JP2015070667A - Closed type switchgear - Google Patents

Closed type switchgear Download PDF

Info

Publication number
JP2015070667A
JP2015070667A JP2013201458A JP2013201458A JP2015070667A JP 2015070667 A JP2015070667 A JP 2015070667A JP 2013201458 A JP2013201458 A JP 2013201458A JP 2013201458 A JP2013201458 A JP 2013201458A JP 2015070667 A JP2015070667 A JP 2015070667A
Authority
JP
Japan
Prior art keywords
resistance film
linear resistance
film
insulator
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201458A
Other languages
Japanese (ja)
Inventor
野嶋 健一
Kenichi Nojima
健一 野嶋
佐藤 正幸
Masayuki Sato
正幸 佐藤
孝倫 安岡
Takamichi Yasuoka
孝倫 安岡
栄仁 松崎
Sakahito Matsuzaki
栄仁 松崎
雅文 武井
Masafumi Takei
雅文 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013201458A priority Critical patent/JP2015070667A/en
Publication of JP2015070667A publication Critical patent/JP2015070667A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain excellent non-linear resistance characteristics by providing a non-linear resistance film on an insulator supporting a high-voltage circuit instead of a lightning arrester and prescribing a film thickness dimension of this non-linear resistance film, and thereby, to restrict a high-frequency overvoltage while achieving reduction in insulation dimension and reduction in cost.SOLUTION: A non-linear resistance film 14 is applied on a surface of an insulator 19 continuously to a high-voltage conductor and a grounded sealed container. A film thickness dimension of the non-linear resistance film 14 is within 1.5 times a maximum particle diameter of MOV powder 15 of particles formed of a non-linear resistance material. Therefore, the MOV powder 15 is less likely to be joined in the thickness direction of the non-linear resistance film 14, and a shortest length of the conductive path is almost the same as a creepage length of the non-linear resistance film 14. Accordingly, the shortest length of the conductive path can be decided on the basis of the creepage length of the non-linear resistance film 14, and an operation voltage value and a withstanding voltage value of the non-linear resistance film 14 can be easily adjusted.

Description

本発明の実施形態は、高周波過電圧の抑制を図る密閉型開閉装置に関する。   FIELD Embodiments described herein relate generally to a hermetic switchgear that suppresses high-frequency overvoltage.

近年、変電設備用の電力機器のコンパクト化が進んでいる。そのため、電力機器の絶縁寸法は縮小化する傾向にあり、電力機器の信頼性をより高めることが要請されている。特に、重要な電力機器の一つである密閉型開閉装置においては、急峻波過電圧に対する信頼性の向上が求められている。密閉型開閉装置は、絶縁物にて支持した高電圧導体を密閉容器内部に配置し、密閉容器内部に絶縁性ガスを封入した電力機器である。   In recent years, power equipment for substation facilities is becoming more compact. For this reason, the insulation dimensions of power devices tend to be reduced, and there is a demand for further improving the reliability of power devices. In particular, a hermetic switchgear that is one of important power devices is required to improve reliability against steep wave overvoltage. The hermetic switchgear is a power device in which a high-voltage conductor supported by an insulator is disposed inside a hermetic container and an insulating gas is sealed inside the hermetic container.

急峻波過電圧に対する信頼性の向上を図るためには、急峻波過電圧である雷過電圧や高周波過電圧を制限することが重要である。具体的には、雷過電圧から電力機器を保護する目的で、変電所には避雷器が設置されている。変電所における避雷器の設置位置について図10を参照して説明する。   In order to improve the reliability against the steep wave overvoltage, it is important to limit the lightning overvoltage and the high frequency overvoltage that are the steep wave overvoltage. Specifically, lightning arresters are installed at substations for the purpose of protecting power equipment from lightning overvoltage. The installation position of the lightning arrester in the substation will be described with reference to FIG.

図10に示すように、落雷等によって雷過電圧2が送電線1に発生した場合、雷過電圧2はブッシング3を介して変電所の母線4へ侵入する。雷過電圧2の周波数は数100kHz程度の領域にあり、雷過電圧2の波長は変電所の寸法に比べて大きい。そのため、避雷器6は通常、送電線1に接続される変電所の入り口や、重要機器である変圧器5の近傍に設置されている。   As shown in FIG. 10, when a lightning overvoltage 2 occurs in the transmission line 1 due to a lightning strike or the like, the lightning overvoltage 2 enters the bus 4 of the substation via the bushing 3. The frequency of lightning overvoltage 2 is in the region of several hundred kHz, and the wavelength of lightning overvoltage 2 is larger than the dimensions of the substation. Therefore, the lightning arrester 6 is usually installed near the entrance of a substation connected to the power transmission line 1 or the transformer 5 which is an important device.

このような位置に設置された避雷器6により、変電所全体の過電圧の大きさを、LIWV以下である避雷器の保護レベル7にまで制限することができる。また、避雷器6は変電所の入り口や変圧器5近傍に設置するだけなので、その設置数が少なくて済み、コスト的にも有利である。   With the lightning arrester 6 installed in such a position, the magnitude of the overvoltage of the entire substation can be limited to the lightning arrester protection level 7 which is LIWV or less. Further, since the lightning arrester 6 is only installed near the entrance of the substation or near the transformer 5, the number of installation is small, which is advantageous in terms of cost.

一方、変電所内部では密閉型開閉装置が動作した場合に、急峻波過電圧である高周波過電圧が発生する。図11に示すように、密閉型開閉装置8が動作して放電10が起きると、高電圧回路9において高周波過電圧が発生する。高周波過電圧は高電圧回路9における回路の静電容量11(開閉装置8の両側にある)しか持たない。そのため、高周波過電圧のエネルギーは雷過電圧2のエネルギーと比べて著しく小さい。   On the other hand, when a closed switchgear operates inside a substation, a high frequency overvoltage that is a steep wave overvoltage is generated. As shown in FIG. 11, when the hermetic switch 8 operates to generate a discharge 10, a high frequency overvoltage is generated in the high voltage circuit 9. The high frequency overvoltage has only the circuit capacitance 11 in the high voltage circuit 9 (on both sides of the switchgear 8). Therefore, the energy of the high frequency overvoltage is significantly smaller than that of the lightning overvoltage 2.

また、高周波過電圧の周波数は、前記静電容量11と、高電圧回路9のインダクタンス12とで決まる基本周波数を有しており、数MHzから数十MHzの領域といった高周波の過電圧が発生する可能性がある。このような高周波過電圧の周波数は、雷過電圧2の周波数よりも1桁以上高いので、高周波過電圧の波長は変電所の寸法に比べて短くなる。したがって、高周波過電圧の電圧レベルの高さは変電所の場所ごとに大きく変化する。例えば、図12に示すように、避雷器6の設置場所から離れた高電圧回路の端部で、避雷器の保護レベル7よりも、かなり高いレベルの高周波過電圧13が発生することがある。   Further, the frequency of the high frequency overvoltage has a basic frequency determined by the capacitance 11 and the inductance 12 of the high voltage circuit 9, and there is a possibility that a high frequency overvoltage such as an area of several MHz to several tens of MHz is generated. There is. Since the frequency of such a high frequency overvoltage is higher by one digit or more than the frequency of the lightning overvoltage 2, the wavelength of the high frequency overvoltage is shorter than the dimensions of the substation. Therefore, the voltage level of the high frequency overvoltage varies greatly depending on the location of the substation. For example, as shown in FIG. 12, a high-frequency overvoltage 13 having a considerably higher level than the protection level 7 of the lightning arrester may be generated at the end of the high voltage circuit far from the place where the lightning arrester 6 is installed.

