JP5044345B2 - Switchgear - Google Patents

Switchgear Download PDF

Info

Publication number
JP5044345B2
JP5044345B2 JP2007245594A JP2007245594A JP5044345B2 JP 5044345 B2 JP5044345 B2 JP 5044345B2 JP 2007245594 A JP2007245594 A JP 2007245594A JP 2007245594 A JP2007245594 A JP 2007245594A JP 5044345 B2 JP5044345 B2 JP 5044345B2
Authority
JP
Japan
Prior art keywords
insulator
voltage
base material
volume resistivity
switchgear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007245594A
Other languages
Japanese (ja)
Other versions
JP2009077579A (en
Inventor
健一 野嶋
正幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007245594A priority Critical patent/JP5044345B2/en
Publication of JP2009077579A publication Critical patent/JP2009077579A/en
Application granted granted Critical
Publication of JP5044345B2 publication Critical patent/JP5044345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Installation Of Bus-Bars (AREA)
  • Patch Boards (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Elimination Of Static Electricity (AREA)
  • Insulating Bodies (AREA)

Description

本発明は、高電圧機器において高電圧導体を支持するのに適した絶縁物を有する遮断器等の開閉装置に関する。 The present invention relates to a switchgear such as a circuit breaker having an insulator suitable for supporting a high voltage conductor in a high voltage device.

高電圧機器においては、高電圧が印加される高電圧導体は絶縁物によって支持されて接地電位と絶縁されている。絶縁物には、印加される電圧と絶縁物の形状、材質および絶縁物周辺の電極配置とから決まる電界が印加される。   In a high voltage device, a high voltage conductor to which a high voltage is applied is supported by an insulator and insulated from a ground potential. An electric field determined by the applied voltage, the shape and material of the insulator, and the electrode arrangement around the insulator is applied to the insulator.

近年、図7に示すように、絶縁性ガス1を充填し接地された密閉容器2内に、絶縁物3を用いて支持した高電圧導体4を配置した構造からなる密閉型開閉装置が多く用いられるようになっている。このような密閉型開閉装置は、交流電圧送電系統に数多く適用されている。   In recent years, as shown in FIG. 7, a closed type switchgear having a structure in which a high voltage conductor 4 supported by an insulator 3 is arranged in a sealed container 2 filled with an insulating gas 1 and grounded is often used. It is supposed to be. Many such sealed switchgears are applied to AC voltage transmission systems.

密閉型開閉装置において、回路を開放して電流を遮断すると、電極5a,5b間に生じるアーク6によって分解ガス7が生じる。絶縁性ガス1としてSF6を用いた遮断器の場合には、SF4等の非常に活性の高い分解ガスが発生する。絶縁物3に到達した分解ガス7は、絶縁物3を構成する樹脂を劣化させたり絶縁物3に含まれる充填剤と樹脂との界面を劣化させたりして絶縁物3の絶縁性能や機械的性能を劣化させる恐れがある。 In the hermetic switchgear, when the circuit is opened to cut off the current, cracked gas 7 is generated by the arc 6 generated between the electrodes 5a and 5b. In the case of a circuit breaker using SF 6 as the insulating gas 1, a very active decomposition gas such as SF 4 is generated. The decomposition gas 7 reaching the insulator 3 deteriorates the resin constituting the insulator 3 or deteriorates the interface between the filler and the resin contained in the insulator 3 to improve the insulation performance and mechanical properties of the insulator 3. There is a risk of degrading performance.

これを防止するために、絶縁物3の表面に耐分解ガスコーティングを施す場合がある。従来の耐分解ガスコーティングは、耐分解ガス性能の高い樹脂を膜厚を厚くし且つピンホールや膜厚むらが生じないように丁寧に塗布する構成であり、材料や作業のコストの増大をもたらす要因となっている。   In order to prevent this, the surface of the insulator 3 may be provided with a decomposition-resistant gas coating. Conventional anti-decomposition gas coating is a structure in which a resin with high anti-decomposition gas performance is thickly applied and carefully applied so that pinholes and non-uniformity in film thickness do not occur, resulting in an increase in material and work costs. It is a factor.

一般に交流電圧送電系統に設けられる密閉型開閉装置は、交流電圧に対する電界分布を考慮して設計製作されるが、交流電圧送電系統に設けられた密閉型開閉装置においても直流電圧が印加される場合がある。特に、開閉装置の開放操作後には、高電圧回路に直流電圧が残留し、交流電圧用の高電圧機器にも直流電圧が長時間印加される可能性がある。   Generally, a closed type switchgear provided in an AC voltage transmission system is designed and manufactured in consideration of an electric field distribution with respect to the AC voltage, but a DC voltage is also applied to a closed type switchgear provided in an AC voltage transmission system. There is. In particular, after the opening / closing operation of the switchgear, the DC voltage remains in the high voltage circuit, and the DC voltage may be applied to the AC voltage high voltage device for a long time.

すなわち、図8に示すように、開放状態の遮断器21に隣接する断路器22を開放する場合、断路器22と遮断器21の間の回路23には、図9に示すように残留直流電圧24が発生する。特にガス絶縁高電圧機器においては、絶縁性ガスの優秀な絶縁性能に起因して残留直流電圧の減衰時間が長く、その結果交流電圧用の機器においても直流電圧が絶縁物に長時間印加されることになり、絶縁物の直流耐電圧特性が重要になる場合が生じる。ガス絶縁密閉型開閉装置においては、コスト低減のために絶縁構成の合理化や3相一括化などによる一層の縮小化が指向されている。このため運転電界は高くなる傾向にあり、その結果、残留直流電圧による直流電界も高くなって、絶縁物の直流耐電圧に対する絶縁信頼性の重要性が増す傾向にある。   That is, as shown in FIG. 8, when the disconnector 22 adjacent to the open circuit breaker 21 is opened, a residual DC voltage is applied to the circuit 23 between the disconnector 22 and the circuit breaker 21 as shown in FIG. 24 occurs. Especially in gas-insulated high-voltage equipment, the decay time of the residual DC voltage is long due to the excellent insulating performance of the insulating gas. As a result, even in equipment for AC voltage, DC voltage is applied to the insulator for a long time. As a result, the DC withstand voltage characteristics of the insulator may be important. In the gas-insulated hermetic switchgear, further downsizing is aimed at by reducing the cost by reducing the rationalization of the insulation configuration or integrating three phases. For this reason, the operating electric field tends to increase, and as a result, the DC electric field due to the residual DC voltage also increases, and the importance of the insulation reliability for the DC withstand voltage of the insulator tends to increase.

