JP2015074612A - Arylene dioxy-bis(succinic anhydride) and manufacturing method therefor - Google Patents

Arylene dioxy-bis(succinic anhydride) and manufacturing method therefor Download PDF

Info

Publication number
JP2015074612A
JP2015074612A JP2013209973A JP2013209973A JP2015074612A JP 2015074612 A JP2015074612 A JP 2015074612A JP 2013209973 A JP2013209973 A JP 2013209973A JP 2013209973 A JP2013209973 A JP 2013209973A JP 2015074612 A JP2015074612 A JP 2015074612A
Authority
JP
Japan
Prior art keywords
general formula
carbon atoms
formula
group
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013209973A
Other languages
Japanese (ja)
Other versions
JP6266940B2 (en
Inventor
進介 井上
Shinsuke Inoue
進介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manac Inc
Original Assignee
Manac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manac Inc filed Critical Manac Inc
Priority to JP2013209973A priority Critical patent/JP6266940B2/en
Publication of JP2015074612A publication Critical patent/JP2015074612A/en
Application granted granted Critical
Publication of JP6266940B2 publication Critical patent/JP6266940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide novel tetra carboxylic acid dianhydride capable of being a raw material of polyimide having excellent property of conventional polyimide such as heat resistance and chemical resistance and improved transparency and workability and a manufacturing method therefor, and polyimide containing such novel tetra carboxylic acid dianhydride as a tetra carboxylic acid component.SOLUTION: There are provided arylene dioxy-bis(succinic anhydride) represented by the general formula (1), a manufacturing method therefor and polyimide containing the tetra carboxylic acid dianhydride as a tetra carboxylic acid component. In the general formula (1), Ar is a bivalent aromatic group having 6 to 36 carbon atoms. The compound is synthesized by reacting dihalo succinic acid derivative and an aromatic diol compound, hydrogenation, hydrolysis and dehydration reaction.

Description

本発明は、アリーレンジオキシ−ビス(無水コハク酸)及びその製造方法に関する。また本発明は、アリーレンジオキシ−ビス(無水コハク酸)をテトラカルボン酸成分として含むポリイミドに関する。   The present invention relates to arylenedioxy-bis (succinic anhydride) and a method for producing the same. The present invention also relates to a polyimide containing arylenedioxy-bis (succinic anhydride) as a tetracarboxylic acid component.

ポリイミドは優れた耐熱性、耐薬品性、耐放射線性、電気絶縁性及び機械的性質等を併せ持つことから、フレキシブルプリント配線回路用基材、テープオートメーションボンディング用基材、半導体素子の保護膜及び層間絶縁膜等の様々な電子デバイスに広く利用されている。ポリイミドはまた、製造方法の簡便さ、高い膜純度、物性改良のしやすさの点で、非常に有用な材料であり、近年様々な用途毎に適した機能性ポリイミドの材料設計がなされている。   Polyimide has excellent heat resistance, chemical resistance, radiation resistance, electrical insulation, mechanical properties, etc., so flexible printed wiring circuit substrates, tape automation bonding substrates, semiconductor element protective films and interlayers Widely used in various electronic devices such as insulating films. Polyimide is also a very useful material in terms of simplicity of manufacturing method, high film purity, and ease of improving physical properties. In recent years, material design of functional polyimide suitable for various applications has been made. .

汎用ポリイミドとして、典型的には、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの重縮合反応により得られる全芳香族ポリイミドが挙げられる。全芳香族ポリイミドは、優れた耐熱性、耐薬品性等を有するが、濃黄色に着色するため透明性に劣ること、及び一般的な有機溶剤に不溶であるため、加工性に劣るといった問題がある。   A typical example of the general-purpose polyimide is a wholly aromatic polyimide obtained by a polycondensation reaction between an aromatic tetracarboxylic dianhydride and an aromatic diamine. The wholly aromatic polyimide has excellent heat resistance, chemical resistance, etc., but it has a problem that it is inferior in transparency because it is colored deep yellow, and inferior in workability because it is insoluble in general organic solvents. is there.

透明性を実現する一つの方法として、半脂環式又は脂環式テトラカルボン酸二無水物と芳香族ジアミンとの重縮合反応により得られるポリイミドが挙げられる。例えば、優れた耐熱性と共に、高透明性を併せ持つポリイミドを原料として、エステル基含有半脂環式テトラカルボン酸二無水物が報告されている(例えば、特許文献1参照)。また、紫外線領域に吸収がなく光透過性に優れると共に絶縁性も高く、さらに加工性が改善され、有機溶媒に対する溶解性に優れたポリイミドの原料モノマーとなり得る脂環式テトラカルボン酸二無水物として、シクロペンタン−1,2,3,4−テトラカルボン酸及びその無水物が報告されている(例えば、特許文献2参照)。しかしながら、耐熱性、耐薬品性等の従来のポリイミドの優れた特性と共に、改善された透明性及び加工性を併せ持つ新規なポリイミドに対する需要は、依然として存在している。   One method for realizing transparency is a polyimide obtained by a polycondensation reaction between a semi-alicyclic or alicyclic tetracarboxylic dianhydride and an aromatic diamine. For example, an ester group-containing semi-alicyclic tetracarboxylic dianhydride has been reported using polyimide having excellent heat resistance and high transparency as a raw material (see, for example, Patent Document 1). In addition, as an alicyclic tetracarboxylic dianhydride that can be used as a raw material monomer for polyimide, which has no absorption in the ultraviolet region and has excellent light transmittance and high insulation, and further improved processability and excellent solubility in organic solvents. , Cyclopentane-1,2,3,4-tetracarboxylic acid and its anhydride have been reported (for example, see Patent Document 2). However, there remains a need for new polyimides that combine improved transparency and processability with the superior properties of conventional polyimides such as heat resistance and chemical resistance.

特開2007−314435号公報JP 2007-314435 A 特開2010−30972号公報JP 2010-30972 A

本発明は、耐熱性、耐薬品性等の従来のポリイミドの優れた特性と共に、改善された透明性及び加工性を併せ持つポリイミドの原料モノマーとなりうる新規テトラカルボン酸二無水物及びその製造方法、並びにかかる新規テトラカルボン酸二無水物をテトラカルボン酸成分として含むポリイミドを提供することを目的とする。   The present invention is a novel tetracarboxylic dianhydride that can be a raw material monomer of polyimide having improved transparency and processability, as well as excellent properties of conventional polyimide such as heat resistance and chemical resistance, and a method for producing the same, and An object is to provide a polyimide containing such a novel tetracarboxylic dianhydride as a tetracarboxylic acid component.

本発明者は、そのような特性を併せ持つポリイミドの原料モノマーとなりうる新規テトラカルボン酸二無水物として、ビス(無水コハク酸)骨格を有する化合物に着目し鋭意検討した結果、新規なアリーレンジオキシ−ビス(無水コハク酸)及びその製造方法、並びに該アリーレンジオキシ−ビス(無水コハク酸)をテトラカルボン酸成分として含むポリイミドを見出し、本発明を完成するに至った。   As a result of diligent investigation focusing on a compound having a bis (succinic anhydride) skeleton as a novel tetracarboxylic dianhydride that can be used as a raw material monomer for polyimide having such properties, the present inventors have found that a novel aryleneoxy- Bis (succinic anhydride), a method for producing the same, and a polyimide containing the arylenedioxy-bis (succinic anhydride) as a tetracarboxylic acid component have been found, and the present invention has been completed.

すなわち本発明は以下のとおりである:
1.一般式(1):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされるアリーレンジオキシ−ビス(無水コハク酸); That is, the present invention is as follows:
1. General formula (1):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
Arylenedioxy-bis (succinic anhydride) represented by

2.一般式(2):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Rは、各々独立して、水素原子又は炭素数1〜6のアルキル基であり;
Figure 2015074612

は、単結合又は二重結合である)
で表わされるエーテル基含有テトラカルボン酸誘導体; 2. General formula (2):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; each R is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Figure 2015074612

Is a single bond or a double bond)
An ether group-containing tetracarboxylic acid derivative represented by:

3.一般式(1):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされるアリーレンジオキシ−ビス(コハク酸無水物)の製造方法であって、一般式(2a):
Figure 2015074612

(式中、Arは、前記と同義である)
で表わされる化合物を脱水閉環反応に付すことを特徴とする方法。 3. General formula (1):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
A process for producing arylenedioxy-bis (succinic anhydride) represented by general formula (2a):
Figure 2015074612

(Wherein Ar is as defined above)
A method comprising subjecting a compound represented by the formula to a dehydration ring closure reaction.

4.脱水閉環反応が、脱水反応剤の存在下に行われることを特徴とする、上記3記載の製造方法。 4). 4. The production method according to 3 above, wherein the dehydration ring-closing reaction is performed in the presence of a dehydration reagent.

5.脱水反応剤が、無水酢酸であることを特徴とする、上記4記載の製造方法。 5. 5. The production method according to 4 above, wherein the dehydrating reagent is acetic anhydride.

6.一般式(2a):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされる化合物の製造方法であって、一般式(2b):
Figure 2015074612

(式中、Arは、前記と同義であり;Rは、各々独立して、炭素数1〜6のアルキル基である)
で表わされる化合物を無機酸の存在下、加水分解することを特徴とする方法。 6). General formula (2a):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
Wherein the compound represented by the general formula (2b):
Figure 2015074612

(In the formula, Ar is as defined above; each R 1 is independently an alkyl group having 1 to 6 carbon atoms)
A method comprising hydrolyzing a compound represented by the above in the presence of an inorganic acid.

7.一般式(2b):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Rは、各々独立して、炭素数1〜6のアルキル基である)
で表わされる化合物の製造方法であって、一般式(2c):
Figure 2015074612

(式中、Ar及びRは、前記と同義である)
で表わされる化合物を水素添加反応に付すことを特徴とする方法。 7). General formula (2b):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; each R 1 is independently an alkyl group having 1 to 6 carbon atoms)
Wherein the compound represented by formula (2c):
Figure 2015074612

(Wherein Ar and R 1 are as defined above)
A method comprising subjecting a compound represented by the formula to a hydrogenation reaction.