そこで変電所の設計に際しては、事前に高周波過電圧の電圧レベルを解析検討して絶縁設計に反映させる必要があり、高周波過電圧13を制限できる位置に避雷器6を追加設置している。ただし、避雷器6の増設がコストの上昇要因となることは否めない。そのため、今後、避雷器6の追加コストを抑制しながら電力機器を一層縮小化する上で、高周波過電圧13の発生が、縮小化に対する制約条件となることが懸念されている。   Therefore, when designing a substation, it is necessary to analyze and examine the voltage level of the high frequency overvoltage in advance and reflect it in the insulation design, and a lightning arrester 6 is additionally installed at a position where the high frequency overvoltage 13 can be limited. However, it cannot be denied that the addition of the lightning arrester 6 causes an increase in cost. Therefore, in the future, there is a concern that the generation of the high-frequency overvoltage 13 may be a limiting condition for the reduction of the power equipment while further reducing the additional cost of the lightning arrester 6.

このような状況を踏まえて、避雷器の増設を回避しつつ、高周波過電圧を抑えることができる技術の開発が急務となっている。避雷器を用いることなく、電界分布を制御する技術としては、非線形抵抗膜を備えた電力機器が提案されている。例えば、特許文献1では高電圧機器の絶縁ロッドに非線形抵抗膜が設けられ、非特許文献1ではブッシングの碍子の内面に非線形抵抗膜が設けられている。   In light of this situation, there is an urgent need to develop a technology that can suppress high-frequency overvoltage while avoiding the addition of lightning arresters. As a technique for controlling the electric field distribution without using a lightning arrester, a power device including a nonlinear resistance film has been proposed. For example, in Patent Document 1, a non-linear resistance film is provided on an insulating rod of a high-voltage device, and in Non-Patent Document 1, a non-linear resistance film is provided on the inner surface of a bushing insulator.

特開2010−225532号公報JP 2010-225532 A

IEEE Electrical Insulation Magazine p.p.18-29IEEE Electrical Insulation Magazine p.p.18-29

ところで、上記従来の事例は非線形抵抗膜によってAC電圧や雷電圧といった比較的周波数の低い電圧を抑える技術であり、高周波過電圧の制限には対応していない。そこで、高周波過電圧のエネルギーで劣化しない非線形抵抗膜を備えることによって高周波過電圧を制限することが期待されている。特に、高電圧導体を支持する絶縁物の表面に非線形抵抗膜を塗布することによって、高周波過電圧を抑制することが望まれている。   By the way, the above conventional example is a technique for suppressing a voltage having a relatively low frequency such as an AC voltage or a lightning voltage by a non-linear resistance film, and does not correspond to the limitation of the high frequency overvoltage. Therefore, it is expected to limit the high frequency overvoltage by providing a non-linear resistance film that does not deteriorate with the energy of the high frequency overvoltage. In particular, it is desired to suppress high-frequency overvoltage by applying a non-linear resistance film to the surface of an insulator that supports a high-voltage conductor.

しかし、上記のニーズに応えるためには次のような課題が指摘されている。一般に、非線形抵抗材料の動作電圧値は非線形抵抗材料ごとにほぼ決まっているが、動作電圧値とは単位長さ当たりの値であって、非線形抵抗材料を用いた非線形抵抗膜全体の非直線抵抗特性を制御することは困難であった。   However, the following problems have been pointed out to meet the above needs. In general, the operating voltage value of a non-linear resistance material is almost determined for each non-linear resistance material, but the operating voltage value is a value per unit length, and the non-linear resistance of the entire non-linear resistance film using the non-linear resistance material. It was difficult to control the characteristics.

以上の問題点について詳しく述べる前に、まず非線形抵抗膜の構成について図13、図14を用いて説明する。図13に示すように、非線形抵抗膜14は、酸化亜鉛等からなる非線形抵抗特性を有する非線形抵抗材料の粒子、例えば金属酸化物バリスタ(以下、MOVとする)の粉粒体であるMOV粉15を、エポキシ等の樹脂16に充填した複合材料からなる。   Before describing the above problems in detail, first, the configuration of the nonlinear resistance film will be described with reference to FIGS. As shown in FIG. 13, the non-linear resistance film 14 is made of particles of non-linear resistance material made of zinc oxide or the like and having non-linear resistance characteristics, for example, MOV powder 15 which is a powder of a metal oxide varistor (hereinafter referred to as MOV). Is made of a composite material filled with a resin 16 such as epoxy.

非線形抵抗膜14の内部では、MOV粉15が連接して非線形抵抗導電パス(以下、単に導電パスと呼ぶ。点線で示す)17を形成する。この導電パス17によって、非線形抵抗膜14は、図14に示すような非線形抵抗特性を発揮する。すなわち、非線形抵抗膜14の抵抗値は、印加電圧が動作電圧Vthを超すと非線形的に低下することになる。   Inside the nonlinear resistance film 14, the MOV powder 15 is connected to form a nonlinear resistance conductive path (hereinafter simply referred to as a conductive path; indicated by a dotted line) 17. By the conductive path 17, the nonlinear resistance film 14 exhibits nonlinear resistance characteristics as shown in FIG. That is, the resistance value of the nonlinear resistance film 14 decreases nonlinearly when the applied voltage exceeds the operating voltage Vth.

このとき、非線形抵抗膜14全体の非線形特性である動作電圧値や耐電圧値は、導電パス17の最短長さによって支配されやすい。また、非線形抵抗膜14全体で処理できるエネルギーは、流せる電流路の数の影響を受けるので、導電パス17の数によって支配されやすい。したがって、非線形抵抗膜14の非直線抵抗特性を把握するためには、導電パス17の最短長さや数を評価することが重要である。   At this time, the operating voltage value and the withstand voltage value, which are the nonlinear characteristics of the entire nonlinear resistive film 14, are easily governed by the shortest length of the conductive path 17. In addition, the energy that can be processed by the entire nonlinear resistive film 14 is influenced by the number of current paths that can flow, and thus is easily governed by the number of conductive paths 17. Therefore, in order to grasp the nonlinear resistance characteristic of the nonlinear resistance film 14, it is important to evaluate the shortest length and number of the conductive paths 17.

非線形抵抗膜14中に混合されたMOV粉15の体積%は、非線形抵抗膜14内に含まれるMOV粉15の量によって決まるが、このMOV粉15の体積%から、非線形抵抗膜14内のある単位体積が、MOVであるかどうかの確率を決めることができる。導電パス17の最短長さを評価する場合、次のような手法がある。   The volume% of the MOV powder 15 mixed in the non-linear resistance film 14 is determined by the amount of the MOV powder 15 contained in the non-linear resistance film 14. The probability of whether the unit volume is MOV can be determined. When evaluating the shortest length of the conductive path 17, there are the following methods.

まず、非線形抵抗膜14内の任意の点をスタート点とし、そのスタート点にMOV粉15が存在するかどうかを確認する。スタート点にMOV粉15の存在が確認された場合、粒度分布で決まる確率に従って、評価されるMOV粉15の大きさがどれくらいかを求める。そして、スタート点と隣り合う点に関してMOV粉15の大きさを順次検討していく。   First, an arbitrary point in the nonlinear resistance film 14 is set as a start point, and it is confirmed whether or not the MOV powder 15 exists at the start point. When the presence of the MOV powder 15 is confirmed at the start point, the size of the MOV powder 15 to be evaluated is determined according to the probability determined by the particle size distribution. And the magnitude | size of the MOV powder 15 is examined sequentially regarding the point adjacent to a start point.

この場合、スタート点から任意の中間点までのMOV粉15の存在する場所と粒径が決まれば、非線形抵抗膜14における残りの領域のMOV粉15の量は決まり、前記中間点に隣接する点にMOV粉15が存在する確率も決まる。以上のようにして、MOV粉15の存在を検討していき、スタート点から最終点までのMOV粉15の連接の長さ、つまり導電パス17の最短長さについて評価する。   In this case, if the location and the particle size of the MOV powder 15 from the start point to an arbitrary intermediate point are determined, the amount of the MOV powder 15 in the remaining region of the non-linear resistance film 14 is determined, and the point adjacent to the intermediate point. The probability that the MOV powder 15 is present on the surface is also determined. As described above, the existence of the MOV powder 15 is examined, and the length of connection of the MOV powder 15 from the start point to the final point, that is, the shortest length of the conductive path 17 is evaluated.

