JP7235240B2 - Spacers and insulators - Google Patents

Spacers and insulators Download PDF

Info

Publication number
JP7235240B2
JP7235240B2 JP2019060129A JP2019060129A JP7235240B2 JP 7235240 B2 JP7235240 B2 JP 7235240B2 JP 2019060129 A JP2019060129 A JP 2019060129A JP 2019060129 A JP2019060129 A JP 2019060129A JP 7235240 B2 JP7235240 B2 JP 7235240B2
Authority
JP
Japan
Prior art keywords
conductive member
region
insulating
center
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060129A
Other languages
Japanese (ja)
Other versions
JP2020162319A (en
Inventor
尚史 山本
成光 岡部
雅裕 小迫
政幸 匹田
和馬 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Tokyo Electric Power Co Inc
Original Assignee
Kyushu Institute of Technology NUC
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Tokyo Electric Power Co Inc filed Critical Kyushu Institute of Technology NUC
Priority to JP2019060129A priority Critical patent/JP7235240B2/en
Publication of JP2020162319A publication Critical patent/JP2020162319A/en
Application granted granted Critical
Publication of JP7235240B2 publication Critical patent/JP7235240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 (1)電気・情報関係学会九州支部連合大会委員会主催 平成30年度(第71回)電気・情報関係学会九州支部連合大会プログラム,2018年9月27日~2018年9月28日 (2)2018年 IEEE主催 CEIDP/IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA(電気絶縁と誘電現象に関する会議)プログラム,2018年10月21日~2018年10月24日Application of Article 30, Paragraph 2 of the Patent Act (1) Organized by the Committee of the Kyushu Section Joint Conference of Electrical and Information Engineers, September 27, 2018- September 28, 2018 (2) 2018 IEEE CEIDP/IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (Conference on Electrical Insulation and Dielectric Phenomena) Program, October 21, 2018 to October 24, 2018

本発明は、スペーサおよび絶縁機器に関し、例えば、導体を周囲と絶縁した状態で保持するスペーサ、当該スペーサを用いた絶縁装置に関する。 TECHNICAL FIELD The present invention relates to a spacer and an insulating device, and more particularly to a spacer that holds a conductor insulated from its surroundings and an insulating device using the spacer.

近年、変電所等に設置される、SF6(六フッ化硫黄)ガス等を用いたガス絶縁開閉装置(GIS:Gas Insulated Switchgear)等の絶縁装置は、環境負荷の低減やコストダウンの要求から、小形化が望まれている。 In recent years, insulation devices such as gas insulated switchgear (GIS: Gas Insulated Switchgear) using SF6 (sulfur hexafluoride) gas, etc., installed in substations, etc. Miniaturization is desired.

一般的に、ガス絶縁開閉装置は、高電圧が印加される導電性部材と開閉装置等の電気機器等を、接地された金属から成る容器(「接地容器」とも称する。)内に収容した状態で、例えば空気よりも絶縁耐力が高いSF6等のガスを接地容器内に封入した構造を有している。高電圧が印加される導電性部材は、接地容器内において、スペーサによって接地容器から絶縁された状態で支持されている。スペーサは、例えば、エポキシ樹脂等の樹脂材料を主成分として構成されている。 In general, a gas-insulated switchgear is a state in which a conductive member to which a high voltage is applied and electrical equipment such as a switchgear are housed in a grounded metal container (also called a “grounded container”). It has a structure in which a gas such as SF6, which has higher dielectric strength than air, is enclosed in a grounded container. A conductive member to which a high voltage is applied is supported in the grounded container in a state of being insulated from the grounded container by a spacer. The spacer is mainly composed of a resin material such as epoxy resin, for example.

ガス絶縁開閉装置の小形化するための一つの方法として、高電圧導体と接地容器との間の距離を短くして接地容器の外径を短くすることが有効である。そのためには、高電圧導体と接地容器との間にある絶縁スペーサの絶縁耐力を向上させる必要がある。 As one method for downsizing the gas-insulated switchgear, it is effective to shorten the distance between the high-voltage conductor and the grounding container to shorten the outer diameter of the grounding container. To that end, it is necessary to improve the dielectric strength of the insulating spacer between the high voltage conductor and the ground vessel.

絶縁スペーサの絶縁耐力を向上させる方法として、例えば、下記非特許文献1に、フィラー剤を添加したエポキシ樹脂によって絶縁スペーサを形成する方法が開示されている。 As a method of improving the dielectric strength of an insulating spacer, for example, Non-Patent Document 1 below discloses a method of forming an insulating spacer with an epoxy resin to which a filler agent is added.

「IV.ガス絶縁開閉装置の注型絶縁物」,富永 正太郎, 小鯛 正二郎,1977年12月,電氣學會雜誌"IV. Cast Insulator for Gas Insulated Switchgear", Shotaro Tominaga, Shojiro Kodai, December 1977, Journal of the Institute of Electrical Engineers of Japan.

非特許文献1に開示された絶縁スペーサによれば、ガス絶縁開閉装置の接地容器内部における、SF6ガスを介して高電圧導体と絶縁スペーサ(エポキシ樹脂)とが最も近接する領域(以下、「トリプルジャンクション部」とも称する。)の電界が非常に高くなり、その結果、絶縁スペーサが破損し、ガス絶縁開閉装置内の絶縁性能が低下する虞がある。 According to the insulating spacer disclosed in Non-Patent Document 1, a region (hereinafter referred to as "triple (also referred to as "junction part"), the electric field becomes extremely high, and as a result, the insulating spacer may be damaged and the insulation performance in the gas-insulated switchgear may be degraded.

本発明は、上述した課題に鑑みてなされたものであり、絶縁装置におけるスペーサと高電圧が印加される導電性部材との間の電界を低減することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the problems described above, and an object of the present invention is to reduce an electric field between a spacer and a conductive member to which a high voltage is applied in an insulating device.

本発明の代表的な実施の形態に係る構造体は、第1導電性部材と、前記第1導電性部材と異なる第2導電性部材と、前記第1導電性部材と前記第2導電性部材とに挟まれた状態で配置された絶縁部材と、前記第1導電性部材と接触した状態で、前記絶縁部材内に配置された非線形抵抗部材とを有し、前記絶縁部材と前記第1導電性部材とが接触する第1領域の中心から前記第1領域の端部までの距離をr1とし、前記非線形抵抗部材と前記第1導電性部材とが接触する第2領域の中心から前記第2領域の端部までの距離をr2としたとき、0.8r1≦r2≦r1であることを特徴とする。 A structure according to a representative embodiment of the present invention includes a first conductive member, a second conductive member different from the first conductive member, and the first conductive member and the second conductive member. and a nonlinear resistance member disposed within the insulating member in contact with the first conductive member, wherein the insulating member and the first conductive member The distance from the center of the first region where the nonlinear resistance member and the first conductive member are in contact to the edge of the first region is defined as r1, and the distance from the center of the second region where the nonlinear resistance member and the first conductive member are in contact with the second region is r1. It is characterized in that 0.8r1≤r2≤r1, where r2 is the distance to the edge of the region.

本発明に係る構造体によれば、絶縁装置におけるスペーサと高電圧が印加される導電性部材との間の電界を低減することが可能となる。 According to the structure of the present invention, it is possible to reduce the electric field between the spacer and the conductive member to which a high voltage is applied in the insulating device.