8.一般式(2c):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Rは、各々独立して、炭素数1〜6のアルキル基である)
で表わされる化合物の製造方法であって、一般式(3):
Figure 2015074612

(式中、Xは、ハロゲン原子であり、Rは、前記と同義である)
で表わされるジハロコハク酸誘導体と、一般式(4):
Figure 2015074612

(式中、Arは、前記と同義である)
で表わされる芳香族ジオール化合物を、塩基の存在下で反応させることを特徴とする方法。 8). General formula (2c):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; each R 1 is independently an alkyl group having 1 to 6 carbon atoms)
A method for producing a compound represented by the general formula (3):
Figure 2015074612

(Wherein X is a halogen atom, and R 1 is as defined above)
A dihalosuccinic acid derivative represented by general formula (4):
Figure 2015074612

(Wherein Ar is as defined above)
The aromatic diol compound represented by these is made to react in presence of a base.

9.一般式(1):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされるアリーレンジオキシ−ビス(コハク酸無水物)の製造方法であって、下記の工程:
(i)一般式(3):
Figure 2015074612

(式中、Xは、ハロゲン原子であり、Rは、炭素数1〜6のアルキル基である)
で表わされるジハロコハク酸誘導体と、一般式(4):
Figure 2015074612

(式中、Arは、前記と同義である)
で表わされる芳香族ジオール化合物を、塩基の存在下で反応させ、一般式(2c):
Figure 2015074612

(式中、Ar及びRは、前記と同義である)
で表わされる化合物を得る工程;及び
(ii)一般式(2c)で表される化合物を水素添加反応に付し、一般式(2b):
Figure 2015074612

(式中、Ar及びRは、前記と同義である)
で表わされる化合物を得る工程;及び
(iii)一般式(2b)で表される化合物を無機酸の存在下、加水分解することにより、一般式(2a):
Figure 2015074612

(式中、Arは、前記と同義である)
で表わされる化合物を得る工程;及び
(iv)一般式(2a)で表わされる化合物を脱水閉環反応に付す工程
を含むことを特徴とする方法。 9. General formula (1):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
A process for producing arylenedioxy-bis (succinic anhydride) represented by the following steps:
(I) General formula (3):
Figure 2015074612

(Wherein, X is a halogen atom, and R 1 is an alkyl group having 1 to 6 carbon atoms)
A dihalosuccinic acid derivative represented by general formula (4):
Figure 2015074612

(Wherein Ar is as defined above)
Is reacted in the presence of a base, and the general formula (2c):
Figure 2015074612

(Wherein Ar and R 1 are as defined above)
And (ii) subjecting the compound represented by the general formula (2c) to a hydrogenation reaction to obtain the general formula (2b):
Figure 2015074612

(Wherein Ar and R 1 are as defined above)
And (iii) hydrolyzing the compound represented by the general formula (2b) in the presence of an inorganic acid to obtain the general formula (2a):
Figure 2015074612

(Wherein Ar is as defined above)
And (iv) a step of subjecting the compound represented by the general formula (2a) to a dehydration cyclization reaction.

10.一般式(5):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Aは、二価の芳香族基又は脂肪族基である)
で表わされる反復単位を有するポリイミド。 10. General formula (5):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; A is a divalent aromatic group or an aliphatic group)
A polyimide having a repeating unit represented by:

11.一般式(5a):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Aは、二価の芳香族基又は脂肪族基である)
で表わされる反復単位を有するポリイミド前駆体。 11. General formula (5a):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; A is a divalent aromatic group or an aliphatic group)
The polyimide precursor which has a repeating unit represented by these.

本発明は、ポリイミドの原料モノマーとなりうる、新規なアリーレンジオキシ−ビス(無水コハク酸)及びその製造方法を提供する。該モノマーは、入手が容易で、安価な試薬から製造することができるため、工業的に有利である。また該モノマーは、無水コハク酸骨格と芳香族基とがエーテル結合を介して結合していることにより、それにより得られるポリイミドに屈曲性を付与し、加工性や、有機溶媒に対する溶解性を改善することが期待される。また、得られるポリイミドは、無水コハク酸骨格やエーテル結合により共役系が中断されることから、紫外線領域の吸収を抑え、透明性を改善することが期待される。   The present invention provides a novel arylenedioxy-bis (succinic anhydride) that can be a raw material monomer for polyimide and a method for producing the same. The monomer is industrially advantageous because it is easily available and can be produced from an inexpensive reagent. In addition, the monomer has a succinic anhydride skeleton and an aromatic group bonded via an ether bond, thereby imparting flexibility to the resulting polyimide and improving processability and solubility in organic solvents. Is expected to do. Moreover, since the conjugated system is interrupted by the succinic anhydride skeleton or the ether bond, the obtained polyimide is expected to suppress the absorption in the ultraviolet region and improve the transparency.

実施例1の工程(ii)で得られた化合物のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of the compound obtained in step (ii) of Example 1. 実施例1の工程(iii)で得られた化合物のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of the compound obtained in step (iii) of Example 1. 実施例1で得られた1,4−フェニレンジオキシ−ビス(無水コハク酸)のH−NMRスペクトルである。2 is a 1 H-NMR spectrum of 1,4-phenylenedioxy-bis (succinic anhydride) obtained in Example 1. FIG. 実施例1で得られた1,4−フェニレンジオキシ−ビス(無水コハク酸)の13C−NMRスペクトルである。2 is a 13 C-NMR spectrum of 1,4-phenylenedioxy-bis (succinic anhydride) obtained in Example 1. FIG. 実施例1で得られた1,4−フェニレンジオキシ−ビス(無水コハク酸)のFT−IRスペクトルである。2 is an FT-IR spectrum of 1,4-phenylenedioxy-bis (succinic anhydride) obtained in Example 1. FIG. 実施例2で得られた4,4′−ビフェニリレンジオキシ−ビス(無水コハク酸)のFT−IRスペクトルである。2 is an FT-IR spectrum of 4,4′-biphenylylenedioxy-bis (succinic anhydride) obtained in Example 2. FIG. 実施例3で得られたポリイミドの熱分析(TGA/DTA)チャートである。6 is a thermal analysis (TGA / DTA) chart of the polyimide obtained in Example 3. 実施例3で得られたポリイミドのFT−IRスペクトルである。4 is an FT-IR spectrum of the polyimide obtained in Example 3.

<アリーレンジオキシ−ビス(無水コハク酸)>
本発明のアリーレンジオキシ−ビス(無水コハク酸)は、一般式(1):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされる。 <Allylene oxy-bis (succinic anhydride)>
The arylenedioxy-bis (succinic anhydride) of the present invention has the general formula (1):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
It is represented by

Arにおける「炭素数6〜36の二価の芳香族基」は、炭素数6〜36の単環式又は縮合多環式芳香族化合物の二価の基であるか、あるいは同一又は異なる2つ以上の前記芳香族化合物が直接又は架橋員により相互に連結された、炭素数6〜36の多環式化合物の二価の基を意味する。Arは、好ましくは炭素数6〜18の二価の芳香族基であり、より好ましくは炭素数6〜12の二価の芳香族基である。すなわち、Arは、好ましくは炭素数6〜18、より好ましくは炭素数6〜12の単環式又は縮合多環式芳香族化合物の二価の基であるか、あるいは同一又は異なる2つ以上の前記芳香族化合物が直接又は架橋員により相互に連結された、好ましくは炭素数6〜18、より好ましくは炭素数6〜12の多環式化合物の二価の基を意味する。   The “divalent aromatic group having 6 to 36 carbon atoms” in Ar is a divalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or the same or different two. It means a divalent group of a polycyclic compound having 6 to 36 carbon atoms in which the above aromatic compounds are connected to each other directly or by a cross-linking member. Ar is preferably a divalent aromatic group having 6 to 18 carbon atoms, more preferably a divalent aromatic group having 6 to 12 carbon atoms. That is, Ar is preferably a divalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, or two or more same or different It means a divalent group of a polycyclic compound having 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, in which the aromatic compounds are connected to each other directly or by a bridging member.

ここで「架橋員」は、下記:

Figure 2015074612

(ここで、R′は、各々独立して、水素、炭素数1〜6のアルキル基、炭素数1〜6のハロアルキル基又はフェニル基である)
からなる群から選択される二価の基を意味する。 Here, the “crosslinker” is:
Figure 2015074612

(Here, each R ′ is independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, or a phenyl group.)
Means a divalent group selected from the group consisting of

ここで「単環式又は縮合多環式芳香族化合物」としては、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン等が挙げられる。したがって、Arは、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン等から誘導される二価の基であり、好ましくはo−、m−又はp−フェニレンである。また「単環式又は縮合多環式芳香族化合物」は、その芳香環上に、炭素数1〜6のアルキル基、炭素数1〜6のハロアルキル基、フェニル基等の置換基を1つ以上、好ましくは1又は2つ有していてもよい。   Here, examples of the “monocyclic or condensed polycyclic aromatic compound” include benzene, naphthalene, anthracene, phenanthrene and the like. Therefore, Ar is a divalent group derived from, for example, benzene, naphthalene, anthracene, phenanthrene, etc., and preferably o-, m-, or p-phenylene. Further, the “monocyclic or condensed polycyclic aromatic compound” has one or more substituents such as an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, and a phenyl group on the aromatic ring. , Preferably you may have one or two.

ここで「同一又は異なる2つ以上の前記芳香族化合物が直接又は架橋員により相互に連結された、多環式化合物」としては、例えば、ビフェニル、ジフェニルエーテル、ベンゾフェノン、安息香酸フェニル、ジフェニルスルフィド、ジフェニルスルホキシド、ジフェニルスルホン、ジフェニルメタン、2,2−ジフェニルプロパン、ヘキサフルオロ−2,2−ジフェニルプロパン等が挙げられる。したがって、Arは、例えば、ビフェニル、ジフェニルエーテル、ベンゾフェノン、安息香酸フェニル、ジフェニルスルフィド、ジフェニルスルホキシド、ジフェニルスルホン、ジフェニルメタン、2,2−ジフェニルプロパン、ヘキサフルオロ−2,2−ジフェニルプロパン等から誘導される二価の基である。またこれらは、その芳香環上に、炭素数1〜6のアルキル基、炭素数1〜6のハロアルキル基、フェニル基などの置換基を1つ以上、好ましくは1又は2つ有していてもよい。   Here, examples of the “polycyclic compound in which two or more of the same or different aromatic compounds are connected to each other directly or by a cross-linking member” include biphenyl, diphenyl ether, benzophenone, phenyl benzoate, diphenyl sulfide, and diphenyl. Examples thereof include sulfoxide, diphenylsulfone, diphenylmethane, 2,2-diphenylpropane, hexafluoro-2,2-diphenylpropane and the like. Therefore, Ar is derived from, for example, biphenyl, diphenyl ether, benzophenone, phenyl benzoate, diphenyl sulfide, diphenyl sulfoxide, diphenyl sulfone, diphenylmethane, 2,2-diphenylpropane, hexafluoro-2,2-diphenylpropane, etc. Is a valent group. They may also have one or more, preferably 1 or 2, substituents such as an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, or a phenyl group on the aromatic ring. Good.