ところで、図15に示すように、非線形抵抗膜14の中で、MOV粉15は立体的で不規則に存在し、MOV粉15同士の連接は3次元的に生じることが多い。MOV粉15同士の連接が3次元的であれば、MOV粉15の連接により形成される導電パス17も3次元的に形成される。このため、導電パス17の最短長さや数は、非線形抵抗膜14の表面積や体積から割り出すことができない。その結果、非線形抵抗膜14全体の動作電圧値や耐電圧値を調整することが難しく、非線形抵抗膜14の非線形特性を把握することが困難となっていた。   By the way, as shown in FIG. 15, the MOV powder 15 is three-dimensionally and irregularly present in the nonlinear resistance film 14, and the MOV powder 15 is often connected three-dimensionally. If the connection between the MOV powders 15 is three-dimensional, the conductive path 17 formed by the connection of the MOV powders 15 is also formed three-dimensionally. For this reason, the shortest length and number of the conductive paths 17 cannot be determined from the surface area or volume of the nonlinear resistance film 14. As a result, it is difficult to adjust the operating voltage value and the withstand voltage value of the entire nonlinear resistive film 14, and it is difficult to grasp the nonlinear characteristics of the nonlinear resistive film 14.

しかも、非線形抵抗膜14の沿面に対し垂直方向に多くのMOV粉15が連続して存在すると、導電パス17の沿面方向への進展に寄与しないまま、残りのMOV粉15の量を減らしてしまう。その結果、非線形抵抗膜14内の残りの体積領域でのMOV粉15の存在確率が減り、連続した導電パス17の形成確率が低下するといった不具合を招いた。   Moreover, if many MOV powders 15 are continuously present in the direction perpendicular to the creeping surface of the non-linear resistance film 14, the amount of the remaining MOV powder 15 is reduced without contributing to the progress of the conductive path 17 in the creeping direction. . As a result, the presence probability of the MOV powder 15 in the remaining volume region in the non-linear resistance film 14 is reduced, and the formation probability of the continuous conductive path 17 is lowered.

本発明の実施形態は、上記の課題を解決するために提案されたものであり、その目的は、避雷器に代えて、高電圧回路を支持する絶縁物に非線形抵抗膜を設け、この非線形抵抗膜の膜厚寸法を規定して優れた非線形抵抗特性を得ることができ、これにより絶縁寸法の縮小化とコストの低減を実現しつつ高周波過電圧を制限することが可能となる密閉型開閉装置を提供することにある。   An embodiment of the present invention has been proposed to solve the above-described problem. The object of the present invention is to provide a non-linear resistance film on an insulator that supports a high-voltage circuit instead of a lightning arrester. Providing a sealed switchgear that can limit the high-frequency overvoltage while reducing the insulation size and reducing the cost while providing excellent nonlinear resistance characteristics by regulating the film thickness dimension There is to do.

上記目的を達成するために、本発明の実施形態は、接地密閉容器の内部に絶縁物によって支持された高電圧導体を密封してなる密閉型開閉装置において、次の構成要素(a)〜(c)を備えている。
(a)前記絶縁物の表面に、前記高電圧導体及び前記接地密閉容器に連続する非線形抵抗膜を設ける。
(b)前記非線形抵抗膜は非線形抵抗特性を有する非線形抵抗材料の粒子を樹脂に充填した複合材料からなる。
(c)前記非線形抵抗膜の膜厚寸法を、前記非線形抵抗材料の粒子の最大粒子径の1.5倍以内とする。
In order to achieve the above object, an embodiment of the present invention provides a sealed switchgear in which a high-voltage conductor supported by an insulator is sealed inside a grounded sealed container, and includes the following components (a) to ( c).
(A) A non-linear resistance film continuous to the high-voltage conductor and the grounded sealed container is provided on the surface of the insulator.
(B) The nonlinear resistance film is made of a composite material in which particles of a nonlinear resistance material having nonlinear resistance characteristics are filled in a resin.
(C) The film thickness dimension of the nonlinear resistance film is within 1.5 times the maximum particle diameter of the particles of the nonlinear resistance material.

(a)は第1の実施形態の要部正面図、(b)は第1の実施形態の側面図。(A) is a principal part front view of 1st Embodiment, (b) is a side view of 1st Embodiment. 第1の実施形態に係る非線形抵抗膜の断面図。Sectional drawing of the nonlinear resistive film which concerns on 1st Embodiment. (a)は第2の実施形態の要部正面図、(b)は第2の実施形態の側面図。(A) is a principal part front view of 2nd Embodiment, (b) is a side view of 2nd Embodiment. 第2の実施形態の要部断面図。The principal part sectional view of a 2nd embodiment. 第3の実施形態における非線形抵抗膜の動作電圧を示すグラフ。The graph which shows the operating voltage of the nonlinear resistive film in 3rd Embodiment. 第3の実施形態における非線形抵抗膜の動作電圧を示すグラフ。The graph which shows the operating voltage of the nonlinear resistive film in 3rd Embodiment. (a)は第4の実施形態の要部正面図、(b)は第4の実施形態の側面図。(A) is a principal part front view of 4th Embodiment, (b) is a side view of 4th Embodiment. (a)は第5の実施形態の要部正面図、(b)は第5の実施形態の側面図。(A) is a principal part front view of 5th Embodiment, (b) is a side view of 5th Embodiment. 第6の実施形態における非線形抵抗膜の動作電圧を示すグラフ。The graph which shows the operating voltage of the nonlinear resistive film in 6th Embodiment. 従来の避雷器の設置位置を示す構成図。The block diagram which shows the installation position of the conventional lightning arrester. 密閉型開閉装置が動作した時の高周波過電圧の発生を示す構成図。The block diagram which shows generation | occurrence | production of the high frequency overvoltage when a sealing type switchgear operates. 高周波過電圧に対する避雷器の効果を説明するための構成図。The block diagram for demonstrating the effect of the lightning arrester with respect to a high frequency overvoltage. 従来の非線形抵抗膜の断面図。Sectional drawing of the conventional nonlinear resistive film. 非線形抵抗特性を示すグラフ。The graph which shows a nonlinear resistance characteristic. 従来の非線形抵抗膜の断面図。Sectional drawing of the conventional nonlinear resistive film.

以下、本発明の実施形態に係る密閉型開閉装置について、図面を参照して説明する。下記の実施形態はいずれも、接地密閉容器の内部に絶縁物によって支持された高電圧導体を密封してなる密閉型開閉装置である。非線形抵抗膜の構成は図10に示した非線形抵抗膜と基本的に同様であり、同一部分に関しては同一符号を付して説明は省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a hermetic switchgear according to an embodiment of the present invention will be described with reference to the drawings. Each of the following embodiments is a hermetic switchgear in which a high-voltage conductor supported by an insulator is sealed inside a grounded hermetic container. The configuration of the nonlinear resistance film is basically the same as that of the nonlinear resistance film shown in FIG.

(1)第1の実施形態
[構成]
本発明の第1の実施形態について図1を用いて説明する。図1において(a)は第1の実施形態の要部正面図、(b)は第1の実施形態の側面図である。図1に示すように、第1の実施形態に係る密閉型開閉装置には、内部に絶縁性ガスを封入した接地密閉容器18が設けられている。
(1) First Embodiment [Configuration]
A first embodiment of the present invention will be described with reference to FIG. In FIG. 1, (a) is a front view of the main part of the first embodiment, and (b) is a side view of the first embodiment. As shown in FIG. 1, the hermetic switchgear according to the first embodiment is provided with a grounded hermetic container 18 in which an insulating gas is sealed.