本発明の実施の形態に係る構造体の断面図である。1 is a cross-sectional view of a structure according to an embodiment of the invention; FIG. 本発明の実施の形態に係る構造体の、図1のZ方向正側から見た上面図である。FIG. 2 is a top view of the structure according to the embodiment of the present invention, viewed from the positive side in the Z direction of FIG. 1; 図1における構造体の領域700の拡大図である。7 is an enlarged view of region 700 of the structure in FIG. 1; FIG. 非線形抵抗部材を含む絶縁部材のサンプルの作成方法を説明するための図である。FIG. 10 is a diagram for explaining a method of making a sample of an insulating member including a nonlinear resistance member; 解析に用いたサンプルの構成を示す図である。It is a figure which shows the structure of the sample used for the analysis. 図5に示したサンプルを用いたときのトリプルジャンクション部TJの電界緩和効果に関する解析結果を示す図である。FIG. 6 is a diagram showing analysis results regarding the electric field relaxation effect of the triple junction TJ when the sample shown in FIG. 5 is used; 本実施の形態に係る構造体を適用したガス絶縁開閉装置の一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the gas insulated switchgear to which the structure which concerns on this Embodiment is applied. 図7に示される絶縁装置における高電圧導体とスペーサとの接合部分の拡大図である。FIG. 8 is an enlarged view of a joint portion between a high voltage conductor and a spacer in the insulating device shown in FIG. 7; 本実施の形態に係る構造体を適用したガス絶縁開閉装置の別の一例を示す図である。It is a figure which shows another example of the gas insulated switchgear to which the structure which concerns on this Embodiment is applied. 図9に示される絶縁装置における高電圧導体とスペーサとの接合部分の拡大図である。FIG. 10 is an enlarged view of a joint portion between a high voltage conductor and a spacer in the insulating device shown in FIG. 9;

1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. Outline of Embodiment First, an outline of a representative embodiment of the invention disclosed in the present application will be described. In the following description, as an example, reference numerals on the drawings corresponding to constituent elements of the invention are described with parentheses.

〔1〕本発明の代表的な実施の形態に係る構造体(10)は、第1導電性部材(1)と、前記第1導電性部材と異なる第2導電性部材(2)と、前記第1導電性部材と前記第2導電性部材とに挟まれた状態で配置された絶縁部材(30)と、前記第1導電性部材と接触した状態で、前記絶縁部材内に配置された非線形抵抗部材(31)とを有し、前記絶縁部材と前記第1導電性部材とが接触する第1領域(40)の中心(P1)から前記第1領域の端部までの距離をr1とし、前記非線形抵抗部材と前記第1導電性部材とが接触する第2領域(41)の中心(P2)から前記第2領域の端部までの距離をr2としたとき、0.8r1≦r2≦r1であることを特徴とする。 [1] A structure (10) according to a representative embodiment of the present invention comprises a first conductive member (1), a second conductive member (2) different from the first conductive member, and An insulating member (30) arranged sandwiched between a first conductive member and the second conductive member, and a non-linear structure arranged within the insulating member in contact with the first conductive member Let r1 be the distance from the center (P1) of a first region (40) having a resistive member (31) where the insulating member and the first conductive member are in contact with the end of the first region, When r2 is the distance from the center (P2) of the second region (41) where the nonlinear resistance member and the first conductive member are in contact with the end of the second region, 0.8r1≤r2≤r1 It is characterized by

〔2〕上記構造体において、0.980r1≦r2≦0.995r1であってもよい。 [2] In the above structure, 0.980r1≤r2≤0.995r1.

〔3〕上記構造体において、前記非線形抵抗部材は、前記絶縁部材の前記第1導電性部材と接触する側の面(300)に形成された穴(303)に埋め込まれていてもよい。 [3] In the above structure, the nonlinear resistance member may be embedded in a hole (303) formed in a surface (300) of the insulating member that contacts the first conductive member.

〔4〕本発明の代表的な実施の形態に係るスペーサ(3A,3B)は、一端において第1導電性部材(1A,1B)に接合にされ、他端において前記第1導電性部材と異なる第2導電性部材(2A,2B)に接合にされ、前記第1導電性部材を前記第2導電性部材上に支持する絶縁部材(30A,30B)と、前記第1導電性部材に接触した状態で、前記絶縁部材の前記一端側に配置された非線形抵抗部材(31A,31B)と、を有し、前記絶縁部材と前記第1導電性部材とが接触する第1領域(40A,40B)の中心(P1)から前記第1領域の端部までの距離をr1とし、前記非線形抵抗部材と前記第1導電性部材とが接触する第2領域(41A,41B)の中心(P2)から前記第2領域の端部までの距離をr2としたとき、0.8r1≦r2≦r1であることを特徴とする。 [4] The spacers (3A, 3B) according to the representative embodiment of the present invention are joined to the first conductive members (1A, 1B) at one end, and are different from the first conductive member at the other end. an insulating member (30A, 30B) joined to a second conductive member (2A, 2B) and supporting said first conductive member on said second conductive member; and in contact with said first conductive member. a non-linear resistance member (31A, 31B) disposed on the one end side of the insulating member, and a first region (40A, 40B) where the insulating member and the first conductive member are in contact with each other. The distance from the center (P1) to the end of the first region is r1, and the center (P2) of the second regions (41A, 41B) where the nonlinear resistance member and the first conductive member are in contact with the It is characterized in that 0.8r1≤r2≤r1, where r2 is the distance to the end of the second region.

〔5〕上記スペーサにおいて、0.980r1≦r2≦0.995r1であってもよい。 [5] In the above spacer, 0.980r1≤r2≤0.995r1.

〔6〕本発明の代表的な実施の形態に係る絶縁装置(100A,100B)は、グラウンド電位に接続された接地容器(2A,2B)と、前記接地容器の内部に設けられ、高電圧が印加される導電性部材(1A,1B)と、前記接地容器の内部において、前記導電性部材を支持するスペーサ(3A,3B)とを備え、前記スペーサは、一端において前記導電性部材と接合され、他端において前記接地容器と接合された絶縁部材(30A,30B)と、前記導電性部材と接触した状態で前記絶縁部材内に配置された非線形抵抗部材(31A,31B)とを有し、前記絶縁部材と前記導電性部材とが接触する第1領域(40A,40B)の中心(P1)から前記第1領域の端部までの距離をr1とし、前記非線形抵抗部材と前記導電性部材とが接触する第2領域(41A,41B)の中心(P2)から前記第2領域の端部までの距離をr2としたとき、0.8r1≦r2≦r1であることを特徴とする。 [6] An insulating device (100A, 100B) according to a representative embodiment of the present invention includes: a ground container (2A, 2B) connected to a ground potential; a conductive member (1A, 1B) to be applied and a spacer (3A, 3B) supporting said conductive member within said grounded container, said spacer being joined at one end to said conductive member; , an insulating member (30A, 30B) joined to the grounding container at the other end, and a nonlinear resistance member (31A, 31B) disposed in the insulating member in contact with the conductive member, Let r1 be the distance from the center (P1) of the first region (40A, 40B) where the insulating member and the conductive member are in contact with the end of the first region, and the nonlinear resistance member and the conductive member 0.8r1≤r2≤r1, where r2 is the distance from the center (P2) of the second regions (41A, 41B) to the edge of the second region.

〔7〕上記絶縁装置において、0.980r1≦r2≦0.995r1であってもよい。 [7] In the insulating device, 0.980r1≤r2≤0.995r1.

