JP2015071662A - Thermally conductive silicone composition and cured product of the same - Google Patents
Thermally conductive silicone composition and cured product of the same Download PDFInfo
- Publication number
- JP2015071662A JP2015071662A JP2013207023A JP2013207023A JP2015071662A JP 2015071662 A JP2015071662 A JP 2015071662A JP 2013207023 A JP2013207023 A JP 2013207023A JP 2013207023 A JP2013207023 A JP 2013207023A JP 2015071662 A JP2015071662 A JP 2015071662A
- Authority
- JP
- Japan
- Prior art keywords
- group
- mass
- component
- heat
- thermally conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、熱伝導による電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク、回路基板などの熱放散部材との界面、例えば電子機器内の発熱部品と放熱部品の間に設置され放熱に用いられる熱伝導性シリコーン硬化物を与える熱伝導性シリコーン組成物及びその硬化物に関する。 In order to cool an electronic component by heat conduction, the present invention provides an interface between a heat boundary surface of a heat-generating electronic component and a heat dissipation member such as a heat sink or a circuit board, for example, between a heat-generating component and a heat-dissipating component in an electronic device. The present invention relates to a thermally conductive silicone composition that provides a thermally conductive silicone cured product that is installed and used for heat dissipation, and a cured product thereof.
パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。 LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video disks, and mobile phones are becoming more and more themselves as performance, speed, size, and integration increase. Heat is generated, and the temperature rise of the chip due to the heat causes malfunction and destruction of the chip. Therefore, many heat dissipating methods for suppressing the temperature rise of the chip during operation and heat dissipating members used therefor have been proposed.
従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。 Conventionally, in an electronic device or the like, a heat sink using a metal plate having a high thermal conductivity such as aluminum or copper is used in order to suppress a temperature rise of a chip during operation. The heat sink conducts heat generated by the chip and releases the heat from the surface due to a temperature difference from the outside air.
チップから発生する熱をヒートシンクに効率良く伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートやグリースをチップとヒートシンクとの間に介装させ、このシート又はグリースを介してチップからヒートシンクへの熱伝導を実現している。 In order to efficiently transfer the heat generated from the chip to the heat sink, it is necessary to closely attach the heat sink to the chip. However, because there is a difference in the height of each chip and tolerance due to assembly processing, a flexible sheet or grease is used. The heat transfer from the chip to the heat sink is realized through this sheet or grease.
グリース状の放熱材料は薄膜化による低熱抵抗が実現されるが、管理が難しいという点がある。また、塗布工程には、手作業でスクリーンプリント又はシリンジからの押し出しを行う場合と、ディスペンス装置を用いて自動で行う場合とがあるが、多くの時間を要し、取扱いも容易でない点から、製品の組み立て工程の律速となるケースがある。 Grease-like heat dissipation material achieves low thermal resistance by thinning, but it is difficult to manage. In addition, in the application process, there are a case where the screen printing or the extrusion from the syringe is performed manually and a case where it is automatically performed using a dispensing device, but it takes a lot of time and is not easy to handle. There are cases where the product assembly process is rate limiting.
熱伝導性シリコーンゴム等で形成された熱伝導シートは、グリースに比べ、取り扱い性に優れており、様々な分野に用いられている。 A heat conductive sheet formed of a heat conductive silicone rubber or the like is excellent in handleability compared with grease and is used in various fields.
特に低硬度の熱伝導性シートは、その形状柔軟性からCPUなどの素子間の凹凸にうまく追従することが可能であり、携帯用のノート型のパーソナルコンピューター等の機器の小型化を阻害せず、効率的な放熱を可能とする利点をもつ。 In particular, the low-hardness heat conductive sheet can follow the unevenness between elements such as CPUs because of its shape flexibility, and does not hinder the downsizing of devices such as portable notebook personal computers. , Has the advantage of enabling efficient heat dissipation.
これら熱伝導性シリコーン硬化物における熱伝導性充填材として、アルミナや水酸化アルミニウムが挙げられる。熱伝導性シリコーン硬化物で熱伝導率が0.5〜4W/m・Kの範囲では、価格及び熱伝導率の観点から熱伝導性充填材としてアルミナが主に用いられることが多い。しかし、アルミナはモース硬度が9と非常に硬く、熱伝導性シリコーン組成物製造時にシェアがかかる際に、反応釜の内壁や攪拌羽の摩耗が進行しやすい。また、比重が3.98と重いアルミナで高充填した場合、熱伝導性シリコーン組成物中に熱伝導性充填材が沈降しやすいという点でも懸念がある。沈降が起きると組成物の成形性に違いが出て、安定的に製品を生産できない。そして、熱伝導性シリコーン組成物を用いる前に再度、攪拌混合を行えば沈降を解消することができるが、コストも時間も掛かってしまう。 Examples of the heat conductive filler in these heat conductive silicone cured products include alumina and aluminum hydroxide. In the case of a thermally conductive silicone cured product having a thermal conductivity in the range of 0.5 to 4 W / m · K, alumina is often mainly used as a thermally conductive filler from the viewpoint of cost and thermal conductivity. However, alumina has a very high Mohs hardness of 9, and wear of the inner wall of the reaction kettle and stirring blades is likely to proceed when a share is applied during the production of the heat conductive silicone composition. In addition, there is a concern that when the specific gravity is highly filled with 3.98 heavy alumina, the thermally conductive filler is likely to settle in the thermally conductive silicone composition. If sedimentation occurs, the composition will have a different moldability and the product cannot be produced stably. Then, if stirring and mixing is performed again before using the heat conductive silicone composition, sedimentation can be eliminated, but it also takes cost and time.
一方、水酸化アルミニウムは比重が2.42とアルミナよりも軽く、安価である点が魅力である。しかし、熱伝導率がアルミナよりも小さいため、1.5W/mK以上のシリコーン樹脂組成物を得る際に高充填が必要となり、シリコーン樹脂の信頼性を低下させてしまう。また、耐熱性がアルミナよりも劣るため、150℃以上の高温下で使用される熱伝導性シートへの運用には適していない。 On the other hand, aluminum hydroxide is attractive because it has a specific gravity of 2.42 and is lighter and cheaper than alumina. However, since the thermal conductivity is smaller than that of alumina, high filling is required when obtaining a silicone resin composition of 1.5 W / mK or more, which reduces the reliability of the silicone resin. Moreover, since heat resistance is inferior to an alumina, it is not suitable for the operation to the heat conductive sheet used under the high temperature of 150 degreeC or more.
アルミナや水酸化アルミニウム以外の熱伝導性充填材としてアルミニウム、銅、銀、窒化ホウ素、窒化アルミニウムなどがある。それらは熱性能が高いが、熱伝導率が0.5〜4.0W/mKの範囲のシリコーン樹脂硬化物を得る際には、コストの観点から不利となる。さらに、アルミニウムや銅、銀などを用いると熱伝導性シリコーン組成物及び硬化物の絶縁性が低下してしまう。 Examples of thermally conductive fillers other than alumina and aluminum hydroxide include aluminum, copper, silver, boron nitride, and aluminum nitride. They have high thermal performance, but are disadvantageous from the viewpoint of cost when obtaining a cured silicone resin having a thermal conductivity in the range of 0.5 to 4.0 W / mK. Furthermore, when aluminum, copper, silver, or the like is used, the insulating properties of the thermally conductive silicone composition and the cured product are lowered.
ここで、酸化マグネシウムの熱伝導率は42〜60W/mKであり、アルミナの26〜36W/mKに比べて高い点で注目に値する。また、酸化マグネシウムのモース硬度は6であり、比重も3.65とアルミナより軽いため、上記のような問題を生じにくい。しかし、吸湿性が高いという欠点をもっており、特開平5−239358号公報(特許文献1)では、特定の水酸化マグネシウムを1,100〜1,600℃で焼成して得られる酸化マグネシウムを配合した熱伝導性シリコーンゴム組成物が開示されているが、高い吸湿性を有する結果、強いアルカリ性を示す等の理由で、シリコーンゴムにクラッキングが生じやすい。 Here, the thermal conductivity of magnesium oxide is 42 to 60 W / mK, which is notable in terms of being higher than that of alumina of 26 to 36 W / mK. Further, since the Mohs hardness of magnesium oxide is 6 and the specific gravity is 3.65, which is lighter than that of alumina, the above problems are hardly caused. However, it has a drawback of high hygroscopicity, and in Japanese Patent Laid-Open No. 5-239358 (Patent Document 1), magnesium oxide obtained by firing specific magnesium hydroxide at 1,100 to 1,600 ° C. is blended. Although a thermally conductive silicone rubber composition is disclosed, cracking is likely to occur in the silicone rubber because of its high hygroscopicity and as a result of exhibiting strong alkalinity.
特開平7−292251号公報(特許文献2)には、酸化マグネシウムの表面をシラザンで処理することで得られる、耐湿性に優れた熱伝導性シリコーン樹脂組成物が開示されている。しかし、酸化マグネシウムの粒径が1μmと非常に小さいため、充填量をあげても熱伝導率の向上が見込めず、また、粒径のより大きい粉を用いた際、この方法が適切な有効性を示すかは検証されていない。 Japanese Patent Application Laid-Open No. 7-292251 (Patent Document 2) discloses a heat conductive silicone resin composition excellent in moisture resistance obtained by treating the surface of magnesium oxide with silazane. However, since the particle size of magnesium oxide is as small as 1 μm, no improvement in thermal conductivity can be expected even if the filling amount is increased, and this method is effective when using powder with a larger particle size. Has not been verified.
特開平8−88488号公報(特許文献3)では、球状酸化マグネシウムと粒状アルミナを組み合わせて成形性を向上させた熱伝導性放熱シートが開示されているが、酸化マグネシウムは熱伝導性充填材の総重量に対して、多くて20質量%程しか使用されておらず、アルミナを多く含有することによる比重の増加、混練時における反応釜の摩耗等の課題は解消されていない。 Japanese Patent Application Laid-Open No. 8-88488 (Patent Document 3) discloses a thermally conductive heat-dissipating sheet in which formability is improved by combining spherical magnesium oxide and granular alumina. Magnesium oxide is a thermally conductive filler. Only about 20% by mass is used with respect to the total weight, and problems such as increase in specific gravity due to containing a large amount of alumina and wear of the reaction kettle during kneading have not been solved.