接地密閉容器18の内部には、接地密閉容器18の軸方向に延びる高電圧導体20が配置されている。高電圧導体20には円盤状の絶縁物19が取り付けられており、この絶縁物19によって高電圧導体20が接地密閉容器18に支持されている。絶縁物19は円盤状の中心部に開口部が設けられており、この開口部に高電圧導体20が挿入されている。また、絶縁物19の外縁部が接地密閉容器18の内壁に固定されている。   A high voltage conductor 20 extending in the axial direction of the grounded sealed container 18 is disposed inside the grounded sealed container 18. A disk-shaped insulator 19 is attached to the high voltage conductor 20, and the high voltage conductor 20 is supported by the grounded sealed container 18 by the insulator 19. The insulator 19 is provided with an opening at the center of the disk shape, and the high voltage conductor 20 is inserted into the opening. Further, the outer edge portion of the insulator 19 is fixed to the inner wall of the grounded sealed container 18.

絶縁物19の表面には、高電圧導体20と接地密閉容器18とに連続して非線形抵抗膜14が塗布されている。図2に示すように、非線形抵抗膜14は、膜厚寸法(図2の左右方向)が、非線形抵抗膜14に充填された非線形抵抗材料の粒子であるMOV粉15の最大粒子径の1.5倍以内となるように構成されている。   On the surface of the insulator 19, the non-linear resistance film 14 is continuously applied to the high voltage conductor 20 and the grounded sealed container 18. As shown in FIG. 2, the non-linear resistance film 14 has a film thickness dimension (left-right direction in FIG. 2) of 1. mm which is the maximum particle diameter of the MOV powder 15 which is particles of non-linear resistance material filled in the non-linear resistance film 14. It is configured to be within 5 times.

[作用及び効果]
以上の構成を有する第1の実施形態では、運転電圧が常に非線形抵抗膜14に印加されるため、非線形抵抗膜14は運転電圧に対する耐電圧信頼性を確保しなくてはならない。そこで非線形抵抗膜14における非線形抵抗特性の動作電圧値に関しては、AC漏れ電流を小さくし且つ高周波過電圧印加時には低抵抗になって高周波過電圧値を制限するレベルに調整する必要がある。
[Action and effect]
In the first embodiment having the above configuration, since the operating voltage is always applied to the nonlinear resistance film 14, the nonlinear resistance film 14 must ensure withstand voltage reliability with respect to the operating voltage. Therefore, the operating voltage value of the non-linear resistance characteristic in the non-linear resistance film 14 needs to be adjusted to a level that limits the high-frequency overvoltage value by reducing the AC leakage current and lowering the resistance when the high-frequency overvoltage is applied.

図15に示した従来の事例では、非線形抵抗膜14の膜厚寸法がMOV粉15の径に比べて十分に厚く、導電パス17は3次元的に形成されるので、導電パス17は3次元的に形成されてしまい、導電パス17の最短長さを、非線形抵抗膜14の形状から求めることは困難であった。   In the conventional case shown in FIG. 15, the film thickness dimension of the non-linear resistance film 14 is sufficiently thicker than the diameter of the MOV powder 15, and the conductive path 17 is formed three-dimensionally. Thus, it is difficult to obtain the shortest length of the conductive path 17 from the shape of the nonlinear resistance film 14.

特に、導電パス17が非線形抵抗膜14において3次元的に形成されることで、MOV粉15は、非線形抵抗膜14の沿面方向ではなく、沿面に対して垂直な厚さ方向に、連続して存在し易くなる。したがって、導電パス17は沿面方向へ進展し難く、そのような状況の中で残りのMOV粉15の量を減っていく。その結果、非線形抵抗膜14内の残りの体積領域でのMOV粉15の存在確率が減り、連続した導電パス17の形成確率が低下した。   In particular, since the conductive path 17 is three-dimensionally formed in the nonlinear resistance film 14, the MOV powder 15 is not continuously in the creeping direction of the nonlinear resistance film 14 but continuously in the thickness direction perpendicular to the creeping surface. It tends to exist. Therefore, the conductive path 17 hardly progresses in the creeping direction, and the amount of the remaining MOV powder 15 is reduced in such a situation. As a result, the existence probability of the MOV powder 15 in the remaining volume region in the nonlinear resistance film 14 is reduced, and the formation probability of the continuous conductive path 17 is reduced.

これに対して、第1の実施形態では、非線形抵抗膜14の膜厚寸法を、MOV粉15の径の1.5倍よりも薄くしたことで、図2に示すように、MOV粉15は、非線形抵抗膜14の厚さ方向に連接され難くなる。このため、導電パス17は3次元的ではなく、2次元的に形成される。   On the other hand, in the first embodiment, the film thickness dimension of the non-linear resistance film 14 is made thinner than 1.5 times the diameter of the MOV powder 15, so that the MOV powder 15 is as shown in FIG. Therefore, it is difficult to connect the nonlinear resistance film 14 in the thickness direction. For this reason, the conductive path 17 is formed two-dimensionally, not three-dimensionally.

すなわち、本実施形態では、非線形抵抗膜14の膜厚寸法を、MOV粉15の最大粒径の1.5倍以内としたことで、最大粒径近辺の大きさのMOV粉15が、万が一、非線形抵抗膜14の沿面と垂直な厚さ方向にずれて連接したとしても、MOV粉15の中心が沿面方向にずれて、かならず導電パス17の沿面方向への進展に寄与することになり、連続した導電パス17の形成確率が上昇した。しかも、本実施形態では、非線形抵抗膜14の膜厚寸法を決める際、MOV粉15の最大粒径を基準としたので、MOV粉15の体積は大きく、導電パス17の形成確率の向上への影響を高めることができる。   That is, in this embodiment, the film thickness dimension of the non-linear resistance film 14 is within 1.5 times the maximum particle size of the MOV powder 15, so that the MOV powder 15 having a size near the maximum particle size is Even if the MOV powder 15 is shifted and connected in the thickness direction perpendicular to the creeping surface of the nonlinear resistance film 14, the center of the MOV powder 15 is shifted in the creeping direction, which contributes to the progress of the conductive path 17 in the creeping direction. The probability of forming the conductive path 17 increased. Moreover, in the present embodiment, when determining the film thickness dimension of the nonlinear resistance film 14, the maximum particle size of the MOV powder 15 is used as a reference, so that the volume of the MOV powder 15 is large and the formation probability of the conductive path 17 is improved. The impact can be increased.

このような非線形抵抗膜14においては、導電パス17の最短長さを非線形抵抗膜14の沿面長とほぼ等しくすることが可能である。その結果、導電パス17の最短長さを、非線形抵抗膜14の沿面長に基づいて簡単に決めることができ、導電パス17の最短長さから影響を受ける非線形抵抗膜14の動作電圧値や耐電圧値の調整が容易となる。   In such a nonlinear resistance film 14, the shortest length of the conductive path 17 can be made substantially equal to the creeping length of the nonlinear resistance film 14. As a result, the shortest length of the conductive path 17 can be easily determined based on the creeping length of the non-linear resistance film 14, and the operating voltage value and resistance to resistance of the non-linear resistance film 14 affected by the shortest length of the conductive path 17 can be determined. The voltage value can be easily adjusted.

上記の非線形抵抗膜14によれば、運転電圧に対する抵抗値を高く保ってAC漏れ電流を確実に小さくすると同時に、高周波過電圧印加時には低抵抗になって高周波過電圧13を確実に抑えることができる。これにより、非線形抵抗膜14を設けた絶縁物19の絶縁信頼性は大幅に向上する。   According to the nonlinear resistance film 14, the resistance value with respect to the operating voltage is kept high to reliably reduce the AC leakage current, and at the same time, when the high frequency overvoltage is applied, the resistance becomes low and the high frequency overvoltage 13 can be reliably suppressed. Thereby, the insulation reliability of the insulator 19 provided with the nonlinear resistance film 14 is greatly improved.