2.実施の形態の具体例
以下、本発明の実施の形態の具体例について図を参照して説明する。
なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. Specific Examples of Embodiments Specific examples of embodiments of the present invention will be described below with reference to the drawings.
In the following description, constituent elements common to each embodiment are denoted by the same reference numerals, and repeated descriptions are omitted. Also, it should be noted that the drawings are schematic, and the relationship of dimensions of each element, the ratio of each element, and the like may differ from reality. Even between the drawings, there are cases where portions with different dimensional relationships and ratios are included.

図1乃至図3は、本発明の実施の形態に係る構造体の構成を示す図である。
図1には、本発明の実施の形態に係る構造体10の断面図が示され、図2には、図1のZ方向正側から見た構造体10の上面図が示されている。図3には、図1に示される構造体10の領域700の拡大図が示されている。
1 to 3 are diagrams showing configurations of structures according to embodiments of the present invention.
FIG. 1 shows a cross-sectional view of a structural body 10 according to an embodiment of the present invention, and FIG. 2 shows a top view of the structural body 10 viewed from the Z-direction positive side of FIG. FIG. 3 shows an enlarged view of region 700 of structure 10 shown in FIG.

構造体10は、異なる電圧が印加される複数の導体間を絶縁部材によって絶縁した構成を有している。構造体10は、後述するように、ガス絶縁開閉装置等の絶縁装置に適用される。 The structure 10 has a configuration in which an insulating member insulates between a plurality of conductors to which different voltages are applied. The structure 10 is applied to an insulating device such as a gas-insulated switchgear, as will be described later.

具体的に、構造体10は、第1導電性部材1、第2導電性部材2、絶縁部材30、および非線形抵抗部材31を有する。なお、図1乃至3では、一例として、第1導電性部材1、第2導電性部材2、絶縁部材30、および非線形抵抗部材31がZ軸に沿って積層され、絶縁部材30の面300,301がX-Y平面と平行に配置されているものとする。 Specifically, the structure 10 has a first conductive member 1 , a second conductive member 2 , an insulating member 30 and a nonlinear resistance member 31 . 1 to 3, as an example, the first conductive member 1, the second conductive member 2, the insulating member 30, and the nonlinear resistance member 31 are laminated along the Z-axis, and the surface 300 of the insulating member 30, 301 is arranged parallel to the XY plane.

第1導電性部材1は、導電性材料(例えば、アルミニウムや銅)を主成分として構成されており、例えば6千V以上の高電圧が印加される高電圧導体である。第1導電性部材1は、例えば円柱状に形成されている。 The first conductive member 1 is mainly composed of a conductive material (eg, aluminum or copper), and is a high-voltage conductor to which a high voltage of 6,000 V or higher is applied, for example. The first conductive member 1 is formed, for example, in a cylindrical shape.

第2導電性部材2は、導電性材料(例えば、アルミニウムや鉄)を主成分として構成されており、例えばグラウンド電位に接続される。第2導電性部材2は、円板状に形成されている。 The second conductive member 2 is mainly composed of a conductive material (eg, aluminum or iron), and is connected to ground potential, for example. The second conductive member 2 is formed in a disc shape.

絶縁部材30は、絶縁材料を主成分として構成されている。上記絶縁材料は、樹脂を主成分とする材料であって、例えば、エポキシ樹脂等の熱硬化性樹脂を主成分とする材料である。絶縁部材30は面300と、面300に対向する面301を有している。絶縁部材30は、面300において第1導電性部材1と接合され、面301において第2導電性部材2と接合されている。 The insulating member 30 is mainly composed of an insulating material. The insulating material is a material containing resin as a main component, for example, a material containing thermosetting resin such as epoxy resin as a main component. The insulating member 30 has a surface 300 and a surface 301 facing the surface 300 . The insulating member 30 is joined to the first conductive member 1 on the surface 300 and joined to the second conductive member 2 on the surface 301 .

図1に示すように、絶縁部材30は、第1導電性部材1と第2導電性部材2との間に挟まれた状態で配置されている。絶縁部材30は、例えば、平面視矩形の板状に形成されている。 As shown in FIG. 1 , the insulating member 30 is placed between the first conductive member 1 and the second conductive member 2 . The insulating member 30 is formed, for example, in the shape of a rectangular plate in plan view.

非線形抵抗部材31は、非線形抵抗材料(以下、「NRM:Non-Linear Resistive Material」とも称する。)を含む。例えば、非線形抵抗部材31は、エポキシ樹脂に酸化亜鉛(ZnO)バリスタ粒子を添加した複合材料から構成されている。非線形抵抗部材31は、例えば一端が平面状に形成され、他端が曲面状に形成された円柱形状を有する。 The nonlinear resistance member 31 includes a nonlinear resistance material (hereinafter also referred to as “NRM: Non-Linear Resistive Material”). For example, the nonlinear resistance member 31 is made of a composite material in which zinc oxide (ZnO) varistor particles are added to epoxy resin. The nonlinear resistance member 31 has, for example, a cylindrical shape with one end formed flat and the other end formed into a curved surface.

非線形抵抗部材31は、絶縁部材30の第1導電性部材1と接触する側の面300と、絶縁部材30の第2導電性部材2と接触する側の面301との間に配置されている。具体的に、非線形抵抗部材31は、第1導電性部材1と接触した状態で、絶縁部材30内に配置されている。例えば、図1および図3に示すように、非線形抵抗部材31は、絶縁部材30の面300に形成された穴(例えば非貫通孔)303に埋め込まれた状態で配置されている。非線形抵抗部材31の一部は、絶縁部材30の面300から露出し、第1導電性部材1と接触している。 The nonlinear resistance member 31 is arranged between a surface 300 of the insulating member 30 that contacts the first conductive member 1 and a surface 301 of the insulating member 30 that contacts the second conductive member 2 . . Specifically, the nonlinear resistance member 31 is arranged within the insulating member 30 while being in contact with the first conductive member 1 . For example, as shown in FIGS. 1 and 3, the non-linear resistance member 31 is arranged in a state of being embedded in a hole (for example, non-through hole) 303 formed in the surface 300 of the insulating member 30 . A portion of the nonlinear resistance member 31 is exposed from the surface 300 of the insulating member 30 and is in contact with the first conductive member 1 .

上述したように、第1導電性部材1は、絶縁部材30の面300と接触するとともに、非線形抵抗部材31と接触する。図2において、第1導電性部材1と絶縁部材30とが接触する第1領域は参照符号40で示され、第1導電性部材1と非線形抵抗部材31とが接触する第2領域は参照符号41で示されている。 As described above, the first conductive member 1 contacts the surface 300 of the insulating member 30 and contacts the non-linear resistance member 31 . In FIG. 2, the first region where the first conductive member 1 and the insulating member 30 are in contact is denoted by reference numeral 40, and the second region where the first conductive member 1 and the nonlinear resistance member 31 are in contact is denoted by reference numeral 40. 41.

ここで、第1領域40の中心P1から第1領域40の端部までの距離をr1とし、第2領域41の中心P2から第2領域41の端部までの距離をr2としたとき、0.8r1≦r2≦r1となるように構造体10を形成することにより、気体(例えば空気やSF6等のガス)を介して第1導電性部材1と絶縁部材30とが最も近接するトリプルジャンクション部TJの電界の強度をより効果的に低減することが可能となる。 Here, when the distance from the center P1 of the first region 40 to the edge of the first region 40 is r1, and the distance from the center P2 of the second region 41 to the edge of the second region 41 is r2, 0 By forming the structure 10 so that 8r1 ≤ r2 ≤ r1, the triple junction portion where the first conductive member 1 and the insulating member 30 are closest to each other through a gas (for example, air or a gas such as SF6) is formed. It becomes possible to reduce the intensity of the electric field of the TJ more effectively.