一般に、直流電圧が印加された場合の絶縁物の電界分布は、交流電圧が印加された場合とは異なる。交流電界分布のみを考慮した絶縁構成にすると、残留直流電圧によって生じる直流電界分布において思わぬ電界集中部分を生じる場合がある。特に、抵抗率の異なる絶縁物の間の界面には、残留直流電圧によって電荷が蓄積しやすく、蓄積した電荷は局所的な電界集中の原因となりやすい。   In general, the electric field distribution of an insulator when a DC voltage is applied is different from that when an AC voltage is applied. If the insulation configuration is considered in consideration of only the AC electric field distribution, an unexpected electric field concentration portion may occur in the DC electric field distribution generated by the residual DC voltage. In particular, charges are likely to accumulate due to residual DC voltage at the interface between insulators having different resistivity, and the accumulated charges tend to cause local electric field concentration.

このため、運転電界を高くする場合には、交流電圧機器においても直流電圧に対する電界分布について配慮しておくことが必要となり、電荷が蓄積し難い構成とする必要がある。交流電圧機器の絶縁設計において、交流電圧に対する電界分布だけでなく、直流電圧に対する電界分布も考慮することは、絶縁寸法の縮小を難しくし、絶縁構成の合理化や3相一括化を進める上で障害となる可能性が大きい。   For this reason, when the operating electric field is increased, it is necessary to consider electric field distribution with respect to DC voltage even in an AC voltage device, and it is necessary to have a configuration in which charges are difficult to accumulate. Considering not only the electric field distribution against AC voltage but also the electric field distribution against DC voltage in the insulation design of AC voltage equipment makes it difficult to reduce the insulation size, and is an obstacle to the rationalization of the insulation configuration and the promotion of three-phase integration. Is likely.

このように、遮断器の近傍の回路においては、分解ガスによる絶縁物の劣化や電荷蓄積を防ぐ必要がり、従来これを防ぐことが絶縁寸法やコスト低減の妨げとなっている。   As described above, in the circuit in the vicinity of the circuit breaker, it is necessary to prevent the deterioration of the insulator and the charge accumulation due to the decomposition gas. Conventionally, preventing this has hindered the reduction of the insulation size and the cost.

ところで近年、ダイヤモンドライクカーボン(DLC)膜の種々の分野への応用が進んでいる。DLC膜は、一般に、高硬度である、耐摩耗性に優れている、平面が平滑である、摩擦係数が小さい、離型性に優れている、耐薬品性・耐食性に優れている、近赤外域の透過性に優れている、絶縁性に優れている、といった特長を有している。DLC膜をプラスチックに施す技術も実用化され始めており、高いガスバリヤ特性をプラスチックにもたせる発明(特許文献1)やプラスチックテープに連続的にDLCコーティングする発明(特許文献2)がなされている。さらに、耐食性や耐プラズマ性を利用した金属へのDLCコーティングの発明(特許文献3,4)もなされている。
特開2006-82814号公報 特開2006-70238号公報 特開2004-307894号公報 特開2004-214370号公報
Recently, diamond-like carbon (DLC) films have been applied to various fields. DLC film generally has high hardness, excellent wear resistance, smooth flat surface, small friction coefficient, excellent releasability, excellent chemical resistance and corrosion resistance, near red It has features such as excellent outer permeability and excellent insulating properties. Techniques for applying a DLC film to plastic have begun to be put into practical use, and an invention for giving a high gas barrier property to a plastic (Patent Document 1) and an invention for continuously DLC coating a plastic tape (Patent Document 2) have been made. Furthermore, the invention of the DLC coating to the metal using corrosion resistance and plasma resistance (patent documents 3 and 4) has also been made.
JP 2006-82814 A JP 2006-70238 A JP 2004-307894 A JP 2004-214370 A

DLC膜の持つガスバリヤ性能や耐食性が優れるという特性を、密閉型開閉装置の遮断器と同一ユニット内の分解ガスに曝される可能性の高い絶縁物の絶縁信頼向上のために応用するためには、下記のような課題がある。   In order to improve the insulation reliability of insulators that are likely to be exposed to the decomposed gas in the same unit as the circuit breaker of a closed switchgear, the characteristics of the gas barrier performance and corrosion resistance of the DLC film are excellent. There are the following problems.

すなわちまず、実現されているDLC膜の体積抵抗率は一般に109〜1014Ωcmであるが、高電圧機器用絶縁物に効果的に適用できるのは、適切に選定された体積抵抗率のDLC膜である。通常の運転時、高電圧機器用絶縁物には商用交流電圧が印加される。DLC膜の体積抵抗率が低すぎるとDLC膜の耐電圧性能が低下して商用運転電圧で絶縁信頼性を確保し難くなる。DLC膜の体積抵抗率は、成膜時のイオン衝突エネルギーを左右する基板バイアス電圧によって変化することが知られている。バイアス電圧を変化させることによって種々の体積抵抗率のDLC膜を作成することができる。 That is, first, the volume resistivity of the realized DLC film is generally 10 9 to 10 14 Ωcm. However, the DLC film having an appropriately selected volume resistivity can be effectively applied to an insulator for high voltage equipment. It is a membrane. During normal operation, commercial AC voltage is applied to the insulator for high voltage equipment. When the volume resistivity of the DLC film is too low, the withstand voltage performance of the DLC film is lowered, and it becomes difficult to ensure insulation reliability at a commercial operating voltage. It is known that the volume resistivity of the DLC film varies depending on the substrate bias voltage that affects the ion collision energy during film formation. By changing the bias voltage, DLC films having various volume resistivity can be formed.

次に、DLC膜の一般な膜厚は10μm程度と薄い。これに対して、電力機器用絶縁物においては場合によって表面粗さが数10μm程度以上となる場合があり、高電圧機器用絶縁物の表面粗さが粗い場合には、表面の凹凸の凹部に膜の無い部分が生じて十分なガスバリヤ効果を得難い場合が生じる。   Next, the general thickness of the DLC film is as thin as about 10 μm. On the other hand, the surface roughness of the insulator for electric power equipment may be several tens of μm or more depending on the case. When the surface roughness of the insulator for high voltage equipment is rough, There may be a case where a portion without a film is generated and it is difficult to obtain a sufficient gas barrier effect.

また、DLC膜は、高硬度であるために応力によって割れを生じやすい。これに対して、高電圧機器は通電電流の変動や外気温度の変化によって温度変化を生じやすい。一般的に絶縁物の熱膨張係数はDLC膜よりも大きいため、温度変化によって基材である絶縁物とDLC膜界面に応力を生じてDLC膜に亀裂を生じやすい。亀裂が生じたDLC膜には十分なガスバリヤ性能は期待できない。   In addition, since the DLC film has a high hardness, it tends to crack due to stress. In contrast, high-voltage devices are likely to change in temperature due to fluctuations in energization current and changes in outside air temperature. In general, since the thermal expansion coefficient of an insulator is larger than that of a DLC film, stress is easily generated at the interface between the insulator and the DLC film as a base material due to temperature change, and the DLC film is likely to crack. A sufficient gas barrier performance cannot be expected for a cracked DLC film.