以上のような第1の実施形態では、避雷器16に代えて、非線形抵抗膜14を設けた絶縁物19を密閉型開閉装置の内部に複数配置することにより、変電所全体の絶縁信頼性を確保することができる。しかも、避雷器16の増設を回避することでコストを低減することが可能であり、避雷器の追加コストを抑制しながら、密閉型開閉装置の更なる縮小化を寄与することができる。   In the first embodiment as described above, the insulation reliability of the entire substation is ensured by arranging a plurality of insulators 19 provided with the non-linear resistance film 14 inside the hermetic switchgear instead of the lightning arrester 16. can do. Moreover, it is possible to reduce the cost by avoiding the addition of the lightning arrester 16, and it is possible to contribute to further downsizing of the hermetic switchgear while suppressing the additional cost of the lightning arrester.

(2)第2の実施形態
[構成]
図3、図4を用いて第2の実施形態を説明する。第2の実施形態は、絶縁物19上の表面には半径方向に4本の溝部21が所定のカーブを持って螺旋状に形成されている。溝部21は断面が長方形である(図4参照)。第2の実施形態では溝部21を満たすようにして非線形抵抗膜14が塗られている。溝部21は、高電圧導体20に接する絶縁物19の中心側の端部から、接地密閉容器18に接する絶縁物19の外縁側の端部まで、形成されている。そのため、非線形抵抗膜14は高電圧導体20と接地密閉容器18に連続して設けられる。
(2) Second Embodiment [Configuration]
The second embodiment will be described with reference to FIGS. In the second embodiment, four grooves 21 are formed in a spiral shape on the surface of the insulator 19 with a predetermined curve in the radial direction. The groove 21 has a rectangular cross section (see FIG. 4). In the second embodiment, the nonlinear resistance film 14 is applied so as to fill the groove 21. The groove portion 21 is formed from the end portion on the center side of the insulator 19 in contact with the high voltage conductor 20 to the end portion on the outer edge side of the insulator 19 in contact with the grounded sealed container 18. Therefore, the non-linear resistance film 14 is continuously provided on the high voltage conductor 20 and the grounded sealed container 18.

溝部21の深さ寸法は、MOV粉15の最大粒子径の1.5倍以内となるように構成されている。溝部21の幅寸法は、MOV粉15の最大粒子径以上であればよく、非線形抵抗膜14を均一に塗布できる幅であれば、塗布する非線形抵抗材料の粘性に応じて適宜変更してよい。また、溝21の本数は4本に限らず非線形抵抗膜14が処理するサージエネルギーに応じて任意に選択することができる。   The depth dimension of the groove portion 21 is configured to be within 1.5 times the maximum particle diameter of the MOV powder 15. The width dimension of the groove part 21 should just be more than the largest particle diameter of the MOV powder 15, and if it is the width | variety which can apply | coat the nonlinear resistance film 14 uniformly, you may change suitably according to the viscosity of the nonlinear resistance material to apply | coat. The number of grooves 21 is not limited to four, and can be arbitrarily selected according to the surge energy processed by the nonlinear resistance film 14.

[作用及び効果]
上記のような第2の実施形態では、非線形抵抗膜14を高電圧導体20と接地密閉容器18とに連続して塗布している。非線形抵抗膜14は、MOV粉15の最大粒子径の1.5倍以内の深さの溝部21に塗布されるため、非線形抵抗膜14の膜厚寸法はMOV粉15の最大粒子径の1.5倍以内となる。また、溝21の長さ寸法は、非線形抵抗膜14全体が目的とする非線形抵抗特性となるよう、非線形抵抗材料の非線形特性に応じて調整可能である。
[Action and effect]
In the second embodiment as described above, the non-linear resistance film 14 is continuously applied to the high voltage conductor 20 and the grounded sealed container 18. Since the non-linear resistance film 14 is applied to the groove portion 21 having a depth within 1.5 times the maximum particle diameter of the MOV powder 15, the film thickness dimension of the non-linear resistance film 14 is 1. Within 5 times. The length dimension of the groove 21 can be adjusted according to the non-linear characteristic of the non-linear resistance material so that the entire non-linear resistance film 14 has the desired non-linear resistance characteristic.

第2の実施形態においては、溝部21の深さがMOV粉15の最大粒子径の1.5倍以内なので、この溝部21から溢れないように非線形抵抗膜14を塗るだけで、非線形抵抗膜14の膜厚寸法を、MOV粉15の最大粒子径の1.5倍以内に抑えることができる。   In the second embodiment, since the depth of the groove 21 is within 1.5 times the maximum particle diameter of the MOV powder 15, the non-linear resistance film 14 is simply applied by coating the non-linear resistance film 14 so as not to overflow the groove 21. The film thickness can be kept within 1.5 times the maximum particle size of the MOV powder 15.

このため、簡単な塗布作業で所望の膜厚寸法を持つ非線形抵抗膜14を作成することができ、MOV粉15は非線形抵抗膜14の厚さ方向への連接が構成され難くなって、非線形抵抗膜14の非線形抵抗特性の動作電圧を、溝部21の長さで調整しやすくなる。したがって、運転電圧に対する抵抗値が高くAC漏れ電流を確実に小さくことができ、且つ高周波過電圧に対しては確実に非線形抵抗特性を動作させやすくなる。   Therefore, the non-linear resistance film 14 having a desired film thickness can be formed by a simple coating operation, and the MOV powder 15 is difficult to be connected in the thickness direction of the non-linear resistance film 14, so that the non-linear resistance The operating voltage of the nonlinear resistance characteristic of the film 14 can be easily adjusted by the length of the groove 21. Therefore, the resistance value with respect to the operating voltage is high, the AC leakage current can be reliably reduced, and the non-linear resistance characteristic can be reliably operated with respect to the high frequency overvoltage.

しかも、ある程度の硬さを持つ絶縁物19を削って所望の深さの溝部21を設けるが、このような切削作業は、粘性を持つ非線形抵抗膜14の膜厚寸法を調整する作業に比べて、作業性が良好であり、高い精度で溝部21の深さを調整することが可能である。したがって、非線形抵抗膜14の膜厚寸法を高精度に調整することができ、非線形抵抗特性を高いレベルで制御することができる。   In addition, the insulator 19 having a certain degree of hardness is cut to provide a groove portion 21 having a desired depth. Such a cutting operation is compared with an operation for adjusting the film thickness dimension of the viscous nonlinear resistance film 14. The workability is good, and the depth of the groove 21 can be adjusted with high accuracy. Therefore, the film thickness dimension of the nonlinear resistance film 14 can be adjusted with high accuracy, and the nonlinear resistance characteristic can be controlled at a high level.

さらに、溝部21の形状を螺旋状にしたので、高電圧導体20から接地密閉容器18に至る非線形抵抗膜14の長さ寸法を、高い自由度で変化させることが可能であり、非線形抵抗膜14全体としての動作電界を調整しやすい。以上の結果、非線形抵抗膜14を設けた絶縁物19の絶縁信頼性が向上し、非線形抵抗膜14を設けた絶縁物19を複数配置して変電所全体の絶縁信頼性を確保することができる。   Furthermore, since the groove 21 has a spiral shape, the length of the nonlinear resistive film 14 from the high voltage conductor 20 to the grounded sealed container 18 can be changed with a high degree of freedom. It is easy to adjust the operating electric field as a whole. As a result, the insulation reliability of the insulator 19 provided with the nonlinear resistance film 14 is improved, and the insulation reliability of the entire substation can be ensured by arranging a plurality of insulators 19 provided with the nonlinear resistance film 14. .

