metal Ind Ltd Surface treatment of stainless steel
JP2003257384A (en) * 2002-02-28 2003-09-12 Nisshin Steel Co Ltd Ferritic stainless steel for button type lithium secondary battery case and battery case
CN101845595A (en) * 2009-03-26 2010-09-29 宝山钢铁股份有限公司 Ferritic stainless steel with good wrinkle resistance and production method thereof
CN101962740A (en) * 2009-07-23 2011-02-02 宝山钢铁股份有限公司 Ferrite stainless steel for automobile exhaust emission system and manufacturing method thereof
CN102796960A (en) * 2011-05-25 2012-11-28 宝山钢铁股份有限公司 Ferrite stainless steel with good plastic property and surface quality and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296100A (en) * 1995-04-27 1996-11-12 Nippon Steel Corp Method for electropolishing ferritic stainless steel at high speed
JPH1050296A (en) * 1996-08-02 1998-02-20 Sony Corp Impregnating method and device for electrolyte
JP2000144461A (en) * 1998-11-13 2000-05-26 Sumitomo Metal Ind Ltd Surface treatment of stainless steel
JP2003257384A (en) * 2002-02-28 2003-09-12 Nisshin Steel Co Ltd Ferritic stainless steel for button type lithium secondary battery case and battery case
CN101845595A (en) * 2009-03-26 2010-09-29 宝山钢铁股份有限公司 Ferritic stainless steel with good wrinkle resistance and production method thereof
CN101962740A (en) * 2009-07-23 2011-02-02 宝山钢铁股份有限公司 Ferrite stainless steel for automobile exhaust emission system and manufacturing method thereof
CN102796960A (en) * 2011-05-25 2012-11-28 宝山钢铁股份有限公司 Ferrite stainless steel with good plastic property and surface quality and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030148A1 (en) * 2015-08-19 2017-02-23 新日鉄住金マテリアルズ株式会社 Stainless steel foil
JP6165369B1 (en) * 2015-08-19 2017-07-19 新日鉄住金マテリアルズ株式会社 Stainless steel foil
US10786974B2 (en) 2015-08-19 2020-09-29 Nippon Steel Chemical & Material Co., Ltd. Stainless steel foil
WO2020241161A1 (en) * 2019-05-31 2020-12-03 株式会社日本触媒 Electrolyte composition, solvent composition, non-aqueous electrolyte, and use thereof
JPWO2020241161A1 (en) * 2019-05-31 2020-12-03
JP7314264B2 (en) 2019-05-31 2023-07-25 株式会社日本触媒 Electrolyte composition, solvent composition, non-aqueous electrolyte and use thereof
KR20220017406A (en) 2019-06-05 2022-02-11 샌트랄 글래스 컴퍼니 리미티드 Container for non-aqueous electrolyte and storage method for non-aqueous electrolyte

Also Published As

Publication number Publication date
JP6243695B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
KR102195377B1 (en) Surface-treated steel sheet for battery containers, battery container and battery
JP5204574B2 (en) Bipolar lithium ion secondary battery
WO2012046879A1 (en) Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing same, solid polymer fuel cell separator, and solid polymer fuel cell
JP6243695B2 (en) Ferritic stainless steel for lithium ion secondary battery electrolyte storage container and lithium ion secondary battery electrolyte storage container using the stainless steel
JP6298881B2 (en) Ferritic stainless steel and manufacturing method thereof
US10801084B2 (en) Material for cold rolled stainless steel sheets, method for manufacturing the same, and cold rolled steel sheet
JP5204573B2 (en) Bipolar lithium ion secondary battery
JP2009167486A (en) Ferritic stainless steel for battery component member
WO2015145825A1 (en) Ferritic stainless steel and method for producing same
JP6159208B2 (en) Stainless steel lithium ion secondary battery electrolyte storage container
JP2017172027A (en) Al-CONTAINING FERRITIC STAINLESS STEEL AND PRODUCTION METHOD THEREFOR
CN103484776B (en) Corrosion-resistant steel material for ship and vessel
CN104736734A (en) Ferrite stainless steel and manufacturing method therefor
KR20210005235A (en) Corrosion-resistant steel for docks of coal-only ships or coal-coal combined ships, and docks
WO2021006099A1 (en) Ferritic stainless steel sheet for current collectors for sulfide-based solid-state batteries, and method for manufacturing same
KR102638365B1 (en) Ferrite-based stainless steel sheet for current collectors in sulfide-based solid-state batteries
CN102713004B (en) Stainless steel for current-carrying member having low electrical contact resistance, and process for production thereof
JP2003257384A (en) Ferritic stainless steel for button type lithium secondary battery case and battery case
CN112262225B (en) Stainless steel foil collector for secondary battery positive electrode
CN114127999A (en) Chromium-containing steel sheet for current collector of non-aqueous electrolyte secondary battery and method for manufacturing same
US20160237534A1 (en) Germanium-bearing ferritic stainless steels
JP2011233402A (en) Positive electrode body, method for manufacturing positive electrode body, and nonaqueous electrolyte battery
JP2020158816A (en) Austenitic stainless steel and method for producing the same
JP2020070463A (en) Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel
JP2003253400A (en) Austenitic stainless steel for button-type lithium secondary battery case, and battery case using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171110

R150 Certificate of patent or registration of utility model

Ref document number: 6243695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250