以下に、非線形抵抗部材31を含む絶縁部材30のサンプルを用いて実現した構造体10に関する解析結果を示す。 Analysis results of the structure 10 realized using samples of the insulating member 30 including the nonlinear resistance member 31 are shown below.

図4は、非線形抵抗部材31を含む絶縁部材30のサンプルの作成方法を説明するための図である。 4A and 4B are diagrams for explaining a method of manufacturing a sample of the insulating member 30 including the nonlinear resistance member 31. FIG.

先ず、絶縁部材30を作成する。例えば、樹脂成形用の金型を用意し、その金型内に溶解したエポキシ樹脂を流し込込んで硬化させ、成形された樹脂加工物を金型から取り出す。例えば、この金型には、成形された樹脂加工物(絶縁部材30)に上述した穴303が形成されるように、突起部が形成されている。 First, the insulating member 30 is produced. For example, a mold for resin molding is prepared, a melted epoxy resin is poured into the mold and hardened, and the molded resin processed product is removed from the mold. For example, the mold is formed with protrusions so that the above-described holes 303 are formed in the molded resin processed product (insulating member 30).

次に、非線形抵抗部材31を作成するために混合物を作成する。例えば、エポキシ樹脂に非線形抵抗材料(マイクロバリスタ)の酸化亜鉛(ZnO)粒子を添加し、ミキサーを用いて混合および脱泡することにより、混合物320を生成する。 Next, a mixture is made to make the non-linear resistance member 31 . For example, a mixture 320 is produced by adding zinc oxide (ZnO) particles of a nonlinear resistance material (microvaristor) to an epoxy resin and mixing and defoaming using a mixer.

その後、図4に示すように、樹脂加工物310に形成された穴303を覆うように樹脂加工物310上に筒部材400を載置するとともに、筒部材400内に混合物320を導入する。これにより、樹脂加工物310の穴303に混合物320が沈降する。筒部材400が載置された樹脂加工物310を恒温槽内に配置し、所定時間加熱することにより、絶縁部材30の内部に非線形抵抗部材31が形成されたサンプルを作成することができる。
本解析では、上述した非線形抵抗部材31に係る距離r2を変更したサンプルを複数作成した。
After that, as shown in FIG. 4 , cylindrical member 400 is placed on resin processed product 310 so as to cover hole 303 formed in resin processed product 310 , and mixture 320 is introduced into cylindrical member 400 . Thereby, the mixture 320 settles in the holes 303 of the resin processed product 310 . A sample in which the nonlinear resistance member 31 is formed inside the insulating member 30 can be produced by placing the resin processed product 310 on which the cylindrical member 400 is placed in a constant temperature bath and heating it for a predetermined time.
In this analysis, a plurality of samples were created by changing the distance r2 related to the nonlinear resistance member 31 described above.

次に、上述の方法によって作成したサンプルを用いて構造体10を形成し、第1導電性部材1と第2導電性部材2との間にインパルス電圧を加えたときのトリプルジャンクション部TJの電界強度を計算した。 Next, the structure 10 is formed using the sample prepared by the above method, and the electric field of the triple junction TJ when an impulse voltage is applied between the first conductive member 1 and the second conductive member 2 strength was calculated.

図5は、解析に用いたサンプルの構成を示す図である。
同図に示すように、円柱状の電極としての第1導電性部材1の半径を7.5mm、第1導電性部材1の一端部の曲率半径を2.5mmとした。また、円板状の電極としての第2導電性部材2の半径を25mm、第2導電性部材2の端部の曲率半径を5mmとした。また、上述の手法により作成したサンプルにおける絶縁部材30の厚みを10.5mm、絶縁部材30の中心P1から端部までの距離を30mmとし、第1導電性部材1と絶縁部材30との接触領域の半径(r1)を5mmとした。
FIG. 5 is a diagram showing the configuration of a sample used for analysis.
As shown in the figure, the radius of the first conductive member 1 as a cylindrical electrode was set to 7.5 mm, and the radius of curvature of one end of the first conductive member 1 was set to 2.5 mm. Further, the radius of the second conductive member 2 as a disk-shaped electrode was set to 25 mm, and the radius of curvature of the end portion of the second conductive member 2 was set to 5 mm. In addition, the thickness of the insulating member 30 in the sample prepared by the above method was 10.5 mm, the distance from the center P1 of the insulating member 30 to the end was 30 mm, and the contact area between the first conductive member 1 and the insulating member 30 The radius (r1) of is set to 5 mm.

更に、サンプルにおける非線形抵抗部材31の深さを10mmとし、非線形抵抗部材31の半径(r2)をサンプル毎に異なる値に設定した。なお、図5には、非線形抵抗部材31の半径(r2)を5mmとした場合が一例として示されている。 Furthermore, the depth of the nonlinear resistance member 31 in the sample was set to 10 mm, and the radius (r2) of the nonlinear resistance member 31 was set to a different value for each sample. Note that FIG. 5 shows an example in which the radius (r2) of the nonlinear resistance member 31 is 5 mm.

図6は、図5に示したサンプルを用いたときのトリプルジャンクション部TJの電界緩和効果に関する解析結果を示す図である。 FIG. 6 is a diagram showing analysis results regarding the electric field relaxation effect of the triple junction TJ when the sample shown in FIG. 5 is used.

同図において、縦軸は電界の強度〔kV/mm〕を表している。同図に示される参照符号500~505は、図6に示した構造体10における第2導電性部材2をグラウンド電位に接続し、第1導電性部材1にインパルス電圧(波高値:1kV,立上り時間:1μ秒,パルス幅:50μ秒)を印加したときのサンプル毎のトリプルジャンクション部TJの電界の強度を表している。 In the figure, the vertical axis represents the intensity of the electric field [kV/mm]. Reference numerals 500 to 505 shown in the figure connect the second conductive member 2 in the structure 10 shown in FIG. time: 1 μs, pulse width: 50 μs), the intensity of the electric field at the triple junction TJ for each sample is shown.

すなわち、参照符号500は、絶縁部材30に非線形抵抗部材31を設けていないサンプルを用いたときのトリプルジャンクション部TJの電界の強度を表し、参照符号501は、r2=0.4r1としたサンプルを用いたときのトリプルジャンクション部TJの電界の強度を表し、参照符号502は、r2=0.8r1としたサンプルを用いたときのトリプルジャンクション部TJの電界の強度を表し、参照符号503は、r2=r1としたサンプルを用いたときのトリプルジャンクション部TJの電界の強度を表している。更に、参照符号504は、r2=1.2r1としたサンプルを用いたときのトリプルジャンクション部TJの電界の強度を表し、参照符号505は、r2=1.5r1としたサンプルを用いたときのトリプルジャンクション部TJの電界の強度を表している。 That is, reference numeral 500 represents the intensity of the electric field at the triple junction TJ when using a sample in which the insulating member 30 is not provided with the nonlinear resistance member 31, and reference numeral 501 represents the sample with r2=0.4r1. Reference numeral 502 represents the intensity of the electric field at the triple junction TJ when a sample with r2=0.8r1 is used, and reference numeral 503 represents the intensity of the electric field at the triple junction TJ when r2=0.8r1. =r1, the intensity of the electric field at the triple junction TJ is shown. Further, reference numeral 504 represents the intensity of the electric field at the triple junction TJ when using the sample with r2=1.2r1, and reference numeral 505 represents the triple It represents the intensity of the electric field at the junction TJ.