ここで、表面処理した酸化マグネシウムとアルミナを併用した系は、上記問題を解決するのに有効であるといえる。酸化マグネシウムとアルミナを併用した場合、酸化マグネシウムと水酸化アルミニウムを併用する場合よりも、低充填量で耐熱性にも優れた熱伝導率1.5W/m・K以上のシリコーン樹脂組成物を構成することが可能となる。 Here, it can be said that a system in which surface-treated magnesium oxide and alumina are used in combination is effective in solving the above problem. When magnesium oxide and alumina are used in combination, a silicone resin composition having a thermal conductivity of 1.5 W / m · K or more is obtained with a lower filling amount and superior heat resistance than when magnesium oxide and aluminum hydroxide are used in combination. It becomes possible to do.
また、酸化マグネシウムの表面を疎水処理することによって耐湿性が改善され、高湿下での使用にも適した熱伝導性シリコーン樹脂組成物を得ることができる。
さらに、酸化マグネシウムとアルミナの総質量のうち、酸化マグネシウムを50質量%以上用いることによって、反応釜の磨耗を抑えることができ、さらに熱伝導性充填材としてアルミナのみを用いるよりも同じ充填量であればアルミナと水酸化マグネシウムを併用した場合の方が比重は軽くなるので、熱伝導性シリコーン組成物中の熱伝導性充填材の沈降を抑えることができる。
Further, by subjecting the surface of magnesium oxide to a hydrophobic treatment, the moisture resistance is improved, and a thermally conductive silicone resin composition suitable for use under high humidity can be obtained.
Further, by using 50% by mass or more of magnesium oxide in the total mass of magnesium oxide and alumina, it is possible to suppress the reaction kettle from wearing, and furthermore, with the same filling amount than using only alumina as a heat conductive filler. If it exists, since the specific gravity becomes lighter when alumina and magnesium hydroxide are used in combination, it is possible to suppress sedimentation of the heat conductive filler in the heat conductive silicone composition.
また、近年、機器の小型化、軽量化が進んでいる。機器全体の軽量化のためには部材単位で見ると、グラム又はミリグラム単位で性能を維持しながらより軽量なものが求められている。熱伝導率が1.5W/m・K以上で酸化マグネシウム及びアルミナを含む熱伝導性充填材のうち、少なくとも50質量%以上が酸化マグネシウムで占められる熱伝導性シリコーン組成物は軽量化の観点からも有利である。 In recent years, the size and weight of devices have been reduced. In order to reduce the weight of the entire device, there is a demand for lighter weight while maintaining performance in units of grams or milligrams in terms of members. From the viewpoint of weight reduction, a thermally conductive silicone composition having a thermal conductivity of 1.5 W / m · K or more and containing at least 50% by mass of magnesium oxide among the thermally conductive fillers containing magnesium oxide and alumina. Is also advantageous.
本発明は、上記事情に鑑みなされたものであり、粒径の異なる疎水処理酸化マグネシウムを所定の割合で組み合わせて熱伝導性充填材を構成することで、混練時に反応釜を摩耗させることなく、熱伝導率が1.5W/m・K以上で、高温高湿下における耐湿性にも優れた熱伝導性シリコーン硬化物(熱伝導性放熱シート)を与える熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and by composing a thermally conductive filler by combining hydrophobically treated magnesium oxides having different particle sizes at a predetermined ratio, without wearing the reaction kettle during kneading, Thermally conductive silicone composition having a thermal conductivity of 1.5 W / m · K or more and excellent in moisture resistance under high temperature and high humidity (thermally conductive heat dissipation sheet) and cured product thereof The purpose is to provide.
本発明者らは、上記目的を達成するために鋭意検討した結果、熱伝導性充填材として、表面を予め疎水処理した、平均粒径0.1μm以上40μm未満の酸化マグネシウムと、平均粒径40μm以上80μm未満の酸化マグネシウムを所定の割合で組み合わせること、及びこのように予め疎水処理した酸化マグネシウムを熱伝導性充填材の総質量に対して50質量%以上用いることによって、熱伝導率1.5W/m・K以上で耐湿性を伴った熱伝導性シリコーン硬化物を与える熱伝導性シリコーン組成物及びその硬化物が得られることを見出し、本発明をなすに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have determined that the surface of the surface is previously hydrophobized as magnesium oxide having an average particle size of 0.1 μm or more and less than 40 μm, and an average particle size of 40 μm. By combining magnesium oxide of less than 80 μm in a predetermined ratio and using magnesium oxide hydrophobized in this way in an amount of 50% by mass or more based on the total mass of the thermally conductive filler, the thermal conductivity is 1.5 W. The present inventors have found that a thermally conductive silicone composition that gives a thermally conductive silicone cured product with moisture resistance at / m · K or more and a cured product thereof can be obtained, and have made the present invention.
従って、本発明は、下記熱伝導性シリコーン組成物及びその硬化物を提供する。
〔1〕
(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍となる量、
(C)熱伝導性充填材の総質量のうち50質量%以上が疎水処理剤(E)により予め処理された酸化マグネシウムで占められる熱伝導性充填剤:200〜1,600質量部、
(D)白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1〜1,000ppm、
を含み、疎水処理酸化マグネシウムが、
(C−1)平均粒径0.1μm以上40μm未満の酸化マグネシウムの疎水処理粉及び
(C−2)平均粒径40μm以上80μm未満の酸化マグネシウムの疎水処理粉
からなり、(C−1)及び(C−2)成分の含有割合が、質量比で(C−1)/(C−2)=1〜3/2〜4であることを特徴とする熱伝導性シリコーン組成物。
〔2〕
疎水処理酸化マグネシウムが、疎水処理剤(E)により酸化マグネシウムの総質量に対して0.05〜3.0質量%の割合で予め疎水処理されたものであり、疎水処理剤(E)が、
(E−1)下記一般式(1):
R1 aR2 bSi(OR3)4-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜12の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物及び/又は
(E−2)下記一般式(2):
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン
であることを特徴とする〔1〕記載の熱伝導性シリコーン組成物。
〔3〕
(C)熱伝導性充填材として、さらに酸化アルミニウムを含む〔1〕又は〔2〕記載の熱伝導性シリコーン組成物。
〔4〕
さらに、(F)成分として、下記一般式(1)のアルコキシシラン化合物及び/又は一般式(2)のジメチルポリシロキサンを(A)成分100質量部に対して0.01〜50質量部添加してなる〔1〕〜〔3〕のいずれか1項記載の熱伝導性シリコーン組成物。
R1 aR2 bSi(OR3)4-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜12の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
〔5〕
さらに、(G)成分として、下記一般式(3):
で表される23℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを含有することを特徴とする〔1〕〜〔4〕のいずれかに記載の熱伝導性シリコーン組成物。
〔6〕
粘度が800Pa・s以下である〔1〕〜〔5〕のいずれかに記載の熱伝導性シリコーン組成物。
〔7〕
〔1〕〜〔6〕のいずれかに記載の熱伝導性シリコーン組成物を硬化させてなる熱伝導性シリコーン硬化物。
〔8〕
熱伝導率が1.5W/m・K以上である〔7〕記載の熱伝導性シリコーン硬化物。
〔9〕
硬度がアスカーC硬度計で40以下である〔7〕又は〔8〕記載の熱伝導性シリコーン硬化物。
〔10〕
発熱性電子部品と熱放散部材との間に介装され、発熱性電子部品からの熱を熱放散部材に伝熱し、放熱するための伝熱部材用である〔7〕〜〔9〕のいずれかに記載のシリコーン硬化物。
Therefore, this invention provides the following heat conductive silicone composition and its hardened | cured material.
[1]
(A) Organopolysiloxane having at least two alkenyl groups in one molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: The number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 to the number of moles of alkenyl groups derived from component (A). 5.0 times the amount,
(C) Thermally conductive filler in which 50% by mass or more of the total mass of the thermally conductive filler is occupied by magnesium oxide pretreated with the hydrophobic treating agent (E): 200 to 1,600 parts by mass,
(D) Platinum group metal-based curing catalyst: 0.1 to 1,000 ppm in terms of platinum group metal element mass relative to component (A),
A hydrophobized magnesium oxide,
(C-1) a hydrophobically treated powder of magnesium oxide having an average particle size of 0.1 μm or more and less than 40 μm and (C-2) a hydrophobically treated powder of magnesium oxide having an average particle size of 40 μm or more and less than 80 μm, (C-1) and The content ratio of (C-2) component is (C-1) / (C-2) = 1-3 / 2-4 by mass ratio, The heat conductive silicone composition characterized by the above-mentioned.
[2]
Hydrophobic-treated magnesium oxide was previously hydrophobized at a ratio of 0.05 to 3.0% by mass with respect to the total mass of magnesium oxide by the hydrophobic treating agent (E), and the hydrophobic treating agent (E)
(E-1) The following general formula (1):
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
And / or (E-2) the following general formula (2):
The thermally conductive silicone composition according to [1], wherein the molecular chain fragment end represented by the formula is dimethylpolysiloxane blocked with a trialkoxysilyl group.
[3]
(C) The heat conductive silicone composition according to [1] or [2], further containing aluminum oxide as a heat conductive filler.
[4]
Further, as the component (F), 0.01 to 50 parts by mass of an alkoxysilane compound of the following general formula (1) and / or dimethylpolysiloxane of the general formula (2) is added to 100 parts by mass of the component (A). The heat conductive silicone composition according to any one of [1] to [3].
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
[5]
Further, as the component (G), the following general formula (3):
The heat conductive silicone composition according to any one of [1] to [4], wherein the composition contains an organopolysiloxane having a kinematic viscosity at 23 ° C. of 10 to 100,000 mm 2 / s.