本発明は、上記の課題を解決するためになされたものであり、アークによって生じる分解ガスに対する耐性が高く且つ残留直流電圧を短時間で減衰させることができ高電圧機器に適した絶縁物を有する信頼性の高い開閉装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and has an insulator suitable for high-voltage equipment, which has high resistance to cracked gas generated by an arc and can attenuate residual DC voltage in a short time. An object is to provide a highly reliable switchgear.

上記課題を解決するために本発明の開閉装置は、絶縁性ガスを封入してなる密閉容器内に高電圧導体を高電圧機器用絶縁物で支持するように構成した開閉装置において、前記高電圧機器用絶縁物は、当該高電圧機器用絶縁物の基材の表面に対して当該絶縁物の基材と同程度の体積抵抗率1014〜1015Ωcmを有するダイヤモンドライクカーボン膜を設けて、アークによって生じる分解ガスに対する耐性を高くし、かつ直流印加時に前記絶縁物の基材と前記ダイヤモンドライクカーボン膜との界面に蓄積する電荷を低減させることを特徴とする。 In order to solve the above problems, the switchgear according to the present invention is a switchgear configured to support a high-voltage conductor with an insulator for high-voltage equipment in an airtight container in which an insulating gas is sealed. The device insulator is provided with a diamond-like carbon film having a volume resistivity of 10 14 to 10 15 Ωcm, which is the same as that of the base material of the insulator, on the surface of the base material of the high-voltage device insulator , It is characterized by increasing the resistance against the decomposition gas generated by the arc and reducing the charge accumulated at the interface between the insulating base material and the diamond-like carbon film when a direct current is applied .

本発明によれば、アークによって生じる分解ガスに対する耐性が高く且つ残留直流電圧を短時間で減衰させることができ高電圧機器に適した絶縁物を有する信頼性の高い開閉装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the tolerance with respect to the decomposition gas produced by an arc is high, and it can attenuate a residual DC voltage in a short time, and can provide the reliable switchgear which has the insulator suitable for a high voltage apparatus. .

以下、本発明の5つの実施の形態について、図面を参照して具体的に説明する。なお、図8に示した従来のものと同一の部材に関しては同一符号を付し説明を省略する。   Hereinafter, five embodiments of the present invention will be specifically described with reference to the drawings. The same members as those of the conventional one shown in FIG.

(第1の実施の形態)
図1は本発明の第1の実施の形態に係る絶縁物および開閉装置の構成を示す断面図である。すなわち本実施の形態は、密閉容器2内に高電圧導体4を高電圧機器用絶縁物8で支持し絶縁性ガス1を封入してなる密閉型開閉装置において、高電圧機器用絶縁物8は、GFRP(ガラス繊維強化樹脂)基材9の表面に、体積抵抗率がGFRP基材9と同程度となるように調整したDLC膜10を設けたことを構成になっている。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of an insulator and a switchgear according to the first embodiment of the present invention. That is, this embodiment is a hermetic switchgear in which the high voltage conductor 4 is supported in the hermetic container 2 by the high voltage device insulator 8 and the insulating gas 1 is sealed. The DLC film 10 having a volume resistivity adjusted to the same level as that of the GFRP base material 9 is provided on the surface of the GFRP (glass fiber reinforced resin) base material 9.

ガラス繊維の集合体にエポキシ樹脂等の樹脂を含浸して製作され優れた機械特性を有するGFRPは、高電圧機器用絶縁物として密閉型開閉装置に使用される場合がある。しかしながら、分解ガス7が存在する環境で使用する場合には、GFRP基材9を構成するガラス繊維は分解ガス7によって腐食されやすいため、耐分解ガスコーティングと組み合わせて使用される必要がある。   GFRP, which is manufactured by impregnating a glass fiber aggregate with a resin such as an epoxy resin and has excellent mechanical characteristics, may be used as an insulator for high-voltage devices in a hermetic switchgear. However, when used in an environment where the cracked gas 7 is present, the glass fibers constituting the GFRP substrate 9 are likely to be corroded by the cracked gas 7 and therefore need to be used in combination with a cracked gas coating.

耐分解ガスコーティングとGFRPとは一般に体積抵抗率が異なる。図2に示すように、一般に、体積抵抗率の異なる絶縁物11と絶縁物12を重ねた状態で直流電圧を印加すると、その界面13に電荷14が蓄積する。蓄積した電荷14は、雷インパルス電圧が印加された場合等に局所的に電界を増大させる効果を持つため、絶縁物の耐電圧性能を低下させる。GFRP基材9の表面にDLC膜10を設けた高電圧機器用絶縁物8において、絶縁物のGFRP基材9とDLC膜10の体積抵抗率をほぼ同程度にすると、直流電圧が印加された場合にGFRP基材9とDLC膜10の界面に電荷が蓄積するのを低減することができる。   Decomposition-resistant gas coating and GFRP generally differ in volume resistivity. As shown in FIG. 2, generally, when a DC voltage is applied in a state where insulators 11 and 12 having different volume resistivity are overlapped, charges 14 are accumulated at the interface 13. The accumulated electric charge 14 has the effect of locally increasing the electric field when a lightning impulse voltage is applied, etc., and therefore the withstand voltage performance of the insulator is lowered. In the insulator 8 for a high voltage device in which the DLC film 10 is provided on the surface of the GFRP base material 9, when the volume resistivity of the insulator GFRP base material 9 and the DLC film 10 is approximately the same, a DC voltage is applied. In this case, it is possible to reduce charge accumulation at the interface between the GFRP base material 9 and the DLC film 10.

高電圧機器用絶縁物が商用運転電圧にさらされる場合、一般に絶縁物の表面層の体積抵抗率が1013Ωcmよりも低くなると絶縁性能が急激に低下する。ガラス繊維に樹脂含浸したGFRPの体積抵抗率は1015Ωcm程度の場合が多い。このことから、成膜時の基材バイアス電圧等を調整して体積抵抗率が1014〜1015Ωcm程度となるように調整したDLC膜10をGFRP基材9の表面に設けて、直流印加時にDLC膜10とGFRP基材9の界面への空間電荷の蓄積を抑制し商用電圧に対する絶縁性能の低下を防いでいる。DLC膜10とGFRP基材9の体積抵抗率が近いことから、直流印加時にこれらの界面に蓄積する電荷を小さく抑えることができる。 When an insulator for high voltage equipment is exposed to a commercial operating voltage, the insulation performance generally deteriorates rapidly when the volume resistivity of the surface layer of the insulator is lower than 10 13 Ωcm. The volume resistivity of GFRP impregnated with glass fiber is often about 10 15 Ωcm. For this reason, the DLC film 10 adjusted to have a volume resistivity of about 10 14 to 10 15 Ωcm by adjusting the substrate bias voltage and the like during film formation is provided on the surface of the GFRP substrate 9 and applied with direct current. Occasionally, the accumulation of space charge at the interface between the DLC film 10 and the GFRP base material 9 is suppressed to prevent the insulation performance from being reduced with respect to the commercial voltage. Since the volume resistivity of the DLC film 10 and the GFRP base material 9 are close to each other, it is possible to suppress the charge accumulated at these interfaces when DC is applied.