したがって、Arは、より好ましくは、フェニレン基であるか、あるいは2つ以上のフェニレン基が直接又は前記架橋員により相互に連結された二価の基(該フェニレン基は、炭素数1〜6のアルキル基、炭素数1〜6のハロアルキル基及びフェニル基から選択される1つ以上の置換基で置換されていてもよい)であり、特に好ましくは、下記式:

Figure 2015074612

からなる群から選択される二価の基である。 Therefore, Ar is more preferably a phenylene group, or a divalent group in which two or more phenylene groups are linked directly or by the cross-linking member (the phenylene group has 1 to 6 carbon atoms). And may be substituted with one or more substituents selected from an alkyl group, a haloalkyl group having 1 to 6 carbon atoms, and a phenyl group, and particularly preferably the following formula:
Figure 2015074612

A divalent group selected from the group consisting of

本明細書において「炭素数1〜6のアルキル基」は、他に断りのない限り、炭素数1〜6の、直鎖状又は分岐状の脂肪族飽和炭化水素の一価の基を意味し、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基等が挙げられ、好ましくは、メチル基又はエチル基である。   In the present specification, “an alkyl group having 1 to 6 carbon atoms” means a monovalent group of a linear or branched aliphatic saturated hydrocarbon having 1 to 6 carbon atoms unless otherwise specified. Examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group, and preferably a methyl group or an ethyl group. is there.

また「ハロゲン原子」又は「ハロ」は、互換可能に使用することができ、他に断りのない限り、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。「炭素数1〜6のハロアルキル基」は、他に断りのない限り、前記「炭素数1〜6のアルキル基」の水素原子の1つ以上、好ましくは全てがハロゲン原子に置き換えられたものを意味し、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、ペンタフルオロエチル基、クロロメチル基、トリクロロメチル基等が挙げられ、好ましくは、トリフルオロメチル基である。   “Halogen atom” or “halo” may be used interchangeably and means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom unless otherwise specified. “A haloalkyl group having 1 to 6 carbon atoms” means, unless otherwise specified, one or more, preferably all of the hydrogen atoms in the above “C1 to C6 alkyl group” substituted with halogen atoms. Meaning, for example, a fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, chloromethyl group, trichloromethyl group, etc. A fluoromethyl group;

<エーテル基含有テトラカルボン酸誘導体>
本発明のエーテル基含有テトラカルボン酸誘導体は、一般式(2):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Rは、各々独立して、水素原子又は炭素数1〜6のアルキル基であり;
Figure 2015074612

は、単結合又は二重結合である)
で表わされる。 <Ether group-containing tetracarboxylic acid derivative>
The ether group-containing tetracarboxylic acid derivative of the present invention has the general formula (2):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; each R is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Figure 2015074612

Is a single bond or a double bond)
It is represented by

前記一般式(2)で表わされるエーテル基含有テトラカルボン酸誘導体は、一般式(2a)〜(2c):

Figure 2015074612

(式中、Arは、前記と同義であり;Rは、各々独立して、炭素数1〜6のアルキル基である)
で表される化合物を包含する。 The ether group-containing tetracarboxylic acid derivatives represented by the general formula (2) are represented by the general formulas (2a) to (2c):
Figure 2015074612

(In the formula, Ar is as defined above; each R 1 is independently an alkyl group having 1 to 6 carbon atoms)
The compound represented by these is included.

本発明のエーテル基含有テトラカルボン酸誘導体は、後述するアリーレンジオキシ−ビス(無水コハク酸)の製造方法における中間体(前駆体)である。したがって、一般式(2)又は一般式(2a)〜(2c)におけるArの意義及び好ましい態様は、前記と同義である。   The ether group-containing tetracarboxylic acid derivative of the present invention is an intermediate (precursor) in the method for producing arylenedioxy-bis (succinic anhydride) described later. Therefore, the meaning and preferred embodiment of Ar in the general formula (2) or the general formulas (2a) to (2c) are as defined above.

<アリーレンジオキシ−ビス(無水コハク酸)の製造方法>
本発明のアリーレンジオキシ−ビス(無水コハク酸)は、以下のスキーム1の工程(i)〜(iv)に従い製造することができる。

Figure 2015074612

(式中、Ar、R及びXは、前記と同義である) <Method for producing arylenedioxy-bis (succinic anhydride)>
The arylenedioxy-bis (succinic anhydride) of the present invention can be produced according to steps (i) to (iv) of the following scheme 1.
Figure 2015074612

(Wherein Ar, R 1 and X are as defined above)

[工程(i)]
工程(i)は、一般式(2c)で表される化合物の調製方法であって、一般式(3)で表されるジハロコハク酸誘導体と、一般式(4)で表される芳香族ジオール化合物を、塩基の存在下で反応させることを特徴とするものである。
[Step (i)]
Step (i) is a method for preparing a compound represented by the general formula (2c), which is a dihalosuccinic acid derivative represented by the general formula (3) and an aromatic diol compound represented by the general formula (4). Is reacted in the presence of a base.

一般式(3)で表されるジハロコハク酸誘導体は、公知の化合物であり、例えば、特開2002−179612号公報に記載の方法に従い、フマル酸若しくはマレイン酸又はそのジエステル誘導体から調製することができる。一般式(3)で表されるジハロコハク酸誘導体の例としては、2,3−ジブロモコハク酸ジメチルエステル等が挙げられる。   The dihalosuccinic acid derivative represented by the general formula (3) is a known compound, and can be prepared from fumaric acid or maleic acid or a diester derivative thereof, for example, according to the method described in JP-A No. 2002-179612. . Examples of the dihalosuccinic acid derivative represented by the general formula (3) include 2,3-dibromosuccinic acid dimethyl ester.

一般式(4)で表される芳香族ジオール化合物もまた、公知の化合物であり、試薬供給業者より入手することができる。一般式(4)で表される芳香族ジオール化合物の例としては、ヒドロキノン、3,4′−ビフェノール、4,4′−ビフェノール;又はビス(3−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)エーテル、3,4′−ジヒドロキシベンゾフェノン、4,4′−ジヒドロキシベンゾフェノン、ビス(3−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(3−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)スルホン(ビスフェノールS)、ビス(3−ヒドロキシフェニル)メタン、2,2−ビス(3−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン(ビスフェノールAF)等のビスフェノール類が挙げられる。   The aromatic diol compound represented by the general formula (4) is also a known compound and can be obtained from a reagent supplier. Examples of the aromatic diol compound represented by the general formula (4) include hydroquinone, 3,4'-biphenol, 4,4'-biphenol; or bis (3-hydroxyphenyl) ether, bis (4-hydroxyphenyl) ) Ether, 3,4'-dihydroxybenzophenone, 4,4'-dihydroxybenzophenone, bis (3-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfide, bis (3-hydroxyphenyl) sulfone, bis (4- Hydroxyphenyl) sulfone (bisphenol S), bis (3-hydroxyphenyl) methane, 2,2-bis (3-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2, 2-bis (4-hydroxyphenyl) hexafluoro Bisphenols such as propane (bisphenol AF) and the like.

塩基は、特に限定されないが、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基が用いられる。塩基の量は、一般式(4)で表される芳香族ジオール化合物に対し、少なくとも2倍モルであり、好ましくは2〜10倍モル、より好ましくは2〜5倍モルである。   The base is not particularly limited, and inorganic bases such as potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate are used. The amount of the base is at least 2 mol, preferably 2 to 10 mol, more preferably 2 to 5 mol, with respect to the aromatic diol compound represented by the general formula (4).

上記工程(i)の反応は、溶媒の存在下又は非存在下に実施することができ、好ましくは溶媒の存在下に実施される。使用できる溶媒は、反応に不活性な溶媒であれば特に限定されず、所望する反応温度に応じて適宜選択される。単独で、又は2種類以上の溶媒を任意の割合で混合して用いてもよい。そのような溶媒の例としては、テトラヒドロフラン、1,4−ジオキサン、ジエチルエーテル、ジグリム、トリグリム等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸プロピル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン化炭化水素類;N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド(DMF)、ヘキサメチルホスホルアミド等のアミド類が挙げられる。好ましくは、アセトン等のケトン類又はDMF等のアミド類である。   The reaction of the above step (i) can be carried out in the presence or absence of a solvent, and is preferably carried out in the presence of a solvent. The solvent that can be used is not particularly limited as long as it is inert to the reaction, and is appropriately selected depending on the desired reaction temperature. You may use individually or in mixture of 2 or more types of solvents in arbitrary ratios. Examples of such solvents include ethers such as tetrahydrofuran, 1,4-dioxane, diethyl ether, diglyme, triglyme; ketones such as acetone, methyl ethyl ketone, diethyl ketone, cyclopentanone, cyclohexanone; methyl acetate, ethyl acetate Esters such as propyl acetate and γ-butyrolactone; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; N-methyl-2-pyrrolidone; Examples include amides such as N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide (DMF), and hexamethylphosphoramide. Preferred are ketones such as acetone or amides such as DMF.