(3)第3の実施形態
[構成]
第3の実施形態について図5、図6のグラフを参照して説明する。第3の実施形態は、接地密閉容器18の内部に絶縁物19によって支持された高電圧導体20を密封してなる密閉型開閉装置において、絶縁物19の表面に非線形抵抗膜14を密閉接地容器18に連続して塗布している。第3の実施形態の特徴は非線形抵抗膜14の動作電圧をLIWV(Lightning Impulse Withstand Voltage,雷インパルス耐電圧値)の1.2倍以上とした点にある。
(3) Third Embodiment [Configuration]
A third embodiment will be described with reference to the graphs of FIGS. The third embodiment is a sealed switchgear in which a high-voltage conductor 20 supported by an insulator 19 is sealed inside a grounded sealed container 18, and a non-linear resistance film 14 is sealed on the surface of the insulator 19. 18 is applied continuously. The feature of the third embodiment is that the operating voltage of the non-linear resistance film 14 is 1.2 times or more of LIWV (Lightning Impulse Withstand Voltage, lightning impulse withstand voltage value).

[作用及び効果]
前述したように、送電線1から変電所に侵入する雷過電圧2は、変電所入口や変圧器5近傍に設置された避雷器6によって効果的にLIWV以下に制限される。これに対して、変電所内の密閉型開閉装置8が動作した際に発生する高周波過電圧は、場所によってLIWVを越す可能性が生じる。
[Action and effect]
As described above, the lightning overvoltage 2 entering the substation from the transmission line 1 is effectively limited to LIWV or less by the lightning arrester 6 installed near the substation entrance or the transformer 5. On the other hand, the high-frequency overvoltage generated when the closed switchgear 8 in the substation operates may possibly exceed the LIWV depending on the location.

高電圧機器における高周波過電圧に対する絶縁性能は、雷過電圧に対する絶縁性能と同等以上となる場合が多い。絶縁物19に塗布する非線形抵抗膜14の動作電界をLIWV以下にすると、雷過電圧で非線形抵抗膜14が動作して雷電流が流れる可能性が生じる。雷過電圧のエネルギーは非常に大きく、非線形抵抗膜14に熱的損傷を生じる可能性が高い。そこで、非線形抵抗膜14の動作電圧をLIWVの1.2倍程度にしておくと、雷過電圧2で非線形抵抗膜14が動作することがなくなり、過大なエネルギーで非線形抵抗膜14が損傷することがなくなる。   Insulation performance against high-frequency overvoltage in high-voltage equipment is often equal to or better than insulation performance against lightning overvoltage. If the operating electric field of the non-linear resistance film 14 applied to the insulator 19 is set to LIWV or less, the non-linear resistance film 14 may operate due to lightning overvoltage, and lightning current may flow. The energy of lightning overvoltage is very large, and there is a high possibility that the nonlinear resistance film 14 is thermally damaged. Therefore, if the operating voltage of the non-linear resistance film 14 is set to about 1.2 times LIWV, the non-linear resistance film 14 will not operate at lightning overvoltage 2, and the non-linear resistance film 14 may be damaged by excessive energy. Disappear.

また、高電圧機器の高周波過電圧に対する絶縁性能は、雷過電圧2に対する絶縁性能の1.2倍程度以上となる場合が多いため、非線形抵抗膜14の動作電圧をLIWVの1.2倍程度にしておくことで、高電圧機器の絶縁性能への影響も防ぐことができる。以上述べたように、第3の実施形態においては、LIWVの1.2倍以上とした動作電圧を持つ非線形抵抗膜14を備えることにより、絶縁物19並びに変電所全体の絶縁信頼性が向上する。   In addition, since the insulation performance against high frequency overvoltage of high-voltage equipment is often about 1.2 times or more that of lightning overvoltage 2, the operating voltage of the non-linear resistance film 14 is made about 1.2 times LIWV. This can also prevent the influence on the insulation performance of high-voltage equipment. As described above, in the third embodiment, the insulation reliability of the insulator 19 and the entire substation is improved by providing the non-linear resistance film 14 having the operating voltage 1.2 times or more of LIWV. .

(4)第4の実施形態
[構成]
第4の実施形態について図7を参照して説明する。第4の実施形態は、接地密閉容器18の内部に絶縁物19によって支持された高電圧導体20を密封してなる密閉型開閉装置において、非線形抵抗膜14と高電圧導体20との間に絶縁距離22を確保した点に特徴がある。つまり、第4の実施形態では、絶縁物19の表面に、密閉接地容器18に連続した非線形抵抗膜14を塗布している。
(4) Fourth Embodiment [Configuration]
A fourth embodiment will be described with reference to FIG. The fourth embodiment is a hermetic switchgear in which a high-voltage conductor 20 supported by an insulator 19 is sealed inside a grounded hermetic container 18, and is insulated between the non-linear resistance film 14 and the high-voltage conductor 20. It is characterized in that the distance 22 is secured. That is, in the fourth embodiment, the non-linear resistance film 14 that is continuous with the sealed ground container 18 is applied to the surface of the insulator 19.

[作用及び効果]
第4の実施形態では、非線形抵抗膜14と高電圧導体20が絶縁されている。このため、高電圧導体20と密閉接地容器18との間に、直接に非線形抵抗膜14を通した電流経路が無い。したがって、通常のAC運転電圧が印加された状態で非線形抵抗膜14を通して、微小なAC漏れ電流が高電圧導体20から密閉接地容器18へ流れることが無い。漏れ電流が無くなることで、非線形抵抗膜14の劣化がなくなり、運転状態での長時間信頼性を向上することができる。
[Action and effect]
In the fourth embodiment, the nonlinear resistance film 14 and the high voltage conductor 20 are insulated. For this reason, there is no current path directly passing through the non-linear resistance film 14 between the high voltage conductor 20 and the sealed ground container 18. Therefore, a minute AC leakage current does not flow from the high-voltage conductor 20 to the sealed grounded container 18 through the non-linear resistance film 14 in a state where a normal AC operating voltage is applied. By eliminating the leakage current, the non-linear resistance film 14 is not deteriorated, and long-term reliability in the operating state can be improved.

また、エネルギーが大きい雷過電圧2は、その周波数が数100kHz程度の領域であり、密閉型開閉装置8が動作したときに発生する高周波過電圧13に比べて1桁以上低い。そのため、雷過電圧2の発生時には非線形抵抗膜14と高電圧導体20との間の静電容量23のインピーダンスは高くなり、非線形抵抗膜14には電流が流れず、雷過電圧2の過大なエネルギーによって非線形抵抗膜14が損傷を受けるおそれがない。   Further, the lightning overvoltage 2 having a large energy is in a region where the frequency is about several hundred kHz, and is one digit or more lower than the high frequency overvoltage 13 generated when the hermetic switch 8 is operated. Therefore, when the lightning overvoltage 2 occurs, the impedance of the capacitance 23 between the non-linear resistance film 14 and the high-voltage conductor 20 becomes high, and no current flows through the non-linear resistance film 14. There is no possibility that the non-linear resistance film 14 is damaged.

一方、高周波過電圧13に対しては、非線形抵抗膜14と高電圧導体20との間の静電容量23のインピーダンスが低くなり、非線形抵抗膜14に電流が流れて非線形抵抗膜14の電圧効果を確実に作用させることができる。以上のように、第4の実施形態によれば、非線形抵抗膜14を施した絶縁物19の絶縁信頼性を高く保つことができ、且つ密閉型開閉装置8を動作させたときに発生する高周波過電圧を抑制して、コンパクトで耐電圧信頼性の高い密閉型開閉装置を供給することができる。   On the other hand, for the high frequency overvoltage 13, the impedance of the capacitance 23 between the nonlinear resistance film 14 and the high voltage conductor 20 becomes low, and a current flows through the nonlinear resistance film 14, so Can act reliably. As described above, according to the fourth embodiment, the insulation reliability of the insulator 19 provided with the non-linear resistance film 14 can be kept high, and the high frequency generated when the hermetic switch 8 is operated. An overvoltage can be suppressed, and a compact closed type switchgear with high withstand voltage reliability can be supplied.