[6]
The heat conductive silicone composition according to any one of [1] to [5], wherein the viscosity is 800 Pa · s or less.
[7]
A thermally conductive silicone cured product obtained by curing the thermally conductive silicone composition according to any one of [1] to [6].
[8]
The thermally conductive silicone cured product according to [7], wherein the thermal conductivity is 1.5 W / m · K or more.
[9]
The heat-conductive silicone cured product according to [7] or [8], having a hardness of 40 or less according to an Asker C hardness meter.
[10]
Any one of [7] to [9], which is interposed between the heat-generating electronic component and the heat-dissipating member, transfers heat from the heat-generating electronic component to the heat-dissipating member, and dissipates the heat. A cured silicone product according to any one of the above.
本発明によれば、異なる粒径の疎水処理酸化マグネシウムを所定の割合で組み合わせて全熱伝導性充填材中50質量%以上用いることで、混練時に反応釜を摩耗させることなく、熱伝導率が1.5W/m・K以上で耐湿性に優れたシリコーン硬化物を与える熱伝導性シリコーン組成物及びその硬化物を提供することができる。 According to the present invention, by using 50% by mass or more of the hydrothermally treated magnesium oxide having different particle diameters in a predetermined ratio in the total thermal conductive filler, the thermal conductivity can be obtained without wearing the reaction kettle during kneading. It is possible to provide a thermally conductive silicone composition that gives a silicone cured product excellent in moisture resistance at 1.5 W / m · K or more, and a cured product thereof.
以下、本発明について詳細に説明する。
[(A)アルケニル基含有オルガノポリシロキサン]
(A)成分であるアルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の組成物の主剤となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
Hereinafter, the present invention will be described in detail.
[(A) Alkenyl group-containing organopolysiloxane]
The alkenyl group-containing organopolysiloxane as component (A) is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and serves as a main component of the composition of the present invention. Usually, the main chain part is generally composed of repeating diorganosiloxane units, but this may be a part of the molecular structure containing a branched structure or cyclic. However, linear diorganopolysiloxane is preferred from the viewpoint of physical properties such as mechanical strength of the cured product.
ケイ素原子に結合するアルケニル基以外の官能基としては、非置換又は置換の1価炭化水素基であり、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることを限定するものではない。 The functional group other than the alkenyl group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, or a tert-butyl group. , Pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, alkyl group such as dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, phenyl group, tolyl group, Aryl group such as xylyl group, naphthyl group, biphenylyl group, benzyl group, phenylethyl group, phenylpropyl group, aralkyl group such as methylbenzyl group, and part of hydrogen atoms to which carbon atoms of these groups are bonded or All substituted by halogen atoms such as fluorine, chlorine and bromine, cyano groups, etc. , Chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6 , 6,6-nonafluorohexyl group and the like, typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, preferably methyl group An unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, cyanoethyl group, and phenyl group, chlorophenyl group , An unsubstituted or substituted phenyl group such as a fluorophenyl group. Moreover, it is not limited that all functional groups other than the alkenyl group bonded to the silicon atom are the same.
また、アルケニル基としては、例えばビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数2〜8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、特に好ましくはビニル基である。なお、アルケニル基は、分子中に2個以上存在することが好ましいが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。 Examples of the alkenyl group include those having usually 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, and cyclohexenyl group. A lower alkenyl group such as an allyl group is preferred, and a vinyl group is particularly preferred. In addition, although it is preferable that two or more alkenyl groups exist in the molecule, it is preferable that the alkenyl group is bonded only to the silicon atom at the end of the molecular chain in order to make the obtained cured product flexible.
このオルガノポリシロキサンの25℃における動粘度は、通常、10〜100,000mm2/s、特に好ましくは500〜50,000mm2/sの範囲である。前記粘度が低すぎると、得られる組成物の保存安定性が悪くなる場合があり、また高すぎると得られる組成物の伸展性が悪くなる場合がある。なお、動粘度はオストワルド粘度計を用いた場合の値である。 Kinematic viscosity at 25 ° C. This organopolysiloxane is usually, 10~100,000mm 2 / s, particularly preferably from 500~50,000mm 2 / s. If the viscosity is too low, the storage stability of the resulting composition may deteriorate, and if it is too high, the extensibility of the obtained composition may deteriorate. The kinematic viscosity is a value when using an Ostwald viscometer.
この(A)成分のオルガノポリシロキサンは1種単独でも、粘度が異なる2種以上を組み合わせて用いてもよい。 The organopolysiloxane of component (A) may be used alone or in combination of two or more having different viscosities.
[(B)オルガノハイドロジェンポリシロキサン]
(B)成分のオルガノハイドロジェンポリシロキサンは、1分子中に平均で2個以上、好ましくは2〜100個のケイ素原子に直接結合する水素原子(Si−H基)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のSi−H基と(A)成分中のアルケニル基とが後述の(D)成分の白金族金属系触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。なお、Si−H基の数が1個未満の場合、硬化しない。
[(B) Organohydrogenpolysiloxane]
The organohydrogenpolysiloxane of component (B) is an organohydrogenpolysiloxane having a hydrogen atom (Si-H group) directly bonded to 2 or more, preferably 2 to 100 silicon atoms on average in one molecule. It is a component that acts as a crosslinking agent for component (A). That is, the Si—H group in the component (B) and the alkenyl group in the component (A) are added by a hydrosilylation reaction promoted by the platinum group metal catalyst of the component (D) described later to form a crosslinked structure. A three-dimensional network structure is provided. In addition, when the number of Si-H groups is less than one, it does not harden.
オルガノハイドロジェンポリシロキサンとしては、下記平均構造式(4)で示されるものが用いられるが、これに限定されるものではない。
(式中、R6は独立に脂肪族不飽和結合を含有しない非置換もしくは置換の1価炭化水素基又は水素原子であるが、少なくとも2個、好ましくは2〜10個は水素原子であり、eは1以上の整数、好ましくは10〜100の整数である。)
As the organohydrogenpolysiloxane, one represented by the following average structural formula (4) is used, but is not limited thereto.
(Wherein R 6 independently represents an unsubstituted or substituted monovalent hydrocarbon group or a hydrogen atom that does not contain an aliphatic unsaturated bond, but at least 2, preferably 2 to 10 are hydrogen atoms, e is an integer of 1 or more, preferably an integer of 10 to 100.)
式(4)中、R6の水素原子以外の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R6は全てが同一であることを限定するものではない。 In the formula (4), as the unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond other than the hydrogen atom of R 6 , for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Cycloalkyl groups such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc., cyclopentyl group, cyclohexyl group, cycloheptyl group, etc. An aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, biphenylyl group, aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group, and the carbon atoms of these groups Some or all of the hydrogen atoms are substituted with halogen atoms such as fluorine, chlorine, bromine, cyano groups, etc. Groups such as chloromethyl, 2-bromoethyl, 3-chloropropyl, 3,3,3-trifluoropropyl, chlorophenyl, fluorophenyl, cyanoethyl, 3,3,4,4,5 5,6,6,6-nonafluorohexyl group and the like, typical examples having 1 to 10 carbon atoms, especially typical ones having 1 to 6 carbon atoms, preferably An unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group, a cyanoethyl group, and a phenyl group; An unsubstituted or substituted phenyl group such as a chlorophenyl group and a fluorophenyl group. Further, R 6 is not limited to being all the same.
(B)成分の添加量は、(B)成分由来のSi−H基が(A)成分由来のアルケニル基1モルに対して0.1〜5.0モルとなる量、望ましくは0.3〜2.0モル、さらに好ましくは0.5〜1.5モルとなる量である。(B)成分由来のSi−H基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない、又は硬化物の強度が不十分で成形体としての形状を保持できず取り扱えなくなる。また5.0モルを超えると硬化物の柔軟性がなくなり、硬化物が脆くなる。 Component (B) is added in an amount such that the Si-H group derived from component (B) is 0.1 to 5.0 moles per mole of alkenyl group derived from component (A), preferably 0.3. -2.0 mol, more preferably 0.5-1.5 mol. When the amount of the Si-H group derived from the component (B) is less than 0.1 mol relative to 1 mol of the alkenyl group derived from the component (A), the cured product does not have sufficient strength or as a molded product. The shape cannot be maintained and cannot be handled. On the other hand, if it exceeds 5.0 mol, the cured product becomes inflexible and the cured product becomes brittle.
[(C)熱伝導性充填材]
(C)成分である熱伝導性充填材は、所定の配合組成に従う表面が疎水処理された酸化マグネシウムを50質量%以上含むものであり、他の充填材を含む場合は表面が必ずしも疎水処理されていない酸化アルミニウムであることが好ましい。(C)成分の全配合量は、(A)成分100質量部に対して200〜1,600質量部であることが必要であり、好ましくは400〜1,200質量部である。この配合量が200質量部未満の場合には、得られる組成物の熱伝導率が悪い上、保存安定性の乏しいものとなり、1,600質量部を超える場合には、組成物の伸展性に乏しく、また強度が弱い成形物となる。
[(C) Thermally conductive filler]
The thermally conductive filler as component (C) contains 50% by mass or more of magnesium oxide whose surface according to a predetermined blending composition has been subjected to a hydrophobic treatment. When other fillers are contained, the surface is not necessarily subjected to a hydrophobic treatment. Aluminum oxide is preferably not used. (C) The total compounding quantity of a component needs to be 200-1,600 mass parts with respect to 100 mass parts of (A) component, Preferably it is 400-1,200 mass parts. When the blending amount is less than 200 parts by mass, the resulting composition has poor thermal conductivity and poor storage stability. When it exceeds 1,600 parts by mass, the composition has excellent extensibility. The molded product is poor and has low strength.