図6から理解されるように、非線形抵抗部材31に係る距離r2が絶縁部材30に係る距離r1に近づくほど、トリプルジャンクション部TJの電界の強度が低下する傾向がある。すなわち、非線形抵抗部材31の第1導電性部材1と接触する領域41の端部が絶縁部材30の第1導電性部材1と接触する領域40の端部が近づくほど、トリプルジャンクション部TJの電界の強度が低下する傾向がある。 As can be understood from FIG. 6, as the distance r2 related to the nonlinear resistance member 31 approaches the distance r1 related to the insulating member 30, the intensity of the electric field at the triple junction TJ tends to decrease. That is, as the end of the region 41 of the nonlinear resistance member 31 contacting the first conductive member 1 approaches the end of the region 40 of the insulating member 30 contacting the first conductive member 1, the electric field of the triple junction TJ increases. strength tends to decrease.

この解析結果から理解されるように、0.8r1≦r2≦r1を満たすように非線形抵抗部材31を絶縁部材30内に形成することにより、より効果的に、トリプルジャンクション部TJの電界を緩和することが可能となる。 As can be understood from this analysis result, by forming the nonlinear resistance member 31 in the insulating member 30 so as to satisfy 0.8r1≦r2≦r1, the electric field of the triple junction TJ can be more effectively relaxed. becomes possible.

一方、図6から理解されるように、非線形抵抗部材31に係る距離r2が絶縁部材30に係る距離r1を超えた場合、トリプルジャンクション部TJの電界強度が急激に上昇する傾向がある。例えば、r2=r1としたサンプルの場合、電界強度が3.5kV/mmであるのに対し、r2=1.2r1としたサンプルの場合、電界強度が101kV/mmとなり、r2=1.5r1としたサンプルの場合、電界強度が146kV/mmとなる。 On the other hand, as can be understood from FIG. 6, when the distance r2 related to the non-linear resistance member 31 exceeds the distance r1 related to the insulating member 30, the electric field intensity of the triple junction TJ tends to rise sharply. For example, in the case of a sample with r2=r1, the electric field strength is 3.5 kV/mm, while in the case of a sample with r2=1.2r1, the electric field strength is 101 kV/mm, and r2=1.5r1. In the case of the sample with 146 kV/mm, the electric field intensity is 146 kV/mm.

このように、非線形抵抗部材31が、絶縁部材30と第1導電性部材1とが接触する領域を超えて形成された場合(r2>r1の場合)、トリプルジャンクション部TJの電界緩和効果が得られないばかりか、電界の強度を更に上昇させてしまうことになり、好ましくない。 Thus, when the nonlinear resistance member 31 is formed beyond the contact area between the insulating member 30 and the first conductive member 1 (when r2>r1), the electric field relaxation effect of the triple junction TJ can be obtained. In addition, the strength of the electric field is further increased, which is not preferable.

ところで、ガス絶縁開閉装置等の絶縁装置は、その使用状況や周辺環境により、絶縁装置の接地容器が伸縮することが知られている。その伸縮率は、例えば、接地容器の材質に応じて、0.5~2%の範囲である。 By the way, it is known that an insulating device such as a gas-insulated switchgear expands and contracts a grounding container of the insulating device depending on the usage conditions and the surrounding environment. The expansion ratio is, for example, in the range of 0.5-2% depending on the material of the grounded container.

したがって、本実施の形態に係る構造体10を上記絶縁装置に適用した場合に、構造体10においてr2>r1とならないようにするためには、接地容器の上記伸縮率を考慮し、0.980r1≦r2≦0.995r1とすることが好ましい。 Therefore, in order to prevent r2>r1 in the structure 10 when the structure 10 according to the present embodiment is applied to the above insulating device, the expansion ratio of the grounding container is taken into consideration, and 0.980r1 It is preferable that ≦r2≦0.995r1.

すなわち、0.980r1≦r2≦0.995r1を満たすように非線形抵抗部材31を絶縁部材30内に形成することにより、構造体10をガス絶縁開閉装置等の絶縁装置に適用した場合に、絶縁装置の運用中に接地容器が伸縮して第1導電性部材1に対する絶縁部材30(非線形抵抗部材31)の位置がずれた場合であっても、非線形抵抗部材31が絶縁部材30と第1導電性部材1との接触領域を超えることを防止することができる。これにより、絶縁装置の使用状況や周辺環境によらず、トリプルジャンクション部TJの電界を確実に低下させることが可能となる。 That is, by forming the nonlinear resistance member 31 in the insulating member 30 so as to satisfy 0.980r1≦r2≦0.995r1, when the structure 10 is applied to an insulating device such as a gas-insulated switchgear, the insulating device Even if the position of the insulating member 30 (nonlinear resistance member 31) with respect to the first conductive member 1 is displaced due to expansion and contraction of the grounding container during operation of the nonlinear resistance member 31, the nonlinear resistance member 31 is connected to the insulating member 30 and the first conductive member. Exceeding the contact area with the member 1 can be prevented. As a result, the electric field at the triple junction TJ can be reliably reduced regardless of the usage conditions of the insulating device and the surrounding environment.

次に、本実施の形態に係る構造体10のガス絶縁開閉装置への適用例を示す。
図7は、本実施の形態に係る構造体10を適用したガス絶縁開閉装置の一例を示す図である。同図には、ガス絶縁開閉装置100Bにおける構造体10が適用された箇所の断面構造が示されている。
Next, an application example of the structure 10 according to the present embodiment to a gas-insulated switchgear is shown.
FIG. 7 is a diagram showing an example of a gas-insulated switchgear to which the structure 10 according to this embodiment is applied. The figure shows a cross-sectional structure of a portion of the gas-insulated switchgear 100B to which the structural body 10 is applied.

図7に示すように、ガス絶縁開閉装置100Bは、接地容器2Aと、高電圧導体1Aと、スペーサ3Aとを有する。 As shown in FIG. 7, the gas-insulated switchgear 100B has a grounded container 2A, a high-voltage conductor 1A, and a spacer 3A.

接地容器(接地タンク)2Aは、高電圧導体1Aを収容する導電性部材である。接地容器2Aは、例えば、鉄、ステンレス鋼、アルミニウム等の金属材料から成り、例えば円筒状に形成されている。接地容器2Aは、その内部に、高電圧導体1Aを収容するとともに、例えば空気やSF6等の気体(ガス)5が充填されている。接地容器2Aは、グラウンド電位に接続されている。 A grounding container (grounding tank) 2A is a conductive member that accommodates the high voltage conductor 1A. The grounded container 2A is made of, for example, a metal material such as iron, stainless steel, or aluminum, and has a cylindrical shape, for example. The grounding container 2A accommodates the high-voltage conductor 1A and is filled with a gas 5 such as air or SF6. The ground container 2A is connected to ground potential.