その結果、耐分解ガス性能が向上し、同時に、残留直流電圧印加後に印加される可能性のある雷インパルス電圧に対しても絶縁信頼性を向上することができる。したがって本実施の形態によれば、分解ガスの存在する使用条件においても残留直流電圧に対して絶縁信頼性が高く且つ機械強度も高く高電圧機器に適した絶縁物および信頼性の高い開閉装置を提供することができる。   As a result, the decomposition gas performance is improved, and at the same time, the insulation reliability can be improved even for the lightning impulse voltage that may be applied after the residual DC voltage is applied. Therefore, according to the present embodiment, an insulating material that has high insulation reliability with respect to residual DC voltage and has high mechanical strength and is suitable for high-voltage equipment even under use conditions where cracked gas exists, and a highly reliable switchgear. Can be provided.

(第2の実施の形態)
本発明の第2の実施の形態は、図3に示すように、密閉容器2内に高電圧導体4を高電圧機器用絶縁物8aで支持し絶縁性ガス1を封入してなる密閉型開閉装置において、高電圧機器用絶縁物8aは、体積抵抗率を調整した注形品基材15の表面に、体積抵抗率がこの注形品基材15と同程度となるように調整したDLC膜10を設けた構成である。
(Second Embodiment)
As shown in FIG. 3, the second embodiment of the present invention is a hermetically opened / closed structure in which a high-voltage conductor 4 is supported by an insulator 8a for high-voltage equipment and an insulating gas 1 is enclosed in the hermetic container 2. In the apparatus, the insulator 8a for high-voltage equipment is formed on the surface of the cast product base material 15 whose volume resistivity is adjusted, and the DLC film adjusted so that the volume resistivity is approximately the same as that of the cast product base material 15 10 is provided.

エポキシ樹脂等の樹脂に熱膨張係数を小さく機械的強度を向上させるシリカ、アルミナ等の充填剤や液状ポリアミド樹脂や液状多硫化重合物等の付与剤を混合した混和物を注形してなる注形品基材15は耐熱性能や機械強度が優れるため、密閉型開閉装置に使用される場合が多い。しかしながら分解ガス7が存在する環境では、充填剤自身や、充填剤とエポキシ樹脂との界面が分解ガスによって腐食されて機械強度や表面層の絶縁抵抗が大きく低下する場合がある。絶縁物が商用運転電圧にさらされる場合、表面層の体積抵抗率が1013Ωcmよりも低くなると絶縁性能が急激に低下することが知られている。 Note: An epoxy resin or other resin is cast into an admixture of silica, alumina, or other filler that has a low coefficient of thermal expansion and improved mechanical strength, or a liquid polyamide resin or liquid polysulfide polymer. Since the shaped substrate 15 is excellent in heat resistance and mechanical strength, it is often used in a closed type switchgear. However, in an environment where the cracked gas 7 is present, the filler itself or the interface between the filler and the epoxy resin may be corroded by the cracked gas, and the mechanical strength and the insulation resistance of the surface layer may be greatly reduced. It is known that when the insulator is exposed to a commercial operating voltage, the insulation performance decreases rapidly when the volume resistivity of the surface layer is lower than 10 13 Ωcm.

一般に、充填剤入りエポキシ樹脂を用いた注形絶縁物では、液状ポリアミド樹脂や液状多硫化重合物等の付与剤を10〜20phr調整付与することで体積抵抗率を変化できることが知られており、これらの使用により、体積抵抗率を1015Ωcm程度に調整した注形品基材15とすることができる。 In general, it is known that in a cast insulator using a filled epoxy resin, the volume resistivity can be changed by adjusting and imparting an imparting agent such as a liquid polyamide resin or a liquid polysulfide polymer, such as 10 to 20 phr. By using these, it is possible to obtain a cast article base material 15 whose volume resistivity is adjusted to about 10 15 Ωcm.

本実施の形態の高電圧機器用絶縁物8aは、このように体積抵抗率を調整した注形品基材15の表面に、成膜時の基材バイアス電圧等を調整して体積抵抗率が1014〜1015Ωcm程度となるように調整したDLC膜10を設けて、直流印加時にDLC膜10と注形品基材15との界面における空間電荷の蓄積を抑制し商用電圧に対して絶縁性能が低下することを防ぐ。DLC膜10と注形品基材15との体積抵抗率が近いことから、直流印加時に界面に蓄積する電荷を小さく抑えることができる。 The insulator 8a for high voltage equipment of the present embodiment has a volume resistivity adjusted by adjusting a substrate bias voltage at the time of film formation on the surface of the cast article substrate 15 having the volume resistivity adjusted in this way. DLC film 10 adjusted to be about 10 14 to 10 15 Ωcm is provided to suppress the accumulation of space charges at the interface between DLC film 10 and cast article base 15 when DC is applied, and to insulate against commercial voltage Prevent performance degradation. Since the volume resistivity of the DLC film 10 and the cast article base material 15 is close, the charge accumulated at the interface when DC is applied can be kept small.

その結果、耐分解ガス性能を向上し、同時に、残留直流電圧印加後に印加される可能性のある雷インパルス電圧に対しても絶縁信頼性を向上することができる。したがって本実施の形態によれば、分解ガスの存在する使用条件においても残留直流電圧に対して絶縁信頼性が高く機械強度も高く高電圧機器に適した絶縁物および信頼性の高い開閉装置を提供することができる。   As a result, the decomposition gas performance can be improved, and at the same time, the insulation reliability can be improved even for the lightning impulse voltage that may be applied after the residual DC voltage is applied. Therefore, according to the present embodiment, an insulating material suitable for high-voltage equipment and a highly reliable switchgear are provided that has high insulation reliability and high mechanical strength against residual DC voltage even under the use conditions where cracked gas exists. can do.