(5)第5の実施形態
[構成]
図8に用いて第5の実施形態を説明する。第5の実施形態は、接地密閉容器18の内部に絶縁物19によって支持された高電圧導体20を密封してなる密閉型開閉装置において、非線形抵抗膜14と高電圧導体20との間には絶縁距離22が確保され、絶縁物19の表面に設けた溝部21に、非線形抵抗膜14が接地密閉容器18にだけ連続して塗布されている。
(5) Fifth Embodiment [Configuration]
The fifth embodiment will be described with reference to FIG. The fifth embodiment is a hermetic switchgear in which a high-voltage conductor 20 supported by an insulator 19 is hermetically sealed inside a grounded hermetic container 18, and between the nonlinear resistance film 14 and the high-voltage conductor 20. The insulation distance 22 is secured, and the non-linear resistance film 14 is continuously applied only to the grounded sealed container 18 in the groove portion 21 provided on the surface of the insulator 19.

[作用及び効果]
第5の実施形態では、非線形抵抗膜14と高電圧導体20との間に絶縁距離22を確保したので、非線形抵抗膜14と高電圧導体20が絶縁されている。このため、高電圧導体20と接地密閉容器18との間に直接に非線形抵抗膜14を通した電流経路が無い。
[Action and effect]
In the fifth embodiment, since the insulation distance 22 is ensured between the nonlinear resistance film 14 and the high voltage conductor 20, the nonlinear resistance film 14 and the high voltage conductor 20 are insulated. For this reason, there is no current path directly passing through the non-linear resistance film 14 between the high-voltage conductor 20 and the grounded sealed container 18.

したがって、通常のAC運転電圧が印加された状態で、非線形抵抗膜14を通して微小なAC漏れ電流が高電圧導体から接地容器へ流れることが無い。これにより、非線形抵抗膜14の劣化がなくなり、運転状態での長時間信頼性が向上する。また、非線形抵抗膜14は絶縁物19に設けた溝部21に塗布されるため、非線形抵抗材料の粉末15の非線形特性に応じて溝部21の長さを調整することで非線形抵抗膜14全体の動作電圧を調整することができる。   Therefore, a minute AC leakage current does not flow from the high-voltage conductor to the ground container through the non-linear resistance film 14 in a state where a normal AC operating voltage is applied. This eliminates the deterioration of the nonlinear resistance film 14 and improves long-term reliability in the operating state. Further, since the nonlinear resistance film 14 is applied to the groove portion 21 provided in the insulator 19, the operation of the entire nonlinear resistance film 14 is adjusted by adjusting the length of the groove portion 21 according to the nonlinear characteristic of the powder 15 of the nonlinear resistance material. The voltage can be adjusted.

このような第5の実施形態では、非線形抵抗膜14の長さ寸法によって非線形抵抗特性を調整しやすい。しかも、溝部21の形状を螺旋状にしているので、高電圧導体20から接地密閉容器18に至る非線形抵抗膜14の長さ調整が容易である。以上の結果、非線形抵抗膜14の動作電圧を制御しやすくなり、非線形抵抗膜14を設けた絶縁物19により効果的な過電圧制限を実施しやすい。   In the fifth embodiment, it is easy to adjust the non-linear resistance characteristic by the length dimension of the non-linear resistance film 14. In addition, since the shape of the groove 21 is spiral, it is easy to adjust the length of the nonlinear resistive film 14 from the high voltage conductor 20 to the grounded sealed container 18. As a result, the operating voltage of the non-linear resistance film 14 can be easily controlled, and effective overvoltage limitation can be easily performed by the insulator 19 provided with the non-linear resistance film 14.

(6)第6の実施形態
[構成]
第6の実施形態について図9のグラフを参照して説明する。第6の実施形態は、接地密閉容器18の内部に絶縁物19によって支持された高電圧導体20を密封してなる密閉型開閉装置において、絶縁物19の表面には非線形抵抗膜14が密閉接地容器18に連続して塗布されている。第6の実施形態では、非線形抵抗膜14と高電圧導体20とは絶縁されている。さらに、第6の実施形態においては、非線形抵抗膜14の動作電圧はLIWV以下となるように構成されている点に特徴がある。
(6) Sixth Embodiment [Configuration]
The sixth embodiment will be described with reference to the graph of FIG. In the sixth embodiment, in a hermetic switchgear in which a high voltage conductor 20 supported by an insulator 19 is hermetically sealed in a grounded hermetic container 18, the nonlinear resistance film 14 is hermetically grounded on the surface of the insulator 19. The container 18 is continuously applied. In the sixth embodiment, the nonlinear resistive film 14 and the high voltage conductor 20 are insulated. Furthermore, the sixth embodiment is characterized in that the operation voltage of the nonlinear resistance film 14 is configured to be LIWV or less.

[作用及び効果]
送電線1を介して変電所に侵入する雷過電圧2は、変電所入り口や変圧器5近傍に設置された避雷器6によって効果的にLIWV以下に制限される。これに対して、変電所内の密閉型開閉装置8を開閉した際に発生する高周波過電圧は、変電所内の場所によってLIWVを越す可能性が生じる。
[Action and effect]
The lightning overvoltage 2 that enters the substation via the transmission line 1 is effectively limited to LIWV or less by the lightning arrester 6 installed near the entrance of the substation or the transformer 5. On the other hand, the high frequency overvoltage generated when the hermetic switch 8 in the substation is opened or closed may exceed the LIWV depending on the location in the substation.

絶縁物19の表面に高電圧導体20と接地密閉容器18と連続して非線形抵抗膜14を塗布する場合、非線形抵抗膜14の動作電界をLIWV以下にすることで、高周波過電圧をより効果的に抑制できる可能性がある。しかしながら、雷過電圧2で非線形抵抗膜14が動作して非線形抵抗膜14に雷過電圧2が流れた場合、一般に雷過電圧2のエネルギーは大きいため、非線形抵抗膜14が損傷を受ける可能性が高い。   When the non-linear resistance film 14 is applied continuously to the surface of the insulator 19 with the high-voltage conductor 20 and the grounded sealed container 18, the operating electric field of the non-linear resistance film 14 is reduced to LIWV or less, so that the high-frequency overvoltage can be more effectively reduced. There is a possibility that it can be suppressed. However, when the non-linear resistance film 14 is operated at the lightning overvoltage 2 and the lightning overvoltage 2 flows through the non-linear resistance film 14, since the energy of the lightning overvoltage 2 is generally large, there is a high possibility that the non-linear resistance film 14 is damaged.

これに対して、第6の実施形態では、非線形抵抗膜14と高電圧導体20が絶縁され、且つ適切な静電容量23で結合されている。このため、非線形抵抗膜14の動作電圧をLIWV以下にしても、周波数が比較的低い雷過電圧に対しては静電容量23のインピーダンスが大きいので、非線形抵抗膜14に大きな電流が流れることはない。   On the other hand, in the sixth embodiment, the non-linear resistance film 14 and the high-voltage conductor 20 are insulated and coupled with an appropriate capacitance 23. For this reason, even if the operating voltage of the non-linear resistance film 14 is LIWV or less, the impedance of the capacitance 23 is large for a lightning overvoltage having a relatively low frequency, so that a large current does not flow through the non-linear resistance film 14. .

周波数が雷過電圧2よりも1桁以上大きい高周波過電圧13に対しては、静電容量23のインピーダンスが低下して非線形抵抗膜14が動作し、過電圧を抑制することができる。一般に高周波過電圧13のエネルギーは小さいため、非線形抵抗膜14が損傷を受けることもない。以上の結果、非線形抵抗膜14を設けた絶縁物19の絶縁信頼性が向上する。したがって、非線形抵抗膜14を有する絶縁物19を複数配置することにより高周波過電圧を抑制することができ、変電所全体の絶縁信頼性を確保することができる。   For the high frequency overvoltage 13 whose frequency is one digit or more larger than the lightning overvoltage 2, the impedance of the capacitance 23 is lowered and the non-linear resistance film 14 operates to suppress the overvoltage. In general, since the energy of the high frequency overvoltage 13 is small, the nonlinear resistance film 14 is not damaged. As a result, the insulation reliability of the insulator 19 provided with the nonlinear resistance film 14 is improved. Therefore, by arranging a plurality of insulators 19 having the non-linear resistance film 14, high frequency overvoltage can be suppressed, and insulation reliability of the entire substation can be ensured.