高電圧導体1Aは、例えば6万V以上の高電圧が印加される導電性部材であって、金属材料(例えば、アルミニウム)から構成されている。高電圧導体1Aは、接地容器2Aの内部に延在している。高電圧導体1Aは、接地容器2Aの内部において、例えば接地容器2Aと同一の方向に延在している。 The high-voltage conductor 1A is a conductive member to which a high voltage of, for example, 60,000 V or higher is applied, and is made of a metal material (eg, aluminum). The high voltage conductor 1A extends inside the grounded container 2A. The high-voltage conductor 1A extends inside the grounded container 2A, for example, in the same direction as the grounded container 2A.

スペーサ3Aは、接地容器2Aの内部において、高電圧導体1Aを接地容器2に対して絶縁した状態で支持する部品である。スペーサ3Aは、絶縁部材30Aと非線形抵抗部材31Aとを有する。 The spacer 3A is a component that supports the high-voltage conductor 1A in a state of being insulated from the grounding container 2 inside the grounding container 2A. The spacer 3A has an insulating member 30A and a nonlinear resistance member 31A.

絶縁部材30Aは、上述した絶縁部材30と同様に、エポキシ樹脂等の熱硬化性樹脂を主成分とする材料から構成されている。絶縁部材30Aは、例えば円錐台状に形成されている。 The insulating member 30A, like the insulating member 30 described above, is made of a material containing a thermosetting resin such as an epoxy resin as a main component. The insulating member 30A is formed, for example, in the shape of a truncated cone.

絶縁部材30Aは、一端において高電圧導体1Aに接合にされ、他端において接地容器2Aに接合にされ、高電圧導体1Aを接地容器2Aの内壁面上に支持する。
例えば、図7に示すように、絶縁部材30Aの底面が接地容器2Aに接触した状態で接地容器2Aに接合され、絶縁部材30Aの底面に対向する上面が高電圧導体1Aと接触した状態で高電圧導体1Aに接合されている。
The insulating member 30A is joined at one end to the high voltage conductor 1A and at the other end to the grounding container 2A to support the high voltage conductor 1A on the inner wall surface of the grounding container 2A.
For example, as shown in FIG. 7, the bottom surface of the insulating member 30A is joined to the grounding container 2A while being in contact with the grounding container 2A, and the top surface facing the bottom surface of the insulating member 30A is in contact with the high voltage conductor 1A. It is joined to the voltage conductor 1A.

非線形抵抗部材31Aは、上述した非線形抵抗部材31と同様のNRMから構成されている。非線形抵抗部材31Aは、高電圧導体1Aに接触した状態で、絶縁部材30Aの一端側に配置されている。具体的に、非線形抵抗部材31Aは、絶縁部材30Aの上面に形成された穴(例えば非貫通孔)303Aに埋め込まれた状態で配置されている。非線形抵抗部材31Aの一部は、絶縁部材30から露出し、高電圧導体1Aに接触している。 The nonlinear resistance member 31A is made of NRM similar to the nonlinear resistance member 31 described above. The nonlinear resistance member 31A is arranged on one end side of the insulating member 30A while being in contact with the high voltage conductor 1A. Specifically, the nonlinear resistance member 31A is arranged in a state of being embedded in a hole (for example, non-through hole) 303A formed in the upper surface of the insulating member 30A. A portion of the nonlinear resistance member 31A is exposed from the insulating member 30 and is in contact with the high voltage conductor 1A.

図8は、図7に示される絶縁装置100Aにおける高電圧導体1Aとスペーサ3Aとの接合部分の拡大図である。 FIG. 8 is an enlarged view of a joint portion between the high-voltage conductor 1A and the spacer 3A in the insulating device 100A shown in FIG.

図7および図8に示すように、絶縁部材30Aと高電圧導体1Aとが接触する領域40Aの中心P1から領域40Aの端部までの距離をr1とし、非線形抵抗部材31Aと高電圧導体1Aとが接触する領域41Aの中心P2から領域41Aの端部までの距離をr2としたとき、0.8r1≦r2≦r1を満たし、より好ましくは、0.980r1≦r2≦0.995r1を満たすように、スペーサ3Aが形成され、高電圧導体1Aと接合されている。 As shown in FIGS. 7 and 8, the distance from the center P1 of the region 40A where the insulating member 30A and the high-voltage conductor 1A are in contact to the edge of the region 40A is defined as r1, and the non-linear resistance member 31A and the high-voltage conductor 1A 0.8r1 ≤ r2 ≤ r1, more preferably 0.980r1 ≤ r2 ≤ 0.995r1, where r2 is the distance from the center P2 of the region 41A in contact with the edge of the region 41A. , a spacer 3A is formed and joined to the high voltage conductor 1A.

これによれば、絶縁装置100Aにおけるトリプルジャンクション部TJの電界強度を効果的に緩和することができる。 According to this, the electric field intensity of the triple junction TJ in the insulating device 100A can be effectively relaxed.

図9は、本実施の形態に係る構造体10を適用したガス絶縁開閉装置の別の一例を示す図である。同図には、ガス絶縁開閉装置100Bにおける構造体10が適用された箇所の断面構造が示されている。 FIG. 9 is a diagram showing another example of a gas-insulated switchgear to which the structure 10 according to this embodiment is applied. The figure shows a cross-sectional structure of a portion of the gas-insulated switchgear 100B to which the structural body 10 is applied.

図9に示すように、ガス絶縁開閉装置100Bは、接地容器2Bと、高電圧導体1Bと、スペーサ3Bとを有する。 As shown in FIG. 9, the gas-insulated switchgear 100B has a grounding container 2B, a high-voltage conductor 1B, and a spacer 3B.

接地容器(接地タンク)2Bは、高電圧導体1Bを収容する導電性部材である。接地容器2Bは、例えば、鉄、ステンレス鋼、アルミニウム等の金属材料から成り、例えば円筒状に形成されている。接地容器2Bは、その内側に、高電圧導体1Bを収容するとともに、例えば空気やSF6等の気体5が充填されている。接地容器2Bは、グラウンド電位に接続されている。 A ground container (ground tank) 2B is a conductive member that accommodates the high voltage conductor 1B. The grounding container 2B is made of, for example, a metal material such as iron, stainless steel, or aluminum, and has a cylindrical shape, for example. The ground container 2B accommodates the high-voltage conductor 1B inside and is filled with a gas 5 such as air or SF6. The ground container 2B is connected to ground potential.

高電圧導体1Bは、高電圧が印加される導電性部材であって、高電圧導体1Aと同様の金属材料から構成されている。高電圧導体1Bは、接地容器2Bの内部において、例えば接地容器2Bと同一の方向に延在している。 The high voltage conductor 1B is a conductive member to which a high voltage is applied, and is made of the same metal material as the high voltage conductor 1A. The high-voltage conductor 1B extends inside the grounding container 2B, for example, in the same direction as the grounding container 2B.

スペーサ3Bは、接地容器2Bの内部において、高電圧導体1Bを接地容器2Bに対して絶縁した状態で支持する部品である。スペーサ3Bは、絶縁部材30Bと非線形抵抗部材31Bとを有する。 The spacer 3B is a component that supports the high-voltage conductor 1B inside the grounding container 2B while being insulated from the grounding container 2B. The spacer 3B has an insulating member 30B and a nonlinear resistance member 31B.

絶縁部材30Bは、上述した絶縁部材30と同様に、エポキシ樹脂等の熱硬化性樹脂を主成分とする材料から構成されている。絶縁部材30Bは、例えばテーパ状の筒形状、換言すれば、中空の円錐台形状を有している。 The insulating member 30B, like the insulating member 30 described above, is made of a material whose main component is a thermosetting resin such as an epoxy resin. The insulating member 30B has, for example, a tapered tubular shape, in other words, a hollow truncated cone shape.