(第3の実施の形態)
本発明の第3の実施の形態は、図4に示すように、密閉容器2内に高電圧導体4を高電圧機器用絶縁物8bで支持し絶縁性ガス1を封入してなる密閉型開閉装置において、高電圧機器用絶縁物8bは、GFRP基材9の表面に、体積抵抗率が1014〜1015Ωcm程度となるように付与剤を調整したエポキシ樹脂等の塗膜16を形成し、その上に体積抵抗率が1014Ωcmとなるように調整したDLC膜10を設けた構成である。
(Third embodiment)
As shown in FIG. 4, the third embodiment of the present invention is a hermetically sealed opening / closing formed by supporting a high-voltage conductor 4 with an insulator 8b for high-voltage equipment and enclosing an insulating gas 1 in a sealed container 2. In the apparatus, the insulator 8b for high-voltage equipment forms a coating film 16 such as an epoxy resin in which the imparting agent is adjusted so that the volume resistivity is about 10 14 to 10 15 Ωcm on the surface of the GFRP base material 9. The DLC film 10 adjusted so that the volume resistivity is 10 14 Ωcm is provided thereon.

ガラス繊維の集合体に樹脂を含浸して製作され優れた機械特性を有するGFRPからなる絶縁物は機械強度が優れるため、密閉型開閉装置に使用される場合がある。しかしながらガラス繊維は分解ガスによって腐食されやすいため、分解ガスが存在する環境で使用する場合には、耐分解ガスコーティングと組み合わせて使用される必要がある。高電圧機器用絶縁物が商用運転電圧にさらされる場合、高電圧機器用絶縁物の表面層の体積抵抗率が1013Ωcmよりも低くなると絶縁性能が急激に低下することが知られている。 An insulator made of GFRP, which is manufactured by impregnating a glass fiber aggregate with a resin and has excellent mechanical properties, is excellent in mechanical strength and may be used in a hermetic switchgear. However, since glass fiber is easily corroded by cracked gas, it must be used in combination with a cracked gas coating when used in an environment where cracked gas exists. When the insulator for high voltage equipment is exposed to a commercial operating voltage, it is known that the insulation performance deteriorates rapidly when the volume resistivity of the surface layer of the insulator for high voltage equipment is lower than 10 13 Ωcm.

本実施の形態ではこれを考慮して、残留直流電圧を短時間で減衰させて高電圧機器用絶縁物に直流電圧が印加される時間を減少させて絶縁性能への影響を無くす目的で、高電圧機器用絶縁物8bを、GFRP基材9の表面に例えば液状ポリアミド樹脂や液状多硫化重合物等の付与剤を10〜20phr調整付与することで体積抵抗率が1014〜1015Ωcmとなるよう調整したエポキシ樹脂等の塗膜16を形成してある。 In the present embodiment, in consideration of this, in order to attenuate the residual DC voltage in a short time and reduce the time during which the DC voltage is applied to the insulator for high voltage equipment, the influence on the insulation performance is eliminated. A volume resistivity of 10 14 to 10 15 Ωcm is obtained by adjusting and applying an insulator such as a liquid polyamide resin or a liquid polysulfide polymer to the surface of the GFRP base material 9 for 10 to 20 phr for the insulator 8b for voltage equipment. A coating film 16 such as an epoxy resin adjusted as described above is formed.

この体積抵抗率を調整した樹脂塗膜16は厚いほど全体の抵抗値が低下して、より短時間で主回路に残留した直流電圧を漏洩させて減衰させることができ、直流電圧の影響で電荷の蓄積が生じるのを低減することができる。   As the resin coating film 16 with the volume resistivity adjusted becomes thicker, the overall resistance value decreases, and the DC voltage remaining in the main circuit can be leaked and attenuated in a shorter time. Can be reduced.

一般にDLC膜10を数μm以上に厚くするのは難しいが、本実施の形態の構成の場合には、DLC膜10を通して残留直流電圧を減衰させるわけではないので、DLC膜10の厚さは薄くても問題なく、樹脂塗膜16は比較的容易に厚膜化することができる。また、GFRP基材9の表面に施された樹脂塗膜16の表面粗さは一般に数μm以下と小さいので、薄いDLC膜でもピンホールなどの無い状態で成膜しやすく、ガスブロック上の弱点の発生を防ぐことができる。さらに、DLC膜10と樹脂塗膜16とGFRP基材9の体積抵抗率が近いことから、直流印加時にそれぞれの界面に蓄積する電荷を小さく抑えることができる。   In general, it is difficult to increase the thickness of the DLC film 10 to several μm or more. However, in the case of the configuration of the present embodiment, the residual DC voltage is not attenuated through the DLC film 10, so the thickness of the DLC film 10 is thin. There is no problem, and the resin coating film 16 can be thickened relatively easily. Further, since the surface roughness of the resin coating 16 applied to the surface of the GFRP substrate 9 is generally as small as several μm or less, it is easy to form a thin DLC film without any pinholes, which is a weak point on the gas block. Can be prevented. Furthermore, since the volume resistivity of the DLC film 10, the resin coating film 16, and the GFRP base material 9 is close, it is possible to suppress the charge accumulated at each interface when DC is applied.

その結果、DLC膜10のガスブロック性を利用して耐分解ガス性能を向上し、同時に、残留直流電圧印加後に印加される可能性のある雷インパルス電圧に対しても絶縁信頼性を向上することができる。したがって本実施の形態によれば、分解ガスの存在する使用条件においても残留直流電圧に対して絶縁信頼性が高く機械強度も高く高電圧機器に適した絶縁物および信頼性の高い開閉装置を提供することができる。   As a result, the gas blocking property of the DLC film 10 is used to improve the decomposition gas performance, and at the same time, the insulation reliability against lightning impulse voltage that may be applied after applying the residual DC voltage is improved. Can do. Therefore, according to the present embodiment, an insulating material suitable for high-voltage equipment and a highly reliable switchgear are provided that has high insulation reliability and high mechanical strength against residual DC voltage even under the use conditions where cracked gas exists. can do.

(第4の実施の形態)
本発明の第4の実施の形態は、図5に示すように、密閉容器2内に高電圧導体4を高電圧機器用絶縁物8cで支持し絶縁性ガス1を封入してなる密閉型開閉装置において、高電圧機器用絶縁物8cは、基材であるGFRP、注形品等の絶縁物17の表面に、エラストマー等の弾性樹脂18を塗布し、その上に成膜時の基材バイアス電圧等を調整して体積抵抗率が1014Ωcm程度となるように調整したDLC膜10を設けた構成である。
(Fourth embodiment)
As shown in FIG. 5, the fourth embodiment of the present invention is a hermetically opened / closed structure in which a high-voltage conductor 4 is supported by an insulator 8c for high-voltage equipment in an airtight container 2 and an insulating gas 1 is enclosed. In the apparatus, the insulator 8c for high-voltage equipment is formed by applying an elastic resin 18 such as an elastomer to the surface of the insulator 17 such as GFRP or cast product as a base material, and then biasing the base material during film formation. In this configuration, the DLC film 10 is adjusted so that the volume resistivity is about 10 14 Ωcm by adjusting the voltage or the like.