(C)成分の総質量に対して、疎水処理された酸化マグネシウムは50質量%以上含まれることが必要であり、好ましくは70質量%以上である。上限は特に制限されず100質量%であってもよい。酸化マグネシウムは、平均粒径0.1μm以上40μm未満のものと、平均粒径40μm以上80μm未満のものを組み合わせて用いるが、好ましくは平均粒径が10〜30μmのものと、平均粒径50〜70μmのものの組み合わせである。疎水処理された酸化マグネシウムは、(C−1)平均粒径0.1μm以上40μm未満の酸化マグネシウムの疎水処理粉と、(C−2)平均粒径40μm以上80μm未満の酸化マグネシウムの疎水処理粉からなり、その配合比率は、質量比で、(C−1)/(C−2)=1〜3/2〜4であり、好ましくは(C−1)/(C−2)=1.5〜2.5/2.5〜3.5である。 (C) Hydrophobic-treated magnesium oxide is required to be contained in an amount of 50% by mass or more, preferably 70% by mass or more based on the total mass of the component (C). The upper limit is not particularly limited and may be 100% by mass. Magnesium oxide is used in combination with an average particle size of 0.1 μm or more and less than 40 μm and an average particle size of 40 μm or more and less than 80 μm, and preferably an average particle size of 10-30 μm and an average particle size of 50- 70 μm combination. The hydrophobically treated magnesium oxide includes (C-1) a hydrophobic treated powder of magnesium oxide having an average particle size of 0.1 μm or more and less than 40 μm, and (C-2) a hydrophobic treated powder of magnesium oxide having an average particle size of 40 μm or more and less than 80 μm. The blending ratio is (C-1) / (C-2) = 1-3 / 2-4 by mass ratio, preferably (C-1) / (C-2) = 1. 5-2.5 / 2.5-3.5.
本発明で用いられる酸化アルミニウムは、表面が疎水処理されていてもされていなくてもよい。疎水処理されていない酸化アルミニウムの平均粒径は5〜300μm、特に5〜200μmが好ましく、(C)成分の総重量に対して50質量%未満用いることが好ましい。
なお、本発明において、上記平均粒径は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。
The aluminum oxide used in the present invention may or may not have a hydrophobic surface. The average particle diameter of the non-hydrophobic treated aluminum oxide is preferably 5 to 300 μm, particularly preferably 5 to 200 μm, and is preferably used in an amount of less than 50% by mass based on the total weight of the component (C).
In the present invention, the average particle diameter is a volume-based cumulative average particle diameter (median diameter) measured by Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.
酸化マグネシウムの配合量が50質量%未満の場合は、酸化アルミニウム(アルミナ)の比率が増すことで組成物の比重は増加し、反応釜や撹拌羽の摩耗は生じやすくなる。一方、酸化マグネシウムの粒径の比率が上記の範囲外にある場合には、組成物の粘度が著しく増加し、硬化物の成型が非常に困難となる。これらの熱伝導性充填材は、通常、市販のものを使用することができる。 When the blending amount of magnesium oxide is less than 50% by mass, the specific gravity of the composition increases due to an increase in the ratio of aluminum oxide (alumina), and wear of the reaction kettle and stirring blade tends to occur. On the other hand, when the ratio of the particle size of magnesium oxide is outside the above range, the viscosity of the composition is remarkably increased, and molding of a cured product becomes very difficult. These heat conductive fillers can usually use commercially available ones.
ここで、疎水処理方法について説明すると、疎水処理剤(E)として、特に下記(E−1)及び/又は(E−2)成分を用いることが好ましい。本発明では、疎水処理剤により予め疎水処理された(C)成分である酸化マグネシウムを用いることで、酸化マグネシウムをより効率的に、(A)成分からなるマトリックス中に分散させることができる。また、酸化アルミニウムに対しても(E)成分を用いて、表面を疎水処理することが可能である。 Here, the hydrophobic treatment method will be described. It is particularly preferable to use the following components (E-1) and / or (E-2) as the hydrophobic treatment agent (E). In the present invention, magnesium oxide, which is the component (C) that has been previously hydrophobically treated with a hydrophobic treating agent, can be used to more efficiently disperse magnesium oxide in the matrix composed of the component (A). Also, the surface of the aluminum oxide can be subjected to a hydrophobic treatment using the component (E).
(E−1)成分:
(E−1)成分は、下記一般式(1)
R1 aR2 bSi(OR3)4-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜12の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物である。
(E-1) Component:
The component (E-1) is represented by the following general formula (1)
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
It is the alkoxysilane compound represented by these.
上記一般式(1)において、R1で表されるアルキル基としては、例えばヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このR1で表されるアルキル基の炭素原子数が6〜15の範囲を満たすと(C)成分の濡れ性が十分向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。 In the general formula (1), examples of the alkyl group represented by R 1 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group. When the number of carbon atoms of the alkyl group represented by R 1 satisfies the range of 6 to 15, the wettability of the component (C) is sufficiently improved, the handleability is good, and the low temperature characteristics of the composition are good. .
R2で表される非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられる。R3としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等が挙げられる。 Examples of the unsubstituted or substituted monovalent hydrocarbon group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, Hexyl, heptyl, octyl, nonyl, decyl, dodecyl and other alkyl groups, cyclopentyl, cyclohexyl, cycloheptyl and other cycloalkyl groups, phenyl, tolyl, xylyl, naphthyl, biphenylyl Aryl groups such as benzyl groups, aralkyl groups such as benzyl groups, phenylethyl groups, phenylpropyl groups, and methylbenzyl groups, and some or all of the hydrogen atoms to which the carbon atoms of these groups are bonded are fluorine, chlorine, Groups substituted with halogen atoms such as bromine, cyano groups, etc., for example, chloromethyl group, 2-bromoethyl 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group Typical examples are those having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, preferably methyl, ethyl, propyl, chloromethyl An unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a group, a bromoethyl group, a 3,3,3-trifluoropropyl group, a cyanoethyl group, and an unsubstituted or substituted phenyl group, a chlorophenyl group, a fluorophenyl group, etc. A substituted phenyl group may be mentioned. Examples of R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group.
(E−2)成分:
(E−2)成分は、下記一般式(2)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。
(E-2) Component:
The component (E-2) is represented by the following general formula (2)
Is a dimethylpolysiloxane in which one end of a molecular chain represented by is blocked with a trialkoxysilyl group.
上記一般式(2)において、R4で表されるアルキル基は上記一般式(1)中のR3で表されるアルキル基と同種のものが例示される。 In the general formula (2), the alkyl group represented by R 4 is exemplified by the same type as the alkyl group represented by R 3 in the general formula (1).
(E)成分の疎水処理剤としては、(E−1)成分と(E−2)成分のいずれか一方でも両者を組み合わせても差し支えない。(E−1)成分と(E−2)成分を併用する場合は、質量比で(E−1)/(E−2)=2〜4/1〜3の割合で用いることが好ましい。(C)成分である酸化マグネシウムの疎水化処理は、酸化マグネシウムと所定量の疎水処理剤をミキサー中に、約100〜120℃で撹拌した後、約100〜150℃で乾燥させることで行われる。しかし、その処理方法はこの方法に限定されるものではない。 As the hydrophobic treatment agent for the component (E), either the component (E-1) or the component (E-2) may be combined. When using together (E-1) component and (E-2) component, it is preferable to use it by the ratio of (E-1) / (E-2) = 2-4 / 1-3 by mass ratio. The hydrophobization treatment of magnesium oxide as component (C) is performed by stirring magnesium oxide and a predetermined amount of hydrophobic treatment agent in a mixer at about 100 to 120 ° C. and then drying at about 100 to 150 ° C. . However, the processing method is not limited to this method.
疎水処理する際のその処理量は酸化マグネシウムの総質量に対して、0.05〜3.0質量%が好ましく、さらに好ましくは0.2〜2.0質量%である。処理量が0.05質量%より少ない場合、酸化マグネシウムは十分に疎水処理されず、(A)成分からなるマトリックス中に均一に分散させることができない場合がある。一方、処理量が3.0質量%を超える場合は(E)成分中のトリメトキシシリル基間で縮合が生じてしまい、処理剤としての効果が低下する場合がある。 The treatment amount in the hydrophobic treatment is preferably 0.05 to 3.0% by mass, more preferably 0.2 to 2.0% by mass, based on the total mass of magnesium oxide. When the treatment amount is less than 0.05% by mass, the magnesium oxide may not be sufficiently hydrophobically treated and may not be uniformly dispersed in the matrix composed of the component (A). On the other hand, when the treatment amount exceeds 3.0% by mass, condensation occurs between trimethoxysilyl groups in the component (E), and the effect as a treatment agent may be reduced.
[(D)硬化触媒]
(D)成分の白金属金属系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のSi−H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KaHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0〜6の整数であり、好ましくは0又は6である)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックスなどが挙げられる。
[(D) Curing catalyst]
The (D) component white metal-based curing catalyst is a catalyst for accelerating the addition reaction of the (A) component-derived alkenyl group and the (B) component-derived Si-H group, and is used for the hydrosilylation reaction. Well-known catalysts are mentioned as the catalyst to be used. Specific examples thereof include platinum group metals such as platinum (including platinum black), rhodium and palladium, H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHPtCl 6 · nH 2 O. , KaHPtCl 6 · nH 2 O, Na 2 PtCl 6 · nH 2 O, K 2 PtCl 4 · nH 2 O, PtCl 4 · nH 2 O, PtCl 2 , Na 2 HPtCl 4 · nH 2 O (where, n is an integer of 0-6, preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (see US Pat. No. 3,220,972) ), A complex of chloroplatinic acid and olefin (see US Pat. Nos. 3,159,601, 3,159,662, and 3,775,452), platinum black, Platinum group metals such as palladium On a carrier such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinate and vinyl group-containing siloxane, In particular, a complex with a vinyl group-containing cyclic siloxane may be mentioned.
(D)成分の使用量は、所謂触媒量で良く、通常、(A)成分に対する白金族金属元素の質量換算で、0.1〜1,000ppm程度が良い。 The amount of component (D) used may be a so-called catalytic amount, and is usually about 0.1 to 1,000 ppm in terms of mass of the platinum group metal element relative to component (A).
本発明の組成物には、さらに必要に応じ、下記(F)〜(H)成分を配合することができる。 The composition of the present invention can further contain the following components (F) to (H) as necessary.