(7)他の実施形態
なお、上記の実施形態は、本明細書において一例として提示したものであって、発明の範囲を限定することを意図するものではなく、その他の様々な形態で実施されることが可能である。また、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことも可能である。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(7) Other Embodiments The above embodiment is presented as an example in the present specification, and is not intended to limit the scope of the invention, and may be implemented in various other forms. Is possible. Various omissions, replacements, and changes may be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof in the same manner as included in the scope and gist of the invention.

1…送電線
2…雷過電圧
3…ブッシング
4…母線
5…変圧器
6…避雷器
7…避雷器の保護レベル
8…密閉型開閉装置
9…高電圧回路
10…放電
11…回路の静電容量
12…インダクタンス
13…高周波過電圧
14…非線形抵抗膜
15…MOV粉
16…樹脂
17…導電パス
18…接地密閉容器
19…絶縁物
20…高電圧導体
21…溝部
22…絶縁距離
23…静電容量
DESCRIPTION OF SYMBOLS 1 ... Power transmission line 2 ... Lightning overvoltage 3 ... Bushing 4 ... Bus 5 ... Transformer 6 ... Lightning arrester 7 ... Lightning arrester protection level 8 ... Sealing type switchgear 9 ... High voltage circuit 10 ... Discharge 11 ... Circuit capacitance 12 ... Inductance 13 ... High-frequency overvoltage 14 ... Nonlinear resistance film 15 ... MOV powder 16 ... Resin 17 ... Conductive path 18 ... Grounded sealed container 19 ... Insulator 20 ... High-voltage conductor 21 ... Groove 22 ... Insulation distance 23 ... Capacitance

Claims (6)

接地密閉容器の内部に絶縁物によって支持された高電圧導体を密封してなる密閉型開閉装置において、
前記絶縁物の表面に、前記高電圧導体及び前記接地密閉容器に連続して非線形抵抗膜を塗布し、
前記非線形抵抗膜は非線形抵抗特性を有する非線形抵抗材料の粒子を樹脂に充填した複合材料からなり、
前記非線形抵抗膜の膜厚寸法を、前記非線形抵抗材料の粒子の最大粒子径の1.5倍以内としたことを特徴とする密閉型開閉装置。
In a closed type switchgear in which a high voltage conductor supported by an insulator is sealed inside a grounded sealed container,
On the surface of the insulator, a non-linear resistance film is continuously applied to the high-voltage conductor and the grounded sealed container,
The nonlinear resistance film is made of a composite material in which particles of a nonlinear resistance material having nonlinear resistance characteristics are filled in a resin,
A hermetic switchgear characterized in that the film thickness dimension of the nonlinear resistance film is within 1.5 times the maximum particle diameter of the particles of the nonlinear resistance material.
前記絶縁物の表面に前記非線形抵抗膜を塗布するための溝を形成し、
前記溝の深さ寸法を前記非線形抵抗材料の粒子の最大粒子径の1.5倍以内としたことを特徴とする請求項1に記載の密閉型開閉装置。
Forming a groove for applying the nonlinear resistance film on the surface of the insulator;
2. The hermetic switch according to claim 1, wherein a depth dimension of the groove is set to be within 1.5 times a maximum particle diameter of the particles of the nonlinear resistance material.
前記絶縁物の表面に、前記接地密閉容器に連続して非線形抵抗膜を設け、
前記非線形抵抗膜と前記高電圧導体との間に絶縁距離を設けたことを特徴とする請求項1又は2に記載の密閉型開閉装置。
On the surface of the insulator, a non-linear resistance film is provided continuously to the grounded sealed container,
3. The hermetic switchgear according to claim 1, wherein an insulation distance is provided between the nonlinear resistance film and the high voltage conductor.
前記絶縁物の表面に、前記非線形抵抗膜を塗布するための溝を形成したことを特徴とする請求項3に記載の密閉型開閉装置。   4. The hermetic switchgear according to claim 3, wherein a groove for applying the nonlinear resistance film is formed on the surface of the insulator. 前記非線形抵抗膜の動作電圧をLIWV以下としたことを特徴とする請求項3又は4に記載の密閉型開閉装置。   5. The hermetic switch according to claim 3, wherein an operating voltage of the non-linear resistance film is LIWV or less. 接地密閉容器の内部に絶縁物によって支持された高電圧導体を密封してなる密閉型開閉装置において、
前記絶縁物の表面に、前記高電圧導体及び前記接地密閉容器に連続して非線形抵抗膜を塗布し、
前記非線形抵抗膜の動作電圧をLIWVの1.2倍以上としたことを特徴とする密閉型開閉装置。
In a closed type switchgear in which a high voltage conductor supported by an insulator is sealed inside a grounded sealed container,
On the surface of the insulator, a non-linear resistance film is continuously applied to the high-voltage conductor and the grounded sealed container,
The hermetic switchgear characterized in that the operating voltage of the non-linear resistance film is 1.2 times or more of LIWV.
JP2013201458A 2013-09-27 2013-09-27 Closed type switchgear Pending JP2015070667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201458A JP2015070667A (en) 2013-09-27 2013-09-27 Closed type switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201458A JP2015070667A (en) 2013-09-27 2013-09-27 Closed type switchgear

Publications (1)

Publication Number Publication Date
JP2015070667A true JP2015070667A (en) 2015-04-13

Family

ID=52836881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201458A Pending JP2015070667A (en) 2013-09-27 2013-09-27 Closed type switchgear

Country Status (1)

Country Link
JP (1) JP2015070667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162319A (en) * 2019-03-27 2020-10-01 東京電力ホールディングス株式会社 Spacer and insulating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162319A (en) * 2019-03-27 2020-10-01 東京電力ホールディングス株式会社 Spacer and insulating device
JP7235240B2 (en) 2019-03-27 2023-03-08 東京電力ホールディングス株式会社 Spacers and insulators

Similar Documents

Publication Publication Date Title
EP2747094A1 (en) Very fast transient overvoltage attenuator
JP5710080B2 (en) Gas insulated switchgear
EP2577701A1 (en) A very fast transient suppressing device
Goertz et al. Analysis of extruded HVDC cable systems exposed to lightning strokes
US20130021709A1 (en) Conductor arrangement for reducing impact of very fast transients
Moore et al. Voltage transient management for Alternating Current trains with vacuum circuit breakers
JP2015070667A (en) Closed type switchgear
US20160189858A1 (en) Transformer Arrangement For Mitigating Transient Voltage Oscillations
WO2011083772A1 (en) Arrester
JP6352782B2 (en) Insulating spacer
Adamian et al. Dependence of over-voltage level of different voltage class surge arrestors on grounding device parameters. Experimental study and simulation
JP5044345B2 (en) Switchgear
Fukano et al. Development of GIS type surge arrester applying ultra high voltage gradient ZnO element
Josephine et al. Performance of Surge Arrester Installation to Enhance Protection
WO2019123889A1 (en) Open/close device
JP5758211B2 (en) Arrester and gas-insulated electrical equipment
Abd-Allah et al. New Techniques for Disconnector Switching VFT Mitigation in GIS.
Sutherland Analysis of integral snubber circuit design for transformers in urban high rise office building
He et al. Influence of series gap structures on lightning impulse characteristics of 110-kv line metal–oxide surge arresters
KR101039147B1 (en) Protection apparatus of transformer for insulating paper
Karthik A novel analysis of voltage distribution in zinc oxide arrester using finite element method
JP2013235909A (en) Lightning arrester
Khanmiri Overvoltage and Surge Protection in Variable Frequency Drives
Abd-Allah et al. New Techniques for VFT Mitigation in GIS
CN106129989A (en) A kind of three phase combined over-voltage protector