DLC膜はガスバリヤ特性や耐食性を有するが、硬度が高く割れを生じやすい。これに対して、高電圧機器は通電電流の変動や外気温度の変化によって温度変化を生じやすい。一般の絶縁物の熱膨張係数はDLC膜よりも大きく、温度変化によって基材であるGFRP、注形品等の絶縁物17とDLC膜10の界面において応力を生じてDLC膜10に亀裂が入りやすい。亀裂が生じたDLC膜10にはガスバリヤ性能を期待し難い。   The DLC film has gas barrier properties and corrosion resistance, but has high hardness and is likely to crack. In contrast, high-voltage devices are likely to change in temperature due to fluctuations in energization current and changes in outside air temperature. The thermal expansion coefficient of a general insulator is larger than that of the DLC film, and stress is generated at the interface between the insulator 17 such as GFRP as a base material and cast products and the DLC film 10 due to temperature change, and the DLC film 10 is cracked. Cheap. It is difficult to expect the gas barrier performance of the cracked DLC film 10.

本実施の形態では、絶縁物17とDLC膜10との間にエラストマー等からなる弾性樹脂15の層を設けることにより、GFRP等の絶縁物17とDLC膜10との界面に生じる応力を低減でき、DLC膜10の割れを防ぐことができる。さらに、高電圧機器用絶縁物が商用運転電圧にさらされる場合、表面層の体積抵抗率が1013Ωcmよりも低くなると絶縁性能が急激に低下することが知られているが、エラストマー等の弾性樹脂18からなる層の体積抵抗率は、例えば液状ポリアミド樹脂や液状多硫化重合物等の付与剤を10〜20phr調整付与することによって1014Ωcm程度に調整することができる。この体積抵抗率を調整した弾性樹脂18は厚いほど高電圧機器用絶縁物8cの抵抗値が低下して、より短時間で主回路に残留した直流電圧を漏洩させて減衰させることができ、直流電圧の影響で電荷の蓄積が生じるのを抑制することができる。 In the present embodiment, by providing an elastic resin 15 layer made of an elastomer or the like between the insulator 17 and the DLC film 10, the stress generated at the interface between the insulator 17 such as GFRP and the DLC film 10 can be reduced. The crack of the DLC film 10 can be prevented. Furthermore, it is known that when the insulation for high-voltage equipment is exposed to commercial operating voltage, the insulation performance decreases rapidly when the volume resistivity of the surface layer is lower than 10 13 Ωcm. The volume resistivity of the layer made of the resin 18 can be adjusted to about 10 14 Ωcm by, for example, applying an imparting agent such as a liquid polyamide resin or a liquid polysulfide polymer for 10 to 20 phr. As the elastic resin 18 whose volume resistivity is adjusted is thicker, the resistance value of the high-voltage device insulator 8c is reduced, and the DC voltage remaining in the main circuit can be leaked and attenuated in a shorter time. It is possible to suppress the accumulation of charges due to the influence of the voltage.

本実施の形態では、DLC膜10を通して残留直流電圧を減衰させるわけではないので、DLC膜10の厚さは薄くても問題なく、弾性樹脂18は比較的容易に厚膜化することができる。また、エラストマー等で構成される弾性樹脂18の表面粗さは一般に数μm以下と小さいので、薄いDLC膜10でもピンホールや不連続部が無く成膜しやすく、ガスブロック上の弱点が生じ難い。さらに、DLC膜10と弾性樹脂18と絶縁物17の体積抵抗率が近いことから、直流印加時にそれぞれの界面に蓄積する電荷を小さく抑えることができる。   In the present embodiment, since the residual DC voltage is not attenuated through the DLC film 10, there is no problem even if the thickness of the DLC film 10 is thin, and the elastic resin 18 can be thickened relatively easily. In addition, since the surface roughness of the elastic resin 18 composed of an elastomer or the like is generally as small as several μm or less, even the thin DLC film 10 is easy to form without pinholes or discontinuities, and weak points on the gas block are hardly generated. . Furthermore, since the volume resistivity of the DLC film 10, the elastic resin 18, and the insulator 17 is close, it is possible to suppress the charge accumulated at each interface when DC is applied.

その結果、耐分解ガス性能を向上し、同時に、残留直流電圧印加後に印加される可能性のある雷インパルス電圧に対しても絶縁信頼性を向上することができる。したがって、本実施の形態によれば、分解ガスの存在する使用条件においても残留直流電圧に対して絶縁信頼性が高く機械強度も高く高電圧機器に適した絶縁物および信頼性の高い開閉装置を提供することができる。   As a result, the decomposition gas performance can be improved, and at the same time, the insulation reliability can be improved even for the lightning impulse voltage that may be applied after the residual DC voltage is applied. Therefore, according to the present embodiment, an insulating material suitable for high-voltage equipment and a highly reliable switchgear that has high insulation reliability and high mechanical strength with respect to residual DC voltage even under use conditions where cracked gas exists. Can be provided.

(第5の実施の形態)
本発明の第5の実施の形態は、図6に示すように、密閉容器2内に高電圧導体4を高電圧機器用絶縁物8dで支持し絶縁性ガス1を封入してなる密閉型開閉装置において、高電圧機器用絶縁物8dは、GFRP、注形品等の絶縁物17の表面に、あらかじめPET(ポリエチレンテレフタレート)等のプラスチックテープにDLC膜を設けたDLCコーティッドテープ19を巻きつけ、その後、体積抵抗率が1014Ωcm程度となるように調整したエポキシ樹脂等を含浸して表面に樹脂塗膜16を形成した構成である。
(Fifth embodiment)
In the fifth embodiment of the present invention, as shown in FIG. 6, a hermetic opening and closing formed by supporting a high voltage conductor 4 with an insulator 8 d for high voltage equipment and enclosing an insulating gas 1 in a hermetic container 2. In the apparatus, the insulator 8d for high-voltage equipment is obtained by winding a DLC coated tape 19 in which a DLC film is previously provided on a plastic tape such as PET (polyethylene terephthalate) on the surface of the insulator 17 such as GFRP or cast product. Thereafter, the resin coating film 16 is formed on the surface by impregnating with an epoxy resin or the like adjusted to have a volume resistivity of about 10 14 Ωcm.

DLC膜はガスバリヤ特性や耐食性を有するが、硬度が高く割れを生じやすい。また、表面積の大きい絶縁物に、ピンホールのような隙間をなくしてDLC膜をコーティングすることは、大きな処理時間やコストを必要とする。   The DLC film has gas barrier properties and corrosion resistance, but has high hardness and is likely to crack. In addition, coating a DLC film on an insulator having a large surface area without a gap such as a pinhole requires a large processing time and cost.