[(F)表面処理剤]
表面処理剤は、組成物調製の際に(C)成分である熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的にして配合することができる。
この場合、表面処理剤としては、上記式(1)で表されるアルコキシシラン化合物、上記式(2)で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンが挙げられる。即ち、上記疎水処理剤と同じものを用いることができるが、熱伝導性充填材の疎水処理に用いたものと同一のものを使用しても、これとは異なるものを使用してもよい。
上記式(1)のアルコキシシラン化合物及び/又は式(2)のジメチルポリシロキサンを表面処理剤として用いる場合、その配合量は、(A)成分100質量部に対して0.01〜50質量部、特に0.1〜30質量部であることが好ましい。本成分の割合が多くなるとオイル分離を誘発する可能性がある。割合が少ない場合、ポリオルガノシロキサンと熱伝導性充填材の濡れ性が低下し、組成物を形成できない。
[(F) Surface treatment agent]
A surface treating agent can be mix | blended in order to disperse | distribute the heat conductive filler which is (C) component uniformly in the matrix which consists of (A) component in the case of composition preparation.
In this case, examples of the surface treatment agent include an alkoxysilane compound represented by the above formula (1) and a dimethylpolysiloxane in which a molecular chain fragment end represented by the above formula (2) is blocked with a trialkoxysilyl group. . That is, although the same thing as the said hydrophobic processing agent can be used, you may use the same thing as what was used for the hydrophobic treatment of a heat conductive filler, or a different thing from this.
When the alkoxysilane compound of the above formula (1) and / or the dimethylpolysiloxane of the formula (2) is used as a surface treatment agent, the blending amount is 0.01 to 50 parts by mass with respect to 100 parts by mass of the component (A). In particular, the content is preferably 0.1 to 30 parts by mass. Increasing the proportion of this component can induce oil separation. When the ratio is small, the wettability between the polyorganosiloxane and the heat conductive filler is lowered, and a composition cannot be formed.
[(G)オルガノポリシロキサン]
本発明の熱伝導性シリコーン組成物には、熱伝導性シリコーン組成物の粘度調整等の特性付与を目的として、(G)成分として、下記一般式(3)
で表される23℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを添加することができる。(G)成分は、1種単独で用いても、2種以上を併用してもよい。
[(G) Organopolysiloxane]
The thermal conductive silicone composition of the present invention has the following general formula (3) as the component (G) for the purpose of imparting properties such as viscosity adjustment of the thermal conductive silicone composition.
It is possible to add an organopolysiloxane having a kinematic viscosity at 23 ° C. of 10 to 100,000 mm 2 / s. (G) A component may be used individually by 1 type, or may use 2 or more types together.
上記R5は独立に非置換又は置換の炭素原子数1〜18の脂肪族不飽和結合を含まない1価炭化水素基である。R5としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基の炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられるが、特にメチル基、フェニル基が好ましい。 R 5 is independently a monovalent hydrocarbon group that does not contain an unsubstituted or substituted aliphatic unsaturated bond having 1 to 18 carbon atoms. Examples of R 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group. Alkyl groups such as dodecyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group, aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenylyl group, benzyl group, phenylethyl group, phenylpropylene Groups in which some or all of the hydrogen atoms to which the carbon atoms of these groups are bonded are substituted with halogen atoms such as fluorine, chlorine and bromine, cyano groups, etc. For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-to Fluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, etc. are mentioned. 1 to 10, particularly typical ones having 1 to 6 carbon atoms, preferably methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl Group, an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a cyanoethyl group, and an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group, and a fluorophenyl group. Groups are preferred.
上記dは要求される粘度の観点から、好ましくは5〜2,000の整数で、特に好ましくは10〜1,000の整数である。 From the viewpoint of the required viscosity, d is preferably an integer of 5 to 2,000, and particularly preferably an integer of 10 to 1,000.
また、(G)成分の25℃における動粘度は、好ましくは10〜100,000mm2/sであり、特に100〜10,000mm2/sであることが好ましい。該動粘度が10mm2/sより低いと、得られる組成物の硬化物がオイルブリードを発生しやすくなる。該動粘度が100,000mm2/sよりも大きいと、得られる熱伝導性組成の柔軟性が乏しくなりやすい。 Moreover, kinematic viscosity at 25 ° C. of component (G) is preferably 10~100,000mm 2 / s, it is preferable in particular 100~10,000mm 2 / s. When the kinematic viscosity is lower than 10 mm 2 / s, the cured product of the resulting composition tends to generate oil bleeding. When the kinematic viscosity is larger than 100,000 mm 2 / s, the flexibility of the obtained heat conductive composition tends to be poor.
(G)成分を本発明の組成物に添加するときは、その添加量は限定されず、所望の効果が得られる量であればよいが、(A)成分100質量部に対して、好ましくは0.1〜100質量部、より好ましくは1〜50質量部である。添加量がこの範囲にあると、硬化前の熱伝導性組成物の良好な流動性、作業性を維持しやすく、また(C)成分の熱伝導性充填材を組成物に充填するのが容易である。 When component (G) is added to the composition of the present invention, the amount added is not limited and may be any amount that can provide the desired effect, but is preferably 100 parts by weight of component (A). It is 0.1-100 mass parts, More preferably, it is 1-50 mass parts. When the addition amount is within this range, it is easy to maintain good fluidity and workability of the heat conductive composition before curing, and it is easy to fill the composition with the heat conductive filler of component (C). It is.
[(H)反応制御剤]
(H)成分としての付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1−エチニル−1−ヘキサノール、3−ブチン−1−オールなどのアセチレン化合物や、各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。使用量としては、有効量であり、(A)成分100質量部に対して0.01〜1質量部程度、特に0.1〜0.8質量部程度が望ましい。配合量が多すぎると硬化反応が進まず、成形効率が損なわれる場合がある。
[(H) Reaction control agent]
As the addition reaction control agent as the component (H), all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol and 3-butyn-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds. The amount used is an effective amount, and is preferably about 0.01 to 1 part by weight, particularly about 0.1 to 0.8 part by weight with respect to 100 parts by weight of component (A). If the amount is too large, the curing reaction may not proceed and the molding efficiency may be impaired.
[その他の成分]
本発明の熱伝導性シリコーン組成物には、本発明の目的及び作用効果を損なわない範囲で、更に他の成分を配合しても差し支えない。例えば、酸化鉄、酸化セリウム等の耐熱性向上剤;シリカ等の粘度調整剤;着色剤;離型剤等の任意成分を配合することができる。
[Other ingredients]
The heat conductive silicone composition of the present invention may further contain other components as long as the objects and effects of the present invention are not impaired. For example, optional components such as a heat resistance improver such as iron oxide and cerium oxide; a viscosity modifier such as silica; a colorant; and a release agent can be blended.
[組成物の粘度]
本発明の熱伝導性シリコーン組成物の粘度は、25℃において800Pa・s以下が好ましく、より好ましくは400Pa・s以下、さらに好ましくは200Pa・s以下、特に好ましくは100Pa・s以下である。粘度が高すぎると成形性が損なわれる場合がある。なお、本発明において、この粘度はB型粘度計による測定に基づく。
[Viscosity of composition]
The viscosity of the thermally conductive silicone composition of the present invention is preferably 800 Pa · s or less, more preferably 400 Pa · s or less, further preferably 200 Pa · s or less, and particularly preferably 100 Pa · s or less at 25 ° C. If the viscosity is too high, moldability may be impaired. In the present invention, this viscosity is based on measurement with a B-type viscometer.
[熱伝導性シリコーン組成物の調製方法]
本発明の熱伝導性シリコーン組成物は、上述した各成分を常法に準じて均一に混合することにより調製することができる。
[Method for Preparing Thermally Conductive Silicone Composition]
The heat conductive silicone composition of this invention can be prepared by mixing each component mentioned above uniformly according to a conventional method.
[熱伝導性シリコーン硬化物の硬化方法]
熱伝導性シリコーン組成物を成形する硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば常温でも十分硬化するが、必要に応じて加熱してもよい。好ましくは100〜120℃で8〜12分間で付加硬化させるのがよい。このような本発明の成形物は熱伝導性に優れる。
[Method of curing thermally conductive silicone cured product]
The curing conditions for molding the thermally conductive silicone composition may be the same as those of a known addition reaction curable silicone rubber composition. For example, it is sufficiently cured at room temperature, but may be heated as necessary. Preferably, the addition curing is performed at 100 to 120 ° C. for 8 to 12 minutes. Such a molded product of the present invention is excellent in thermal conductivity.
[成形体の熱伝導率]
本発明における成形体(熱伝導性シリコーン硬化物)の熱伝導率は、ホットディスク法により測定した25℃における測定値が1.5W/m・K以上であることが望ましい。熱伝導率が1.5W/m・K未満であると、発熱量の大きい発熱体への適用が不可となる。
[Thermal conductivity of molded body]
As for the thermal conductivity of the molded body (heat conductive silicone cured product) in the present invention, the measured value at 25 ° C. measured by the hot disk method is preferably 1.5 W / m · K or more. When the thermal conductivity is less than 1.5 W / m · K, application to a heating element having a large calorific value becomes impossible.
[成形体の硬度]
本発明における成形体の硬度はアスカーC硬度計で測定した25℃における測定値が40以下、好ましくは30以下、より好ましくは20以下、さらに好ましくは10以下である。硬度が40を超える場合、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことが困難になる場合がある。
[Hardness of molded body]
The hardness of the molded product in the present invention is 40 or less, preferably 30 or less, more preferably 20 or less, and even more preferably 10 or less as measured at 25 ° C. measured with an Asker C hardness meter. When the hardness exceeds 40, it may be difficult to exhibit good heat dissipation characteristics without applying stress to the heat radiating body due to deformation along the shape of the heat radiating body.