上記工程(i)の反応は、相間移動触媒の存在下又は非存在下に実施することができ、好ましくは相間移動触媒の存在下に実施される。使用できる相間移動触媒としては、上記工程(i)において設定される反応温度に耐えうる触媒であればよく、公知のもの、例えば、アンモニウム塩、ホスホニウム塩、スルホニウム塩、クラウンエーテル等が利用できる。好ましくは、臭化テトラブチルアンモニウム等があげられる。触媒量は、一般式(4)で表される芳香族ジオール化合物に対し、0.1〜10重量%、好ましくは0.3〜5重量%である。   The reaction of the above step (i) can be carried out in the presence or absence of a phase transfer catalyst, and is preferably carried out in the presence of a phase transfer catalyst. As the phase transfer catalyst that can be used, any catalyst that can withstand the reaction temperature set in the above step (i) may be used, and known catalysts such as ammonium salts, phosphonium salts, sulfonium salts, crown ethers and the like can be used. Preferable examples include tetrabutylammonium bromide. The catalyst amount is 0.1 to 10% by weight, preferably 0.3 to 5% by weight, based on the aromatic diol compound represented by the general formula (4).

上記工程(i)の反応は、0℃〜還流温度、好ましくは0℃〜80℃、より好ましくは室温(約20℃)〜60℃の温度で、1分〜24時間、好ましくは5分〜20時間、より好ましくは10分〜16時間反応することによって行うことができる。   The reaction in the step (i) is carried out at 0 ° C. to reflux temperature, preferably 0 ° C. to 80 ° C., more preferably room temperature (about 20 ° C.) to 60 ° C. for 1 minute to 24 hours, preferably 5 minutes to The reaction can be carried out by reacting for 20 hours, more preferably 10 minutes to 16 hours.

反応終了後、反応混合物をろ過、洗浄、分液等の当業者に公知の、適切な後処理操作に付し、一般式(2c)で表される化合物を得る。所望であれば、カラムクロマトグラフィー等の当業者に公知の更なる精製手段に付して、一般式(2c)で表される化合物を精製してもよい。   After completion of the reaction, the reaction mixture is subjected to an appropriate post-treatment operation known to those skilled in the art such as filtration, washing, and liquid separation to obtain a compound represented by the general formula (2c). If desired, the compound represented by the general formula (2c) may be purified by further purification means known to those skilled in the art such as column chromatography.

[工程(ii)]
工程(ii)は、一般式(2b)で表される化合物の調製方法であって、一般式(2c)で表される化合物を水素添加反応に付すことを特徴とするものである。ここで、一般式(2c)で表される化合物は、上記工程(i)で得られる化合物であっても、他の製造方法により得られる化合物であってもよい。
[Step (ii)]
Step (ii) is a method for preparing the compound represented by the general formula (2b), and is characterized by subjecting the compound represented by the general formula (2c) to a hydrogenation reaction. Here, the compound represented by the general formula (2c) may be a compound obtained by the above step (i) or a compound obtained by another production method.

工程(ii)の水素添加反応としては、遷移金属触媒及び水素(若しくは水素源)の存在下に還元を行う接触水素化法を挙げることができる。使用できる遷移金属触媒としては、白金、パラジウム、ロジウム、ニッケル、銅などの遷移金属を、炭素(活性炭)、アルミナ、シリカ、炭酸カルシウムなどの担体に担持させたもの、具体的には、パラジウムが5〜20%程度担持されたパラジウム炭を挙げることができる。触媒量は、一般式(2c)で表される化合物に対して、0.01〜20モル%、好ましくは0.1〜1モル%である。   Examples of the hydrogenation reaction in step (ii) include a catalytic hydrogenation method in which reduction is performed in the presence of a transition metal catalyst and hydrogen (or a hydrogen source). As the transition metal catalyst that can be used, a transition metal such as platinum, palladium, rhodium, nickel, or copper supported on a carrier such as carbon (activated carbon), alumina, silica, or calcium carbonate, specifically, palladium is used. Palladium charcoal supported by about 5 to 20% can be mentioned. The amount of the catalyst is 0.01 to 20 mol%, preferably 0.1 to 1 mol%, based on the compound represented by the general formula (2c).

上記工程(ii)の反応は、溶媒の存在下又は非存在下に実施することができ、好ましくは溶媒の存在下に実施される。使用できる溶媒は、反応に不活性な溶媒であれば特に限定されず、所望する反応温度に応じて適宜選択される。単独で、又は2種類以上の溶媒を任意の割合で混合して用いてもよい。そのような溶媒の例としては、メタノール、エタノール等のアルコール類;テトラヒドロフラン、1,4−ジオキサン、ジエチルエーテル、ジグリム、トリグリム等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸プロピル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン化炭化水素類;N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド(DMF)、ヘキサメチルホスホルアミド等のアミド類が挙げられる。好ましくは、メタノール等のアルコール類である。   The reaction of the above step (ii) can be carried out in the presence or absence of a solvent, preferably in the presence of a solvent. The solvent that can be used is not particularly limited as long as it is inert to the reaction, and is appropriately selected depending on the desired reaction temperature. You may use individually or in mixture of 2 or more types of solvents in arbitrary ratios. Examples of such solvents include alcohols such as methanol and ethanol; ethers such as tetrahydrofuran, 1,4-dioxane, diethyl ether, diglyme, and triglyme; acetone, methyl ethyl ketone, diethyl ketone, cyclopentanone, cyclohexanone, and the like. Ketones; esters such as methyl acetate, ethyl acetate, propyl acetate, and γ-butyrolactone; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane; Examples include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide (DMF), and hexamethylphosphoramide. Alcohols such as methanol are preferable.

上記工程(ii)の反応は、20〜200℃、好ましくは30〜150℃、より好ましくは40〜100℃の温度で、1分〜24時間、好ましくは5分〜20時間、より好ましくは10分〜16時間反応することによって行うことができる。   The reaction in the above step (ii) is carried out at a temperature of 20 to 200 ° C., preferably 30 to 150 ° C., more preferably 40 to 100 ° C., for 1 minute to 24 hours, preferably 5 minutes to 20 hours, more preferably 10 It can be carried out by reacting for min to 16 hours.

反応終了後、反応混合物をろ過、洗浄等の当業者に公知の、適切な後処理操作に付し、一般式(2b)で表される化合物を得る。所望であれば、カラムクロマトグラフィー等の当業者に公知の更なる精製手段に付して、一般式(2b)で表される化合物を精製してもよい。   After completion of the reaction, the reaction mixture is subjected to an appropriate post-treatment operation known to those skilled in the art such as filtration and washing to obtain the compound represented by the general formula (2b). If desired, the compound represented by the general formula (2b) may be purified by further purification means known to those skilled in the art such as column chromatography.

[工程(iii)]
工程(iii)は、一般式(2a)で表される化合物の調製方法であって、一般式(2b)で表される化合物を無機酸の存在下、加水分解することを特徴とするものである。ここで、一般式(2b)で表される化合物は、上記工程(ii)で得られる化合物であっても、他の製造方法により得られる化合物であってもよい。
[Step (iii)]
Step (iii) is a method for preparing the compound represented by the general formula (2a), and is characterized by hydrolyzing the compound represented by the general formula (2b) in the presence of an inorganic acid. is there. Here, the compound represented by the general formula (2b) may be a compound obtained by the above step (ii) or a compound obtained by another production method.

無機酸は、特に限定されないが、塩酸、硝酸、リン酸、硫酸が用いられる。好ましくは、前記無機酸の水溶液が使用される。無機酸の量は、一般式(2b)で表される化合物に対して、2〜100倍モル、好ましくは5〜50倍モルである。   The inorganic acid is not particularly limited, and hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid are used. Preferably, an aqueous solution of the inorganic acid is used. The amount of the inorganic acid is 2 to 100 times mol, preferably 5 to 50 times mol, of the compound represented by the general formula (2b).

上記工程(iii)の反応は、無機酸の水溶液に加え、溶媒を使用してもよい。使用できる溶媒は、反応に不活性な溶媒であれば特に限定されず、所望する反応温度に応じて適宜選択される。単独で、又は2種類以上の溶媒を任意の割合で混合して用いてもよい。そのような溶媒の例としては、水、テトラヒドロフラン、1,4−ジオキサン、ジエチルエーテル、ジグリム、トリグリム等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸プロピル、γ−ブチロラクトン等のエステル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン化炭化水素類が挙げられる。上記工程(iii)の反応は、無機酸の水溶液のみで実施するのが好ましい。   In the reaction in the step (iii), a solvent may be used in addition to the aqueous solution of the inorganic acid. The solvent that can be used is not particularly limited as long as it is inert to the reaction, and is appropriately selected depending on the desired reaction temperature. You may use individually or in mixture of 2 or more types of solvents in arbitrary ratios. Examples of such solvents include ethers such as water, tetrahydrofuran, 1,4-dioxane, diethyl ether, diglyme, triglyme; ketones such as acetone, methyl ethyl ketone, diethyl ketone, cyclopentanone, cyclohexanone; methyl acetate, Examples include esters such as ethyl acetate, propyl acetate, and γ-butyrolactone; aromatic hydrocarbons such as benzene, toluene, and xylene; and halogenated hydrocarbons such as dichloromethane, chloroform, and 1,2-dichloroethane. The reaction in the step (iii) is preferably carried out only with an aqueous solution of an inorganic acid.

上記工程(iii)の反応は、0℃〜還流温度、好ましくは室温(約20℃)〜100℃より好ましくは60℃〜100℃の温度で、1分〜24時間、好ましくは5分〜20時間、より好ましくは10分〜16時間反応することによって行うことができる。   The reaction of the above step (iii) is carried out at a temperature of 0 ° C. to reflux temperature, preferably room temperature (about 20 ° C.) to 100 ° C., more preferably 60 ° C. to 100 ° C., for 1 minute to 24 hours, preferably 5 minutes to 20 minutes. It can be carried out by reacting for a time, more preferably 10 minutes to 16 hours.

反応終了後、反応混合物をろ過、洗浄等の当業者に公知の、適切な後処理操作に付し、一般式(2a)で表される化合物を得る。所望であれば、再結晶等の当業者に公知の更なる精製手段に付して、一般式(2a)で表される化合物を精製してもよい。   After completion of the reaction, the reaction mixture is subjected to an appropriate post-treatment operation known to those skilled in the art such as filtration and washing to obtain the compound represented by the general formula (2a). If desired, the compound represented by the general formula (2a) may be purified by further purification means known to those skilled in the art such as recrystallization.