これに対して、プラスチックテープのような限定された幅に連続的にDLC膜を均一に成膜することはより低いコストで実施することができる。DLC膜を設けたプラスチックテープを絶縁物に重ね巻きすると、絶縁物に直接DLC膜を設けたのと近い構造とすることができガスブロック性能を期待できるが、DLC膜の摩擦係数が小さいという特性のために、テープがずれやすい。テープがずれるとガスブロック性を期待し難い。   On the other hand, forming a DLC film uniformly in a limited width like a plastic tape can be carried out at a lower cost. When a plastic tape provided with a DLC film is wound around an insulator, the structure can be made close to that provided with a DLC film directly on the insulator, and gas blocking performance can be expected, but the DLC film has a small coefficient of friction. Because of this, the tape tends to slip. If the tape is displaced, it is difficult to expect gas blocking properties.

本実施の形態は、DLCコーティッドテープ19をGFRP、注形品等の絶縁物17に巻き付けた後で抵抗率を調性したエポキシ樹脂等で含浸することにより、DLCコーティッドテープ19がずれることを防止することができる。   In the present embodiment, the DLC coated tape 19 is displaced by winding the DLC coated tape 19 around the insulator 17 such as a GFRP or a cast product and then impregnating the DLC coated tape 19 with an epoxy resin or the like having a controlled resistivity. Can be prevented.

高電圧機器用絶縁物8dが商用運転電圧にさらされる場合、表面層の体積抵抗率が1013Ωcmよりも低くなると絶縁性能が急激に低下するが、この含浸に使うエポキシ樹脂等の体積抵抗率を、例えば液状ポリアミド樹脂や液状多硫化重合物等の付与剤を10〜20phr調整付与することで1014Ωcm程度となるように調整することができる。この体積抵抗率を調整したエポキシ樹脂等の塗膜16が厚いほど高電圧機器用絶縁物8dの抵抗値が低下して、より短時間で主回路に残留した直流電圧を減衰させることができ、直流電圧の影響で電荷の蓄積が生じるのを低減することができる。 When the insulator 8d for high voltage equipment is exposed to a commercial operating voltage, the insulation performance decreases rapidly if the volume resistivity of the surface layer is lower than 10 13 Ωcm. Can be adjusted to about 10 14 Ωcm by applying an imparting agent such as a liquid polyamide resin or a liquid polysulfide polymer for 10 to 20 phr. As the coating film 16 such as an epoxy resin whose volume resistivity is adjusted is thicker, the resistance value of the insulator 8d for high voltage equipment is lowered, and the DC voltage remaining in the main circuit can be attenuated in a shorter time, It is possible to reduce the occurrence of charge accumulation due to the influence of the DC voltage.

本実施の形態では、DLC膜を通して残留直流電圧を減衰させるわけではないので、DLDコーティッドテープ18に設けるDLC膜の厚さは薄くても良い。さらに、DLC膜と含浸樹脂(エポキシ)とGFRP、注形品等の絶縁物17の体積抵抗率が近いことから、直流印加時にDLC膜と含浸樹脂(エポキシ)との界面に蓄積する電荷を小さく抑えることができる。   In the present embodiment, since the residual DC voltage is not attenuated through the DLC film, the DLC film provided on the DLD coated tape 18 may be thin. Further, since the volume resistivity of the DLC film, the impregnating resin (epoxy), and the insulator 17 such as GFRP and cast products are close to each other, the charge accumulated at the interface between the DLC film and the impregnating resin (epoxy) is reduced when DC is applied. Can be suppressed.

その結果、耐分解ガス性能を向上し、同時に、残留直流電圧印加後に印加される可能性のある雷インパルス電圧に対しても絶縁信頼性を向上することができる。このようにして本実施の形態によれば、分解ガスの存在する使用条件においても残留直流電圧に対して絶縁信頼性が高く高電圧機器に適した絶縁物および信頼性の高い開閉装置を提供することができる。   As a result, the decomposition gas performance can be improved, and at the same time, the insulation reliability can be improved even for the lightning impulse voltage that may be applied after the residual DC voltage is applied. In this way, according to the present embodiment, an insulating material suitable for high-voltage equipment and a highly reliable switchgear are provided that have high insulation reliability against residual DC voltage even under use conditions where cracked gas exists. be able to.

本発明の第1の実施の形態の絶縁物および開閉装置の構成を示す断面図。Sectional drawing which shows the structure of the insulator and switchgear of the 1st Embodiment of this invention. 体積抵抗率の異なる絶縁物の界面に蓄積する電荷を示し、本発明の第1の実施の形態の作用を説明する図。The figure which shows the electric charge accumulate | stored in the interface of the insulator from which volume resistivity differs, and demonstrates the effect | action of the 1st Embodiment of this invention. 本発明の第2の実施の形態の絶縁物および開閉装置の構成を示す断面図。Sectional drawing which shows the structure of the insulator and switchgear of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の絶縁物および開閉装置の構成を示し、(a)は断面図、(b)は(a)の(b)部分の拡大図。The structure of the insulator and switchgear of the 3rd Embodiment of this invention is shown, (a) is sectional drawing, (b) is an enlarged view of the (b) part of (a). 本発明の第4の実施の形態の絶縁物および開閉装置の構成を示し、(a)は断面図、(b)は(a)の(b)部分の拡大図。The structure of the insulator and switchgear of the 4th Embodiment of this invention is shown, (a) is sectional drawing, (b) is an enlarged view of the (b) part of (a). 本発明の第5の実施の形態の絶縁物および開閉装置の構成を示す断面図。Sectional drawing which shows the structure of the insulator and switchgear of the 5th Embodiment of this invention. 従来の密閉型開閉装置の構造を示す断面図。Sectional drawing which shows the structure of the conventional closed type switchgear. 従来の密閉型開閉装置の回路図。The circuit diagram of the conventional sealed switchgear. 従来の密閉型開閉装置での残留直流電圧の発生を説明する波形図。The wave form diagram explaining generation | occurrence | production of the residual DC voltage in the conventional sealed switchgear.

符号の説明Explanation of symbols

1…絶縁性ガス、2…密閉容器、3…絶縁物、4…高電圧導体、5a,5b…電極、6…アーク、7…分解ガス、8,8a,8b,8c,8d…高電圧機器用絶縁物、9…GFRP基材、10…DLC膜、11,12…絶縁物、13…界面、14…電荷、15…注形品基材、16…樹脂塗膜、17…GFRP、注形品等の絶縁物、18…弾性樹脂、19…DLCコーティッドテープ、21…開放遮断器、22…開放操作断路器、23…断路器と遮断器の間の回路、24…残留直流電圧。   DESCRIPTION OF SYMBOLS 1 ... Insulating gas, 2 ... Sealed container, 3 ... Insulator, 4 ... High voltage conductor, 5a, 5b ... Electrode, 6 ... Arc, 7 ... Decomposed gas, 8, 8a, 8b, 8c, 8d ... High voltage apparatus Insulator, 9 ... GFRP substrate, 10 ... DLC film, 11, 12 ... insulator, 13 ... interface, 14 ... charge, 15 ... cast substrate, 16 ... resin coating, 17 ... GFRP, cast 18 ... elastic resin, 19 ... DLC coated tape, 21 ... open circuit breaker, 22 ... open operation disconnector, 23 ... circuit between disconnector and circuit breaker, 24 ... residual DC voltage.