絶縁部材30Bは、一端において高電圧導体1Bに接合にされ、他端において接地容器2Bに接合にされ、高電圧導体1Bを接地容器2Bの内壁面上に支持する。具体的に、絶縁部材30Bは、その軸線方向の一端側において高電圧導体1Bと接合され、軸線方向の他端側において接地容器2Bと接合されている。 The insulating member 30B is joined at one end to the high voltage conductor 1B and at the other end to the grounding container 2B, and supports the high voltage conductor 1B on the inner wall surface of the grounding container 2B. Specifically, the insulating member 30B is joined to the high-voltage conductor 1B at one end in the axial direction, and joined to the grounding container 2B at the other end in the axial direction.

例えば、図9に示すように、高電圧導体1Bは、絶縁部材30Bの軸線に沿って絶縁部材30Bを貫通した状態で絶縁部材30Bに接合されている。 For example, as shown in FIG. 9, the high-voltage conductor 1B is joined to the insulating member 30B while passing through the insulating member 30B along the axis of the insulating member 30B.

非線形抵抗部材31Bは、上述した非線形抵抗部材31と同様のNRMから構成されている。非線形抵抗部材31Bは、高電圧導体1Bに接触した状態で、絶縁部材30Bの一端側に配置されている。具体的に、非線形抵抗部材31Bは、絶縁部材30Bの高電圧導体1Bと接触する側の面に形成された穴(例えば非貫通孔)303Bに埋め込まれた状態で配置されている。非線形抵抗部材31Bの一部は、絶縁部材30Bから露出し、高電圧導体1Bに接触している。 The nonlinear resistance member 31B is made of NRM similar to the nonlinear resistance member 31 described above. The nonlinear resistance member 31B is arranged on one end side of the insulating member 30B while being in contact with the high voltage conductor 1B. Specifically, the non-linear resistance member 31B is arranged in a state of being embedded in a hole (for example, a non-through hole) 303B formed in the surface of the insulating member 30B that contacts the high-voltage conductor 1B. A portion of the nonlinear resistance member 31B is exposed from the insulating member 30B and contacts the high voltage conductor 1B.

図10は、図9に示される絶縁装置100Bにおける高電圧導体1Bとスペーサ3Bとの接合部分の拡大図である。
図9および図10に示すように、絶縁部材30Bと高電圧導体1Bとが接触する領域40Bの中心P1から領域40Bの端部までの距離をr1とし、非線形抵抗部材31Bと高電圧導体1Bとが接触する領域41Bの中心P2から領域41Bの端部までの距離をr2としたとき、0.8r1≦r2≦r1を満たし、より好ましくは、0.980r1≦r2≦0.995r1を満たすように、スペーサ3Bが形成され、高電圧導体1Bと接合されている。
これによれば、絶縁装置100Bにおけるトリプルジャンクション部TJの電界強度を効果的に緩和することができる。
FIG. 10 is an enlarged view of the junction between the high voltage conductor 1B and the spacer 3B in the insulating device 100B shown in FIG.
As shown in FIGS. 9 and 10, the distance from the center P1 of the region 40B where the insulating member 30B and the high-voltage conductor 1B are in contact to the edge of the region 40B is defined as r1, and the nonlinear resistance member 31B and the high-voltage conductor 1B 0.8r1 ≤ r2 ≤ r1, more preferably 0.980r1 ≤ r2 ≤ 0.995r1, where r2 is the distance from the center P2 of the region 41B in contact with the edge of the region 41B to the edge of the region 41B. , a spacer 3B is formed and joined to the high voltage conductor 1B.
According to this, the electric field intensity of the triple junction TJ in the insulating device 100B can be effectively relaxed.

埋込材料に非線形抵抗材料を用いることで,運転電界下での固体絶縁物への電界負荷を金属埋込電極に比べて緩和することができる。 By using a nonlinear resistance material as the embedded material, the electric field load on the solid insulator under the operating electric field can be reduced compared to the metal embedded electrode.

≪実施の形態の拡張≫
以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
<<Expansion of Embodiment>>
Although the invention made by the inventors of the present invention has been specifically described above based on the embodiments, it goes without saying that the invention is not limited thereto, and that various modifications can be made without departing from the gist of the invention. stomach.

例えば、図7等に示したガス絶縁開閉装置100A,100Bのスペーサ3A,3Bの形状はあくまで一例であり、上述したように、絶縁部材30と、非線形抵抗部材31と、高電圧導体(第1導電性部材1)との間の位置関係を満足していれば、別の形状を採用することも可能である。 For example, the shapes of the spacers 3A and 3B of the gas-insulated switchgear 100A and 100B shown in FIG. Other shapes can be adopted as long as the positional relationship with the conductive member 1) is satisfied.

1…第1導電性部材、1A,1B…高電圧導体(第1導電性部材)、2…第2導電性部材、2A,2B…接地容器(第2導電性部材)、3…絶縁部材、3A,3B…スペーサ、5…気体(ガス)、10…構造体、30,30A,30B…絶縁部材、31,31A,31B…非線形抵抗部材、40,40A,40B…第1領域、41,41A,41B…第2領域、100A,100B…ガス絶縁開閉装置、300,301…面、303,303A,303B…穴(例えば非貫通孔)、P1…第1領域の中心、P2…第2領域の中心、r1…第1領域の中心P1から第1領域P1の端部までの距離(半径)、r2…第2領域の中心P2から端部までの距離(半径)、TJ…トリプルジャンクション部。 Reference Signs List 1 first conductive member 1A, 1B high-voltage conductor (first conductive member) 2 second conductive member 2A, 2B grounding container (second conductive member) 3 insulating member 3A, 3B... spacer, 5... gas (gas), 10... structure, 30, 30A, 30B... insulating member, 31, 31A, 31B... nonlinear resistance member, 40, 40A, 40B... first region, 41, 41A , 41B... second area, 100A, 100B... gas insulated switchgear, 300, 301... surfaces, 303, 303A, 303B... holes (for example, non-through holes), P1... center of first area, P2... second area center, r1 --- distance (radius) from the center P1 of the first region to the end of the first region P1, r2 --- distance (radius) from the center P2 of the second region to the end, TJ --- triple junction.