[成形体の用途]
上記成形体は、発熱性電子部品の熱境界面とヒートシンク、回路基板などの熱放散部材との界面、例えば、電子機器内の発熱部品と放熱部品の間に介装されて、発熱性電子部品からの熱を熱放散部材に伝熱し、放熱するための伝熱部材として使用することができる。
[Use of molded body]
The molded body is interposed between a heat boundary surface of a heat generating electronic component and a heat dissipating member such as a heat sink or a circuit board, for example, between a heat generating component and a heat dissipating component in an electronic device. It can be used as a heat transfer member for transferring the heat from the heat to the heat dissipation member and dissipating it.
以下に実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
下記実施例及び比較例に用いられる(A)〜(H)成分を下記に示す。
(A)成分:
下記式(5)で示されるオルガノポリシロキサン。
(式中、Xはビニル基であり、fは下記粘度を与える数である。)
(A−1)動粘度:600mm2/s
(A−2)動粘度:30,000mm2/s
The components (A) to (H) used in the following examples and comparative examples are shown below.
(A) component:
Organopolysiloxane represented by the following formula (5).
(In the formula, X is a vinyl group, and f is a number giving the following viscosity.)
(A-1) Kinematic viscosity: 600 mm 2 / s
(A-2) Kinematic viscosity: 30,000 mm 2 / s
(B)成分:
下記式(6)で示されるオルガノハイドロジェンポリシロキサン。
Organohydrogenpolysiloxane represented by the following formula (6).
(C)成分:
平均粒径が下記の通りである酸化マグネシウム。
(C−1):平均粒径が10μmの酸化マグネシウムの質量に対して、1.0質量%の下記(E−1)成分を添加したものをヘンシェルミキサー中、110〜120℃で反応及び乾燥を行った疎水処理粉
(C−2):平均粒径が50μmの酸化マグネシウムの質量に対して、0.5質量%の下記(E−1)成分を添加したものをヘンシェルミキサー中、110〜120℃で反応及び乾燥を行った疎水処理粉
(C−3):平均粒径が10μmの酸化マグネシウムの質量に対して、1.0質量%の下記(E−2)成分を添加したものをヘンシェルミキサー中、110〜120℃で反応及び乾燥を行った疎水処理粉
(C−4):平均粒径が50μmの酸化マグネシウムの質量に対して、0.5質量%の下記(E−2)成分を添加したものをヘンシェルミキサー中、110〜120℃で反応及び乾燥を行った疎水処理粉
(C−5):平均粒径10μmの酸化マグネシウム
(C−6):平均粒径50μmの酸化マグネシウム
(C−7):平均粒径10μmの酸化アルミニウム
(C−8):平均粒径45μmの酸化アルミニウム
(C) component:
Magnesium oxide having an average particle size as follows.
(C-1): 1.0 mass% of the following (E-1) component added to the mass of magnesium oxide having an average particle diameter of 10 μm was reacted and dried at 110 to 120 ° C. in a Henschel mixer. Hydrophobic treated powder (C-2): 0.5 mass% of the following (E-1) component added to the mass of magnesium oxide having an average particle diameter of 50 μm in a Henschel mixer Hydrophobic treated powder (C-3) which was reacted and dried at 120 ° C .: 1.0 mass% of the following (E-2) component added to the mass of magnesium oxide having an average particle diameter of 10 μm Hydrophobic-treated powder (C-4) which was reacted and dried at 110 to 120 ° C. in a Henschel mixer: 0.5 mass% of the following (E-2) based on the mass of magnesium oxide having an average particle diameter of 50 μm Henschel with added ingredients Hydrophobic-treated powder (C-5) which was reacted and dried at 110 to 120 ° C. in a Xerer: magnesium oxide (C-6) having an average particle size of 10 μm: magnesium oxide (C-7) having an average particle size of 50 μm: average Aluminum oxide (C-8) having a particle size of 10 μm: Aluminum oxide having an average particle size of 45 μm
(D)成分:
5質量%塩化白金酸2−エチルヘキサノール溶液
(D) component:
5% by mass chloroplatinic acid 2-ethylhexanol solution
(E−1)成分:
下記式(7)で示されるトリメトキシシラン。
Trimethoxysilane represented by the following formula (7).
(E−2)成分,(F)成分:
下記式(8)で示される平均重合度が30の片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。
A dimethylpolysiloxane in which one end having an average degree of polymerization of 30 represented by the following formula (8) is blocked with a trimethoxysilyl group.
(G)成分:
可塑剤として、下記式(9)で示されるジメチルポリシロキサン。
Dimethylpolysiloxane represented by the following formula (9) as a plasticizer.
(H)成分:
付加反応制御剤として、エチニルメチリデンカルビノール。
(H) component:
Ethynylmethylidenecarbinol as an addition reaction control agent.
[実施例1〜8、比較例1〜8]
実施例1〜8及び比較例1〜8において、上記(A)〜(H)成分を下記表に示す所定の量を用いて下記のように組成物を調製し、成形硬化させ、下記方法に従って組成物の成形性の確認及び反応釜の摩耗の確認を行った。また、得られた硬化物に対して下記方法に従い、熱伝導率の測定、高温高湿試験及び硬度の測定を実施した。結果を表中に併記する。
[Examples 1-8, Comparative Examples 1-8]
In Examples 1 to 8 and Comparative Examples 1 to 8, compositions (A) to (H) were prepared as described below using predetermined amounts shown in the following table, molded and cured, and according to the following method. The moldability of the composition was confirmed and the wear of the reaction kettle was confirmed. Moreover, according to the following method with respect to the obtained hardened | cured material, the measurement of the heat conductivity, the high temperature, high humidity test, and the measurement of hardness were implemented. The results are also shown in the table.
[組成物の調製]
(A)、(C)、(F)、(G)成分を下記表の実施例1〜8及び比較例1〜8に示す所定の量で加え、プラネタリーミキサーで60分間混練した。
そこに(D)、(H)成分を下記表の実施例1〜8及び比較例1〜8の所定の量で加え、さらにセパレータとの離型を促す内添離型剤として、信越化学工業(株)製のフェニル変性シリコーンオイルであるKF−54を有効量加え、さらに60分間混練した。
そこにさらに(B)成分を下記表の実施例1〜8及び比較例1〜8に示す所定の量で加え、30分間混練し、組成物を得た。
[Preparation of composition]
Components (A), (C), (F), and (G) were added in predetermined amounts shown in Examples 1 to 8 and Comparative Examples 1 to 8 in the following table, and kneaded for 60 minutes with a planetary mixer.
Therein, (D) and (H) components are added in predetermined amounts in Examples 1 to 8 and Comparative Examples 1 to 8 shown in the table below, and Shin-Etsu Chemical Co., Ltd. is used as an internal addition release agent that promotes release from the separator. An effective amount of KF-54, which is a phenyl-modified silicone oil manufactured by Co., Ltd., was added and further kneaded for 60 minutes.
The component (B) was further added in predetermined amounts shown in Examples 1 to 8 and Comparative Examples 1 to 8 in the following table, and kneaded for 30 minutes to obtain a composition.
[成形方法]
得られた組成物を60mm×60mm×6mmの金型に流し込み、プレス成形機を用いて120℃、10分間で成形した。
[Molding method]
The obtained composition was poured into a 60 mm × 60 mm × 6 mm mold and molded at 120 ° C. for 10 minutes using a press molding machine.
[評価方法]
(a)熱伝導率:
実施例1〜8及び比較例1〜8で得られた組成物を6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(TPA−501、京都電子工業(株)製の商品名)を用いて、該シートの熱伝導率を測定した。
(b)硬度:
実施例1〜8及び比較例1〜8で得られた組成物を6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。
(c)耐湿性:
実施例1〜8及び比較例1〜8で得られた硬化物に対して、85℃/85%Rhの条件で高温高湿試験を行い、200時間後の硬度をアスカーC硬度計を用いて測定した。初期の硬度は20と設定し、200時間後の硬度が22以上に上昇した場合は「無し」、硬度が21以下となった場合は「有り」と表記した。
[Evaluation method]
(A) Thermal conductivity:
The compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 8 were cured into a sheet having a thickness of 6 mm, and two sheets were used to obtain a thermal conductivity meter (TPA-501, Kyoto Electronics Industry Co., Ltd.). The thermal conductivity of the sheet was measured using a product name.
(B) Hardness:
The compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 8 were cured into a sheet having a thickness of 6 mm, and the two sheets were stacked and measured with an Asker C hardness meter.
(C) Moisture resistance:
The cured products obtained in Examples 1 to 8 and Comparative Examples 1 to 8 were subjected to a high temperature and high humidity test under the conditions of 85 ° C./85% Rh, and the hardness after 200 hours was measured using an Asker C hardness meter. It was measured. The initial hardness was set to 20. When the hardness after 200 hours increased to 22 or more, it was described as “None”, and when the hardness was 21 or less, “Present”.
(d)成形性:
得られた熱伝導性シリコーン組成物の成型の際、金型に流し込む操作に対して、問題なく操作を完了できた場合を「良好」、粘度が高すぎるため取り扱いが難しく、操作の達成が不可能であった場合を「不可」とした。
(e)反応釜の磨耗:
上記調整法に従い組成物を調整する段階で、反応釜が削れて黒色成分の混入が目視にて確認できれば「有り」、確認できなければ「無し」とした。アルミナと水酸化マグネシウムを熱伝導性充填材に用いた際の組成物は白色であるため、黒色成分の混入が鮮明で分かりやすい。
(D) Formability:
When molding the obtained heat conductive silicone composition, it is “good” when the operation can be completed without any problem with respect to the operation to be poured into the mold. When it was possible, it was set as “impossible”.
(E) Reaction kettle wear:
In the stage of adjusting the composition according to the above adjustment method, the reaction kettle was shaved and “Yes” was indicated if the black component was visually confirmed, and “No” if not confirmed. Since the composition when alumina and magnesium hydroxide are used for the thermally conductive filler is white, the black component is clearly and easily mixed.