Claims (5)

絶縁性ガスを封入してなる密閉容器内に高電圧導体を高電圧機器用絶縁物で支持するように構成した開閉装置において、
前記高電圧機器用絶縁物は、当該高電圧機器用絶縁物の基材の表面に対して当該絶縁物の基材と同程度の体積抵抗率1014〜1015Ωcmを有するダイヤモンドライクカーボン膜を設けて、アークによって生じる分解ガスに対する耐性を高くし、かつ直流印加時に前記絶縁物の基材と前記ダイヤモンドライクカーボン膜との界面に蓄積する電荷を低減させることを特徴とする開閉装置。
In a switchgear configured to support a high-voltage conductor with an insulator for high-voltage equipment in a sealed container filled with an insulating gas,
The insulator for high-voltage equipment is a diamond-like carbon film having a volume resistivity of 10 14 to 10 15 Ωcm, which is the same as that of the base material of the insulator, with respect to the surface of the base material of the insulator for high-voltage equipment. A switchgear characterized in that it is provided with a high resistance to a cracked gas generated by an arc and reduces charges accumulated at the interface between the insulating base material and the diamond-like carbon film when a direct current is applied .
前記高電圧機器用絶縁物の基材はGFRPからなることを特徴とする請求項1に記載の開閉装置The switchgear according to claim 1, wherein the base material of the insulator for high voltage equipment is made of GFRP. 前記高電圧機器用絶縁物の基材は充填剤入り樹脂注形品であることを特徴とする請求項1に記載の開閉装置2. The switchgear according to claim 1, wherein the base material of the insulator for high-voltage equipment is a resin-cast product containing a filler. 前記高電圧機器用絶縁物の基材と前記ダイヤモンドライクカーボン膜の間に、前記基材と同程度の体積抵抗率を有する樹脂塗膜または弾性樹脂層を備えていることを特徴とする請求項1ないし3のいずれかに記載の開閉装置The resin coating or elastic resin layer having the same volume resistivity as that of the base is provided between the base of the insulator for the high voltage device and the diamond-like carbon film. The switchgear according to any one of 1 to 3. 前記ダイヤモンドライクカーボン膜はプラスチックフィルムにダイヤモンドライクカーボンを塗布してなるテープの巻き付けによって形成されており、前記テープの巻き付け後、前記高電圧機器用絶縁物の基材と前記ダイヤモンドライクカーボン膜の間に、前記基材と同程度の体積抵抗率を有する樹脂を含浸したことを特徴とする請求項1ないし3のいずれかに記載の開閉装置The diamond-like carbon film is formed by winding a tape formed by applying diamond-like carbon to a plastic film. After the tape is wound, the diamond-like carbon film is interposed between the base material of the high-voltage device insulator and the diamond-like carbon film. The switchgear according to any one of claims 1 to 3, wherein a resin having a volume resistivity equivalent to that of the substrate is impregnated.
JP2007245594A 2007-09-21 2007-09-21 Switchgear Active JP5044345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245594A JP5044345B2 (en) 2007-09-21 2007-09-21 Switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245594A JP5044345B2 (en) 2007-09-21 2007-09-21 Switchgear

Publications (2)

Publication Number Publication Date
JP2009077579A JP2009077579A (en) 2009-04-09
JP5044345B2 true JP5044345B2 (en) 2012-10-10

Family

ID=40612016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245594A Active JP5044345B2 (en) 2007-09-21 2007-09-21 Switchgear

Country Status (1)

Country Link
JP (1) JP5044345B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127607B2 (en) * 2008-07-08 2013-01-23 株式会社東芝 Gas insulation equipment
JP5306242B2 (en) * 2010-01-12 2013-10-02 株式会社東芝 Gas insulated switchgear
JP5738655B2 (en) * 2011-04-01 2015-06-24 株式会社東芝 Sealed switchgear

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341713A (en) * 1991-05-16 1992-11-27 Toshiba Corp Switch
JPH06203705A (en) * 1993-01-06 1994-07-22 Toshiba Corp Puffer type gas blast circuit breaker
DE4446944A1 (en) * 1994-12-28 1996-07-04 Abb Research Ltd High voltage system
JPH08288049A (en) * 1995-04-07 1996-11-01 Alps Electric Co Ltd Surge absorber
JP2002315118A (en) * 2001-04-12 2002-10-25 Mitsubishi Electric Corp Gas insulating apparatus
JP2005223037A (en) * 2004-02-04 2005-08-18 Taiheiyo Cement Corp Electrostatic chuck
JP2006333568A (en) * 2005-05-24 2006-12-07 Mitsubishi Electric Corp Gas insulated switchgear
JP4615398B2 (en) * 2005-08-26 2011-01-19 本田技研工業株式会社 Carbon fiber composite material molded body

Also Published As

Publication number Publication date
JP2009077579A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5135263B2 (en) Sealed insulation device
EP1933332B1 (en) Insulation system and method for a transformer
KR102183193B1 (en) Power cable having termination connection box
JP5044345B2 (en) Switchgear
WO2016080018A1 (en) Gas-insulated switching device
KR20160081365A (en) Electrode device for gas-insulated switchgear
JP5738655B2 (en) Sealed switchgear
JP6071209B2 (en) Gas insulated switchgear and gas insulated bus
JPH0530626A (en) Composite insulation system bus
KR101860439B1 (en) Electrode device for gas-insulated switchgear
EP3611737B1 (en) Joint box for ultra-high voltage direct current power cable, and ultra-high voltage direct current power cable system comprising same
JP2014007887A (en) Gas insulation switching device
JP5127607B2 (en) Gas insulation equipment
JP2019115138A (en) Switchgear
JP4301626B2 (en) Insulated operation rod for gas circuit breaker
EP1953771A1 (en) An electric insulation element, a bushing provided therewith, and a method of producing such an element
US20220384094A1 (en) Dry High Voltage Instrument Transformer
JPH1092232A (en) Oil-impregnated paper solid dc submarine cable
JP4130249B2 (en) DC surge arrester
JP2002152927A (en) Compound insulation type gas-insulated
JPH0216705A (en) Gas-insulated apparatus
JP4253404B2 (en) Insulator for high voltage equipment
JP2015070667A (en) Closed type switchgear
JP2006333568A (en) Gas insulated switchgear
JPH05111132A (en) Insulating spacer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R151 Written notification of patent or utility model registration

Ref document number: 5044345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3