Claims (7)

第1導電性部材と、
前記第1導電性部材と異なる第2導電性部材と、
前記第1導電性部材と前記第2導電性部材とに挟まれた状態で配置された絶縁部材と、
前記第1導電性部材と接触した状態で、前記絶縁部材内に配置された非線形抵抗部材とを有し、
前記絶縁部材と前記第1導電性部材とが接触する第1領域の中心から前記第1領域の端部までの距離をr1とし、前記非線形抵抗部材と前記第1導電性部材とが接触する第2領域の中心から前記第2領域の端部までの距離をr2としたとき、0.8r1≦r2≦r1であり、
前記絶縁部材と、前記第1導電性部材と、前記非線形抵抗部材とが、前記第1領域の中心と前記第2領域の中心が一致した状態で、配置されてい
ことを特徴とする構造体。
a first conductive member;
a second conductive member different from the first conductive member;
an insulating member sandwiched between the first conductive member and the second conductive member;
a non-linear resistance member disposed within the insulating member in contact with the first conductive member;
The distance from the center of the first region where the insulating member and the first conductive member are in contact to the end of the first region is defined as r1, and the distance between the nonlinear resistance member and the first conductive member is the distance r1. where r2 is the distance from the center of the second region to the end of the second region, 0.8r1 ≤ r2 ≤ r1 ;
The structure, wherein the insulating member, the first conductive member, and the non-linear resistance member are arranged such that the center of the first region and the center of the second region are aligned. .
請求項1に記載の構造体において、
0.980r1≦r2≦0.995r1である
ことを特徴とする構造体。
The structure of claim 1, wherein
A structure characterized in that 0.980r1≤r2≤0.995r1.
請求項1または2に記載の構造体において、
前記非線形抵抗部材は、前記絶縁部材の前記第1導電性部材と接触する側の面に形成された穴に埋め込まれている
ことを特徴とする構造体。
A structure according to claim 1 or 2,
The structure, wherein the non-linear resistance member is embedded in a hole formed in a surface of the insulating member that is in contact with the first conductive member.
一端において第1導電性部材に接合にされ、他端において前記第1導電性部材と異なる第2導電性部材に接合にされ、前記第1導電性部材を前記第2導電性部材上に支持する絶縁部材と、
前記第1導電性部材に接触した状態で、前記絶縁部材の前記一端側に配置された非線形抵抗部材と、を有し、
前記絶縁部材と前記第1導電性部材とが接触する第1領域の中心から前記第1領域の端部までの距離をr1とし、前記非線形抵抗部材と前記第1導電性部材とが接触する第2領域の中心から前記第2領域の端部までの距離をr2としたとき、0.8r1≦r2≦r1であり、
前記絶縁部材と、前記第1導電性部材と、前記非線形抵抗部材とが、前記第1領域の中心と前記第2領域の中心が一致した状態で、配置されてい
ことを特徴とするスペーサ。
bonded at one end to a first conductive member and at the other end bonded to a second conductive member different from said first conductive member, supporting said first conductive member on said second conductive member an insulating member;
a nonlinear resistance member disposed on the one end side of the insulating member in contact with the first conductive member;
The distance from the center of the first region where the insulating member and the first conductive member are in contact to the end of the first region is defined as r1, and the distance between the nonlinear resistance member and the first conductive member is the distance r1. where r2 is the distance from the center of the second region to the end of the second region, 0.8r1 ≤ r2 ≤ r1 ;
A spacer, wherein the insulating member, the first conductive member, and the non-linear resistance member are arranged such that the center of the first region coincides with the center of the second region.
請求項4に記載のスペーサにおいて、
0.980r1≦r2≦0.995r1である
ことを特徴とするスペーサ。
5. A spacer according to claim 4,
A spacer, characterized in that 0.980r1≤r2≤0.995r1.
グラウンド電位に接続された接地容器と、
前記接地容器の内部に設けられ、高電圧が印加される導電性部材と、
前記接地容器の内部において、前記導電性部材を支持するスペーサと、を備え、
前記スペーサは、一端において前記導電性部材と接合され、他端において前記接地容器と接合された絶縁部材と、前記導電性部材と接触した状態で前記絶縁部材内に配置された非線形抵抗部材を有し、
前記絶縁部材と前記導電性部材とが接触する第1領域の中心から前記第1領域の端部までの距離をr1とし、前記非線形抵抗部材と前記導電性部材とが接触する第2領域の中心から前記第2領域の端部までの距離をr2としたとき、0.8r1≦r2≦r1であり、
前記絶縁部材と、前記導電性部材と、前記非線形抵抗部材とが、前記第1領域の中心と前記第2領域の中心が一致した状態で、配置されてい
ことを特徴とする絶縁装置。
a grounded container connected to ground potential;
a conductive member provided inside the grounding container and to which a high voltage is applied;
a spacer that supports the conductive member inside the ground container;
The spacer has an insulating member joined to the conductive member at one end and joined to the grounding container at the other end, and a nonlinear resistance member disposed within the insulating member in contact with the conductive member. death,
The distance from the center of the first region where the insulating member and the conductive member are in contact to the end of the first region is defined as r1, and the center of the second region where the nonlinear resistance member and the conductive member are in contact. 0.8 r1 ≤ r2 ≤ r1, where r2 is the distance from the end of the second region,
The insulating device, wherein the insulating member, the conductive member, and the non-linear resistance member are arranged such that the center of the first region and the center of the second region are aligned.
請求項6に記載の絶縁装置において、
0.980r1≦r2≦0.995r1である
ことを特徴とする絶縁装置。
7. The insulating device according to claim 6,
An insulating device, characterized in that 0.980r1≤r2≤0.995r1.
JP2019060129A 2019-03-27 2019-03-27 Spacers and insulators Active JP7235240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060129A JP7235240B2 (en) 2019-03-27 2019-03-27 Spacers and insulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060129A JP7235240B2 (en) 2019-03-27 2019-03-27 Spacers and insulators

Publications (2)

Publication Number Publication Date
JP2020162319A JP2020162319A (en) 2020-10-01
JP7235240B2 true JP7235240B2 (en) 2023-03-08

Family

ID=72643710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060129A Active JP7235240B2 (en) 2019-03-27 2019-03-27 Spacers and insulators

Country Status (1)

Country Link
JP (1) JP7235240B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223366A (en) 2012-04-18 2013-10-28 Toshiba Corp Gas-insulated switchgear
JP2015070667A (en) 2013-09-27 2015-04-13 株式会社東芝 Closed type switchgear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223366A (en) 2012-04-18 2013-10-28 Toshiba Corp Gas-insulated switchgear
JP2015070667A (en) 2013-09-27 2015-04-13 株式会社東芝 Closed type switchgear

Also Published As

Publication number Publication date
JP2020162319A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
Kurimoto et al. Application of functionally graded material for reducing electric field on electrode and spacer interface
US3812314A (en) High power electrical bushing having a vacuum switch encapsulated therein
US3955167A (en) Encapsulated vacuum fuse assembly
WO2014097729A1 (en) Gas insulated electric equipment
JP5596958B2 (en) Overhead wire connection bushing
JP5239913B2 (en) Tank type vacuum circuit breaker
KR20030074236A (en) Switch gear
US3324272A (en) Termination of insulators
WO1997031417A1 (en) Cable termination
JP7235240B2 (en) Spacers and insulators
US3812284A (en) Electrical insulator having additional protective insulating portion
US9548600B2 (en) Disk-shaped insulator
EP3698389A1 (en) High-voltage circuit breaker and method for electromagnetically shielding a vacuum interrupter in an insulator
US6633004B1 (en) Support insulator
JP6352782B2 (en) Insulating spacer
JP2003281981A (en) Vacuum switching device
US3617606A (en) Shielded bushing construction
CN215815424U (en) Spacer assembly for a gas insulation system and gas insulation system
CN102959816B (en) The assembly of the sleeve pipe for the electric equipment in metal shell and the isolator for the mechanical fixing with improvement
KR20200135787A (en) Method for creating a power device by additive manufacturing techniques
JP3585517B2 (en) Gas insulated bushing
JP7400113B2 (en) gas insulated equipment
US11962133B2 (en) Air insulated switch with very compact gap length
JP3413045B2 (en) Support insulator
JP3466644B2 (en) Gas insulated busbar

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230215

R150 Certificate of patent or registration of utility model

Ref document number: 7235240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150