[工程(iv)]
工程(iv)は、一般式(1)で表されるアリーレンジオキシ−ビス(コハク酸無水物)の調製方法であって、一般式(2a)で表される化合物を脱水閉環反応に付すことを特徴とするものである。ここで、一般式(2a)で表される化合物は、上記工程(iii)で得られる化合物であっても、他の製造方法により得られる化合物であってもよい。
[Step (iv)]
Step (iv) is a method for preparing arylenedioxy-bis (succinic anhydride) represented by the general formula (1), and subjecting the compound represented by the general formula (2a) to a dehydration cyclization reaction. It is characterized by. Here, the compound represented by the general formula (2a) may be a compound obtained by the above step (iii) or a compound obtained by another production method.

工程(iv)の脱水閉環反応としては、脱水反応剤の存在下に行われる方法を挙げることができる。使用できる脱水反応剤としては、無水酢酸、トリフルオロ無水酢酸、N,N−ジシクロヘキシルカルボジイミド、塩化チオニル等が挙げられる。好ましくは、無水酢酸である。脱水反応剤の量は、一般式(2a)で表される化合物に対して、1〜10倍モル、好ましくは2〜5倍モルである。   Examples of the dehydration ring-closing reaction in the step (iv) include a method performed in the presence of a dehydration reagent. Examples of the dehydrating reagent that can be used include acetic anhydride, trifluoroacetic anhydride, N, N-dicyclohexylcarbodiimide, thionyl chloride, and the like. Preferably, it is acetic anhydride. The amount of the dehydrating reagent is 1 to 10 times mol, preferably 2 to 5 times mol, of the compound represented by the general formula (2a).

上記工程(iv)の反応は、溶媒の存在下又は非存在下に実施することができ、好ましくは溶媒の存在下に実施される。使用できる溶媒は、反応に不活性な溶媒であれば特に限定されず、所望する反応温度に応じて適宜選択される。単独で、又は2種類以上の溶媒を任意の割合で混合して用いてもよい。そのような溶媒の例としては、テトラヒドロフラン、1,4−ジオキサン、ジエチルエーテル、ジグリム、トリグリム等のエーテル類;アセトン、メチルエチルケトン、ジエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン化炭化水素類が挙げられる。好ましくは、トルエン等の芳香族炭化水素類である。   The reaction of the above step (iv) can be carried out in the presence or absence of a solvent, and is preferably carried out in the presence of a solvent. The solvent that can be used is not particularly limited as long as it is inert to the reaction, and is appropriately selected depending on the desired reaction temperature. You may use individually or in mixture of 2 or more types of solvents in arbitrary ratios. Examples of such solvents include ethers such as tetrahydrofuran, 1,4-dioxane, diethyl ether, diglyme, triglyme; ketones such as acetone, methyl ethyl ketone, diethyl ketone, cyclopentanone, cyclohexanone; benzene, toluene, xylene Aromatic hydrocarbons such as: halogenated hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane and the like. Aromatic hydrocarbons such as toluene are preferred.

上記工程(iv)の反応は、0℃〜還流温度、好ましくは室温(約20℃)〜80℃の温度で、1分〜24時間、好ましくは5分〜20時間、より好ましくは10分〜16時間反応することによって行うことができる。   The reaction of the above step (iv) is carried out at a temperature of 0 ° C. to reflux temperature, preferably room temperature (about 20 ° C.) to 80 ° C. for 1 minute to 24 hours, preferably 5 minutes to 20 hours, more preferably 10 minutes to This can be done by reacting for 16 hours.

反応終了後、反応混合物をろ過、洗浄等の当業者に公知の、適切な後処理操作に付し、一般式(1)で表されるアリーレンジオキシ−ビス(コハク酸無水物)を得る。所望であれば、再結晶等の当業者に公知の更なる精製手段に付して、一般式(1)で表されるアリーレンジオキシ−ビス(コハク酸無水物)を精製してもよい。   After completion of the reaction, the reaction mixture is subjected to an appropriate post-treatment operation known to those skilled in the art such as filtration and washing to obtain arylenedioxy-bis (succinic anhydride) represented by the general formula (1). If desired, the aryleneoxy-bis (succinic anhydride) represented by the general formula (1) may be purified by further purification means known to those skilled in the art such as recrystallization.

一般式(1)で表されるアリーレンジオキシ−ビス(無水コハク酸)は、上記の製造方法により得られたものに限定されるものではない。   The arylenedioxy-bis (succinic anhydride) represented by the general formula (1) is not limited to those obtained by the above production method.

<ポリイミド及びポリイミド前駆体>
本発明のポリイミドは、一般式(5):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Aは、二価の芳香族基又は脂肪族基である)
で表わされる反復単位を有する。 <Polyimide and polyimide precursor>
The polyimide of the present invention has the general formula (5):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; A is a divalent aromatic group or an aliphatic group)
It has a repeating unit represented by

また本発明のポリイミド前駆体は、一般式(5a):

Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Aは、二価の芳香族基又は脂肪族基である)
で表わされる反復単位を有する。 The polyimide precursor of the present invention has the general formula (5a):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; A is a divalent aromatic group or an aliphatic group)
It has a repeating unit represented by

本発明のポリイミド及びポリイミド前駆体は、その原料モノマー(テトラカルボン酸成分)として、一般式(1)で表されるアリーレンジオキシ−ビス(無水コハク酸)に由来の構造を含む。したがって、一般式(5)及び(5a)におけるArの意義及び好ましい態様は、前記と同義である。   The polyimide and polyimide precursor of the present invention include a structure derived from aryleneoxy-bis (succinic anhydride) represented by the general formula (1) as a raw material monomer (tetracarboxylic acid component). Therefore, the meaning and preferred embodiment of Ar in the general formulas (5) and (5a) are as defined above.

<ポリイミド及びポリイミド前駆体の製造方法>
本発明のポリイミド及びポリイミド前駆体の製造は、一般式(1)のアリーレンジオキシ−ビス(無水コハク酸)を含むテトラカルボン酸成分と、一般式(5):
<Method for producing polyimide and polyimide precursor>
The production of the polyimide and polyimide precursor of the present invention includes a tetracarboxylic acid component containing aryleneoxy-bis (succinic anhydride) of the general formula (1), and a general formula (5):

Figure 2015074612

(式中、Aは、二価の芳香族基又は脂肪族基である)
で表わされるジアミン化合物を含むジアミン成分とを公知の方法で重合することによって製造できる。通常、重合反応は溶媒中で5〜80重量%、好ましくは10〜50重量%の溶質濃度で行われる。アミド化反応終了後、本発明のポリイミド前駆体が得られる。反応溶液は、そのまま、続くイミド化反応で使用することができる。また、反応溶液からポリイミド前駆体を単離し、次いで適切な溶媒に再溶解し、ポリイミド前駆体溶液を調製し、イミド化反応を行ってもよい。
Figure 2015074612

(In the formula, A is a divalent aromatic group or aliphatic group)
It can manufacture by superposing | polymerizing with the well-known method the diamine component containing the diamine compound represented by these. Usually, the polymerization reaction is carried out in a solvent at a solute concentration of 5 to 80% by weight, preferably 10 to 50% by weight. After completion of the amidation reaction, the polyimide precursor of the present invention is obtained. The reaction solution can be used as it is in the subsequent imidization reaction. Alternatively, the polyimide precursor may be isolated from the reaction solution, then redissolved in an appropriate solvent to prepare a polyimide precursor solution, and the imidization reaction may be performed.

一般式(5)で表されるジアミン化合物は、芳香族又は脂肪族ジアミン化合物であればよく、特に制限は無い。一般式(5)のAにおける、二価の芳香族基又は脂肪族基の例としては、炭素数6〜14の単環式若しくは縮合多環式芳香族化合物の二価の基(フェニレン、インデニレン、ナフチレン、フルオレニレン等)、炭素数2〜12の鎖式化合物の二価の基(アルキレン、アルケニレン若しくはアルキニレン基等)、又は炭素数4〜10の脂環式化合物の二価の基(シクロアルキレン、シクロアルケニレン、ビシクロアルキレン、ビシクロアルケニレン若しくはトリシクロアルキレン等)、あるいは同一又は異なる2つ以上の前記二価の基が、直接若しくは架橋員(ここで架橋員は、一般式(1)と同義である)により相互に連結されたものを挙げることができる。これらの芳香族基又は脂肪族基は、炭素数1〜6のアルキル基、炭素数1〜6のハロアルキル基、フェニル基等の置換基を1つ以上、好ましくは1又は2つ有していてもよい。   The diamine compound represented by the general formula (5) is not particularly limited as long as it is an aromatic or aliphatic diamine compound. Examples of the divalent aromatic group or aliphatic group in A in the general formula (5) include divalent groups (phenylene, indenylene) of a monocyclic or condensed polycyclic aromatic compound having 6 to 14 carbon atoms. , Naphthylene, fluorenylene, etc.), divalent groups of chain compounds having 2 to 12 carbon atoms (alkylene, alkenylene or alkynylene groups, etc.), or divalent groups of alicyclic compounds having 4 to 10 carbon atoms (cycloalkylene). , Cycloalkenylene, bicycloalkylene, bicycloalkenylene, or tricycloalkylene), or two or more of the same or different divalent groups are directly or a cross-linking member (where the cross-linking member has the same meaning as in general formula (1)). Can be mentioned that are connected to each other. These aromatic groups or aliphatic groups have 1 or more, preferably 1 or 2 substituents such as an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, and a phenyl group. Also good.

そのようなジアミン化合物としては、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、9,9−ビス(4−アミノフェニル)フルオレン、1,6−ジアミノヘキサン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1,4−ジアミノシクロヘキサン、4,4’−ジアミノジシクロヘキシルメタン、イソホロンジアミン等が挙げられる。   Examples of such a diamine compound include 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 9,9-bis (4-aminophenyl) fluorene, 1,6-diaminohexane, 1,3-bis (aminomethyl) silane Rohekisan, 1,4-bis (aminomethyl) cyclohexane, 1,4-diaminocyclohexane, 4,4'-diaminodicyclohexylmethane, isophoronediamine, and the like.

本発明のポリイミド前駆体の製造に使用される溶媒は、反応に不活性な溶媒なら特に限定されず、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、テトラメチルウレア、テトラヒドロフランなどを単独又は混合形態で使用することができる。特に好ましいのは、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンである。またこれらの溶媒にトルエン、キシレン、エチルベンゼン、アニソール、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ジグリム、トリグリム等の溶媒を任意の割合で混合して用いてもよい。これらの溶媒はまた、単離したポリイミド前駆体の再溶解によりポリイミド前駆体溶液を調製する際に使用してもよい。   The solvent used in the production of the polyimide precursor of the present invention is not particularly limited as long as it is inert to the reaction. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone , Dimethyl sulfoxide, tetramethyl urea, tetrahydrofuran and the like can be used alone or in a mixed form. Particularly preferred are N, N-dimethylacetamide and N-methyl-2-pyrrolidone. Further, these solvents may be used by mixing a solvent such as toluene, xylene, ethylbenzene, anisole, chlorobenzene, dichlorobenzene, trichlorobenzene, diglyme and triglyme in an arbitrary ratio. These solvents may also be used in preparing the polyimide precursor solution by redissolving the isolated polyimide precursor.

次いで、ポリイミドの製造は、上記のようにして得られた本発明のポリイミド前駆体を公知の方法によって脱水することによって製造される。例えば、ポリイミド前駆体溶液に、トルエン、キシレン、エチルベンゼン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンのような水と共沸する溶媒を加え、100〜300℃、より好ましくは150〜250℃で加熱を行い、イミド化に伴い発生する水を系外に排出し熱イミド化を行うことにより、ポリイミドを得ることもできる。この時、ピリジン、ピコリン、イミダゾールのような含窒素複素環化合物やトリエチルアミンのようなトリ低級アルキルアミンなどを用いてもよい。あるいは、無水酢酸、トリフルオロ無水酢酸、N,N−ジシクロヘキシルカルボジイミドのような脱水剤とピリジン、ピコリン、イミダゾールのような含窒素複素環化合物やトリエチルアミンのようなトリ低級アルキルアミンなどとを加え、0〜200℃で1〜24時間脱水することによって化学イミド化を行うことにより、ポリイミドを得てもよい。上記のように熱的あるいは化学的にイミド化が終了した溶液を、水、メタノール、エタノール、イソプロパノール、アセトン、トルエン、キシレンのような単独溶媒あるいはこれらの混合溶液に注入し、結晶を析出させ濾別し、乾燥、粉砕して粉状の形態として得ることができる。得られたポリイミドは、加工性及び溶解性に優れることから、そのまま射出成型や圧縮成型に用いることができる。また別途、溶媒に溶解させ、ワニスとして使用することもできる。   Next, the polyimide is produced by dehydrating the polyimide precursor of the present invention obtained as described above by a known method. For example, a solvent that azeotropes with water such as toluene, xylene, ethylbenzene, chlorobenzene, dichlorobenzene, and trichlorobenzene is added to the polyimide precursor solution, and heating is performed at 100 to 300 ° C, more preferably 150 to 250 ° C. A polyimide can also be obtained by discharging water generated with imidization out of the system and performing thermal imidization. At this time, a nitrogen-containing heterocyclic compound such as pyridine, picoline or imidazole, or a tri-lower alkylamine such as triethylamine may be used. Alternatively, a dehydrating agent such as acetic anhydride, trifluoroacetic anhydride, N, N-dicyclohexylcarbodiimide and a nitrogen-containing heterocyclic compound such as pyridine, picoline or imidazole, or a tri-lower alkylamine such as triethylamine are added. You may obtain a polyimide by performing chemical imidation by dehydrating at -200 degreeC for 1 to 24 hours. The solution that has been imidized thermally or chemically as described above is poured into a single solvent such as water, methanol, ethanol, isopropanol, acetone, toluene, xylene or a mixed solution thereof to precipitate crystals and filter. Separately, it can be dried and pulverized to obtain a powder form. Since the obtained polyimide is excellent in processability and solubility, it can be used for injection molding or compression molding as it is. Alternatively, it can be dissolved in a solvent and used as a varnish.

以下に本発明の様態を明らかにするために、実施例と比較例とを示すが、本発明はここに示す実施例のみに限定されるわけではない。   In order to clarify the mode of the present invention, examples and comparative examples are shown below, but the present invention is not limited to the examples shown here.

実施例で得られた化合物のGC/MS、NMRスペクトル、熱分析及び赤外線吸収スペクトルの測定方法は以下の通りである。
<GC/MS>
GC装置:7890A(アジレント・テクノロジー社製)
カラム:ULTRA1(アジレント・テクノロジー社製)
50m×I.D.,0.32μm,0.52μmdf
カラム温度:100℃→[10℃/分で昇温]→280℃
インジェクション温度:300℃
キャリヤーガス:ヘリウムガス
検出器:水素炎イオン化検出器(FID)
MS装置:Jms−Q1000GC MkII(JEOL社製)
イオン化方法:EI
検出器電圧:70eV
The measuring methods of GC / MS, NMR spectrum, thermal analysis, and infrared absorption spectrum of the compounds obtained in the examples are as follows.
<GC / MS>
GC device: 7890A (manufactured by Agilent Technologies)
Column: ULTRA1 (manufactured by Agilent Technologies)
50 m × I. D. , 0.32 μm, 0.52 μmdf
Column temperature: 100 ° C. → [Raise temperature at 10 ° C./min]→280° C.
Injection temperature: 300 ° C
Carrier gas: Helium gas detector: Hydrogen flame ionization detector (FID)
MS device: Jms-Q1000GC MkII (manufactured by JEOL)
Ionization method: EI
Detector voltage: 70 eV

<NMRスペクトル>
装置:JNM−AL400(日本電子株式会社製)
化合物と重DMSO(和光純薬株式会社製0.05%TMS含有)とを混合した溶液を調製し、13C及びH−NMR測定を行った。
<NMR spectrum>
Device: JNM-AL400 (manufactured by JEOL Ltd.)
A solution in which the compound and heavy DMSO (containing 0.05% TMS manufactured by Wako Pure Chemical Industries, Ltd.) were mixed was prepared, and 13 C and 1 H-NMR measurements were performed.

<熱分析>
TG−DTA(島津製作所製 DTG−60)にて、毎分10℃で40〜500℃まで昇温し、測定を行った。
<Thermal analysis>
In TG-DTA (DTG-60 manufactured by Shimadzu Corporation), the temperature was raised to 40 to 500 ° C. at 10 ° C. per minute, and measurement was performed.

<赤外線吸収スペクトル>
IR測定装置(島津製作所製Prestage 21)で、KBr法によって測定した。
<Infrared absorption spectrum>
It was measured by the KBr method with an IR measuring device (Prestage 21 manufactured by Shimadzu Corporation).

<実施例1> 一般式(1)(Ar=1,4−フェニレン基)で表されるアリーレンジオキシ−ビス(無水コハク酸)の合成
1,4−フェニレンジオキシ−ビス(無水コハク酸)を、以下のスキーム2に従い製造した。

Figure 2015074612
<Example 1> Synthesis of arylenedioxy- bis (succinic anhydride) represented by the general formula (1) (Ar = 1,4-phenylene group) 1,4-phenylenedioxy -bis (succinic anhydride) Was prepared according to Scheme 2 below.
Figure 2015074612

[工程(i):一般式(2c)(Ar=1,4−フェニレン基;R =メチル基)で表される化合物の合成]
攪拌機、温度計、冷却管を付けた四つ口フラスコに炭酸カリウム(和光純薬(株)製)165.85g(1.20モル)、ヒドロキノン(和光純薬(株)製)27.53g(0.25モル)及び臭化テトラブチルアンモニウム(和光純薬(株)製) 3.0gをアセトン(和光純薬(株)製)200g中に仕込み、50℃に加熱した。次に、2,3−ジブロモコハク酸ジメチルエステル(特開2002−179612号公報の実施例8に従い調製した)151.97g(0.50モル)のアセトン(和光純薬(株)製)溶液を50〜60℃の温度で滴下した。滴下終了後、50〜60℃の温度で6時間熟成させた。熟成後、冷却し反応生成物を吸引ろ過し、副生無機塩中に含まれる生成物をアセトンにて十分に洗浄ろ過する。ろ液を減圧留去した後、残留物をメタノール(和光純薬(株)製)にて再結晶した。再結晶精製物を吸引ろ過、乾燥して目的生成物を得た。目的生成物は、白色の3種異性体混合物として得られる。目的物はGC−MSにて特定した。m/z=394。
収量97.71g(収率86.9%)。
[Step (i): Synthesis of compound represented by general formula (2c) (Ar = 1,4-phenylene group; R 1 = methyl group)]
In a four-necked flask equipped with a stirrer, thermometer, and condenser, potassium carbonate (Wako Pure Chemical Industries, Ltd.) 165.85 g (1.20 mol), hydroquinone (Wako Pure Chemical Industries, Ltd.) 27.53 g ( 0.25 mol) and 3.0 g of tetrabutylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) were charged in 200 g of acetone (manufactured by Wako Pure Chemical Industries, Ltd.) and heated to 50 ° C. Next, a solution of 151.97 g (0.50 mol) of acetone (made by Wako Pure Chemical Industries, Ltd.) in 2,3-dibromosuccinic acid dimethyl ester (prepared according to Example 8 of JP 2002-179612 A) was added. It was dripped at a temperature of 50-60 ° C. After completion of dropping, the mixture was aged for 6 hours at a temperature of 50 to 60 ° C. After aging, the reaction product is cooled and filtered by suction, and the product contained in the by-product inorganic salt is sufficiently washed and filtered with acetone. After the filtrate was distilled off under reduced pressure, the residue was recrystallized with methanol (manufactured by Wako Pure Chemical Industries, Ltd.). The recrystallized product was suction filtered and dried to obtain the desired product. The desired product is obtained as a white mixture of three isomers. The target product was identified by GC-MS. m / z = 394.
Yield 97.71 g (yield 86.9%).

[工程(ii):一般式(2b)(Ar=1,4−フェニレン基;R =メチル基)で表される化合物の合成]
攪拌機、温度計をつけた密閉反応機に工程(i)で得られた化合物75.59g(0.19モル)をメタノール250g中に仕込み、5%パラジウムカーボン(川研ファインケミカル(株)製 水分50%)3.8g(0.001モル)を触媒として添加し、60℃にて水素の消費がなくなるまで水素添加した。反応後、触媒のパラジウムカーボンを吸引ろ過し、ろ液のメタールを減圧留去後、白色結晶を得た。得られた化合物のH−NMRスペクトルを図1に示す。H−NMR収量74.78g(収率 98.80%)。
[Step (ii): Synthesis of Compound Represented by General Formula (2b) (Ar = 1,4-phenylene Group; R 1 = Methyl Group)]
A sealed reactor equipped with a stirrer and a thermometer was charged with 75.59 g (0.19 mol) of the compound obtained in step (i) in 250 g of methanol, and 5% palladium carbon (manufactured by Kawaken Fine Chemical Co., Ltd.) moisture 50 %) 3.8 g (0.001 mol) was added as a catalyst and hydrogenated at 60 ° C. until no more hydrogen was consumed. After the reaction, the catalyst palladium carbon was suction filtered, and the filtrate methanol was distilled off under reduced pressure to obtain white crystals. A 1 H-NMR spectrum of the resulting compound is shown in FIG. 1 H-NMR yield 74.78 g (yield 98.80%).

[工程(iii):一般式(2a)(Ar=1,4−フェニレン基)で表される化合物の合成]
攪拌機、温度計、蒸留冷却管をつけた四つ口フラスコに工程(ii)で得られた化合物37.17g(0.093モル)を35%塩酸水溶液(和光純薬(株)製)310.4g中に仕込み、80℃にて24時間加水分解した。加水分解後冷却し、析出している生成物を吸引ろ過し、乾燥して白色の目的生成物を得た。得られた化合物のH−NMRスペクトルを図2に示す。収量29.09g(収率91.11%)。
[Step (iii): Synthesis of compound represented by general formula (2a) (Ar = 1,4-phenylene group)]
In a four-necked flask equipped with a stirrer, a thermometer, and a distillation condenser, 37.17 g (0.093 mol) of the compound obtained in step (ii) was added to a 35% hydrochloric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) 310. 4 g was charged and hydrolyzed at 80 ° C. for 24 hours. After hydrolysis, the mixture was cooled, and the precipitated product was suction filtered and dried to obtain a white target product. The 1 H-NMR spectrum of the obtained compound is shown in FIG. Yield 29.09 g (91.11% yield).

[工程(iv):1,4−フェニレンジオキシ−ビス(無水コハク酸)の合成]
攪拌機、温度計、冷却管を付けた四つ口フラスコに工程(iii)で得られた化合物29.47g(0.086モル)をトルエン(和光純薬(株)製)50g中に仕込み、無水酢酸(和光純薬製)52.68g(0.52モル)を80℃で滴下し、滴下終了後3時間熟成させ、冷却させた。析出した結晶物をろ過し、乾燥し白色の目的生成物を得た。得られた化合物のH−NMRスペクトルを図3に、13C−NMRスペクトルを図4に、そしてFT−IRを図5に示す。収量21.66g(収率 82.14%)、融点:129.98℃。
[Step (iv): Synthesis of 1,4-phenylenedioxy-bis (succinic anhydride)]
In a four-necked flask equipped with a stirrer, a thermometer, and a condenser tube, 29.47 g (0.086 mol) of the compound obtained in step (iii) was charged in 50 g of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) Acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 52.68 g (0.52 mol) was added dropwise at 80 ° C., and after completion of dropping, the mixture was aged for 3 hours and cooled. The precipitated crystal was filtered and dried to obtain a white target product. FIG. 3 shows the 1 H-NMR spectrum of the obtained compound, FIG. 4 shows the 13 C-NMR spectrum, and FIG. 5 shows the FT-IR. Yield 21.66 g (yield 82.14%), melting point: 129.98 ° C.

<実施例2> 一般式(1)(Ar=4,4′−ビフェニリレン基)で表されるアリーレンジオキシ−ビス(無水コハク酸)の合成
実施例1の工程(i)のヒドロキノンに代えて、4,4′−ビフェノール(和光純薬(株)製)を用い、工程(i)〜(iv)と同様にして、4,4′−ビフェニリレンジオキシ−ビス(無水コハク酸)を製造した。得られた化合物のFT−IRを図6に示す。融点:204.29℃。
<Example 2> Synthesis of arylenedioxy-bis (succinic anhydride) represented by the general formula (1) (Ar = 4,4'-biphenylylene group) Instead of hydroquinone in step (i) of Example 1 4,4′-biphenol (manufactured by Wako Pure Chemical Industries, Ltd.) is used to produce 4,4′-biphenylylenedioxy-bis (succinic anhydride) in the same manner as in steps (i) to (iv). did. FT-IR of the obtained compound is shown in FIG. Melting point: 204.29 ° C.

H−NMR(DMSO-d6)δ(ppm):3.2-3.3 (m, 2H), 3.5-3.6 (m, 2H), 5.6-5.7 (m, 2H), 7.0-7.1 (d, 4H), 7.5-7.6 (d, 4H). 1 H-NMR (DMSO-d 6 ) δ (ppm): 3.2-3.3 (m, 2H), 3.5-3.6 (m, 2H), 5.6-5.7 (m, 2H), 7.0-7.1 (d, 4H) , 7.5-7.6 (d, 4H).

<実施例3> 一般式(1)(Ar=1,4−フェニレン基;A=4,4′−オキシジフェニル基)で表されるポリイミドの合成
攪拌機、温度計、冷却管を付けた四つ口フラスコにジメチルアセトアミド20gを仕込み、4,4′−オキシジアニリン 1.6004g(0.0080モル)を窒素気流下にて溶解させた。次に、実施例1で得られた一般式(1)(Ar=1,4−フェニレン基)で表されるアリーレンジオキシ−ビス(無水コハク酸)2.450g(0.0080モル)を添加した。生成したポリアミック酸を室温下、4時間攪拌する。熟成後、無水酢酸8.0g(0.078モル)を添加し、80℃にて加熱閉環しポリイミド粉末を製造した。生成したポリイミドをろ過、乾燥した。収量3.50g。得られたポリイミドの熱分析チャートを図7に、そしてFT−IRを図8に示す。
<Example 3> Four synthetic agitators, thermometers, and cooling tubes with a polyimide represented by the general formula (1) (Ar = 1,4-phenylene group; A = 4,4′-oxydiphenyl group) 20 g of dimethylacetamide was charged in the neck flask, and 1.6004 g (0.0080 mol) of 4,4′-oxydianiline was dissolved in a nitrogen stream. Next, 2.450 g (0.0080 mol) of aryleneoxy-bis (succinic anhydride) represented by the general formula (1) (Ar = 1,4-phenylene group) obtained in Example 1 was added. did. The produced polyamic acid is stirred at room temperature for 4 hours. After aging, 8.0 g (0.078 mol) of acetic anhydride was added, and the ring was heated and closed at 80 ° C. to produce a polyimide powder. The produced polyimide was filtered and dried. Yield 3.50g. The thermal analysis chart of the obtained polyimide is shown in FIG. 7, and the FT-IR is shown in FIG.

Claims (11)

一般式(1):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされるアリーレンジオキシ−ビス(無水コハク酸)。
General formula (1):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
Arylene dioxy-bis (succinic anhydride) represented by
一般式(2):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Rは、各々独立して、水素原子又は炭素数1〜6のアルキル基であり;
Figure 2015074612

は、単結合又は二重結合である)
で表わされるエーテル基含有テトラカルボン酸誘導体。
General formula (2):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; each R is independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
Figure 2015074612

Is a single bond or a double bond)
An ether group-containing tetracarboxylic acid derivative represented by:
一般式(1):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされるアリーレンジオキシ−ビス(コハク酸無水物)の製造方法であって、一般式(2a):
Figure 2015074612

(式中、Arは、前記と同義である)
で表わされる化合物を脱水閉環反応に付すことを特徴とする方法。
General formula (1):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
A process for producing arylenedioxy-bis (succinic anhydride) represented by general formula (2a):
Figure 2015074612

(Wherein Ar is as defined above)
A method comprising subjecting a compound represented by the formula to a dehydration ring closure reaction.
脱水閉環反応が、脱水反応剤の存在下に行われることを特徴とする、請求項3記載の製造方法。   The production method according to claim 3, wherein the dehydration ring-closing reaction is performed in the presence of a dehydration reagent. 脱水反応剤が、無水酢酸であることを特徴とする、請求項4記載の製造方法。   The production method according to claim 4, wherein the dehydrating reagent is acetic anhydride. 一般式(2a):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされる化合物の製造方法であって、一般式(2b):
Figure 2015074612

(式中、Arは、前記と同義であり;Rは、各々独立して、炭素数1〜6のアルキル基である)
で表わされる化合物を無機酸の存在下、加水分解することを特徴とする方法。
General formula (2a):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
Wherein the compound represented by the general formula (2b):
Figure 2015074612

(In the formula, Ar is as defined above; each R 1 is independently an alkyl group having 1 to 6 carbon atoms)
A method comprising hydrolyzing a compound represented by the above in the presence of an inorganic acid.
一般式(2b):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Rは、各々独立して、炭素数1〜6のアルキル基である)
で表わされる化合物の製造方法であって、一般式(2c):
Figure 2015074612

(式中、Ar及びRは、前記と同義である)
で表わされる化合物を水素添加反応に付すことを特徴とする方法。
General formula (2b):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; each R 1 is independently an alkyl group having 1 to 6 carbon atoms)
Wherein the compound represented by formula (2c):
Figure 2015074612

(Wherein Ar and R 1 are as defined above)
A method comprising subjecting a compound represented by the formula to a hydrogenation reaction.
一般式(2c):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Rは、各々独立して、炭素数1〜6のアルキル基である)
で表わされる化合物の製造方法であって、一般式(3):
Figure 2015074612

(式中、Xは、ハロゲン原子であり、Rは、前記と同義である)
で表わされるジハロコハク酸誘導体と、一般式(4):
Figure 2015074612

(式中、Arは、前記と同義である)
で表わされる芳香族ジオール化合物を、塩基の存在下で反応させることを特徴とする方法。
General formula (2c):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; each R 1 is independently an alkyl group having 1 to 6 carbon atoms)
A method for producing a compound represented by the general formula (3):
Figure 2015074612

(Wherein X is a halogen atom, and R 1 is as defined above)
A dihalosuccinic acid derivative represented by general formula (4):
Figure 2015074612

(Wherein Ar is as defined above)
The aromatic diol compound represented by these is made to react in presence of a base.
一般式(1):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基である)
で表わされるアリーレンジオキシ−ビス(コハク酸無水物)の製造方法であって、下記の工程:
(i)一般式(3):
Figure 2015074612

(式中、Xは、ハロゲン原子であり、Rは、炭素数1〜6のアルキル基である)
で表わされるジハロコハク酸誘導体と、一般式(4):
Figure 2015074612

(式中、Arは、前記と同義である)
で表わされる芳香族ジオール化合物を、塩基の存在下で反応させ、一般式(2c):
Figure 2015074612

(式中、Ar及びRは、前記と同義である)
で表わされる化合物を得る工程;及び
(ii)一般式(2c)で表される化合物を水素添加反応に付し、一般式(2b):
Figure 2015074612

(式中、Ar及びRは、前記と同義である)
で表わされる化合物を得る工程;及び
(iii)一般式(2b)で表される化合物を無機酸の存在下、加水分解することにより、一般式(2a):
Figure 2015074612

(式中、Arは、前記と同義である)
で表わされる化合物を得る工程;及び
(iv)一般式(2a)で表される化合物を脱水閉環反応に付す工程
を含むことを特徴とする方法。
General formula (1):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms)
A process for producing arylenedioxy-bis (succinic anhydride) represented by the following steps:
(I) General formula (3):
Figure 2015074612

(Wherein, X is a halogen atom, and R 1 is an alkyl group having 1 to 6 carbon atoms)
A dihalosuccinic acid derivative represented by general formula (4):
Figure 2015074612

(Wherein Ar is as defined above)
Is reacted in the presence of a base, and the general formula (2c):
Figure 2015074612

(Wherein Ar and R 1 are as defined above)
And (ii) subjecting the compound represented by the general formula (2c) to a hydrogenation reaction to obtain the general formula (2b):
Figure 2015074612

(Wherein Ar and R 1 are as defined above)
And (iii) hydrolyzing the compound represented by the general formula (2b) in the presence of an inorganic acid to obtain the general formula (2a):
Figure 2015074612

(Wherein Ar is as defined above)
And (iv) subjecting the compound represented by the general formula (2a) to a dehydration cyclization reaction.
一般式(5):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Aは、二価の芳香族基又は脂肪族基である)
で表わされる反復単位を有するポリイミド。
General formula (5):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; A is a divalent aromatic group or an aliphatic group)
A polyimide having a repeating unit represented by:
一般式(5a):
Figure 2015074612

(式中、Arは、炭素数6〜36の二価の芳香族基であり;Aは、二価の芳香族基又は脂肪族基である)
で表わされる反復単位を有するポリイミド前駆体。
General formula (5a):
Figure 2015074612

(In the formula, Ar is a divalent aromatic group having 6 to 36 carbon atoms; A is a divalent aromatic group or an aliphatic group)
The polyimide precursor which has a repeating unit represented by these.
JP2013209973A 2013-10-07 2013-10-07 Arylene dioxy-bis (succinic anhydride) and method for producing the same Active JP6266940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013209973A JP6266940B2 (en) 2013-10-07 2013-10-07 Arylene dioxy-bis (succinic anhydride) and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013209973A JP6266940B2 (en) 2013-10-07 2013-10-07 Arylene dioxy-bis (succinic anhydride) and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015074612A true JP2015074612A (en) 2015-04-20
JP6266940B2 JP6266940B2 (en) 2018-01-24

Family

ID=52999746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013209973A Active JP6266940B2 (en) 2013-10-07 2013-10-07 Arylene dioxy-bis (succinic anhydride) and method for producing the same

Country Status (1)

Country Link
JP (1) JP6266940B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033638A (en) * 2014-07-28 2016-03-10 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for manufacturing liquid crystal display element, polymer, and compound
WO2019190409A1 (en) * 2018-03-29 2019-10-03 Agency For Science, Technology And Research A compound, a reaction product of said compound and production methods thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1292602A (en) * 1968-10-30 1972-10-11 Fisons Pharmaceuticals Ltd Intermediate compounds for use in the manufacture of bis-chromone-2-carboxylic acids
GB1292601A (en) * 1968-10-30 1972-10-11 Fisons Pharmaceuticals Ltd Bis-(2-carboxy-chromone) compounds, their preparation and pharmaceutical compositions containing them
US3718668A (en) * 1967-08-17 1973-02-27 Fisons Ltd Benzodipyrones
JPS5096696A (en) * 1973-12-21 1975-07-31
JPS5464594A (en) * 1977-10-14 1979-05-24 Rhone Poulenc Ind Polymer having imide polymer
US4732963A (en) * 1987-02-06 1988-03-22 Wank Robert L Thermosetting bis(isoimide)-diphenol resin
JPH0685090A (en) * 1992-09-04 1994-03-25 Toshiba Corp Maleimide resin composition
JPH07316291A (en) * 1994-03-29 1995-12-05 Toshiba Corp Polyimide precursor, fluorinated aromatic diamine compound, cured bismaleimide resin precursor, and electronic part
JPH093044A (en) * 1995-06-21 1997-01-07 Toshiba Corp Fluorine-containing bismaleimide compound and thermosetting resin composition
WO2003040133A1 (en) * 2001-11-06 2003-05-15 The Yokohama Rubber Co., Ltd. Maleic acid derivative and curable composition containing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718668A (en) * 1967-08-17 1973-02-27 Fisons Ltd Benzodipyrones
GB1292602A (en) * 1968-10-30 1972-10-11 Fisons Pharmaceuticals Ltd Intermediate compounds for use in the manufacture of bis-chromone-2-carboxylic acids
GB1292601A (en) * 1968-10-30 1972-10-11 Fisons Pharmaceuticals Ltd Bis-(2-carboxy-chromone) compounds, their preparation and pharmaceutical compositions containing them
JPS5096696A (en) * 1973-12-21 1975-07-31
JPS5464594A (en) * 1977-10-14 1979-05-24 Rhone Poulenc Ind Polymer having imide polymer
US4732963A (en) * 1987-02-06 1988-03-22 Wank Robert L Thermosetting bis(isoimide)-diphenol resin
JPH0685090A (en) * 1992-09-04 1994-03-25 Toshiba Corp Maleimide resin composition
JPH07316291A (en) * 1994-03-29 1995-12-05 Toshiba Corp Polyimide precursor, fluorinated aromatic diamine compound, cured bismaleimide resin precursor, and electronic part
JPH093044A (en) * 1995-06-21 1997-01-07 Toshiba Corp Fluorine-containing bismaleimide compound and thermosetting resin composition
WO2003040133A1 (en) * 2001-11-06 2003-05-15 The Yokohama Rubber Co., Ltd. Maleic acid derivative and curable composition containing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, vol. No.9-10, Pt.2, JPN6017023691, 1980, pages 478 - 480 *
GREEN CHEM., vol. Vol.13, JPN6017023689, 2011, pages 2851 - 2858 *
VYSOKOMOLEKULYARNYE SOEDINENIYA, SERIYA B: KRATKIE SOOBSHCHENIYA, vol. 28, no. 3, JPN6017023694, 1986, pages 207 - 209 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033638A (en) * 2014-07-28 2016-03-10 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, method for manufacturing liquid crystal display element, polymer, and compound
WO2019190409A1 (en) * 2018-03-29 2019-10-03 Agency For Science, Technology And Research A compound, a reaction product of said compound and production methods thereof

Also Published As

Publication number Publication date
JP6266940B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
TWI788288B (en) Polyimide resin
JP6635506B2 (en) Diamine having fluorene skeleton, polyamic acid, and polyimide
JP6086139B2 (en) Polyimide precursor and polyimide
JP7327573B2 (en) Polyimide precursors, polyimides, polyimide films and substrates, and tetracarboxylic dianhydrides used in the production of polyimides
JP6145571B2 (en) Novel acid dianhydride and method for producing the same
JP4829913B2 (en) Polyimide and method for producing the same
JP7134584B2 (en) Polyimide with fluorene skeleton
JP7096931B2 (en) Fluorinated amide compounds, fluorinated nitrogen-containing heterocyclic compounds and fluorinated compounds
JP6266940B2 (en) Arylene dioxy-bis (succinic anhydride) and method for producing the same
JP2008163088A (en) Ester group-containing alicyclic tetracarboxylic acid anhydride and method for producing the same
JP6584011B2 (en) Diamine compound having fluorene skeleton, polyamic acid, and polyimide
JP2011102259A (en) Aromatic diamine compound and manufacturing method for the same, and synthetic resin
JP5268980B2 (en) Polyimide and production method thereof, and polyamic acid and production method thereof
JP2016210735A (en) Asymmetric diamine having fluorene skeleton, polyamic acid, and polyimide
JP2012136470A (en) 3,4&#39;-oxybisphthalimide compound, and process for producing the same
JP4698165B2 (en) Polyamic acid and polyimide
JP2015155385A (en) Tetracarboxylic acid dianhydride, polyamic acid and polyimide having fluorene skeleton
JP6196731B2 (en) Novel acid dianhydride, production method thereof, and polyimide produced therefrom
JP2018070823A (en) Polyimide having a fluorene skeleton
JP2013028571A (en) Bisphenol diester type acid dianhydride, method for manufacturing the same and polyimide
JP6966726B2 (en) Acid dianhydride and its use
JP4371207B2 (en) Alicyclic spiro-type polyimide
JP5754344B2 (en) Tetrahydropentalene dianhydride, process for producing the same, and polyimide
TW202348597A (en) Novel diamine, method for producing the same, and polyamic acid and polyimide produced from the diamine
JPWO2015151924A1 (en) Acid dianhydride and its use

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

R150 Certificate of patent or registration of utility model

Ref document number: 6266940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250