比較例1のように疎水処理した酸化マグネシウム(マグネシア)において、10μmと50μmの粒系比率が1〜3/2〜4の範囲外であるものは、組成物の粘度が著しく増大し、成形が困難であった。比較例2のように、疎水処理酸化マグシウムの含有量が熱伝導性充填材の総質量に対して50質量%を下回る場合では、酸化アルミニウム(アルミナ)による釜の摩耗から黒色物質の混入が確認された。また、比較例3,4のように、疎水処理しない酸化マグネシウムを用いて硬化物を成形した場合、高温高湿下での硬度上昇が大きく、十分な耐湿性を示さなかった。加えて、比較例5〜8のように、(E−1)又は(E−2)成分で処理した酸化マグネシウムが50質量%未満であり、未処理の酸化マグネシウムを組み合わせて用いた場合も、成型物の耐湿性は不十分であった。 In the magnesium oxide (magnesia) that has been hydrophobically treated as in Comparative Example 1, when the particle system ratio of 10 μm and 50 μm is outside the range of 1 to 3/2 to 4, the viscosity of the composition is remarkably increased, and molding is difficult. It was difficult. When the content of hydrophobically treated magnesium oxide is less than 50% by mass with respect to the total mass of the thermally conductive filler as in Comparative Example 2, mixing of the black substance was confirmed from the wear of the kettle due to aluminum oxide (alumina). It was done. In addition, as in Comparative Examples 3 and 4, when a cured product was molded using magnesium oxide that was not subjected to hydrophobic treatment, the hardness increased greatly under high temperature and high humidity, and sufficient moisture resistance was not exhibited. In addition, as in Comparative Examples 5 to 8, the magnesium oxide treated with the component (E-1) or (E-2) is less than 50% by mass, and when untreated magnesium oxide is used in combination, The moisture resistance of the molded product was insufficient.
一方、実施例1〜8のように、疎水処理剤としての(E−1)又は(E−2)成分によって処理された粒径50μmと10μmの酸化マグネシウムを、熱伝導性充填材の総質量に対して合わせて50質量%以上用いて、さらにその含有割合を10μm/50μm=1〜3/2〜4の質量比率として組成物を構成したところ、反応釜は摩耗することなく、安定した硬化物の成型が可能であった。また、硬化物の熱伝導率は1.5W/m・K以上であり、高温高湿下での耐湿性にも優れていた。 On the other hand, as in Examples 1 to 8, magnesium oxide having a particle size of 50 μm and 10 μm treated with the component (E-1) or (E-2) as a hydrophobic treatment agent is used as the total mass of the thermally conductive filler. When the composition is configured with a content ratio of 10 μm / 50 μm = 1 to 3/2 to 4 using 50% by mass or more in total, the reaction kettle is not worn out and is stably cured. It was possible to mold things. Further, the cured product had a thermal conductivity of 1.5 W / m · K or more, and was excellent in moisture resistance under high temperature and high humidity.
Claims (10)
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍となる量、
(C)熱伝導性充填材の総質量のうち50質量%以上が疎水処理剤(E)により予め処理された酸化マグネシウムで占められる熱伝導性充填剤:200〜1,600質量部、
(D)白金族金属系硬化触媒:(A)成分に対して白金族金属元素質量換算で0.1〜1,000ppm、
を含み、疎水処理酸化マグネシウムが、
(C−1)平均粒径0.1μm以上40μm未満の酸化マグネシウムの疎水処理粉及び
(C−2)平均粒径40μm以上80μm未満の酸化マグネシウムの疎水処理粉
からなり、(C−1)及び(C−2)成分の含有割合が、質量比で(C−1)/(C−2)=1〜3/2〜4であることを特徴とする熱伝導性シリコーン組成物。 (A) Organopolysiloxane having at least two alkenyl groups in one molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: The number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 to the number of moles of alkenyl groups derived from component (A). 5.0 times the amount,
(C) Thermally conductive filler in which 50% by mass or more of the total mass of the thermally conductive filler is occupied by magnesium oxide pretreated with the hydrophobic treating agent (E): 200 to 1,600 parts by mass,
(D) Platinum group metal-based curing catalyst: 0.1 to 1,000 ppm in terms of platinum group metal element mass relative to component (A),
A hydrophobized magnesium oxide,
(C-1) a hydrophobically treated powder of magnesium oxide having an average particle size of 0.1 μm or more and less than 40 μm and (C-2) a hydrophobically treated powder of magnesium oxide having an average particle size of 40 μm or more and less than 80 μm, (C-1) and The content ratio of (C-2) component is (C-1) / (C-2) = 1-3 / 2-4 by mass ratio, The heat conductive silicone composition characterized by the above-mentioned.
(E−1)下記一般式(1):
R1 aR2 bSi(OR3)4-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜12の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物及び/又は
(E−2)下記一般式(2):
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン
であることを特徴とする請求項1記載の熱伝導性シリコーン組成物。 Hydrophobic-treated magnesium oxide was previously hydrophobized at a ratio of 0.05 to 3.0% by mass with respect to the total mass of magnesium oxide by the hydrophobic treating agent (E), and the hydrophobic treating agent (E)
(E-1) The following general formula (1):
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
And / or (E-2) the following general formula (2):
2. The thermally conductive silicone composition according to claim 1, which is a dimethylpolysiloxane in which one end of a molecular chain represented by the formula is blocked with a trialkoxysilyl group.
R1 aR2 bSi(OR3)4-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜12の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
で表される23℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを含有することを特徴とする請求項1〜4のいずれか1項記載の熱伝導性シリコーン組成物。 Further, as the component (G), the following general formula (3):
The thermally conductive silicone composition of any one of claims 1 to 4, kinematic viscosity, characterized in that it contains an organopolysiloxane 10~100,000mm 2 / s at in 23 ° C. expressed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013207023A JP6075261B2 (en) | 2013-10-02 | 2013-10-02 | Thermally conductive silicone composition and cured product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013207023A JP6075261B2 (en) | 2013-10-02 | 2013-10-02 | Thermally conductive silicone composition and cured product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015071662A true JP2015071662A (en) | 2015-04-16 |
JP6075261B2 JP6075261B2 (en) | 2017-02-08 |
Family
ID=53014275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013207023A Active JP6075261B2 (en) | 2013-10-02 | 2013-10-02 | Thermally conductive silicone composition and cured product thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6075261B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016207751A (en) * | 2015-04-17 | 2016-12-08 | 日本電信電話株式会社 | Yttrium aluminum garnet single crystal fiber waveguide and laser |
WO2017094618A1 (en) * | 2015-11-30 | 2017-06-08 | 東レ株式会社 | Resin composition, sheet-shaped molded article of same, light-emitting device using same, and method for manufacturing same |
WO2018190233A1 (en) * | 2017-04-12 | 2018-10-18 | デンカ株式会社 | Heat-conductive sheet and method for manufacturing same |
JP6431248B1 (en) * | 2017-05-31 | 2018-11-28 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive polysiloxane composition |
JP2019019227A (en) * | 2017-07-18 | 2019-02-07 | 信越化学工業株式会社 | Heat conductive silicone resin composition |
CN110234711A (en) * | 2017-01-27 | 2019-09-13 | 迈图高新材料日本合同公司 | Thermal conductivity constituent polyorganosiloxane composition |
US10590322B2 (en) | 2015-06-30 | 2020-03-17 | Shin-Etsu Chemical Co., Ltd. | Heat dissipation material |
US20200317979A1 (en) * | 2018-01-31 | 2020-10-08 | Sekisui Polymatech Co., Ltd. | Thermally conductive composition and thermally conductive molded body |
WO2021095507A1 (en) * | 2019-11-14 | 2021-05-20 | 信越化学工業株式会社 | Thermally conductive silicone composition, and thermally conductive silicone sheet |
US20210147681A1 (en) | 2016-07-22 | 2021-05-20 | Momentive Performance Materials Japan Llc | Thermally conductive polysiloxane composition |
CN112867765A (en) * | 2018-10-26 | 2021-05-28 | 信越化学工业株式会社 | Heat-conductive silicone composition and cured product thereof |
WO2021131681A1 (en) * | 2019-12-26 | 2021-07-01 | 信越化学工業株式会社 | Thermally conductive silicone resin composition |
JP2021113261A (en) * | 2020-01-17 | 2021-08-05 | 住友金属鉱山株式会社 | Filler for heat-conductive grease, heat-conductive grease, and production method of them |
JP2021113290A (en) * | 2020-01-21 | 2021-08-05 | 信越化学工業株式会社 | Heat-conductive silicone potting composition, and cured product of the same |
US11254849B2 (en) | 2015-11-05 | 2022-02-22 | Momentive Performance Materials Japan Llc | Method for producing a thermally conductive polysiloxane composition |
US11286349B2 (en) | 2016-07-22 | 2022-03-29 | Momentive Performance Materials Japan Llc | Surface treatment agent for thermally conductive polyorganosiloxane composition |
EP3988607A4 (en) * | 2019-06-24 | 2023-07-26 | Shin-Etsu Chemical Co., Ltd. | Highly thermally-conductive silicone composition and cured product thereof |
CN116547348A (en) * | 2021-08-27 | 2023-08-04 | 株式会社力森诺科 | Thermally conductive composition |
US11845869B2 (en) | 2019-06-21 | 2023-12-19 | Dow Silicones Corporation | Method for producing thixotropic curable silicone composition |
JP7577048B2 (en) | 2021-11-10 | 2024-11-01 | 信越化学工業株式会社 | Thermally conductive silicone rubber composition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63251466A (en) * | 1987-04-06 | 1988-10-18 | Shin Etsu Chem Co Ltd | Thermally conductive liquid silicone rubber composition |
JPH07292251A (en) * | 1994-03-03 | 1995-11-07 | Shin Etsu Chem Co Ltd | Heat-conductive silicone rubber composition |
JPH11199776A (en) * | 1998-01-12 | 1999-07-27 | Kyowa Chem Ind Co Ltd | Flowable thermally conductive silicone rubber composition |
JP4255287B2 (en) * | 2001-05-14 | 2009-04-15 | 東レ・ダウコーニング株式会社 | Thermally conductive silicone composition |
JP2013147600A (en) * | 2012-01-23 | 2013-08-01 | Shin-Etsu Chemical Co Ltd | Heat-conductive silicone composition and cured product thereof |
-
2013
- 2013-10-02 JP JP2013207023A patent/JP6075261B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63251466A (en) * | 1987-04-06 | 1988-10-18 | Shin Etsu Chem Co Ltd | Thermally conductive liquid silicone rubber composition |
JPH07292251A (en) * | 1994-03-03 | 1995-11-07 | Shin Etsu Chem Co Ltd | Heat-conductive silicone rubber composition |
JPH11199776A (en) * | 1998-01-12 | 1999-07-27 | Kyowa Chem Ind Co Ltd | Flowable thermally conductive silicone rubber composition |
JP4255287B2 (en) * | 2001-05-14 | 2009-04-15 | 東レ・ダウコーニング株式会社 | Thermally conductive silicone composition |
JP2013147600A (en) * | 2012-01-23 | 2013-08-01 | Shin-Etsu Chemical Co Ltd | Heat-conductive silicone composition and cured product thereof |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016207751A (en) * | 2015-04-17 | 2016-12-08 | 日本電信電話株式会社 | Yttrium aluminum garnet single crystal fiber waveguide and laser |
US10590322B2 (en) | 2015-06-30 | 2020-03-17 | Shin-Etsu Chemical Co., Ltd. | Heat dissipation material |
US11254849B2 (en) | 2015-11-05 | 2022-02-22 | Momentive Performance Materials Japan Llc | Method for producing a thermally conductive polysiloxane composition |
WO2017094618A1 (en) * | 2015-11-30 | 2017-06-08 | 東レ株式会社 | Resin composition, sheet-shaped molded article of same, light-emitting device using same, and method for manufacturing same |
CN108291090A (en) * | 2015-11-30 | 2018-07-17 | 东丽株式会社 | Resin combination, its sheet molding compound and the light-emitting device obtained using it and its manufacturing method |
KR20180088799A (en) * | 2015-11-30 | 2018-08-07 | 도레이 카부시키가이샤 | Resin composition, its sheet-like molded article, and light emitting device using the same and method of manufacturing the same |
KR102460162B1 (en) * | 2015-11-30 | 2022-10-31 | 도레이 카부시키가이샤 | Resin composition, sheet-like molded product thereof, light emitting device using same, and manufacturing method thereof |
CN108291090B (en) * | 2015-11-30 | 2021-04-02 | 东丽株式会社 | Resin composition, sheet-shaped molded article thereof, light-emitting device using same, and method for producing same |
US11118056B2 (en) | 2016-07-22 | 2021-09-14 | Momentive Performance Materials Japan Llc | Thermally conductive polysiloxane composition |
US11286349B2 (en) | 2016-07-22 | 2022-03-29 | Momentive Performance Materials Japan Llc | Surface treatment agent for thermally conductive polyorganosiloxane composition |
US20210147681A1 (en) | 2016-07-22 | 2021-05-20 | Momentive Performance Materials Japan Llc | Thermally conductive polysiloxane composition |
CN110234711B (en) * | 2017-01-27 | 2022-02-11 | 迈图高新材料日本合同公司 | Thermally conductive silicone composition |
CN110234711A (en) * | 2017-01-27 | 2019-09-13 | 迈图高新材料日本合同公司 | Thermal conductivity constituent polyorganosiloxane composition |
CN110383963A (en) * | 2017-04-12 | 2019-10-25 | 电化株式会社 | Heat conductive sheet and its manufacturing method |
JPWO2018190233A1 (en) * | 2017-04-12 | 2020-02-20 | デンカ株式会社 | Thermal conductive sheet and method for producing the same |
CN110383963B (en) * | 2017-04-12 | 2021-09-28 | 电化株式会社 | Thermal conductive sheet |
JP2022141720A (en) * | 2017-04-12 | 2022-09-29 | デンカ株式会社 | Thermally conductive sheet and method for manufacturing the same |
JP7387823B2 (en) | 2017-04-12 | 2023-11-28 | デンカ株式会社 | Thermal conductive sheet and its manufacturing method |
WO2018190233A1 (en) * | 2017-04-12 | 2018-10-18 | デンカ株式会社 | Heat-conductive sheet and method for manufacturing same |
WO2018221637A1 (en) * | 2017-05-31 | 2018-12-06 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive polysiloxane composition |
KR102494258B1 (en) | 2017-05-31 | 2023-01-31 | 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 | Thermally conductive polysiloxane composition |
US11359124B2 (en) | 2017-05-31 | 2022-06-14 | Momentive Performance Materials Japan Llc | Thermally conductive polysiloxane composition |
JP6431248B1 (en) * | 2017-05-31 | 2018-11-28 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive polysiloxane composition |
KR20200016262A (en) * | 2017-05-31 | 2020-02-14 | 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 | Thermally Conductive Polysiloxane Compositions |
CN110719939A (en) * | 2017-05-31 | 2020-01-21 | 迈图高新材料日本合同公司 | Thermally conductive silicone composition |
CN110719939B (en) * | 2017-05-31 | 2022-02-18 | 迈图高新材料日本合同公司 | Thermally conductive silicone composition |
JP2019019227A (en) * | 2017-07-18 | 2019-02-07 | 信越化学工業株式会社 | Heat conductive silicone resin composition |
US11781052B2 (en) * | 2018-01-31 | 2023-10-10 | Sekisui Polymatech Co., Ltd. | Thermally conductive composition and thermally conductive molded body |
US20200317979A1 (en) * | 2018-01-31 | 2020-10-08 | Sekisui Polymatech Co., Ltd. | Thermally conductive composition and thermally conductive molded body |
CN112867765A (en) * | 2018-10-26 | 2021-05-28 | 信越化学工业株式会社 | Heat-conductive silicone composition and cured product thereof |
US20210355363A1 (en) * | 2018-10-26 | 2021-11-18 | Shin-Etsu Chemical Co., Ltd. | Thermal conductive silicone composition and cured product thereof |
CN112867765B (en) * | 2018-10-26 | 2023-04-14 | 信越化学工业株式会社 | Heat-conductive silicone composition and cured product thereof |
US11845869B2 (en) | 2019-06-21 | 2023-12-19 | Dow Silicones Corporation | Method for producing thixotropic curable silicone composition |
EP3988607A4 (en) * | 2019-06-24 | 2023-07-26 | Shin-Etsu Chemical Co., Ltd. | Highly thermally-conductive silicone composition and cured product thereof |
JP7136065B2 (en) | 2019-11-14 | 2022-09-13 | 信越化学工業株式会社 | THERMALLY CONDUCTIVE SILICONE COMPOSITION AND THERMALLY CONDUCTIVE SILICONE SHEET |
JP2021080311A (en) * | 2019-11-14 | 2021-05-27 | 信越化学工業株式会社 | Thermally conductive silicone composition and thermally conductive silicone sheet |
WO2021095507A1 (en) * | 2019-11-14 | 2021-05-20 | 信越化学工業株式会社 | Thermally conductive silicone composition, and thermally conductive silicone sheet |
CN114729193B (en) * | 2019-11-14 | 2023-08-22 | 信越化学工业株式会社 | Thermally conductive silicone composition and thermally conductive silicone sheet |
CN114729193A (en) * | 2019-11-14 | 2022-07-08 | 信越化学工业株式会社 | Thermally conductive silicone composition and thermally conductive silicone sheet |
CN114901756B (en) * | 2019-12-26 | 2023-05-23 | 信越化学工业株式会社 | Thermally conductive silicone resin composition, cured product, and thermally conductive silicone heat-dissipating sheet |
CN114901756A (en) * | 2019-12-26 | 2022-08-12 | 信越化学工业株式会社 | Thermally conductive silicone resin composition |
WO2021131681A1 (en) * | 2019-12-26 | 2021-07-01 | 信越化学工業株式会社 | Thermally conductive silicone resin composition |
JP2021105116A (en) * | 2019-12-26 | 2021-07-26 | 信越化学工業株式会社 | Heat conductive silicone resin composition |
JP2021113261A (en) * | 2020-01-17 | 2021-08-05 | 住友金属鉱山株式会社 | Filler for heat-conductive grease, heat-conductive grease, and production method of them |
JP7467925B2 (en) | 2020-01-17 | 2024-04-16 | 住友金属鉱山株式会社 | Filler for thermally conductive grease, thermally conductive grease, and manufacturing method thereof |
JP7306278B2 (en) | 2020-01-21 | 2023-07-11 | 信越化学工業株式会社 | Thermally conductive silicone potting composition and cured product thereof |
JP2021113290A (en) * | 2020-01-21 | 2021-08-05 | 信越化学工業株式会社 | Heat-conductive silicone potting composition, and cured product of the same |
CN116547348A (en) * | 2021-08-27 | 2023-08-04 | 株式会社力森诺科 | Thermally conductive composition |
JP7577048B2 (en) | 2021-11-10 | 2024-11-01 | 信越化学工業株式会社 | Thermally conductive silicone rubber composition |
Also Published As
Publication number | Publication date |
---|---|
JP6075261B2 (en) | 2017-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6075261B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP5664563B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP5304588B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP5418298B2 (en) | Thermally conductive silicone composition and cured product thereof | |
TWI822954B (en) | Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material | |
JP7033047B2 (en) | Thermally conductive silicone composition and its cured product | |
JP7082563B2 (en) | Cured product of thermally conductive silicone composition | |
JP7285231B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP7136065B2 (en) | THERMALLY CONDUCTIVE SILICONE COMPOSITION AND THERMALLY CONDUCTIVE SILICONE SHEET | |
JP2021195478A (en) | Heat-conductive silicone composition, cured product thereof, and heat radiation sheet | |
JP7485634B2 (en) | Thermally conductive silicone composition and cured product thereof | |
TWI813738B (en) | Thermally conductive silicon oxide composition and its hardened product | |
JP7165647B2 (en) | Thermally conductive silicone resin composition | |
JP7530864B2 (en) | Thermally conductive silicone composition | |
JP7496800B2 (en) | Thermally conductive silicone composition and cured product thereof | |
JP2023049417A (en) | Method for producing heat conductive silicone composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161226 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6075261 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |