JP2015067754A - Composite wavelength conversion particle, resin composition containing composite wavelength conversion particle, and light-emitting device - Google Patents

Composite wavelength conversion particle, resin composition containing composite wavelength conversion particle, and light-emitting device Download PDF

Info

Publication number
JP2015067754A
JP2015067754A JP2013204296A JP2013204296A JP2015067754A JP 2015067754 A JP2015067754 A JP 2015067754A JP 2013204296 A JP2013204296 A JP 2013204296A JP 2013204296 A JP2013204296 A JP 2013204296A JP 2015067754 A JP2015067754 A JP 2015067754A
Authority
JP
Japan
Prior art keywords
phosphor
wavelength conversion
light
composite wavelength
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013204296A
Other languages
Japanese (ja)
Other versions
JP6123619B2 (en
Inventor
木下 暢
Noboru Kinoshita
暢 木下
勉 野添
Tsutomu Nozoe
勉 野添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2013204296A priority Critical patent/JP6123619B2/en
Publication of JP2015067754A publication Critical patent/JP2015067754A/en
Application granted granted Critical
Publication of JP6123619B2 publication Critical patent/JP6123619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite wavelength conversion particle that has high use efficiency of light and high use efficiency of a phosphor itself, can achieve both high efficiency light emission and high reliability, and is environmentally friendly, and to provide an organic resin composition containing composite wavelength conversion particles, and a light-emitting device.SOLUTION: A composite wavelength conversion particle 1 contains an yttrium aluminum garnet phosphor 3 dispersed in a fluoride matrix particle 2 comprising one or more compounds selected from the group consisting of magnesium fluoride, calcium fluoride and strontium fluoride; and the particle shows a maximum of emission intensity in a wavelength region of 560 nm or more and 580 nm or less.

Description

本発明は、複合波長変換粒子及び複合波長変換粒子含有樹脂組成物並びに発光装置に関し、さらに詳しくは、光の利用効率及び蛍光体自体の利用効率が高く、高効率発光と高信頼性を両立させることが可能な複合波長変換粒子及び複合波長変換粒子含有樹脂組成物並びに発光装置に関するものである。   The present invention relates to a composite wavelength conversion particle, a composite wavelength conversion particle-containing resin composition, and a light emitting device. More specifically, the light utilization efficiency and the phosphor utilization efficiency are high, and both high efficiency light emission and high reliability are achieved. The present invention relates to a composite wavelength conversion particle, a composite wavelength conversion particle-containing resin composition, and a light emitting device.

蛍光体は、各種表示装置、照明装置、太陽光発電装置、フォトニックデバイス、光アンプ等、様々な光学装置で用いられている。特に、白色発光素子(白色LED素子)や太陽電池等の光起電装置の波長変換膜等に用いられる蛍光体は、近紫外線、あるいは可視光線の中でも青色光等の比較的低エネルギーの電子線励起によって高い効率で発光(蛍光)させる必要がある。また、白色発光素子や太陽光起電装置では、蛍光体の長期安定性に優れている(長期に亘って劣化が小さい)ことはもちろんのこと、高温・高湿度下においても発光効率の低下が小さい波長変換材料が必要となっている。特に、近紫外線や可視光線で励起させて可視光線や赤外線を放射させる波長変換材料を用いた光学デバイスでは、発光の高効率化と、高い信頼性及び優れた耐久性とを両立させることが必要とされている。   Phosphors are used in various optical devices such as various display devices, lighting devices, solar power generation devices, photonic devices, and optical amplifiers. In particular, phosphors used for wavelength conversion films of photovoltaic devices such as white light emitting elements (white LED elements) and solar cells are relatively low energy electron beams such as near ultraviolet rays or blue light among visible rays. It is necessary to emit light (fluorescence) with high efficiency by excitation. In addition, white light-emitting elements and photovoltaic devices have excellent phosphor long-term stability (small degradation over a long period of time), as well as reduced luminous efficiency even at high temperatures and high humidity. Small wavelength conversion materials are needed. In particular, in optical devices using wavelength conversion materials that are excited by near ultraviolet rays or visible rays to emit visible rays or infrared rays, it is necessary to achieve both high efficiency of light emission, high reliability, and excellent durability. It is said that.

このような蛍光体材料、すなわち近紫外線や青色光で励起し、可視光線を高効率で発光する蛍光体材料としては、イットリウムアルミニウムガーネット(YAG)等のガーネット構造を有するYAG系蛍光体が一般に用いられている。例えば、その一例であるYAl12:Ce3+では、室温にて量子効率90%程度を得ている。
また、このYAG系蛍光体以外の蛍光体材料としては、ケイ酸塩、ホウ酸塩、リン酸塩等の粒子状の蛍光体材料が開発され提案されているが、これらの蛍光体材料は、耐湿性や耐熱性の点でYAG系蛍光体より劣っている。
さらに、YAG系蛍光体と発光効率や耐久性が同等レベルの蛍光体材料として、窒化物や酸窒化物系の蛍光体材料が提案されている。
A YAG phosphor having a garnet structure such as yttrium aluminum garnet (YAG) is generally used as such a phosphor material, that is, a phosphor material that is excited by near ultraviolet light or blue light and emits visible light with high efficiency. It has been. For example, Y 3 Al 5 O 12 : Ce 3+ , which is an example, has a quantum efficiency of about 90% at room temperature.
Further, as phosphor materials other than this YAG-based phosphor, particulate phosphor materials such as silicate, borate, and phosphate have been developed and proposed. It is inferior to YAG phosphors in terms of moisture resistance and heat resistance.
Further, nitride and oxynitride phosphor materials have been proposed as phosphor materials having the same luminous efficiency and durability as YAG phosphors.

これらの蛍光体材料は、一般的に、粒子の状態でエポキシ樹脂やシリコーン樹脂等の有機系結合剤またはガラスやシリカ系の無機系結合剤中に分散させた波長変換部材として用いられている。
この波長変換部材では、蛍光体材料の屈折率は1.63〜2.0程度であるが、有機系結合剤や無機系結合剤の屈折率は1.6よりも小さいので、蛍光体材料と結合剤との屈折率差により散乱が生じることとなる。例えば、光源からの励起光を波長変換部材の後方から入射させ、この波長変換部材の前方に放射光を出射させる光学素子においては、後方散乱による光損失を低減させる必要がある。そこで、蛍光体の粒子径を10μm程度としている。
These phosphor materials are generally used as a wavelength conversion member dispersed in an organic binder such as epoxy resin or silicone resin or glass or silica-based inorganic binder in the form of particles.
In this wavelength conversion member, the refractive index of the phosphor material is about 1.63 to 2.0, but the refractive index of the organic binder or the inorganic binder is smaller than 1.6. Scattering occurs due to the difference in refractive index from the binder. For example, in an optical element in which excitation light from a light source is incident from behind a wavelength conversion member and emitted light is emitted in front of the wavelength conversion member, it is necessary to reduce light loss due to backscattering. Therefore, the particle diameter of the phosphor is set to about 10 μm.

ところで、粒子径が10μm程度の大きさの蛍光体粒子の場合、励起光の吸収と放射光の出射が行われるのは粒子の表層部のみで、粒子の内部は蛍光体としての機能をほとんど発揮しておらず、蛍光体粒子の多くの部分が無駄になっている。
そこで、蛍光体粒子の光散乱による光利用効率を向上させるために、蛍光体粒子の表面を金属酸化物からなる多孔質状の被覆層で覆った蛍光体粒子が提案されている(特許文献1)。
また、粒子径が励起光や放射光の波長よりも小さい蛍光体粒子を結合剤中に分散させることで、光散乱による光利用効率のロスを低減させた蛍光体材料も提案されている。例えば、ゼオライト単結晶に発光中心用希土類金属を担持させたルミネッセンス材料(特許文献2)、酸化物蛍光体ナノ粒子を球状シリカマトリックス中に分散させた単分散球状無機蛍光体(特許文献3)等が提案されている。
さらに、YAG系蛍光体の粒子径を小さくして光散乱を抑制させる試みも提案されている。
By the way, in the case of phosphor particles having a particle size of about 10 μm, excitation light is absorbed and emitted light is emitted only on the surface layer of the particles, and the inside of the particles almost functions as a phosphor. Many parts of the phosphor particles are wasted.
Therefore, in order to improve the light utilization efficiency by light scattering of the phosphor particles, phosphor particles in which the surface of the phosphor particles is covered with a porous coating layer made of a metal oxide have been proposed (Patent Document 1). ).
In addition, a phosphor material in which the loss of light utilization efficiency due to light scattering is reduced by dispersing phosphor particles having a particle diameter smaller than the wavelength of excitation light or radiation light in a binder has been proposed. For example, a luminescent material in which a rare earth metal for an emission center is supported on a zeolite single crystal (Patent Document 2), a monodispersed spherical inorganic phosphor in which oxide phosphor nanoparticles are dispersed in a spherical silica matrix (Patent Document 3), etc. Has been proposed.
Furthermore, an attempt to suppress light scattering by reducing the particle size of the YAG phosphor has been proposed.

特表2011−503266号公報Special table 2011-503266 gazette 特開2003−246981号公報JP 2003-246981 A 特開2010−155958号公報JP 2010-155958 A

しかしながら、特許文献1に記載の蛍光体粒子では、蛍光体粒子の表面を金属酸化物からなる多孔質状の被覆層で覆ったことにより、この蛍光体粒子の表面にて散乱を抑制することはできるものの、蛍光体粒子自体の屈折率を改善しているものではないので、光散乱を抑制する効果がほとんどないという問題点があった。
また、特許文献2に記載のルミネッセンス材料では、ゼオライト単結晶に発光中心用希土類金属を担持させているので、光散乱による光利用効率のロスは小さくなるものの、ルミネッセンス材料自体の表面欠陥による発光効率が大きく低下するという問題点があった。さらには、湿度の影響を大きく受け易く、波長変換材料としての性能は不十分なものであった。
However, in the phosphor particles described in Patent Document 1, the surface of the phosphor particles is covered with a porous coating layer made of a metal oxide, thereby suppressing scattering on the surface of the phosphor particles. Although it can be done, it does not improve the refractive index of the phosphor particles themselves, so there is a problem that there is almost no effect of suppressing light scattering.
In addition, in the luminescent material described in Patent Document 2, since the rare earth metal for the luminescent center is supported on the zeolite single crystal, the loss of light utilization efficiency due to light scattering is reduced, but the luminous efficiency due to the surface defects of the luminescent material itself. There was a problem of a significant drop. Furthermore, it is easily affected by humidity and its performance as a wavelength conversion material is insufficient.

また、特許文献3に記載の単分散球状無機蛍光体においては、酸化物蛍光体ナノ粒子を球状シリカマトリックス中に分散させているので、光散乱による光利用効率のロスは小さくなるものの、単分散球状無機蛍光体自体の表面欠陥による発光効率が大きく低下するという問題点があった。さらには、湿度の影響を大きく受け易く、波長変換材料としての性能は不十分なものであった。
さらに、YAG系蛍光体の粒子径を小さくして光散乱を抑制させたものにおいては、粒子径を小さくすることにより、YAG系蛍光体粒子の表面の結晶の乱れの影響を大きく受けることとなるので、発光効率も21〜56%程度と低く、実用上不十分なものであった。
Further, in the monodispersed spherical inorganic phosphor described in Patent Document 3, the oxide phosphor nanoparticles are dispersed in the spherical silica matrix, so that the loss of light utilization efficiency due to light scattering is reduced, but the monodispersed There has been a problem that the luminous efficiency due to surface defects of the spherical inorganic phosphor itself is greatly reduced. Furthermore, it is easily affected by humidity and its performance as a wavelength conversion material is insufficient.
Further, in the case where the light scattering is suppressed by reducing the particle diameter of the YAG phosphor, the influence of crystal disturbance on the surface of the YAG phosphor particles is greatly affected by reducing the particle diameter. Therefore, the luminous efficiency was as low as about 21 to 56%, which was insufficient practically.

本発明は、上記の事情に鑑みてなされたものであって、光の利用効率及び蛍光体自体の利用効率が高く、高効率発光と高信頼性を両立させることが可能であり、しかも地球環境に優しい複合波長変換粒子及び複合波長変換粒子含有樹脂組成物並びに発光装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has high light use efficiency and high use efficiency of the phosphor itself, and can achieve both high efficiency light emission and high reliability. An object of the present invention is to provide a composite wavelength conversion particle, a composite wavelength conversion particle-containing resin composition, and a light-emitting device that are gentle to the environment.

本発明者等は、上記課題を解決するために鋭意検討した結果、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有してなるフッ化物からなるマトリクス粒子中に、イットリウムアルミニウムガーネット系蛍光体を分散させ、しかも、発光強度の最大値を560nm以上かつ580nm以下の波長領域にあることとすれば、光の利用効率及び蛍光体自体の利用効率が高く、高効率発光と高信頼性を両立させることが可能であり、しかも地球環境に優しいことを知見し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors are made of a fluoride containing one or more selected from the group consisting of magnesium fluoride, calcium fluoride and strontium fluoride. If the yttrium aluminum garnet phosphor is dispersed in the matrix particles and the maximum emission intensity is in the wavelength region of 560 nm or more and 580 nm or less, the light utilization efficiency and the phosphor utilization efficiency can be improved. It has been found that it is possible to achieve both high-efficiency light emission and high reliability, and that it is friendly to the global environment, and the present invention has been completed.

すなわち、本発明の複合波長変換粒子は、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有してなるフッ化物からなるマトリクス粒子中に、イットリウムアルミニウムガーネット系蛍光体を分散してなり、発光強度の最大値は560nm以上かつ580nm以下の波長領域にあることを特徴とする。   That is, the composite wavelength conversion particle of the present invention includes yttrium aluminum in matrix particles made of fluoride containing one or more selected from the group of magnesium fluoride, calcium fluoride and strontium fluoride. A garnet phosphor is dispersed, and the maximum value of emission intensity is in a wavelength region of 560 nm or more and 580 nm or less.

前記イットリウムアルミニウムガーネット系蛍光体は、
(Y3−x−zCe)(Al5−y―wSi)O12 ……(1)
(但し、MはCeを除くランタノイド及びBiのうち少なくとも1種、RはIn、Gaのうち少なくとも1種であり、0.21≦x≦0.9、0≦y≦1.5、0≦z≦1.5、0≦w≦1.0)
を主成分とすることが好ましい。
前記フッ化物に対する前記イットリウムアルミニウムガーネット系蛍光体の質量百分率は、20質量%以上かつ70質量%以下であることが好ましい。
The yttrium aluminum garnet phosphor is
(Y 3-x-z Ce x M z) (Al 5-y-w R w Si y) O 12 ...... (1)
(However, M is at least one of lanthanoid and Bi excluding Ce, R is at least one of In and Ga, and 0.21 ≦ x ≦ 0.9, 0 ≦ y ≦ 1.5, 0 ≦ z ≦ 1.5, 0 ≦ w ≦ 1.0)
Is preferably the main component.
The mass percentage of the yttrium aluminum garnet phosphor with respect to the fluoride is preferably 20% by mass or more and 70% by mass or less.

本発明の複合波長変換粒子含有樹脂組成物は、本発明の複合波長変換粒子を樹脂中に分散してなることを特徴とする。   The composite wavelength conversion particle-containing resin composition of the present invention is characterized in that the composite wavelength conversion particles of the present invention are dispersed in a resin.

本発明の発光装置は、300nm以上かつ500nm以下の波長領域の光を発光する半導体発光素子と、この半導体発光素子から出射される光を受光することにより可視光線を発光する発光層と、を備え、前記発光層は、請求項1ないし3のいずれか1項記載の複合波長変換粒子を含有してなることを特徴とする。   A light-emitting device of the present invention includes a semiconductor light-emitting element that emits light in a wavelength region of 300 nm or more and 500 nm or less, and a light-emitting layer that emits visible light by receiving light emitted from the semiconductor light-emitting element. The light emitting layer contains the composite wavelength conversion particle according to any one of claims 1 to 3.

前記発光層は、黄色蛍光体、青色蛍光体、緑色蛍光体及び赤色蛍光体のいずれか1種または2種以上を含有してなることが好ましい。   The light emitting layer preferably contains one or more of a yellow phosphor, a blue phosphor, a green phosphor and a red phosphor.

本発明の複合波長変換粒子によれば、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有してなるフッ化物からなるマトリクス粒子中にイットリウムアルミニウムガーネット系蛍光体を分散し、さらに、発光強度の最大値を560nm以上かつ580nm以下の波長領域にあることとしたので、光の利用効率及び粒子自体の利用効率を高めることができ、したがって、高効率で発光させることができる。しかも、この高効率発光は、長期間に亘って安定しているので、信頼性を高めることができる。   According to the composite wavelength conversion particle of the present invention, the yttrium aluminum garnet is contained in the matrix particle made of fluoride containing one or more selected from the group of magnesium fluoride, calcium fluoride and strontium fluoride. System phosphors are dispersed, and the maximum value of the emission intensity is in the wavelength region of 560 nm or more and 580 nm or less, so that the light utilization efficiency and the utilization efficiency of the particles themselves can be increased. Can emit light. In addition, since this high-efficiency light emission is stable over a long period of time, the reliability can be improved.

さらに、熱膨張率が大きなマトリクス粒子中にイットリウムアルミニウムガーネット系蛍光体を分散させたので、マトリクス粒子中に大きな圧縮応力を発生させてイットリウムアルミニウムガーネット系蛍光体の結晶構造を歪ませることができる。したがって、発光波長を長波長化させることができる。
以上により、高効率発光と高信頼性を両立させることができる。
Furthermore, since the yttrium aluminum garnet phosphor is dispersed in the matrix particles having a high coefficient of thermal expansion, it is possible to generate a large compressive stress in the matrix particles and distort the crystal structure of the yttrium aluminum garnet phosphor. Therefore, the emission wavelength can be increased.
As described above, both high-efficiency light emission and high reliability can be achieved.

本発明の複合波長変換粒子含有樹脂組成物によれば、本発明の複合波長変換粒子を樹脂中に分散したので、光の利用効率及び樹脂組成物自体の利用効率を高めることができ、したがって、高効率で発光させることができる。しかも、この高効率発光は、長期間に亘って安定しているので、信頼性を高めることができる。   According to the composite wavelength conversion particle-containing resin composition of the present invention, since the composite wavelength conversion particles of the present invention are dispersed in the resin, the light utilization efficiency and the utilization efficiency of the resin composition itself can be increased. Light can be emitted with high efficiency. In addition, since this high-efficiency light emission is stable over a long period of time, the reliability can be improved.

本発明の発光装置によれば、300nm以上かつ500nm以下の波長領域の光を発光する半導体発光素子と、この半導体発光素子から出射される光を受光することにより可視光線を発光する発光層と、を備え、この発光層は本発明の複合波長変換粒子を含有したので、光の利用効率及び樹脂組成物自体の利用効率を高めることができ、したがって、高効率で発光させることができ、さらには長期間に亘って信頼性を高めることができる。   According to the light emitting device of the present invention, a semiconductor light emitting element that emits light in a wavelength region of 300 nm or more and 500 nm or less, a light emitting layer that emits visible light by receiving light emitted from the semiconductor light emitting element, This light emitting layer contains the composite wavelength conversion particles of the present invention, so that the light utilization efficiency and the utilization efficiency of the resin composition itself can be increased, and therefore, the light emission layer can be made to emit light with high efficiency. Reliability can be improved over a long period of time.

本発明の一実施形態の複合波長変換粒子を示す断面図である。It is sectional drawing which shows the composite wavelength conversion particle of one Embodiment of this invention. 本発明の一実施形態の発光装置の一例である表面実装型発光装置を示す断面図である。It is sectional drawing which shows the surface mount type light-emitting device which is an example of the light-emitting device of one Embodiment of this invention. 本発明の一実施形態の発光装置の他の一例である表面実装型発光装置を示す断面図である。It is sectional drawing which shows the surface mount type light-emitting device which is another example of the light-emitting device of one Embodiment of this invention. 本発明の一実施形態の発光装置のさらに他の一例である表面実装型発光装置を示す断面図である。It is sectional drawing which shows the surface mount type light-emitting device which is another example of the light-emitting device of one Embodiment of this invention. 本発明の実施例1の複合波長変換粒子を示す走査型電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image which shows the composite wavelength conversion particle | grains of Example 1 of this invention. 本発明の実施例1の複合波長変換粒子を示す拡大走査型電子顕微鏡(SEM)像である。It is an expansion scanning electron microscope (SEM) image which shows the composite wavelength conversion particle of Example 1 of this invention. 本発明の実施例7の複合波長変換粒子のCe−L3吸収端のX線吸収端近傍微細構造スペクトルを示す図である。It is a figure which shows the X-ray absorption edge vicinity fine structure spectrum of Ce-L3 absorption edge of the composite wavelength conversion particle of Example 7 of this invention. 本発明の実施例7、8,10のそれぞれの複合波長変換粒子におけるイオン間距離を示す図である。It is a figure which shows the distance between ions in each composite wavelength conversion particle of Example 7, 8, 10 of this invention.

本発明の複合波長変換粒子及び複合波長変換粒子含有樹脂組成物並びに発光装置を実施するための形態について説明する。
なお、以下の実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The form for implementing the composite wavelength conversion particle | grains of this invention, the composite wavelength conversion particle containing resin composition, and a light-emitting device is demonstrated.
The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.

[複合波長変換粒子]
図1は、本発明の一実施形態の複合波長変換粒子を示す断面図であり、この複合波長変換粒子1は、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有してなるフッ化物からなるマトリクス粒子2中に、イットリウムアルミニウムガーネット系蛍光体3を分散している。
そして、この複合波長変換粒子1の発光強度の最大値は、560nm以上かつ580nm以下の波長領域にある。
次に、この複合波長変換粒子について詳細に説明する。
[Composite wavelength conversion particles]
FIG. 1 is a cross-sectional view showing a composite wavelength conversion particle according to an embodiment of the present invention. The composite wavelength conversion particle 1 is selected from the group consisting of magnesium fluoride, calcium fluoride and strontium fluoride. An yttrium aluminum garnet phosphor 3 is dispersed in matrix particles 2 made of a fluoride containing two or more kinds.
The maximum value of the emission intensity of the composite wavelength conversion particle 1 is in the wavelength region of 560 nm or more and 580 nm or less.
Next, the composite wavelength conversion particles will be described in detail.

「マトリクス粒子」
マトリクス粒子は、この複合波長変換粒子の基材部分を構成する粒子状物質であり、フッ化物により構成されている。
このフッ化物としては、イットリウムアルミニウムガーネット系蛍光体より屈折率が低く、かつ、耐熱性及び耐化学性等の耐久性に優れているフッ化物、すなわちフッ化マグネシウム(屈折率:1.38)、フッ化カルシウム(屈折率:1.43)及びフッ化ストロンチウム(屈折率:1.44)の群から選択される1種または2種以上が好適に用いられる。
これらのフッ化物は、非晶質シリカ(屈折率:1.45)を併用して用いることができる。
"Matrix particles"
Matrix particles are a particulate material that constitutes the base portion of the composite wavelength conversion particle, and are composed of fluoride.
As this fluoride, a fluoride having a refractive index lower than that of the yttrium aluminum garnet phosphor and excellent in durability such as heat resistance and chemical resistance, that is, magnesium fluoride (refractive index: 1.38), One or more selected from the group of calcium fluoride (refractive index: 1.43) and strontium fluoride (refractive index: 1.44) are preferably used.
These fluorides can be used in combination with amorphous silica (refractive index: 1.45).

このマトリクス粒子の平均粒子径は、1nm以上かつ500nm以下が好ましく、より好ましくは10nm以上かつ300nm以下、または励起波長の長さ以下である。
ここで、マトリクス粒子の平均粒子径が500nmを超えると、このマトリクス粒子を構成しているフッ化物と蛍光体粒子との屈折率差によりミー(Mei)散乱が生じ、励起光の利用効率が低下するので好ましくない。
一方、マトリクス粒子の平均粒子径が1nm未満であると、耐薬品性及び耐水性が低下するので好ましくない。
The average particle diameter of the matrix particles is preferably 1 nm or more and 500 nm or less, more preferably 10 nm or more and 300 nm or less, or the length of the excitation wavelength or less.
Here, when the average particle diameter of the matrix particles exceeds 500 nm, Mei scattering occurs due to the refractive index difference between the fluorides and the phosphor particles constituting the matrix particles, and the use efficiency of the excitation light decreases. This is not preferable.
On the other hand, if the average particle size of the matrix particles is less than 1 nm, the chemical resistance and water resistance are lowered, which is not preferable.

このマトリクス粒子は、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有してなるフッ化物の結晶子が複数個、結合して1つの多結晶体となっている。
また、X線回折法を用いて、このマトリクス粒子中のフッ化物の結晶子径を測定することができる。
The matrix particles are formed by combining a plurality of fluoride crystallites containing one or more selected from the group consisting of magnesium fluoride, calcium fluoride, and strontium fluoride. It has become.
Moreover, the crystallite diameter of the fluoride in the matrix particles can be measured using an X-ray diffraction method.

このフッ化物の平均結晶子径は、100nm以下であることが好ましく、80nm以下であることがより好ましい。
ここで、フッ化物の平均結晶子径が100nmを超えると、蛍光体粒子の分散状態が不均一になり、前方発光性が低下するので好ましくない。
The average crystallite diameter of the fluoride is preferably 100 nm or less, and more preferably 80 nm or less.
Here, when the average crystallite diameter of the fluoride exceeds 100 nm, the dispersed state of the phosphor particles becomes non-uniform, and the forward light emission property is lowered, which is not preferable.

このマトリクス粒子は、公知の方法を用いて作製することができる。例えば、フッ化物からなる微粒子を作製する場合、フッ化アンモニウム水溶液と、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上からなるフッ化物を含有したフッ化物水溶液とを、混合することにより、フッ化マグネシウム微粒子、フッ化カルシウム微粒子及びフッ化ストロンチウム微粒子の群から選択される1種または2種以上からなるフッ化物微粒子をコロイド状で生成させることができる。
したがって、フッ化マグネシウム微粒子、フッ化カルシウム微粒子及びフッ化ストロンチウム微粒子の群から選択される1種または2種以上からなるフッ化物微粒子を、簡単な装置を用いて簡単に作製することができる。
The matrix particles can be produced using a known method. For example, when producing fine particles made of fluoride, a fluoride containing an aqueous solution of ammonium fluoride and one or more fluorides selected from the group of magnesium fluoride, calcium fluoride and strontium fluoride By mixing the aqueous solution, fluoride fine particles composed of one kind or two or more kinds selected from the group of magnesium fluoride fine particles, calcium fluoride fine particles and strontium fluoride fine particles can be produced in a colloidal form.
Therefore, fluoride fine particles composed of one or more selected from the group of magnesium fluoride fine particles, calcium fluoride fine particles and strontium fluoride fine particles can be easily produced using a simple apparatus.

「イットリウムアルミニウムガーネット系蛍光体」
イットリウムアルミニウムガーネット系蛍光体(以下、YAG系蛍光体と略記する場合がある)は、
(Y3−x−zCe)(Al5−y―wSi)O12 ……(2)
(但し、MはCeを除くランタノイド及びBiのうち少なくとも1種、RはIn、Gaのうち少なくとも1種であり、0.21≦x≦0.9、0≦y≦1.5、0≦z≦1.5、0≦w≦1.0)
を主成分とする蛍光体であり、黄色系蛍光を発する蛍光体である。
"Yttrium aluminum garnet phosphor"
Yttrium aluminum garnet phosphor (hereinafter sometimes abbreviated as YAG phosphor)
(Y 3-x-z Ce x M z) (Al 5-y-w R w Si y) O 12 ...... (2)
(However, M is at least one of lanthanoid and Bi excluding Ce, R is at least one of In and Ga, and 0.21 ≦ x ≦ 0.9, 0 ≦ y ≦ 1.5, 0 ≦ z ≦ 1.5, 0 ≦ w ≦ 1.0)
Is a phosphor that emits yellowish fluorescence.

ここで、YAG系蛍光体の結晶構造及び発光波長が長波長化する点について説明する。
YAG系蛍光体は、ガーネット構造(組成式:IIIIIIV12、但し、II、III、IVは、それぞれ2価、3価、4価の金属イオン)をとり、酸素6配位金属イオン(III)と酸素4配位金属イオン(IV)のネットワーク内の歪んだ空隙に酸素8配位金属イオン(II)が配置されている。
例えば、イットリウムアルミニウムガーネット(YAG)においては、イットリウムイオンが酸素8配位位置、アルミニウムイオンが酸素4配位位置および6配位位置に配置されている構造を有する。
Here, the crystal structure and emission wavelength of the YAG phosphor will be described.
YAG-based phosphors have a garnet structure (composition formula: II 3 III 2 IV 3 O 12 , where II, III, and IV are divalent, trivalent, and tetravalent metal ions, respectively), and oxygen 6-coordinated Oxygen 8-coordinated metal ions (II) are arranged in distorted voids in the network of metal ions (III) and oxygen 4-coordinated metal ions (IV).
For example, yttrium aluminum garnet (YAG) has a structure in which yttrium ions are arranged at oxygen 8-coordinate positions and aluminum ions are arranged at oxygen 4-coordinate positions and 6-coordinate positions.

一方、YAG系蛍光体では、歪んだ空隙に配置する酸素8配位位置のイットリウムイオンの一部をセリウム(III)イオンに置換することで、周囲の酸素イオンの影響を受けたセリウムイオンの5d軌道に結晶場分裂が生じ、セリウム(III)イオンの4f−5d遷移による可視光領域の発光を利用することが知られている。
従来では、YAG系蛍光体の発光波長を制御する方法として、酸素8配位位置や酸素4配位位置にイットリウムイオン、アルミニウムイオン、セリウムイオンとイオン半径の異なるガドミウムイオンやガリウムイオン等のイオンを共ドープさせて8配位構造を歪ませることで、8配位位置にあるセリウムイオンの結晶場分裂の大きさを制御する方法が採られている。
On the other hand, in a YAG phosphor, 5d of cerium ions affected by surrounding oxygen ions is obtained by substituting cerium (III) ions for a part of yttrium ions at the oxygen 8-coordinate positions arranged in the distorted voids. It is known that crystal field splitting occurs in the orbit, and light emission in the visible light region due to the 4f-5d transition of cerium (III) ions is used.
Conventionally, as a method of controlling the emission wavelength of a YAG phosphor, ions such as cadmium ions and gallium ions having ion radii different from yttrium ions, aluminum ions, cerium ions at oxygen 8-coordinate positions and oxygen 4-coordinate positions are used. Is used to control the size of the crystal field splitting of the cerium ion at the 8-coordinate position by distorting the 8-coordinate structure.

本実施形態のYAG系蛍光体の発光波長を制御する方法は、上述したイオン半径の異なるイオン種を添加することによりガーネット構造を制御する方法とは全く異なる方法である。
すなわち、YAG系蛍光体よりも熱膨張率が大きく、かつ、低屈折率のマトリックス粒子により、YAG系蛍光体を固定化させることにより、このYAG系蛍光体の粒子内部に熱膨張力差による圧縮応力を生じさせ、よって、ガーネット構造を変形・歪ませ、その結果、YAG系蛍光体の発光波長の制御を可能とした方法である。
この場合、例えば、上記のフッ化物の熱膨張率が24ppm程度のとき、YAG系蛍光体の熱膨張率は8ppm程度である。
The method for controlling the emission wavelength of the YAG phosphor of the present embodiment is completely different from the method for controlling the garnet structure by adding ion species having different ionic radii as described above.
That is, the YAG phosphor is fixed by matrix particles having a higher thermal expansion coefficient than that of the YAG phosphor and a low refractive index, so that the YAG phosphor is compressed by the difference in thermal expansion force inside the particles. In this method, stress is generated, and thus the garnet structure is deformed and distorted, and as a result, the emission wavelength of the YAG phosphor can be controlled.
In this case, for example, when the thermal expansion coefficient of the fluoride is about 24 ppm, the thermal expansion coefficient of the YAG phosphor is about 8 ppm.

これにより、本実施形態のYAG系蛍光体では、ガドミウムイオンやガリウムイオン等の希少金属イオンを用いなくとも、セリウムイオンの結晶場分裂を大きくすることが可能となり、その結果、高い発光効率を達成することができる。しかも、添加するセリウムイオンの濃度を従来にない高い濃度としても、発光イオンによるいわゆる「濃度消光」が生じることがない。
以上により、YAG系蛍光体にセリウムイオンを高濃度にて添加することにより、発光ピークの長波長化及び高発光効率化を両立させることができる。
As a result, the YAG phosphor of this embodiment can increase the crystal field splitting of cerium ions without using rare metal ions such as gadmium ions and gallium ions. As a result, high luminous efficiency can be obtained. Can be achieved. In addition, even if the concentration of the cerium ion to be added is set to a high concentration that has not been known in the past, so-called “concentration quenching” due to luminescent ions does not occur.
As described above, by adding cerium ions to the YAG-based phosphor at a high concentration, it is possible to achieve both a longer emission peak wavelength and higher emission efficiency.

上記の(2)式にて表されるYAG系蛍光体では、M(イオン)としては、イットリウム(Y)以外の金属元素で、Yよりも8配位におけるイオン半径(r)が大きい金属元素イオン、すなわち、Ceを除くランタノイド及びビスマス(Bi:r=1.17)のうち少なくとも1種からなるイオンが好ましい。   In the YAG-based phosphor represented by the above formula (2), M (ion) is a metal element other than yttrium (Y) and has a larger ionic radius (r) in 8-coordinate than Y. Ions, that is, ions composed of at least one of lanthanoid and bismuth (Bi: r = 1.17) excluding Ce are preferable.

ここで、M(イオン)がCeを除くランタノイドとは、Mが原子番号が57から71までの希土類元素のうちセリウム(Ce)を除いたイオンという意味であり、ランタン(La:r=1.16)、プラセオジム(Pr:r=1.13)、ネオジム(Nd:r=1.12)、プロメチウム(Pm)、サマリウム(Sm:r=1.08)、ユーロピウム(Eu:r=1.07)、ガドリニウム(Gd:r=1.05)、テルビウム(Tb:r=1.04)、ジスプロシウム(Dy:r=1.03)、ホルミウム(Ho)、エルビウム(Er:r=1.00)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu:r=0.97)の14元素のイオンのことである。   Here, the lanthanoid in which M (ion) excludes Ce means that M is an ion excluding cerium (Ce) among rare earth elements having atomic numbers of 57 to 71, and lanthanum (La: r = 1. 16), praseodymium (Pr: r = 1.13), neodymium (Nd: r = 1.12), promethium (Pm), samarium (Sm: r = 1.08), europium (Eu: r = 1.07) ), Gadolinium (Gd: r = 1.05), terbium (Tb: r = 1.04), dysprosium (Dy: r = 1.03), holmium (Ho), erbium (Er: r = 1.00) , Thulium (Tm), ytterbium (Yb), and lutetium (Lu: r = 0.97).

上記の(2)式において、xの値の範囲を0.21≦x≦0.9とした理由は、x<0.21では、発光波長ピークが560nmより小さくなり、発光色が緑色にシフトするので好ましくない。一方、x>0.9では、それ以上セリウムイオンを添加しても発光波長ピークに変化が生じないので好ましくない。   In the above equation (2), the reason why the value range of x is 0.21 ≦ x ≦ 0.9 is that when x <0.21, the emission wavelength peak is smaller than 560 nm and the emission color is shifted to green. This is not preferable. On the other hand, when x> 0.9, even if more cerium ions are added, the emission wavelength peak does not change, which is not preferable.

また、R(イオン)としては、4配位位置のアルミニウムイオン(r=0.39)以外の金属元素であり、4配位位置のアルミニウムイオンのイオン半径よりも大きいイオン半径を有する3価の金属元素イオン、例えば、インジウム(In:r=0.62)、ガリウム(Ga:r=0.47)が挙げられる。
上記の(2)式において、wの値の範囲を0≦w≦1.0とした理由は、w>1.0では、発光効率が著しく悪化するので好ましくないからである。
R (ion) is a metal element other than the tetracoordinated aluminum ion (r = 0.39), and is a trivalent having an ionic radius larger than that of the tetracoordinated aluminum ion. Examples include metal element ions such as indium (In: r = 0.62) and gallium (Ga: r = 0.47).
In the above formula (2), the reason why the range of the value of w is 0 ≦ w ≦ 1.0 is that when w> 1.0, the light emission efficiency is remarkably deteriorated, which is not preferable.

このYAG系蛍光体の平均粒子径は、マトリクス粒子の平均粒子径と同様、1nm以上かつ500nm以下が好ましく、より好ましくは20nm以上かつ300nm以下である。
ここで、このYAG系蛍光体の平均粒子径を上記の範囲とした理由は、この範囲が、YAG系蛍光体の屈折率が1.6以上かつ2.0以下の範囲となる範囲だからである。
The average particle size of this YAG phosphor is preferably 1 nm or more and 500 nm or less, more preferably 20 nm or more and 300 nm or less, like the average particle size of the matrix particles.
Here, the reason why the average particle diameter of the YAG phosphor is set to the above range is that this range is a range in which the refractive index of the YAG phosphor is 1.6 or more and 2.0 or less. .

ここで、YAG系蛍光体の平均粒子径が500nmを超えると、このYAG系蛍光体とマトリクス粒子との屈折率差によりミー(Mei)散乱が生じ、その結果、YAG系蛍光体による励起光の後方散乱が大きくなり、このYAG系蛍光体を樹脂中に分散させて樹脂組成物とした場合の発光効率が低下するので好ましくない。一方、このYAG系蛍光体の平均粒子径が1nm未満では、YAG系蛍光体の光の吸収効率が低下するので好ましくない。   Here, when the average particle diameter of the YAG phosphor exceeds 500 nm, Mei scattering occurs due to the refractive index difference between the YAG phosphor and the matrix particles. Backscattering is increased, and the YAG phosphor is dispersed in the resin to form a resin composition, which reduces the light emission efficiency, which is not preferable. On the other hand, if the average particle diameter of the YAG phosphor is less than 1 nm, the light absorption efficiency of the YAG phosphor is lowered, which is not preferable.

このYAG系蛍光体の結晶子径は、X線回折法を用いて測定することができる。
このYAG系蛍光体の平均結晶子径は、200nm以下であることが好ましく、150nm以下であることがより好ましい。
ここで、YAG系蛍光体の平均結晶子径が200nmを超えると、マトリクス粒子中でのYAG系蛍光体の分散性が不均一になり、前方発光性が低下するので好ましくない。
このYAG系蛍光体は、通常の固相法、ゾルゲル法、共沈法、均一沈殿法、ソルボサーマル法、燃焼法、錯体重合法等により合成することができる。
The crystallite diameter of this YAG phosphor can be measured using an X-ray diffraction method.
The average crystallite size of this YAG phosphor is preferably 200 nm or less, and more preferably 150 nm or less.
Here, if the average crystallite diameter of the YAG phosphor exceeds 200 nm, the dispersibility of the YAG phosphor in the matrix particles becomes non-uniform, and the forward light emission is reduced, which is not preferable.
This YAG phosphor can be synthesized by a usual solid phase method, sol-gel method, coprecipitation method, uniform precipitation method, solvothermal method, combustion method, complex polymerization method, and the like.

「複合波長変換粒子」
本実施形態の複合波長変換粒子は、上記のYAG系蛍光体が、このYAG系蛍光体よりも低屈折率粒子で構成されるマトリクス粒子中に分散された状態で存在する。
すなわち、上記のYAG系蛍光体と、このYAG系蛍光体よりも屈折率の低い物質で構成されるマトリクス粒子との複合構造である。
"Composite wavelength conversion particles"
The composite wavelength conversion particle of the present embodiment is present in a state where the YAG phosphor is dispersed in matrix particles composed of particles having a refractive index lower than that of the YAG phosphor.
That is, it is a composite structure of the above YAG phosphor and matrix particles made of a substance having a refractive index lower than that of the YAG phosphor.

この複合波長変換粒子では、上記のYAG系蛍光体は、マトリクス粒子を構成する緻密なフッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有するフッ化物からなるマトリクス粒子中に保持された構造となるので、この複合波長変換粒子の表面に存在するYAG系蛍光体を除き、大半のYAG系蛍光体は外部の雰囲気(空気、水蒸気等)と接触しない状態とすることができる。
この複合波長変換粒子は、通常、樹脂と混合することにより樹脂複合物として用いられるので、その形状は球状であることが好ましい。
In this composite wavelength conversion particle, the YAG phosphor is a matrix particle made of a fluoride containing one or more selected from the group of dense calcium fluoride and strontium fluoride constituting the matrix particle. Since the structure is held inside, most of the YAG phosphors are not in contact with the external atmosphere (air, water vapor, etc.) except for the YAG phosphors present on the surface of the composite wavelength conversion particles. Can do.
Since the composite wavelength conversion particles are usually used as a resin composite by mixing with a resin, the shape is preferably spherical.

本実施形態の複合波長変換粒子では、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有するフッ化物からなるマトリクス粒子中に、屈折率が約1.8のYAG系蛍光体を分散させることにより、複合波長変換粒子全体の屈折率を所望の屈折率、例えば、1.6以下に制御することができる。   In the composite wavelength conversion particle of this embodiment, the refractive index is about 1 in the matrix particles made of fluoride containing one or more selected from the group of magnesium fluoride, calcium fluoride and strontium fluoride. .8 is dispersed, the refractive index of the entire composite wavelength conversion particle can be controlled to a desired refractive index, for example, 1.6 or less.

また、この複合波長変換粒子の屈折率は、マトリクス粒子を構成するフッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有するフッ化物と、YAG系蛍光体との比、すなわち、上記のフッ化物の質量(M)とYAG系蛍光体の質量(M)との比(M:M)を変えることにより制御することができる。
なお、YAG系蛍光体の屈折率や量によっても異なるが、例えば、複合波長変換粒子全体の屈折率を1.6以下とするためには、マトリクス粒子の屈折率を1.45以下とすることが、より多くのYAG系蛍光体を含有させることができるので好ましい。
Further, the refractive index of the composite wavelength conversion particle is such that the fluoride containing one or more selected from the group consisting of magnesium fluoride, calcium fluoride and strontium fluoride constituting the matrix particle, and YAG fluorescence It can be controlled by changing the ratio to the body, that is, the ratio (M F : M Y ) of the mass of the fluoride (M F ) and the mass of the YAG phosphor (M Y ).
For example, in order to reduce the refractive index of the entire composite wavelength conversion particle to 1.6 or less, the refractive index of the matrix particle is set to 1.45 or less, although it depends on the refractive index and amount of the YAG phosphor. Is more preferable because more YAG phosphors can be contained.

この複合波長変換粒子におけるYAG系蛍光体の含有率は、この複合波長変換粒子の全質量に対して20質量%以上かつ70質量%以下が好ましく、より好ましくは20質量%以上かつ60質量%以下である。
ここで、YAG系蛍光体の含有率が20質量%未満では、フッ化物で構成されるマトリクス粒子とYAG系蛍光体との熱膨張率差による圧縮応力がYAG系蛍光体に均等に作用することにより、YAG結晶構造を変形・歪ませることができなくなり、その結果、発光効率が向上しないので好ましくない。一方、含有率が70質量%を超えると、フッ化物で構成されるマトリクス粒子による圧縮応力が小さくなり、その結果、YAG系蛍光体が単独で存在するようになり、発光効率が低下し、同時に、複合波長変換粒子の表面に露出するYAG系蛍光体の数が多くなってしまい、この露出したYAG系蛍光体が外部の雰囲気の影響を受けて耐久性や特性が低下してしまうので好ましくない。
The content of the YAG phosphor in the composite wavelength conversion particle is preferably 20% by mass or more and 70% by mass or less, more preferably 20% by mass or more and 60% by mass or less, with respect to the total mass of the composite wavelength conversion particle. It is.
Here, when the content of the YAG phosphor is less than 20% by mass, the compressive stress due to the difference in thermal expansion coefficient between the matrix particles made of fluoride and the YAG phosphor acts on the YAG phosphor evenly. Therefore, the YAG crystal structure cannot be deformed or distorted, and as a result, the luminous efficiency is not improved, which is not preferable. On the other hand, when the content exceeds 70% by mass, the compressive stress due to the matrix particles composed of fluoride is reduced, and as a result, the YAG-based phosphor is present alone, and the luminous efficiency is lowered. The number of YAG phosphors exposed on the surface of the composite wavelength conversion particles increases, and the exposed YAG phosphors are affected by the external atmosphere, and the durability and characteristics are deteriorated. .

この複合波長変換粒子の平均粒子径は、特に制限するものではないが、各種樹脂と混合して樹脂複合体を作製する際に、各種樹脂との混合の容易さ、及び樹脂複合体の作製の容易さの点で、1μm以上かつ50μm以下の範囲が好ましい。   The average particle diameter of the composite wavelength conversion particles is not particularly limited. However, when preparing a resin composite by mixing with various resins, the ease of mixing with various resins and the preparation of the resin composite are not limited. In terms of ease, a range of 1 μm or more and 50 μm or less is preferable.

この複合波長変換粒子は、平均粒子径が500nm以下のフッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有するフッ化物粒子と、上記のYAG系蛍光体の前駆体とを混合して、この前駆体をフッ化物粒子の間に均一に分散させ、得られた混合物をYAG系蛍光体が生成し結晶化する温度以上の温度範囲で熱処理を行い、フッ化物粒子の間にYAG系蛍光体を生成させ、次いで、フッ化物粒子の融点未満の温度にて熱処理または熱還元処理を行うことにより得ることができる。
なお、熱処理温度または熱還元処理温度がフッ化物粒子の融点以上では、YAG系蛍光体及びフッ化物粒子が共に粒成長して粗大化するので好ましくない。
The composite wavelength conversion particles include fluoride particles containing one or more selected from the group of magnesium fluoride, calcium fluoride, and strontium fluoride having an average particle diameter of 500 nm or less, and the YAG-based fluorescence described above. A precursor of the body, and the precursor is uniformly dispersed between the fluoride particles, and the resulting mixture is subjected to heat treatment at a temperature range equal to or higher than a temperature at which the YAG phosphor is generated and crystallized, It can be obtained by producing a YAG-based phosphor between the fluoride particles and then performing a heat treatment or a thermal reduction treatment at a temperature below the melting point of the fluoride particles.
It is not preferable that the heat treatment temperature or the heat reduction treatment temperature is equal to or higher than the melting point of the fluoride particles because both the YAG phosphor and the fluoride particles grow and become coarse.

本実施形態の複合波長変換粒子では、屈折率が約1.8であり平均粒子径が励起・放射波長程度以下のYAG系蛍光体を、緻密であり化学的・熱的安定性の高い低屈折率のフッ化物粒子を含有するマトリクス粒子中に分散させた複合粒子構造とすることで、有効媒質理論により、このような複合波長変換粒子の屈折率は、フッ化物粒子とYAG系蛍光体の体積分率により表現される屈折率となる。   In the composite wavelength conversion particle of this embodiment, a YAG-based phosphor having a refractive index of about 1.8 and an average particle diameter of about the excitation / radiation wavelength or less is dense, low refraction with high chemical and thermal stability. According to the effective medium theory, the refractive index of such composite wavelength conversion particles is determined by the volume of the fluoride particles and the YAG phosphor. The refractive index is expressed by a fraction.

そこで、この複合波長変換粒子を結合剤中に分散させると、この複合波長変換粒子と結合剤との屈折率差を小さくすることができる。よって、光の利用効率を高めることができる。すなわち、光源(半導体素子)から発せられる波長が300〜500nmの励起光により励起・発光した緑色光を、より前方方向(励起光の進行方向)に放射させることが可能になる。同時に、光源(半導体素子)から発せられる300〜500nmの紫外光や青色光も前方方向に照射することが可能となるので、発光効率に優れた発光装置を製造することが可能となる。
また、YAG系蛍光体の利用効率も最大となり、さらには、YAG系蛍光体は緻密なマトリクス中に分散している状態で埋め込まれているので、高い信頼性を確保することができる。
Therefore, when the composite wavelength conversion particles are dispersed in the binder, the difference in refractive index between the composite wavelength conversion particles and the binder can be reduced. Therefore, the light use efficiency can be increased. That is, it becomes possible to radiate green light excited and emitted by excitation light having a wavelength of 300 to 500 nm emitted from a light source (semiconductor element) in a more forward direction (advancing direction of excitation light). At the same time, 300 to 500 nm ultraviolet light or blue light emitted from a light source (semiconductor element) can be irradiated in the forward direction, so that a light emitting device with excellent luminous efficiency can be manufactured.
In addition, the utilization efficiency of the YAG phosphor is maximized, and furthermore, since the YAG phosphor is embedded in a dispersed state in a dense matrix, high reliability can be ensured.

[複合波長変換粒子含有樹脂組成物]
本実施形態の複合波長変換粒子含有樹脂組成物は、本実施形態の複合波長変換粒子を樹脂中に分散してなる樹脂組成物である。
この樹脂組成物では、上記の複合波長変換粒子と樹脂との屈折率差を小さくして後方散乱を抑制し、光の利用効率を向上させるために、上記の複合波長変換粒子の屈折率は1.6以下とすることが好ましい。
[Composite wavelength conversion particle-containing resin composition]
The composite wavelength conversion particle-containing resin composition of this embodiment is a resin composition obtained by dispersing the composite wavelength conversion particles of this embodiment in a resin.
In this resin composition, the refractive index of the composite wavelength conversion particle is 1 in order to reduce the difference in refractive index between the composite wavelength conversion particle and the resin to suppress backscattering and improve the light utilization efficiency. .6 or less is preferable.

上記の樹脂としては、目的とする光の波長帯域に対して透明性を有する樹脂であればよく、熱可塑性樹脂、熱硬化性樹脂、可視光線や紫外線や赤外線等により硬化する光(電磁波)硬化性樹脂、電子線照射により硬化する電子線硬化性樹脂等の硬化性樹脂が好適に用いられる。
このような樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、フッ素樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ナイロン樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリイミド樹脂、液晶ポリマー、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリカーボネート樹脂、ブチラール樹脂等が挙げられる。特に、シリコーン樹脂は、耐熱性及び耐光性に優れ、さらに上記の複合波長変換粒子との親和性も高いので好ましい。
The resin is not particularly limited as long as it is transparent to the target wavelength band of light, and is a thermoplastic resin, thermosetting resin, light (electromagnetic wave) curing that is cured by visible light, ultraviolet light, infrared light, or the like. A curable resin such as a curable resin or an electron beam curable resin that is cured by electron beam irradiation is preferably used.
Examples of such resins include epoxy resins, silicone resins, acrylic resins, polyester resins, fluorine resins, polyethylene resins, polypropylene resins, polystyrene resins, nylon resins, polyacetal resins, polyethylene terephthalate resins, polyimide resins, liquid crystal polymers, poly Examples include ether sulfone resin, polysulfone resin, polycarbonate resin, butyral resin. In particular, a silicone resin is preferable because it is excellent in heat resistance and light resistance and has high affinity with the composite wavelength conversion particles.

このようなシリコーン樹脂としては、例えば、ジメチルシリコーン樹脂、メチルフェニルシリコーン樹脂、ジフェニルシリコーン樹脂、ビニル基含有シリコーン樹脂、アミノ基含有シリコーン樹脂、メタクリル基含有シリコーン樹脂、カルボキシ基含有シリコーン樹脂、エポキシ基含有シリコーン樹脂、カルビノール基含有シリコーン樹脂、フェニル基含有シリコーン樹脂、オルガノハイドロジェンシリコーン樹脂、脂環式エポキシ基変性シリコーン樹脂、多環式炭化水素含有シリコーン樹脂、芳香環炭化水素含有シリコーン樹脂等が挙げられる。
これらのシリコーン樹脂は、通常は単独で用いられるが、用途によっては2種類以上のシリコーン樹脂を組み合わせて用いることができる。
Examples of such silicone resins include dimethyl silicone resin, methylphenyl silicone resin, diphenyl silicone resin, vinyl group-containing silicone resin, amino group-containing silicone resin, methacryl group-containing silicone resin, carboxy group-containing silicone resin, and epoxy group-containing. Silicone resin, carbinol group-containing silicone resin, phenyl group-containing silicone resin, organohydrogen silicone resin, alicyclic epoxy group-modified silicone resin, polycyclic hydrocarbon-containing silicone resin, aromatic ring hydrocarbon-containing silicone resin, etc. It is done.
These silicone resins are usually used alone, but two or more kinds of silicone resins can be used in combination depending on applications.

[発光装置]
図2は、本発明の一実施形態の発光装置の一例である表面実装型発光装置を示す断面図であり、この表面実装型発光装置11は、絶縁体からなるフレーム12の凹部13に、300nm以上かつ500nm以下の波長領域の光を発光する半導体発光素子14が設けられ、半導体発光素子14の出射光側には発光層15が設けられている。
また、凹部13には電極16、17が埋め込まれており、半導体発光素子14は電極16に電気的に接続され、さらに、ボンディングワイヤ18により電極17に電気的に接続されている。
この発光層15は、透明性を有する樹脂21中に、本実施形態の複合波長変換粒子22、緑色蛍光体23及び赤色蛍光体24が分散されている。
[Light emitting device]
FIG. 2 is a cross-sectional view showing a surface-mounted light-emitting device that is an example of a light-emitting device according to an embodiment of the present invention. The surface-mounted light-emitting device 11 is 300 nm in a recess 13 of a frame 12 made of an insulator. The semiconductor light emitting element 14 that emits light in the wavelength region of 500 nm or less is provided, and the light emitting layer 15 is provided on the outgoing light side of the semiconductor light emitting element 14.
Electrodes 16 and 17 are embedded in the recess 13, and the semiconductor light emitting element 14 is electrically connected to the electrode 16, and is further electrically connected to the electrode 17 by a bonding wire 18.
In the light emitting layer 15, the composite wavelength conversion particle 22, the green phosphor 23, and the red phosphor 24 of the present embodiment are dispersed in a resin 21 having transparency.

この表面実装型発光装置11においては、半導体発光素子14が300nm以上かつ500nm以下の波長領域の光を発光し、この光を複合波長変換粒子22が受光する。
この複合波長変換粒子22では、受光した光の波長(300nm以上かつ500nm以下)を長波長化し、発光ピークが560nm以上かつ580nm以下の範囲の波長領域の黄色光を発光する。
一方、緑色蛍光体23及び赤色蛍光体24では、半導体発光素子14が発光する光を受光し、緑色蛍光体23では固有の波長領域の緑色光を発光するとともに、赤色蛍光体24では固有の波長領域の赤色光を発光する。
よって、この表面実装型発光装置11から発光される光は、黄色光、緑色光及び赤色光が重畳されることにより、白色光として認識される。
In this surface-mounted light-emitting device 11, the semiconductor light-emitting element 14 emits light in a wavelength region of 300 nm or more and 500 nm or less, and the composite wavelength conversion particle 22 receives this light.
In this composite wavelength conversion particle 22, the wavelength of the received light (300 nm or more and 500 nm or less) is lengthened, and emits yellow light in a wavelength region in which the emission peak is 560 nm or more and 580 nm or less.
On the other hand, the green phosphor 23 and the red phosphor 24 receive light emitted from the semiconductor light emitting element 14, the green phosphor 23 emits green light in a specific wavelength region, and the red phosphor 24 has a specific wavelength. Emits red light in the area.
Therefore, the light emitted from the surface-mount light-emitting device 11 is recognized as white light by superimposing yellow light, green light, and red light.

図3は、本発明の一実施形態の発光装置の他の一例である表面実装型発光装置を示す断面図であり、この表面実装型発光装置31が、上記の表面実装型発光装置11と異なる点は、透明性を有する樹脂21中の半導体発光素子14に近い側に、本実施形態の複合波長変換粒子22が分散された複合波長変換粒子含有樹脂層32を形成し、この複合波長変換粒子含有樹脂層32の上に、緑色蛍光体23、赤色蛍光体24、必要に応じて黄色蛍光体(図示略)が分散された蛍光体含有樹脂層33を形成し、これら複合波長変換粒子含有樹脂層32及び蛍光体含有樹脂層33により2層構造の発光層34を構成した点である。   FIG. 3 is a cross-sectional view showing a surface-mounted light-emitting device that is another example of the light-emitting device according to the embodiment of the present invention. The surface-mounted light-emitting device 31 is different from the surface-mounted light-emitting device 11 described above. The point is that the composite wavelength conversion particle-containing resin layer 32 in which the composite wavelength conversion particle 22 of the present embodiment is dispersed is formed on the side of the resin 21 having transparency close to the semiconductor light emitting element 14. A phosphor-containing resin layer 33 in which a green phosphor 23, a red phosphor 24, and, if necessary, a yellow phosphor (not shown) are dispersed is formed on the containing resin layer 32, and these composite wavelength conversion particle-containing resins. The light emitting layer 34 having a two-layer structure is configured by the layer 32 and the phosphor-containing resin layer 33.

この表面実装型発光装置31においては、半導体発光素子14が300nm以上かつ500nm以下の波長領域の光を発光し、この光を複合波長変換粒子含有樹脂層32中の複合波長変換粒子22が受光する。
この複合波長変換粒子22では、受光した光の波長(300nm以上かつ500nm以下)を長波長化し、発光ピークが560nm以上かつ580nm以下の範囲の波長領域の黄色光を発光する。
一方、蛍光体含有樹脂層33では、半導体発光素子14が発光する光を、緑色蛍光体23、赤色蛍光体24、必要に応じて黄色蛍光体(図示略)が受光し、緑色蛍光体23では固有の波長領域の緑色光を発光し、赤色蛍光体24では固有の波長領域の赤色光を発光し、黄色色蛍光体では固有の波長領域の黄色光を発光する。
よって、この表面実装型発光装置31から発光される光は、黄色光、緑色光及び赤色光が重畳されることにより、白色光として認識される。
In the surface mount light emitting device 31, the semiconductor light emitting element 14 emits light in a wavelength region of 300 nm or more and 500 nm or less, and the composite wavelength conversion particle 22 in the composite wavelength conversion particle-containing resin layer 32 receives this light. .
In this composite wavelength conversion particle 22, the wavelength of the received light (300 nm or more and 500 nm or less) is lengthened, and emits yellow light in a wavelength region in which the emission peak is 560 nm or more and 580 nm or less.
On the other hand, in the phosphor-containing resin layer 33, the light emitted from the semiconductor light emitting element 14 is received by the green phosphor 23, the red phosphor 24 and, if necessary, the yellow phosphor (not shown). The green phosphor emits green light of a specific wavelength region, the red phosphor 24 emits red light of a specific wavelength region, and the yellow phosphor emits yellow light of a specific wavelength region.
Therefore, the light emitted from the surface mount light emitting device 31 is recognized as white light by superimposing yellow light, green light, and red light.

図4は、本発明の一実施形態の発光装置のさらに他の一例である表面実装型発光装置を示す断面図であり、この表面実装型発光装置41が、上記の表面実装型発光装置11、31と異なる点は、凹部13に充填された透明性を有する樹脂21上に、この樹脂21と組成が同一または異なる組成の樹脂42中に、本実施形態の複合波長変換粒子22、緑色蛍光体23及び赤色蛍光体24が分散された発光層43を形成した点である。   FIG. 4 is a cross-sectional view illustrating a surface-mounted light-emitting device that is still another example of the light-emitting device according to the embodiment of the present invention. The surface-mounted light-emitting device 41 includes the surface-mounted light-emitting device 11 described above. 31 is different from the resin 21 having the same or different composition as the resin 21 on the transparent resin 21 filled in the recess 13, and the composite wavelength conversion particle 22 and the green phosphor of the present embodiment. 23 and the light emitting layer 43 in which the red phosphor 24 is dispersed.

この表面実装型発光装置41においては、半導体発光素子14が300nm以上かつ500nm以下の波長領域の光を発光し、この光を発光層43中の複合波長変換粒子22が受光する。
この複合波長変換粒子22では、受光した光の波長(300nm以上かつ500nm以下)を長波長化し、発光ピークが560nm以上かつ580nm以下の範囲の波長領域の黄色光を発光する。
一方、緑色蛍光体23及び赤色蛍光体24では、半導体発光素子14が発光する光を受光し、緑色蛍光体23では固有の波長領域の緑色光を発光し、赤色蛍光体24では固有の波長領域の赤色光を発光する。
よって、この表面実装型発光装置41から発光される光は、黄色光、緑色光及び赤色光が重畳されることにより、白色光として認識される。
次に、これらの表面実装型発光装置11、31、41の構成要素について詳細に説明する。
In the surface mount light emitting device 41, the semiconductor light emitting element 14 emits light in a wavelength region of 300 nm or more and 500 nm or less, and the composite wavelength conversion particle 22 in the light emitting layer 43 receives this light.
In this composite wavelength conversion particle 22, the wavelength of the received light (300 nm or more and 500 nm or less) is lengthened, and emits yellow light in a wavelength region in which the emission peak is 560 nm or more and 580 nm or less.
On the other hand, the green phosphor 23 and the red phosphor 24 receive light emitted from the semiconductor light emitting element 14, the green phosphor 23 emits green light in a specific wavelength region, and the red phosphor 24 has a unique wavelength region. The red light is emitted.
Therefore, the light emitted from the surface-mounted light emitting device 41 is recognized as white light by superimposing yellow light, green light, and red light.
Next, the components of these surface mount light emitting devices 11, 31, 41 will be described in detail.

「半導体発光素子」
半導体発光素子14は、発光層15、34、43を励起する光を発光するもので、この発光波長は、発光層15、34、43の吸収波長と重複するものであればよく、特に制限されず、幅広い発光波長領域を使用することができる。通常は、紫外領域から青色領域までの発光波長、特に300nm〜500nmの近紫外領域から青色領域までの発光波長を使用することが好ましい。
"Semiconductor light emitting device"
The semiconductor light-emitting element 14 emits light that excites the light-emitting layers 15, 34, and 43, and the emission wavelength is not particularly limited as long as it overlaps with the absorption wavelength of the light-emitting layers 15, 34, and 43. In addition, a wide emission wavelength region can be used. Usually, it is preferable to use an emission wavelength from the ultraviolet region to the blue region, particularly an emission wavelength from 300 nm to 500 nm from the near ultraviolet region to the blue region.

この半導体発光素子14としては、GaN系化合物半導体を使用したGaN系LED(light-emitting diode)またはLD(laser diode)が好ましい。
その理由は、GaN系LEDやLDは、この領域の光を発するSiC系LEDと比べて、発光出力及び外部量子効率が格段に大きく、発光層15、34、43と組み合わせることにより、非常に低電力で非常に明るい発光が得られるからである。
The semiconductor light emitting element 14 is preferably a GaN LED (light-emitting diode) or LD (laser diode) using a GaN compound semiconductor.
The reason is that GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely low when combined with the light-emitting layers 15, 34, and 43. This is because very bright light emission can be obtained with electric power.

GaN系LEDやLDは、例えば、20mAの電流負荷に対して、SiC系LEDと比べて100倍以上の発光強度を有する。
GaN系LEDやLDにおいては、AlGaN発光層(x+y=0.8〜1.2)、GaN発光層、InGaN発光層(x+y=0.8〜1.2)を有しているものが発光強度が強いので好ましい。これらの中でも、InGaN発光層(x+y=0.8〜1.2)を有するものは、発光強度が非常に強いので好ましい。
For example, GaN-based LEDs and LDs have a light emission intensity that is 100 times or more compared to SiC-based LEDs with respect to a current load of 20 mA.
In GaN-based LEDs and LDs, an Al x Ga y N light emitting layer (x + y = 0.8 to 1.2), a GaN light emitting layer, and an In x Ga y N light emitting layer (x + y = 0.8 to 1.2) are provided. What it has is preferable because the emission intensity is high. Among these, those having an In x Ga y N light emitting layer (x + y = 0.8 to 1.2) are preferable because the light emission intensity is very strong.

GaN系LEDは、AlGaN発光層(x+y=0.8〜1.2)、GaN発光層、InGaN発光層(x+y=0.8〜1.2)等の発光層と、p層と、n層と、電極と、基板とを基本構成要素としたものであり、上記の発光層をn型とp型のAlGaN層(x+y=0.8〜1.2)、GaN層(y=0.8〜1.2)、GaN層、またはInGaN層(x+y=0.8〜1.2)等によりサンドイッチにしたヘテロ構造を有しているものが、発光効率が高くて好ましく、特に、GaN系LEDにおいては、InGaN発光層とGaN層の多重量子井戸構造のものが、発光強度が非常に強いので特に好ましい。 A GaN-based LED is a light emitting layer such as an Al x Ga y N light emitting layer (x + y = 0.8 to 1.2), a GaN light emitting layer, an In x Ga y N light emitting layer (x + y = 0.8 to 1.2), or the like. , P layer, n layer, electrode, and substrate, and the above light emitting layer is made of n-type and p-type Al x Ga y N layers (x + y = 0.8 to 1). .2), a hetero structure sandwiched by Ga y N layers (y = 0.8 to 1.2), GaN layers, In x Ga y N layers (x + y = 0.8 to 1.2), etc. In particular, in a GaN-based LED, a multi-quantum well structure including an In x Ga y N light emitting layer and a GaN layer is particularly preferable because the light emission intensity is very strong.

なお、GaN系LEDにおいては、これらの発光層にZnやSiをドープしたものやド―パントなしのものが発光特性を調節する上で好ましいものである。
この半導体発光素子14は、1個のみを用いてもよく、2個以上を組み合わせて用いてもよい。
In the GaN-based LED, those in which these light emitting layers are doped with Zn or Si or those without dopants are preferable for adjusting the light emission characteristics.
Only one semiconductor light emitting element 14 may be used, or two or more semiconductor light emitting elements 14 may be used in combination.

「発光層」
発光層は、半導体発光素子14から出射される光を受光することにより可視光線を発光するもので、本実施形態の複合波長変換粒子を含有するとともに、緑色蛍光体及び赤色蛍光体、必要に応じて黄色蛍光体(図示略)を含有している。
この発光層は、半導体発光素子14から出射される光の光路上に設けられている。
"Light emitting layer"
The light-emitting layer emits visible light by receiving light emitted from the semiconductor light-emitting element 14 and contains the composite wavelength conversion particles of the present embodiment, as well as a green phosphor and a red phosphor, as necessary. Yellow phosphor (not shown).
This light emitting layer is provided on the optical path of the light emitted from the semiconductor light emitting element 14.

特に、この発光層15に、赤色蛍光体層および緑色蛍光体層を重ね合わせる場合、半導体発光素子14から発せられる光が青色光である場合には、この発光層15を赤色蛍光体層および緑色蛍光体層よりも半導体発光素子14に近い側に設けた方が、発光効率が高くなるのでより好ましい。
ここで、本実施形態の複合波長変換粒子22では、半導体発光素子14から発せられる光を吸収するとともに、吸収されない光(青色光)は、複合波長変換粒子22により後方散乱吸収されることなく、半導体発光素子14から発せられる光の進行方向に進行して赤色蛍光体層および緑色蛍光体層をより多く励起させる。
このように、半導体発光素子14側から、発光層15、緑色蛍光体層、赤色蛍光体層の順序とすることで、極めて発光効率に優れた白色系発光装置を得ることが可能となる。
In particular, when the red phosphor layer and the green phosphor layer are overlaid on the light emitting layer 15, when the light emitted from the semiconductor light emitting element 14 is blue light, the light emitting layer 15 is changed to the red phosphor layer and the green phosphor layer. It is more preferable to provide the phosphor layer closer to the semiconductor light emitting element 14 than the phosphor layer because the light emission efficiency is increased.
Here, in the composite wavelength conversion particle 22 of the present embodiment, the light emitted from the semiconductor light emitting element 14 is absorbed and the light that is not absorbed (blue light) is not backscattered and absorbed by the composite wavelength conversion particle 22. It proceeds in the traveling direction of the light emitted from the semiconductor light emitting element 14 to excite more red and green phosphor layers.
As described above, by arranging the light emitting layer 15, the green phosphor layer, and the red phosphor layer in this order from the semiconductor light emitting element 14 side, it is possible to obtain a white light emitting device with extremely excellent luminous efficiency.

次に、この発光層に含有される蛍光体について説明する。
(緑色蛍光体)
この緑色蛍光体は、本発明の効果を著しく損なわないかぎり、任意のものを使用することができる。
この緑色蛍光体の発光ピーク波長は、通常510nm以上、好ましくは520nm以上、また、通常540nm以下、好ましくは530nm以下の波長範囲にあることが好適である。
Next, the phosphor contained in the light emitting layer will be described.
(Green phosphor)
Any green phosphor can be used as long as the effects of the present invention are not significantly impaired.
The emission peak wavelength of the green phosphor is preferably 510 nm or more, preferably 520 nm or more, and usually 540 nm or less, preferably 530 nm or less.

このような緑色蛍光体としては、例えば、
(Mg,Ca,Sr,Ba)Si:Euで表されるEu賦活アルカリ土類シリコンオキシナイトライド系蛍光体、
SrAl1425:Eu、(Ba,Sr,Ca)Al:Eu等のEu賦活アルミン酸塩蛍光体、
(Sr,Ba)AlSi:Eu、(Ba,Mg)SiO:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Eu、(Ba,Sr,Ca,Mg)(Sc,Y,Lu,Gd)(Si,Ge)24:Eu等のユーロピウム賦活珪酸塩蛍光体等が挙げられる。
As such a green phosphor, for example,
(Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu-activated alkaline earth silicon oxynitride phosphor represented by Eu,
Eu-activated aluminate phosphors such as Sr 4 Al 14 O 25 : Eu, (Ba, Sr, Ca) Al 2 O 4 : Eu,
(Sr, Ba) Al 2 Si 2 O 8 : Eu, (Ba, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg , Zn) Si 2 O 7 : Eu, (Ba, Sr, Ca, Mg) 9 (Sc, Y, Lu, Gd) 2 (Si, Ge) 6 O 24 : Euopium activated silicate phosphors such as Eu Can be mentioned.

SiO:Ce,Tb等のCe,Tb賦活珪酸塩蛍光体、
Sr−Sr:Eu等のEu賦活硼酸リン酸塩蛍光体、
SrSi−2SrCl:Eu等のEu賦活ハロ珪酸塩蛍光体、
ZnSiO:Mn等のMn賦活珪酸塩蛍光体、
CeMgAl1119:Tb、YAl12:Tb等のTb賦活アルミン酸塩蛍光体、
Ca(SiO:Tb、LaGaSiO14:Tb等のTb賦活珪酸塩蛍光体、(Sr,Ba,Ca)Ga:Eu,Tb,Sm等のEu,Tb,Sm賦活チオガレート蛍光体、
(Al,Ga)12:Ce、(Y,Gd,Tb,La,Sm,Pr,Lu)(Al,Ga)12:Ce等のCe賦活アルミン酸塩蛍光体等も挙げられる。
Y 2 SiO 5 : Ce, Tb activated silicate phosphor such as Ce, Tb,
Sr 2 P 2 O 7 —Sr 2 B 2 O 5 : Eu-activated boric acid phosphor such as Eu,
Eu-activated halosilicate phosphors such as Sr 2 Si 3 O 8 -2SrCl 2 : Eu,
Zn 2 SiO 4 : Mn-activated silicate phosphor such as Mn,
Tb-activated aluminate phosphors such as CeMgAl 11 O 19 : Tb, Y 3 Al 5 O 12 : Tb,
Tb activated silicate phosphors such as Ca 2 Y 8 (SiO 4 ) 6 O 2 : Tb, La 3 Ga 5 SiO 14 : Tb, (Sr, Ba, Ca) Ga 2 S 4 : Eu, Tb, Sm, etc. Eu, Tb, Sm activated thiogallate phosphor,
Ce activated aluminate phosphors such as Y 3 (Al, Ga) 5 O 12 : Ce, (Y, Gd, Tb, La, Sm, Pr, Lu) 3 (Al, Ga) 5 O 12 : Ce Can be mentioned.

CaScSi12:Ce、Ca(Sc,Mg,Na,Li)Si12:Ce等のCe賦活珪酸塩蛍光体、
CaSc:Ce等のCe賦活酸化物蛍光体、
Eu賦活βサイアロン等のEu賦活酸窒化物蛍光体、
BaMgAl1017:Eu,Mn等のEu,Mn賦活アルミン酸塩蛍光体、
SrAl:Eu等のEu賦活アルミン酸塩蛍光体、
(La,Gd,Y)S:Tb等のTb賦活酸硫化物蛍光体、
LaPO:Ce,Tb等のCe,Tb負荷知リン酸塩蛍光体等も挙げられる。
Ce activated silicate phosphors such as Ca 3 Sc 2 Si 3 O 12 : Ce, Ca 3 (Sc, Mg, Na, Li) 2 Si 3 O 12 : Ce,
CaSc 2 O 4 : Ce-activated oxide phosphor such as Ce,
Eu-activated oxynitride phosphors such as Eu-activated β sialon,
BaMgAl 10 O 17 : Eu, Mn activated aluminate phosphor such as Eu, Mn,
SrAl 2 O 4 : Eu-activated aluminate phosphor such as Eu,
(La, Gd, Y) 2 O 2 S: Tb-activated oxysulfide phosphors such as Tb,
Examples include LaPO 4 : Ce, Tb-loaded intelligent phosphate phosphors such as Ce and Tb.

ZnS:Cu,Al,ZnS:Cu,Au,Al等の硫化物蛍光体、
(Y,Ga,Lu,Sc,La)BO:Ce,Tb、NaGd:Ce,Tb、(Ba,Sr)(Ca,Mg,Zn)B:K,Ce,Tb等のCe,Tb賦活硼酸塩蛍光体、
CaMg(SiOCl:Eu,Mn等のEu,Mn賦活ハロ珪酸塩蛍光体、
(Sr,Ca,Ba)(Al,Ga,In):Eu等のEu賦活チオアルミネート蛍光体またはチオガレート蛍光体、
Si:Eu、MSi12:Eu(ただし、Mはアルカリ土類金属元素)等のEu賦活窒化物蛍光体等も挙げられる。
Sulfide phosphors such as ZnS: Cu, Al, ZnS: Cu, Au, Al,
(Y, Ga, Lu, Sc , La) BO 3: Ce, Tb, Na 2 Gd 2 B 2 O 7: Ce, Tb, (Ba, Sr) 2 (Ca, Mg, Zn) B 2 O 6: K Ce, Tb activated borate phosphors such as
Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu, Mn activated halosilicate phosphor such as Eu, Mn,
(Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu-activated thioaluminate phosphor or thiogallate phosphor such as Eu,
Examples include Eu activated nitride phosphors such as M 3 Si 6 O 9 N 4 : Eu, M 3 Si 6 O 12 N 2 : Eu (where M is an alkaline earth metal element).

さらに、その他の緑色蛍光体としては、例えば、ピリジンーフタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。
これらの緑色蛍光体は、いずれか1種を用いてもよく、2種以上を組み合わせて用いてもよい。
Furthermore, as other green phosphors, for example, pyridine-phthalimide condensed derivatives, benzoxazinone-based, quinazolinone-based, coumarin-based, quinophthalone-based, naltalimide-based fluorescent pigments, and organic phosphors such as terbium complexes are used. It is also possible.
Any one of these green phosphors may be used, or two or more thereof may be used in combination.

(赤色蛍光体)
この赤色蛍光体は、本発明の効果を著しく損なわないかぎり、任意のものを使用することができる。
この赤色蛍光体の発光ピーク波長は、通常580nm以上、好ましくは585nm以上、また、通常780nm以下、好ましくは700nm以下の波長範囲にあることが好適である。
このような赤色蛍光体としては、例えば、
(Mg,Ca,Sr,Ba)Si:Euで表されるユーロピウム賦活アルカリ土類シリコンナイトライド系蛍光体、
(Y,La,Gd,Lu)S:Euで表されるユーロピウム賦活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
(Red phosphor)
Any red phosphor can be used as long as the effects of the present invention are not significantly impaired.
The emission peak wavelength of this red phosphor is usually in the wavelength range of usually 580 nm or more, preferably 585 nm or more, and usually 780 nm or less, preferably 700 nm or less.
As such a red phosphor, for example,
(Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Europium-activated alkaline earth silicon nitride-based phosphor represented by Eu,
Examples include (Y, La, Gd, Lu) 2 O 2 S: Euopium-activated rare earth oxychalcogenide phosphors represented by Eu.

その他の赤色蛍光体としては、
(La,Y)S:Eu等のEu賦活硫化物蛍光体、
Y(V,P)O:Eu、Y:Eu等のEu賦活酸化物蛍光体、
(Ba,Mg)SiO:Eu,Mn、(Ba,Sr,Ca,Mg)SiO:Eu,Mn等のEu,Mn賦活珪酸塩蛍光体、
LiW:Eu、LiW:Eu,Sm、Eu,Eu:Nb、Eu:Sm等のEu賦活タングステン酸塩蛍光体、
(Ca,Sr)S:Eu等のEu賦活硫化物蛍光体等が挙げられる。
Other red phosphors include
(La, Y) 2 O 2 S: Eu-activated sulfide phosphors such as Eu,
Eu-activated oxide phosphors such as Y (V, P) O 4 : Eu, Y 2 O 3 : Eu,
(Ba, Mg) 2 SiO 4 : Eu, Mn, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, Mn activated silicate phosphor such as Eu, Mn,
Eu-activated tungstate phosphors such as LiW 2 O 8 : Eu, LiW 2 O 8 : Eu, Sm, Eu 2 W 2 O 9 , Eu 2 W 2 O 9 : Nb, Eu 2 W 2 O 9 : Sm,
Eu-activated sulfide phosphors such as (Ca, Sr) S: Eu are listed.

YAlO:Eu等のEu賦活アルミン酸塩蛍光体、
Ca(SiO:Eu、LiY(SiO:Eu、(Sr,Ba,Ca)SiO:Eu、SrBaSiO:Eu等のEu賦活珪酸塩蛍光体、
(Y,Gd)Al12:Ce、(Tb,Gd)Al12:Ce、(Y,Mn)(Al,Si)12:Ce等のCe賦活アルミン酸塩蛍光体、
(Mg,Ca,Sr,Ba)Si(N,O):Eu、(Mg,Ca,Sr,Ba)Si(N,O):Eu、(Mg,Ca,Sr,Ba)AlSi(N,O):Eu等のEu賦活酸化物、窒化物、または酸窒化物蛍光体、
(Mg,Ca,Sr,Ba)AlSi(N,O):Ce等のCe賦活酸化物、窒化物または酸窒化物蛍光体等も挙げられる。
YAlO 3 : Eu-activated aluminate phosphor such as Eu,
Eu-activated silicic acid such as Ca 2 Y 8 (SiO 4 ) 6 O 2 : Eu, LiY 9 (SiO 4 ) 6 O 2 : Eu, (Sr, Ba, Ca) 3 SiO 5 : Eu, Sr 2 BaSiO 5 : Eu Salt phosphor,
(Y, Gd) 3 Al 5 O 12: Ce, (Tb, Gd) 3 Al 5 O 12: Ce, (Y, Mn) 3 (Al, Si) 5 O 12: Ce -activated aluminate phosphor such as Ce body,
(Mg, Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Mg, Ca, Sr, Ba) Si (N, O) 2 : Eu, (Mg, Ca, Sr, Ba) AlSi (N, O) 3 : Eu-activated oxide such as Eu, nitride, or oxynitride phosphor,
Examples thereof include Ce-activated oxides such as (Mg, Ca, Sr, Ba) AlSi (N, O) 3 : Ce, nitrides, or oxynitride phosphors.

(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu,Mn等Eu,Mn賦活ハロリン酸塩蛍光体、Ba3MgSi2O8:Eu,Mn,(Ba,Sr,Ca,Mg)3(Zn,Mg)Si2O8:Eu,Mn等のEu,Mn賦活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn賦活ゲルマン酸塩蛍光体、Eu賦活αサイアロン等のEu賦活酸窒化物蛍光体、(Gd,Y,Lu,La)2O3:Eu,Bi等のEu,Bi賦活酸化物蛍光体、(Gd,Y,Lu,La)2O2S:Eu,Bi等のEu,Bi賦活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi賦活バナジン酸塩蛍光体等も挙げられる。   (Sr, Ca, Ba, Mg) 10 (PO4) 6Cl2: Eu, Mn, etc. Eu, Mn activated halophosphate phosphor, Ba3MgSi2O8: Eu, Mn, (Ba, Sr, Ca, Mg) 3 (Zn, Mg) Eu 2 O 8: Eu, Mn activated silicate phosphor such as Eu, Mn, 3.5 MgO · 0.5 MgF 2 · GeO 2: Mn activated germanate phosphor such as Mn, Eu activated oxynitride phosphor such as Eu activated α sialon (Gd, Y, Lu, La) 2O3: Eu, Bi-activated oxide phosphors such as Eu and Bi, (Gd, Y, Lu, La) 2O2S: Eu, Bi-activated oxysulfide fluorescent materials such as Eu and Bi And (Gd, Y, Lu, La) VO4: Eu, Bi activated vanadate phosphors such as Eu and Bi, and the like.

SrY:Eu,Ce等のEu,Ce賦活硫化物蛍光体、
CaLa:Ce等のCe賦活硫化物蛍光体、
(Ba,Sr,Ca)MgP:Eu,Mn、(Sr,Ca,Ba,Mg,Zn):Eu,Mn等のEu,Mn賦活リン酸塩蛍光体、
(Y,Lu)WO:Eu,Mo等のEu,Mo賦活タングステン酸塩蛍光体、
(Ba,Sr,Ca)SiNz:Eu,Ce(ただし、x,y,zは、1以上の整数)等のEu,Ce賦活窒化物蛍光体、
(Ca,Sr,Ba,Mg)10(PO(F,Cl,Br,OH):Eu,Mn等のEu,Mn賦活ハロリン酸塩蛍光体、
((Y,Lu,Gd,Tb)1−x−yScCe(Ca,Mg)1−r(Mg,Zn)2+rSi2−qGe12+δ等のCe賦活珪酸塩蛍光体等も挙げられる。
SrY 2 S 4 : Eu, Ce-activated sulfide phosphors such as Eu and Ce,
CaLa 2 S 4 : Ce-activated sulfide phosphor such as Ce,
(Ba, Sr, Ca) MgP 2 O 7 : Eu, Mn, (Sr, Ca, Ba, Mg, Zn) 2 P 2 O 7 : Eu, Mn activated phosphate phosphors such as Eu, Mn,
(Y, Lu) 2 WO 6 : Eu, Mo-activated tungstate phosphor such as Eu, Mo, etc.
(Ba, Sr, Ca) x Si y Nz: Eu, Ce activated nitride phosphor such as Eu, Ce (where x, y, z are integers of 1 or more),
(Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br, OH): Eu, Mn-activated halophosphate phosphor such as Eu, Mn,
((Y, Lu, Gd, Tb) 1-xy Sc x Ce y ) 2 (Ca, Mg) 1-r (Mg, Zn) 2 + r Si 2 -q Ge q O 12 + δ etc. Ce-activated silicate fluorescence Examples include the body.

さらに、その他の赤色蛍光体としては、例えば、β―ジケトネート、β―ジケトン、芳香族カルボン酸、または、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン等のペニレン系顔料、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
これらの赤色蛍光体は、いずれか1種を用いてもよく、2種以上を組み合わせて用いてもよい。
Furthermore, as other red phosphors, for example, β-diketonate, β-diketone, aromatic carboxylic acid, or a red organic phosphor comprising a rare earth element ion complex having an anion such as Bronsted acid as a ligand, Penylene pigments such as dibenzo {[f, f ′]-4,4 ′, 7,7′-tetraphenyl} diindeno [1,2,3-cd: 1 ′, 2 ′, 3′-lm] perylene, Anthraquinone pigments, lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments, India Phenol pigments, cyanine pigments, and dioxazine pigments can also be used.
Any one of these red phosphors may be used, or two or more thereof may be used in combination.

(青色蛍光体)
この青色蛍光体は、本発明の効果を著しく損なわないかぎり、任意のものを使用することができる。
この青色蛍光体の発光ピーク波長は、通常420nm以上、好ましくは430nm以上、また、通常490nm以下、好ましくは470nm以下の波長範囲にあることが好適である。
(Blue phosphor)
Any blue phosphor can be used as long as the effects of the present invention are not significantly impaired.
The emission peak wavelength of this blue phosphor is usually in the wavelength range of usually 420 nm or more, preferably 430 nm or more, and usually 490 nm or less, preferably 470 nm or less.

このような青色蛍光体としては、例えば、
(Ba,Sr,Ca)MgAl1017:Euで表されるユーロピウム賦活バリウムマグネシウムアルミネート系蛍光体、
(Mg,Ca,Sr,Ba)(PO(Cl,F):Euで表されるユーロピウム賦活ハロリン酸カルシウム系蛍光体、
(Ca,Sr,Ba)Cl:Euで表されるユーロピウム賦活アルカリ土類クロロボレート系蛍光体、
(Sr,Ca,Ba)Al:Euまたは(Sr,Ca,Ba)Al1425:Euで表されるユーロピウム賦活アルカリ土類アルミネート蛍光体等が挙げられる。
As such a blue phosphor, for example,
(Ba, Sr, Ca) MgAl 10 O 17 : Europium-activated barium magnesium aluminate-based phosphor represented by Eu,
(Mg, Ca, Sr, Ba) 5 (PO 4 ) 3 (Cl, F): Europium-activated calcium halophosphate phosphor represented by Eu,
(Ca, Sr, Ba) 2 B 5 O 9 Cl: Europium-activated alkaline earth chloroborate phosphor represented by Eu,
Examples thereof include a europium activated alkaline earth aluminate phosphor represented by (Sr, Ca, Ba) Al 2 O 4 : Eu or (Sr, Ca, Ba) 4 Al 14 O 25 : Eu.

その他の青色蛍光体としては、Sr:Sn等のSn賦活リン酸塩蛍光体、
SrGa:Ce、CaGa:Ce等のCe賦活チオガレート蛍光体、
(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn賦活アルミン酸塩蛍光体、
ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、
SiO:Ce等のCe賦活珪酸塩蛍光体、
CaWOタングステン酸塩蛍光体、
SrSiAl19ON31:Eu、EuSiAl19ON31等のEu賦活酸窒化物蛍光体等を用いることも可能である。
Other blue phosphors include Sn-activated phosphate phosphors such as Sr 2 P 2 O 7 : Sn,
Ce-activated thiogallate phosphors such as SrGa 2 S 4 : Ce, CaGa 2 S 4 : Ce,
(Ba, Sr, Ca) MgAl 10 O 17 : Eu, Mn activated aluminate phosphor such as Eu, Mn,
Sulfide phosphors such as ZnS: Ag, ZnS: Ag, Al,
Y 2 SiO 5 : Ce-activated silicate phosphor such as Ce,
CaWO 4 tungstate phosphor,
Eu-activated oxynitride phosphors such as SrSi 9 Al 19 ON 31 : Eu and EuSi 9 Al 19 ON 31 can also be used.

さらに、その他の青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラリゾン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
これらの青色蛍光体は、いずれか1種を用いてもよく、2種以上を組み合わせて用いてもよい。
Further, as other blue phosphors, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, pyralizone-based, triazole-based fluorescent dyes, organic phosphors such as thulium complexes, etc. can be used. It is.
Any one of these blue phosphors may be used, or two or more thereof may be used in combination.

(黄色蛍光体)
この黄色蛍光体は、本発明の効果を著しく損なわないかぎり、任意のものを使用することができる。
この黄色蛍光体の発光ピーク波長は、通常550nm以上、好ましくは560nm以上、また、通常620nm以下、好ましくは600nm以下の波長範囲にあることが好適である。
このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。
(Yellow phosphor)
Any yellow phosphor can be used as long as the effects of the present invention are not significantly impaired.
The emission peak wavelength of this yellow phosphor is usually in the wavelength range of usually 550 nm or more, preferably 560 nm or more, and usually 620 nm or less, preferably 600 nm or less.
Examples of such yellow phosphors include various oxide-based, nitride-based, oxynitride-based, sulfide-based, and oxysulfide-based phosphors.

特に、RE12:Ce(但し、REはY,Tb,Gd,LuおよびSmの群から選択される1種または2種以上、MはAl,GaおよびScの群から選択される1種または2種以上)、MaMbMc12:Ce(但し、Maは2価の金属元素、Mbは3価の金属元素、Mcは4価の金属元素)等で表されるガーネット構造を有するガーネット系蛍光体、
AEMdO:Eu(但し、AEはBa,Sr,Ca,MgおよびZnの群から選択される1種または2種以上、MdはSi,Ge,SiおよびGeのいずれか1種)等で表されるオルソシリケート系蛍光体、
これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、
AEAlSiN:Ce(但し、AEはBa,Sr,Ca,MgおよびZnの群から選択される1種または2種以上)等のCaAlSiN構造を有する窒化物蛍光体等のCeで賦活した蛍光体が挙げられる。
In particular, RE 3 M 5 O 12 : Ce (where RE is one or more selected from the group of Y, Tb, Gd, Lu and Sm, and M is selected from the group of Al, Ga and Sc) 1 type or 2 types or more), Ma 3 Mb 2 Mc 3 O 12 : Ce (where Ma is a divalent metal element, Mb is a trivalent metal element, Mc is a tetravalent metal element), etc. A garnet phosphor having a garnet structure,
AE 2 MdO 4 : Eu (where AE is one or more selected from the group of Ba, Sr, Ca, Mg and Zn, and Md is any one of Si, Ge, Si and Ge), etc. Orthosilicate phosphors represented,
Oxynitride phosphors in which part of the constituent element oxygen of these phosphors is replaced by nitrogen,
Phosphors activated with Ce such as nitride phosphors having a CaAlSiN 3 structure such as AEAlSiN 3 : Ce (where AE is one or more selected from the group of Ba, Sr, Ca, Mg and Zn) Is mentioned.

さらに、その他の黄色蛍光体としては、例えば、CaGa:Eu、(Ca,Sr)Ga:Eu、(Ca,Sr)(Ga,Al):Eu等の硫化物蛍光体、
Ca(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで賦活した蛍光体を用いることも可能である。
また、黄色蛍光体としては、例えば、brilliant sulfoflavine(Colour Index Number 56205)、basic yellow HG(Colour Index Number 46040)、eosine(Colour Index Number 45380)、rhodamine 6G(Colour Index Number 45160)等の蛍光染料を用いることも可能である。
Furthermore, as other yellow phosphors, for example, sulfides such as CaGa 2 S 4 : Eu, (Ca, Sr) Ga 2 S 4 : Eu, (Ca, Sr) (Ga, Al) 2 S 4 : Eu, etc. Phosphor,
It is also possible to use a phosphor activated with Eu such as an oxynitride-based phosphor having a SiAlON structure such as Ca x (Si, Al) 12 (O, N) 16 : Eu.
Examples of the yellow phosphor include fluorescent dyes such as brilliant sulfoflavine (Colour Index Number 56205), basic yellow HG (Colour Index Number 46040), eosine (Colour Index Number 45380), and rhodamine 6G (Colour Index Number 45160). It is also possible to use it.

(蛍光体の組み合わせ)
上記の緑色蛍光体、赤色蛍光体、青色蛍光体及び黄色蛍光体(本実施形態の複合波長変換粒子を除く)は、1種類の蛍光体を単独で使用してもよく、2種類以上の蛍光体を任意の組み合わせおよび比率で併用してもよい。
また、本実施形態の複合波長変換粒子と、上記の各種蛍光体との比率も、本発明の効果を著しく損なわない限り任意である。したがって、上記の各種蛍光体の使用量、及び上記の各種蛍光体として用いる蛍光体の組み合わせおよびその比率は、発光装置の用途に応じて任意に設定すればよい。
(Phosphor combination)
The green phosphor, red phosphor, blue phosphor, and yellow phosphor (except for the composite wavelength conversion particle of the present embodiment) may use one kind of phosphor alone, or two or more kinds of fluorescence. The body may be used in any combination and ratio.
Further, the ratio of the composite wavelength conversion particles of the present embodiment to the above various phosphors is also arbitrary as long as the effects of the present invention are not significantly impaired. Therefore, the usage amount of the various phosphors and the combination and ratio of the phosphors used as the various phosphors may be arbitrarily set according to the use of the light emitting device.

本実施形態の発光装置においては、上記の緑色蛍光体、赤色蛍光体、青色蛍光体及び黄色蛍光体(本実施形態の複合波長変換粒子を除く)の仕様の有無およびその種類は、発光装置の用途に応じて適宜選択すればよい。例えば、本実施形態の発光装置を黄色を発光する発光装置として構成する場合には、本実施形態の複合波長変換粒子のみを使用すればよく、上記の各種蛍光体は通常は不要である。   In the light emitting device of the present embodiment, the presence or absence of the specifications of the green phosphor, the red phosphor, the blue phosphor, and the yellow phosphor (excluding the composite wavelength conversion particle of the present embodiment) and the type thereof are the same as those of the light emitting device. What is necessary is just to select suitably according to a use. For example, when the light-emitting device of this embodiment is configured as a light-emitting device that emits yellow light, only the composite wavelength conversion particles of this embodiment may be used, and the various phosphors described above are usually unnecessary.

一方、本実施形態の発光装置を白色を発光する発光装置として構成する場合には、所望の白色光が得られるように、半導体発光素子14と、本実施形態の複合波長変換粒子と、上記の各種蛍光体とを適切に組み合わせればよい。
具体的には、本実施形態の発光装置を白色を発光する発光装置として構成する場合における、本実施形態の複合波長変換粒子と、上記の各種蛍光体との好ましい組み合わせとしては、以下の(i)〜(ii)の組み合わせが挙げられる。
On the other hand, when the light emitting device of the present embodiment is configured as a light emitting device that emits white light, the semiconductor light emitting element 14, the composite wavelength conversion particle of the present embodiment, What is necessary is just to combine various fluorescent substance appropriately.
Specifically, when the light-emitting device of this embodiment is configured as a light-emitting device that emits white light, a preferable combination of the composite wavelength conversion particle of this embodiment and the various phosphors described above is as follows (i ) To (ii).

(i)半導体発光素子として青色発光素子(青色LED等)を使用し、黄色蛍光体として本実施形態の複合波長変換粒子を含む黄色蛍光体を使用し、その他の蛍光体として赤色蛍光体、緑色蛍光体のいずれか1種または2種を使用する。
この場合、赤色蛍光体としては、(Sr,Ca)AlSiN:Eu及び(Sr,Ba)SiO:Euから選択される少なくとも1種が好ましい。
また、緑色蛍光体としては、例えば、(Mg,Ca,Sr,Ba)Si:Euで表されるEu賦活アルカリ土類シリコンオキシナイトライド系蛍光体、Ca(Sc,Mg,Na,Li)Si12:Ce等のCe賦活珪酸塩蛍光体から選択される1種または2種以上が好ましい。
(I) A blue light emitting element (blue LED or the like) is used as the semiconductor light emitting element, a yellow phosphor containing the composite wavelength conversion particles of the present embodiment is used as the yellow phosphor, and a red phosphor or green is used as the other phosphor. Any one or two of the phosphors are used.
In this case, the red phosphor is preferably at least one selected from (Sr, Ca) AlSiN 3 : Eu and (Sr, Ba) 3 SiO 5 : Eu.
Further, as the green phosphor, for example, an Eu-activated alkaline earth silicon oxynitride phosphor represented by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, Ca 3 (Sc, Mg) , Na, Li) 2 Si 3 O 12 : One or more selected from Ce-activated silicate phosphors such as Ce are preferable.

(ii)半導体発光素子として近紫外発光素子(近紫外LED等)を使用し、黄色蛍光体として本実施形態の複合波長変換粒子を含む黄色蛍光体を使用し、その他の蛍光体として青色蛍光体、赤色蛍光体及び緑色蛍光体を使用する。
この場合、青色蛍光体としては、(Ba,Sr,Ca)MgAl1017:Eu及び(Mg,Ca,Sr,Ba)(PO(Cl,F):Euから選択される少なくとも1種が好ましい。
赤色蛍光体としては、(Sr,Ca)AlSiN:Eu及びLaS:Euから選択される少なくとも1種が好ましい。
緑色蛍光体としては、(Sr,Ba,Ca)Ga:Eu,Tb,Sm等のEu,Tb,Sm賦活チオガレート蛍光体、Eu賦活βサイアロン等のEu賦活酸窒化物蛍光体、SrAl:Eu等のEu賦活アルミン酸塩蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn賦活アルミン酸塩蛍光体、等が好ましい。
(Ii) A near-ultraviolet light-emitting element (near-ultraviolet LED or the like) is used as a semiconductor light-emitting element, a yellow phosphor containing the composite wavelength conversion particles of the present embodiment is used as a yellow phosphor, and a blue phosphor as another phosphor A red phosphor and a green phosphor are used.
In this case, the blue phosphor is at least selected from (Ba, Sr, Ca) MgAl 10 O 17 : Eu and (Mg, Ca, Sr, Ba) 5 (PO 4 ) 3 (Cl, F): Eu. One is preferred.
The red phosphor is preferably at least one selected from (Sr, Ca) AlSiN 3 : Eu and La 2 O 2 S: Eu.
Examples of green phosphors include (Sr, Ba, Ca) Ga 2 S 4 : Eu, Tb, Sm activated thiogallate phosphors such as Eu, Tb, and Sm, Eu activated oxynitride phosphors such as Eu activated β sialon, SrAl Eu-activated aluminate phosphors such as 2 O 4 : Eu, Eu, Mn-activated aluminate phosphors such as BaMgAl 10 O 17 : Eu, Mn, and the like are preferable.

(樹脂)
本実施形態の複合波長変換粒子及び上記の各種蛍光体を分散させる樹脂としては、上述した複合波長変換粒子含有樹脂組成物にて用いられる樹脂が好適に用いられる。
(resin)
As the resin for dispersing the composite wavelength conversion particles of the present embodiment and the various phosphors described above, the resin used in the above-described composite wavelength conversion particle-containing resin composition is preferably used.

上記の発光装置においては、上記の各発光層の替わりに、本実施形態の複合波長変換粒子、上記の緑色蛍光体、赤色蛍光体、青色蛍光体、必要に応じて黄色蛍光体(本実施形態の複合波長変換粒子を除く)をプラスチックフィルム中に分散させた発光フィルム、あるいは、これら複合波長変換粒子及び上記の各種蛍光体をプラスチック表面にコーティングした波長変換シートまたはフィルムを、半導体発光素子の発光側に装着することとしてもよい。
上記の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能であるが、発光効率が高く、かつ、演色性も高いことから、照明装置や画像表示装置の光源として好適である。
In the light emitting device, instead of each light emitting layer, the composite wavelength conversion particle of the present embodiment, the green phosphor, the red phosphor, the blue phosphor, and the yellow phosphor as necessary (this embodiment) A light emitting film in which a composite wavelength converting particle) is dispersed in a plastic film, or a wavelength conversion sheet or film in which these composite wavelength converting particles and the above-mentioned various phosphors are coated on a plastic surface. It is good also as attaching to the side.
The use of the above light emitting device is not particularly limited, and can be used in various fields where a normal light emitting device is used. However, since the light emitting efficiency is high and the color rendering property is also high, the lighting device or the image is used. It is suitable as a light source for a display device.

以上説明したように、本実施形態の複合波長変換粒子によれば、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有してなるフッ化物からなるマトリクス粒子中にイットリウムアルミニウムガーネット系蛍光体を分散し、さらに、発光強度の最大値を560nm以上かつ580nm以下の波長領域にあることとしたので、光の利用効率及び粒子自体の利用効率を高めることができ、したがって、高効率で発光させることができる。しかも、この高効率発光は、長期間に亘って安定しているので、信頼性を高めることができる。   As described above, according to the composite wavelength conversion particle of the present embodiment, it is made of a fluoride containing one or more selected from the group of magnesium fluoride, calcium fluoride, and strontium fluoride. Since the yttrium aluminum garnet phosphor is dispersed in the matrix particles, and the maximum emission intensity is in the wavelength region of 560 nm or more and 580 nm or less, the light utilization efficiency and the particle utilization efficiency are increased. Therefore, light can be emitted with high efficiency. In addition, since this high-efficiency light emission is stable over a long period of time, the reliability can be improved.

また、熱膨張率が大きなマトリクス粒子中にイットリウムアルミニウムガーネット系蛍光体を分散させたので、マトリクス粒子中に大きな圧縮応力を発生させてイットリウムアルミニウムガーネット系蛍光体の結晶構造を歪ませることができ、発光波長を長波長化させることができる。
以上により、高効率発光と高信頼性を両立させることができる。
In addition, since the yttrium aluminum garnet phosphor is dispersed in the matrix particles having a large coefficient of thermal expansion, a large compressive stress can be generated in the matrix particles to distort the crystal structure of the yttrium aluminum garnet phosphor. The emission wavelength can be increased.
As described above, both high-efficiency light emission and high reliability can be achieved.

本実施形態の複合波長変換粒子含有樹脂組成物によれば、本実施形態の複合波長変換粒子を樹脂中に分散したので、光の利用効率及び樹脂組成物自体の利用効率を高めることができ、したがって、高効率で発光させることができる。しかも、この高効率発光は、長期間に亘って安定しているので、信頼性を高めることができる。   According to the composite wavelength conversion particle-containing resin composition of the present embodiment, since the composite wavelength conversion particles of the present embodiment are dispersed in the resin, the light utilization efficiency and the utilization efficiency of the resin composition itself can be increased. Therefore, light can be emitted with high efficiency. In addition, since this high-efficiency light emission is stable over a long period of time, the reliability can be improved.

本実施形態の発光装置によれば、300nm以上かつ500nm以下の波長領域の光を発光する半導体発光素子と、この半導体発光素子から出射される光を受光することにより可視光線を発光する発光層と、を備え、この発光層に本実施形態の複合波長変換粒子を含有させたので、光の利用効率及び樹脂組成物自体の利用効率を高めることができ、したがって、高効率で発光させることができ、さらには長期間に亘って信頼性を高めることができる。   According to the light emitting device of this embodiment, a semiconductor light emitting element that emits light in a wavelength region of 300 nm or more and 500 nm or less, and a light emitting layer that emits visible light by receiving light emitted from the semiconductor light emitting element, The composite wavelength conversion particles of the present embodiment are contained in the light emitting layer, so that the light utilization efficiency and the utilization efficiency of the resin composition itself can be increased, and therefore light can be emitted with high efficiency. Further, the reliability can be improved over a long period of time.

以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to a following example.

『複合波長変換粒子』
「実施例1」
(フッ化マグネシウムコロイドの作製)
塩化マグネシウム6水和物(MgCl・6HO)406.6gを純水2000g(室温:25℃)に溶解し、塩化マグネシウム水溶液を作製した。次いで、この溶液に、フッ化アンモニウム(NHF)148.2gを純水2000g(室温:25℃)に溶解させたフッ化アンモニウム水溶液を撹拌しながら加え、フッ化マグネシウム粒子を生成させた。
次いで、このフッ化マグネシウム粒子を含む溶液に限外濾過洗浄を行って、この溶液中の不純物イオンを除去し、次いで濃縮し、フッ化マグネシウム(MgF)粒子を2質量%含むフッ化マグネシウムコロイドを作製した。
"Composite wavelength conversion particles"
"Example 1"
(Production of magnesium fluoride colloid)
Magnesium chloride hexahydrate (MgCl 2 · 6H 2 O) 406.6 g was dissolved in 2000 g of pure water (room temperature: 25 ° C.) to prepare an aqueous magnesium chloride solution. Next, an ammonium fluoride aqueous solution in which 148.2 g of ammonium fluoride (NH 4 F) was dissolved in 2000 g of pure water (room temperature: 25 ° C.) was added to this solution while stirring to produce magnesium fluoride particles.
Next, the solution containing the magnesium fluoride particles is subjected to ultrafiltration washing to remove impurity ions in the solution and then concentrated to a magnesium fluoride colloid containing 2% by mass of magnesium fluoride (MgF 2 ) particles. Was made.

このフッ化マグネシウムコロイドの分散粒子径を、光透過式粒度分布測定装置を用いて測定したところ、30nmであった。
このフッ化マグネシウムコロイドからフッ化マグネシウムを分離、乾燥し、得られたフッ化マグネシウム(MgF)粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、8nmであった。
The dispersed particle size of the magnesium fluoride colloid was measured using a light transmission type particle size distribution measuring device, and found to be 30 nm.
Magnesium fluoride was separated from this magnesium fluoride colloid, dried, and the crystallite diameter of the obtained magnesium fluoride (MgF 2 ) particles was measured by a powder method using an X-ray diffractometer, and found to be 8 nm. .

(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.54、y=0、w=0とした。
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions as luminescent ions was set to x = 0.54, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)380gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)301.90g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)151.66g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)37.74gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Moreover, 380 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10,000 g of pure water to prepare an aqueous ammonium hydrogen carbonate solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 301.90g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 151.66g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 37.74 g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
上記のフッ化マグネシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、550℃にて2時間熱処理してYAG:Ce蛍光体の前駆体を熱分解させ、焼成粒子を得た。
次いで、この焼成粒子を、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1050℃にて5時間、熱処理を行い、実施例1の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of the above magnesium fluoride colloid and 100 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloid solution, and then dried with a two-fluid nozzle spray dryer. Next, the obtained dried product was heat-treated at 550 ° C. for 2 hours in the air atmosphere to thermally decompose the precursor of the YAG: Ce phosphor to obtain calcined particles.
Next, the fired particles were subjected to heat treatment at 1050 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen to produce composite wavelength conversion particles of Example 1.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。この複合波長変換粒子の走査型電子顕微鏡(SEM)像を図5及び図6に示す。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、MgFの結晶子径は25nm、YAGの結晶子径は60nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm. Scanning electron microscope (SEM) images of the composite wavelength conversion particles are shown in FIGS.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of MgF 2 was 25 nm and the crystallite diameter of YAG was 60 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
上記の複合波長変換粒子(Mp)と、2液タイプのシリコーン樹脂 OE6630(屈折率:1.53、東レダウ(株)社製)(Ms)との質量比(Mp:Ms)が25:75となるように、上記の複合波長変換粒子及びシリコーン樹脂を秤量した後、メノウ乳鉢にて混練した。なお、上記のシリコーン樹脂は、主剤が42.8質量部、硬化剤が32.2質量部であった。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
The mass ratio (Mp: Ms) of the above composite wavelength conversion particles (Mp) and the two-pack type silicone resin OE6630 (refractive index: 1.53, manufactured by Toray Dow Co., Ltd.) (Ms) is 25:75. Then, the above composite wavelength conversion particles and the silicone resin were weighed and kneaded in an agate mortar. The silicone resin was 42.8 parts by mass of the main agent and 32.2 parts by mass of the curing agent.

次いで、この混練物を透明ガラス基板上にバーコータにて塗布し、次いで、150℃にて60分加熱して硬化させ、この透明ガラス基板上に厚み30μmの発光強度測定用の実施例1の波長変換膜を形成した。
一方、比較用の発光特性測定用の波長変換膜として、市販のYAG:Ce蛍光体 P46−Y3(YAGの粒子径:6μm〜8μm、化成オプト(株)社製)を用いた他は、実施例1の波長変換膜と同様にして、透明ガラス基板上に厚み30μmの発光強度測定用の比較用の波長変換膜を形成した。
Next, this kneaded product was applied on a transparent glass substrate with a bar coater, then heated and cured at 150 ° C. for 60 minutes, and the wavelength of Example 1 for measuring the emission intensity of 30 μm in thickness on this transparent glass substrate. A conversion film was formed.
On the other hand, a commercially available YAG: Ce phosphor P46-Y3 (YAG particle size: 6 μm to 8 μm, manufactured by Kasei Opto Co., Ltd.) was used as a wavelength conversion film for measuring the emission characteristics for comparison. In the same manner as the wavelength conversion film of Example 1, a comparative wavelength conversion film for measuring the emission intensity having a thickness of 30 μm was formed on a transparent glass substrate.

次いで、実施例1の波長変換膜及び比較用の波長変換膜それぞれの発光スペクトルの量子効率を、積分半球方式の量子効率測定システム QE2000(大塚電子(株)社製)を用いて、透過法により測定した。
ここでは、透過光の試料面積を5mm×6mmの矩形状とし、波長変換膜の後方(ガラス基板側)から励起光を入射して、波長変換膜の前方の発光スペクトルを積分半球により集光し、入射460nm励起光フォトン量に対する前方発光した560nm発光フォトン量(外部量子効率相当)を測定し、実施例1の波長変換膜については複合波長変換粒子1g当たりに、一方、比較用の波長変換膜についてはYAG1g当たりに、それぞれ換算して、実施例1の複合波長変換粒子と比較用の蛍光体の前方方向への発光特性を比較(前方発光特性比)した。
Next, the quantum efficiencies of the emission spectra of the wavelength conversion film of Example 1 and the comparative wavelength conversion film were measured by the transmission method using an integrated hemispherical quantum efficiency measurement system QE2000 (manufactured by Otsuka Electronics Co., Ltd.). It was measured.
Here, the sample area of the transmitted light is a rectangular shape of 5 mm × 6 mm, the excitation light is incident from behind the wavelength conversion film (glass substrate side), and the emission spectrum in front of the wavelength conversion film is collected by the integrating hemisphere. 560 nm emission photon amount (equivalent to external quantum efficiency) emitted forward with respect to the incident 460 nm excitation light photon amount was measured, and the wavelength conversion film of Example 1 per 1 g of the composite wavelength conversion particle, on the other hand, the comparative wavelength conversion film Were converted per YAG per gram, and the emission characteristics in the forward direction of the composite wavelength conversion particles of Example 1 and the phosphor for comparison were compared (front emission characteristics ratio).

ここでは、実施例1及び比較用それぞれの波長変換膜について、前方発光560nmフォトン量と入射460nm励起光フォトン量とにより、発光体1g当たりの前方発光特性(前方発光560nmフォトン量/入射460nm励起光フォトン量)を算出し、次いで、実施例1の複合波長変換粒子1g当たりの前方発光特性と、比較用の蛍光体1g当たりの前方発光特性との比を算出し、前方発光特性比とした。
同時に、発光ピーク波長及び発光スペクトルの半値幅についても測定を行った。
Here, with respect to the wavelength conversion films of Example 1 and each of the comparative examples, the forward emission characteristics (forward emission 560 nm photon amount / incident 460 nm excitation light) per 1 g of the light emitter are determined by the forward emission 560 nm photon amount and the incident 460 nm excitation light photon amount. The amount of photons) was calculated, and then the ratio of the front emission characteristics per 1 g of the composite wavelength conversion particle of Example 1 to the front emission characteristics per 1 g of the comparative phosphor was calculated and used as the front emission characteristics ratio.
At the same time, the emission peak wavelength and the half width of the emission spectrum were also measured.

次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例2]
(フッ化カルシウムコロイドの作製)
塩化カルシウム2水和物(CaCl・2HO)376.6gを純水9624g(室温:25℃)に溶解し、塩化カルシウム水溶液を作製した。次いで、この溶液に、フッ化アンモニウム(NHF)190gを純水9810g(室温:25℃)に溶解させたフッ化アンモニウム水溶液を撹拌しながら加え、フッ化カルシウム粒子を生成させた。
次いで、このフッ化カルシウム粒子を含む溶液に限外濾過洗浄を行って、この溶液中の不純物イオンを除去し、次いで濃縮し、フッ化カルシウム(CaF)粒子を2質量%含むフッ化カルシウムコロイドを作製した。
このフッ化カルシウムコロイドの分散粒子径は80nm、フッ化カルシウム(CaF)粒子の結晶子径は20nmであった。
[Example 2]
(Preparation of calcium fluoride colloid)
376.6 g of calcium chloride dihydrate (CaCl 2 .2H 2 O) was dissolved in 9624 g of pure water (room temperature: 25 ° C.) to prepare an aqueous calcium chloride solution. Next, an ammonium fluoride aqueous solution in which 190 g of ammonium fluoride (NH 4 F) was dissolved in 9810 g of pure water (room temperature: 25 ° C.) was added to this solution while stirring to generate calcium fluoride particles.
Next, the solution containing calcium fluoride particles is subjected to ultrafiltration washing to remove impurity ions in the solution, and then concentrated to obtain a calcium fluoride colloid containing 2% by mass of calcium fluoride (CaF 2 ) particles. Was made.
The dispersed particle diameter of the calcium fluoride colloid was 80 nm, and the crystallite diameter of the calcium fluoride (CaF 2 ) particles was 20 nm.

(ガーネット構造の蛍光体前駆体溶液の作製)
実施例1に準じて、蛍光体の前駆体として、Al,Y,Ceのグリオキシル酸水溶液を作製した。
(Preparation of phosphor precursor solution with garnet structure)
In accordance with Example 1, an aqueous solution of glyoxylic acid of Al, Y, and Ce was prepared as a phosphor precursor.

(複合波長変換粒子の作製)
上記のフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例2の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of the above calcium fluoride colloid and 100 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to form a uniform colloid solution, and then dried with a two-fluid nozzle spray dryer. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, to produce composite wavelength conversion particles of Example 2.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は60nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 60 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例2の複合波長変換粒子を用いて、実施例1に準じて、実施例2の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 2, a wavelength conversion film for measuring light emission characteristics of Example 2 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例3]
(ガーネット構造の蛍光体前駆体溶液の作製)
実施例1に準じて、蛍光体の前駆体として、Al,Y,Ceのグリオキシル酸水溶液を作製した。
[Example 3]
(Preparation of phosphor precursor solution with garnet structure)
In accordance with Example 1, an aqueous solution of glyoxylic acid of Al, Y, and Ce was prepared as a phosphor precursor.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液42.9gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例3の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
A two-fluid nozzle type spray dryer is prepared by mixing and stirring 200 g of calcium fluoride colloid prepared according to Example 2 and 42.9 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce to obtain a uniform colloidal solution. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen to produce composite wavelength conversion particles of Example 3.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は50nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm and the crystallite diameter of YAG was 50 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例3の複合波長変換粒子を用いて、実施例1に準じて、実施例3の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 3, a wavelength conversion film for measuring light emission characteristics of Example 3 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例4]
(ガーネット構造の蛍光体前駆体溶液の作製)
実施例1に準じて、蛍光体の前駆体として、Al,Y,Ceのグリオキシル酸水溶液を作製した。
[Example 4]
(Preparation of phosphor precursor solution with garnet structure)
In accordance with Example 1, an aqueous solution of glyoxylic acid of Al, Y, and Ce was prepared as a phosphor precursor.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液66.7gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例4の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
A two-fluid nozzle type spray dryer is prepared by mixing and stirring 200 g of calcium fluoride colloid prepared according to Example 2 and 66.7 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce to obtain a uniform colloidal solution. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Example 4 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は60nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 60 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例4の複合波長変換粒子を用いて、実施例1に準じて、実施例4の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 4, a wavelength conversion film for measuring light emission characteristics of Example 4 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例5]
(ガーネット構造の蛍光体前駆体溶液の作製)
実施例1に準じて、蛍光体の前駆体として、Al,Y,Ceのグリオキシル酸水溶液を作製した。
[Example 5]
(Preparation of phosphor precursor solution with garnet structure)
In accordance with Example 1, an aqueous solution of glyoxylic acid of Al, Y, and Ce was prepared as a phosphor precursor.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液150gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例5の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 150 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloidal solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Example 5 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は75nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 75 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例5の複合波長変換粒子を用いて、実施例1に準じて、実施例5の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 5, a wavelength conversion film for measuring light emission characteristics of Example 5 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例6]
(ガーネット構造の蛍光体前駆体溶液の作製)
実施例1に準じて、蛍光体の前駆体として、Al,Y,Ceのグリオキシル酸水溶液を作製した。
[Example 6]
(Preparation of phosphor precursor solution with garnet structure)
In accordance with Example 1, an aqueous solution of glyoxylic acid of Al, Y, and Ce was prepared as a phosphor precursor.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液233gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例6の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 233 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloidal solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, to produce composite wavelength conversion particles of Example 6.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は80nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 80 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例6の複合波長変換粒子を用いて、実施例1に準じて、実施例6の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 6, a wavelength conversion film for measuring light emission characteristics of Example 6 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例7]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.39、y=0、w=0とした。
[Example 7]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions, which are luminescent ions, was x = 0.39, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)382gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)305.68g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)162.92g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)27.60gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Moreover, 382 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10,000 g of pure water to prepare an ammonium hydrogen carbonate aqueous solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 305.68g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 162.92g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 27.60 g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例7の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 100 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloidal solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Further, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Example 7 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は110nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm and the crystallite diameter of YAG was 110 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例7の複合波長変換粒子を用いて、実施例1に準じて、実施例7の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 7, a wavelength conversion film for measuring light emission characteristics of Example 7 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例8]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.39、y=0、w=0とした。
[Example 8]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions, which are luminescent ions, was x = 0.39, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)374gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)310.38g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)176.81g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)15.09gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Moreover, 374 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10000 g of pure water to prepare an aqueous ammonium hydrogen carbonate solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 310.38g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 176.81g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 15.09 g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例8の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 100 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloidal solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Further, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Example 8 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は110nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm and the crystallite diameter of YAG was 110 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例8の複合波長変換粒子を用いて、実施例1に準じて、実施例8の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 8, a wavelength conversion film for measuring light emission characteristics of Example 8 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例9]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.6、y=0、w=0とした。
[Example 9]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions as luminescent ions was set to x = 0.6, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)380gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)300.42g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)147.23g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)41.73gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Moreover, 380 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10,000 g of pure water to prepare an aqueous ammonium hydrogen carbonate solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 300.42g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 147.23g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 41.73g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例9の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 100 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloidal solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Further, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Example 9 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は95nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite size of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite size of CaF 2 was 40 nm and the crystallite size of YAG was 95 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例9の複合波長変換粒子を用いて、実施例1に準じて、実施例9の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 9, a wavelength conversion film for measuring light emission characteristics of Example 9 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例10]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.75、y=0、w=0とした。
[Example 10]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions as luminescent ions was set to x = 0.75, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)379gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)296.77g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)136.35g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)51.53gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Further, 379 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10,000 g of pure water to prepare an ammonium hydrogen carbonate aqueous solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 296.77g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 136.35g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 51.53g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例10の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 100 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloidal solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Further, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Example 10 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は60nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 60 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例10の複合波長変換粒子を用いて、実施例1に準じて、実施例10の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 10, a wavelength conversion film for measuring light emission characteristics of Example 10 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例11]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.9、y=0、w=0とした。
[Example 11]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions as luminescent ions was set to x = 0.9, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)378gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)293.21g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)125.73g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)61.09gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Further, 378 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10,000 g of pure water to prepare an ammonium hydrogen carbonate aqueous solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 293.21g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 125.73g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 61.09g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例11の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 100 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloidal solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, to produce composite wavelength conversion particles of Example 11.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は60nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 60 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例11の複合波長変換粒子を用いて、実施例1に準じて、実施例11の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 11, a wavelength conversion film for measuring light emission characteristics of Example 11 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[実施例12]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ce,Gdのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度及びGdイオンの濃度は、上記の式(1)にてx=0.3、z=0.75、w=0とした。
[Example 12]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as a phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, Ce, and Gd was prepared as a precursor of the YAG: Ce phosphor. In the precursor of this YAG: Ce phosphor, the concentrations of Ce ions and Gd ions, which are luminescent ions, are x = 0.3, z = 0.75, w = 0.

また、炭酸水素アンモニウム(NHHCO)313gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)284.07g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)113.11g、硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)19.73g、及び硝酸ガドリニウム(Gd(NO・6HO:分子量451.36)51.27gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Further, 313 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10000 g of pure water to prepare an ammonium hydrogen carbonate aqueous solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3 ) 3 · 9H 2 O: molecular weight 375.13) 284.07 g, yttrium nitrate hexahydrate (Y (NO 3 ) 3 · 6H 2 O: molecular weight 383. 01) 113.11g, cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 19.73 g, and gadolinium nitrate (Gd (NO 3) 3 · 6H 2 O: molecular weight 451 .36) 51.27 g was dissolved in 5000 g of pure water (room temperature: 25 ° C.) to prepare a nitrate aqueous solution.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ce,Gdのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ce,Gdヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ce,Gdのグリオキシル酸水溶液を作製した。   Next, the nitrate aqueous solution is added to the ammonium hydrogen carbonate aqueous solution to produce a precipitate of Al, Y, Ce, and Gd hydroxy carbonate, and this precipitate is washed with an ultrafiltration device to remove impurity ions. Then, solid-liquid separation was performed with a vacuum filtration device, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce, Gd hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce, and Gd was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ce,Gdのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、実施例12の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 100 g of an aqueous solution of glyoxylic acid of Al, Y, Ce, and Gd are mixed and stirred to form a uniform colloid solution, and then a two-fluid nozzle type spray dryer Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Example 12 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は50nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm and the crystallite diameter of YAG was 50 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
実施例12の複合波長変換粒子を用いて、実施例1に準じて、実施例12の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Example 12, a wavelength conversion film for measuring light emission characteristics of Example 12 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[比較例1]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.39、y=0、w=0とした。
[Comparative Example 1]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions, which are luminescent ions, was x = 0.39, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)382gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)305.68g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)162.92g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)27.60gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Moreover, 382 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10,000 g of pure water to prepare an ammonium hydrogen carbonate aqueous solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 305.68g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 162.92g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 27.60 g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド400gと、Al,Y,Ceのグリオキシル酸水溶液35.28gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、比較例1の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
After mixing 400 g of calcium fluoride colloid prepared according to Example 2 and 35.28 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce to obtain a uniform colloidal solution, a two-fluid nozzle type spray dryer Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Comparative Example 1 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は30nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 30 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
比較例1の複合波長変換粒子を用いて、実施例1に準じて、比較例1の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性に変化は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Comparative Example 1, a wavelength conversion film for measuring light emission characteristics of Comparative Example 1 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, no change was observed in the forward light emission characteristics.
These results are shown in Table 2.

[比較例2]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.39、y=0、w=0とした。
[Comparative Example 2]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions, which are luminescent ions, was x = 0.39, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)382gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)305.68g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)162.92g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)27.60gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Moreover, 382 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10,000 g of pure water to prepare an ammonium hydrogen carbonate aqueous solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 305.68g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 162.92g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 27.60 g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液300gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、比較例2の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 300 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to form a uniform colloid solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Further, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Comparative Example 2 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は120nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 120 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
比較例2の複合波長変換粒子を用いて、実施例1に準じて、比較例2の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性にやや低下が認められた。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Comparative Example 2, a wavelength conversion film for measuring light emission characteristics of Comparative Example 2 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, a slight decrease was observed in the forward light emission characteristics.
These results are shown in Table 2.

[比較例3]
(ガーネット構造の蛍光体前駆体溶液の作製)
蛍光体の前駆体として、希土類アルミネート系蛍光体前駆体溶液を作製した。
ここでは、ガーネット構造の蛍光体としてYAG:Ce蛍光体を選択し、このYAG:Ce蛍光体の前駆体としてAl,Y,Ceのグリオキシル酸水溶液(グリオキシル酸錯体水溶液)を作製した。なお、このYAG:Ce蛍光体の前駆体では、発光イオンであるCeイオンの濃度は、上記の式(1)にてx=0.39、y=0、w=0とした。
[Comparative Example 3]
(Preparation of phosphor precursor solution with garnet structure)
A rare earth aluminate-based phosphor precursor solution was prepared as a phosphor precursor.
Here, a YAG: Ce phosphor was selected as the phosphor having a garnet structure, and an aqueous solution of glyoxylic acid (glyoxylic acid complex aqueous solution) of Al, Y, and Ce was prepared as a precursor of the YAG: Ce phosphor. In this YAG: Ce phosphor precursor, the concentration of Ce ions, which are luminescent ions, was x = 0.39, y = 0, and w = 0 in the above equation (1).

また、炭酸水素アンモニウム(NHHCO)378gを純水10000gに溶解して炭酸水素アンモニウム水溶液を作製した。
さらに、硝酸アルミニウム9水和物(Al(NO・9HO:分子量375.13)311.13g、硝酸イットリウム6水和物(Y(NO・6HO:分子量383.01)179.17g、及び硝酸セリウム6水和物(Ce(NO・6HO:分子量434.23)12.97gを純水5000g(室温:25℃)に溶解させ、硝酸塩水溶液を作製した。
Further, 378 g of ammonium hydrogen carbonate (NH 4 HCO 3 ) was dissolved in 10,000 g of pure water to prepare an ammonium hydrogen carbonate aqueous solution.
Furthermore, aluminum nitrate nonahydrate (Al (NO 3) 3 · 9H 2 O: molecular weight 375.13) 311.13g, yttrium nitrate hexahydrate (Y (NO 3) 3 · 6H 2 O: molecular weight 383. 01) 179.17g, and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O: molecular weight 434.23) 12.97 g of pure water 5000 g (RT: dissolved in 25 ° C.), the aqueous nitrate solution Produced.

次いで、上記の炭酸水素アンモニウム水溶液に上記の硝酸塩水溶液を加え、Al,Y,Ceのヒドロキシ炭酸塩の沈殿物を作製し、この沈殿物を限外濾過装置を用いて洗浄して不純物イオンを除去し、次いで、真空濾過装置にて固液分離し、得られたケーキを120℃にて24時間、乾燥処理を行い、Al,Y,Ceヒドロキシ炭酸塩の乾燥粒子を得た。次いで、この乾燥粒子33.9g(YAG:Ceに換算して20g)を、グリオキシル酸58.6gを含むグリオキシル酸水溶液466.1gに添加し、その後、室温(25℃)にて24時間撹拌し、Al,Y,Ceのグリオキシル酸水溶液を作製した。   Next, the aqueous nitrate solution is added to the aqueous ammonium bicarbonate solution to produce a precipitate of Al, Y, Ce hydroxy carbonate, and the precipitate is washed using an ultrafiltration device to remove impurity ions. Next, solid-liquid separation was performed with a vacuum filtration apparatus, and the obtained cake was dried at 120 ° C. for 24 hours to obtain dry particles of Al, Y, Ce hydroxycarbonate. Next, 33.9 g (20 g in terms of YAG: Ce) of the dried particles was added to 466.1 g of an aqueous glyoxylic acid solution containing 58.6 g of glyoxylic acid, and then stirred at room temperature (25 ° C.) for 24 hours. A glyoxylic acid aqueous solution of Al, Y, Ce was prepared.

(複合波長変換粒子の作製)
実施例2に準じて作製したフッ化カルシウムコロイド200gと、Al,Y,Ceのグリオキシル酸水溶液100gとを、混合・撹拌して均一なコロイド溶液とした後、2流体ノズル方式のスプレードライヤーにて乾燥した。次いで、得られた乾燥物を大気雰囲気中、600℃にて2時間熱処理を行った。
さらに、3%水素−97%窒素の混合ガスを含む還元性雰囲気中、1150℃にて5時間熱処理を行い、比較例3の複合波長変換粒子を作製した。
(Production of composite wavelength conversion particles)
200 g of calcium fluoride colloid prepared according to Example 2 and 100 g of an aqueous solution of glyoxylic acid of Al, Y, and Ce were mixed and stirred to obtain a uniform colloidal solution, and then a two-fluid nozzle type spray dryer. Dried. Next, the obtained dried product was heat-treated at 600 ° C. for 2 hours in an air atmosphere.
Furthermore, heat treatment was performed at 1150 ° C. for 5 hours in a reducing atmosphere containing a mixed gas of 3% hydrogen and 97% nitrogen, and composite wavelength conversion particles of Comparative Example 3 were produced.

この複合波長変換粒子の粒子径を走査型電子顕微鏡(SEM)を用いて測定したところ、1μm〜8μmの範囲に分布していた。
また、この複合波長変換粒子の結晶子径を、X線回折装置を用いた粉末法により測定したところ、CaFの結晶子径は40nm、YAGの結晶子径は60nmであった。
When the particle diameter of this composite wavelength conversion particle was measured using a scanning electron microscope (SEM), it was distributed in the range of 1 μm to 8 μm.
Further, when the crystallite diameter of the composite wavelength conversion particles was measured by a powder method using an X-ray diffractometer, the crystallite diameter of CaF 2 was 40 nm, and the crystallite diameter of YAG was 60 nm.

(複合波長変換粒子含有樹脂組成物の作製及び評価)
比較例3の複合波長変換粒子を用いて、実施例1に準じて、比較例3の発光特性測定用の波長変換膜を作製した。
次いで、この波長変換膜の発光特性を、実施例1に準じて測定した。
次いで、上記の波長変換膜を、温度85℃及び湿度85%の高温高湿試験器に500時間保存し、保存後の波長変換膜について上記と同様の方法により前方発光特性比の評価を行ったところ、前方への発光特性は認められなかった。
これらの結果を表2に示す。
(Production and evaluation of composite wavelength conversion particle-containing resin composition)
Using the composite wavelength conversion particles of Comparative Example 3, a wavelength conversion film for measuring light emission characteristics of Comparative Example 3 was produced according to Example 1.
Next, the light emission characteristics of the wavelength conversion film were measured according to Example 1.
Next, the wavelength conversion film was stored in a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 500 hours, and the wavelength conversion film after storage was evaluated for the forward emission characteristic ratio by the same method as described above. However, forward light emission characteristics were not recognized.
These results are shown in Table 2.

[XAFSによる評価]
実施例7の複合波長変換粒子について、CeイオンのCe−L3吸収端のX線吸収端近傍微細構造(XANES:X-ray absorption near-edge fine structure)スペクトルを、高エネルギー加速器研究機構に設置されているXAFS(X線吸収端微細構造:X-ray Absorption Fine Structure)測定装置を用いて行った。ここでは、3価のセリウム標準試料として酢酸セリウムを、4価のセリウム標準試料として酸化セリウムを、それぞれ用いた。その結果、Ceイオンの全て(100%)が3価で存在していることが確認された。
図7に、実施例7の複合波長変換粒子におけるCe−L3吸収端のX線吸収端近傍微細構造(XANES:X-ray absorption near-edge fine structure)スペクトルを示す。
[Evaluation by XAFS]
For the composite wavelength conversion particle of Example 7, the X-ray absorption near-edge fine structure (XANES) spectrum of the Ce-L3 absorption edge of Ce ions was installed in the High Energy Accelerator Research Organization. XAFS (X-ray Absorption Fine Structure) measuring apparatus. Here, cerium acetate was used as a trivalent cerium standard sample, and cerium oxide was used as a tetravalent cerium standard sample. As a result, it was confirmed that all of Ce ions (100%) were trivalent.
FIG. 7 shows an X-ray absorption near-edge fine structure (XANES) spectrum of the Ce-L3 absorption edge in the composite wavelength conversion particle of Example 7.

さらに、実施例7、8,10のそれぞれの複合波長変換粒子について、上記のXAFS測定装置を用いて、Ce原子周辺の構造(Ce−K吸収端動径構造関数)におけるCe−Al(Y)イオン間距離及びCe−Oイオン間距離を測定した。図8に、実施例7、8,10のそれぞれの複合波長変換粒子におけるイオン間距離の測定結果を示す。
その結果、原子間距離3Å前後のピーク位置は、Ce濃度の増大とともに短縮していることが確認された。したがって、Ce−Alイオン間距離は短縮されるほど発光イオンであるCeイオンの結晶場分裂をより増大させるので、本実施形態の複合波長変換粒子においては、Ce濃度を従来になく増大しても消光することなく、高効率で発光可能であることが分かった。
よって、本実施形態の複合波長変換粒子は、従来になく極めて前方への発光特性と信頼性に優れていることが分かった。
Further, for each of the composite wavelength conversion particles of Examples 7, 8, and 10, Ce-Al (Y) in the structure around Ce atoms (Ce-K absorption edge radial structure function) using the above-described XAFS measurement apparatus. The distance between ions and the distance between Ce-O ions were measured. In FIG. 8, the measurement result of the distance between ions in each of the composite wavelength conversion particles of Examples 7, 8, and 10 is shown.
As a result, it was confirmed that the peak position at an interatomic distance of about 3 mm was shortened with an increase in Ce concentration. Therefore, as the distance between Ce and Al ions is shortened, the crystal field splitting of Ce ions, which are luminescent ions, is further increased. Therefore, in the composite wavelength conversion particle of the present embodiment, even if the Ce concentration is increased more than ever before. It was found that light can be emitted with high efficiency without quenching.
Therefore, it has been found that the composite wavelength conversion particles of the present embodiment are extremely superior in light emission characteristics and reliability in the forward direction.

『発光装置』
[実施例13]
実施例2の複合波長変換粒子を用いて、図2に示した表面実装型発光装置を作製し、発光特性を評価した。
発光装置は、以下の手順により作製した。
"Light Emitting Device"
[Example 13]
Using the composite wavelength conversion particles of Example 2, the surface-mounted light-emitting device shown in FIG.
The light emitting device was manufactured by the following procedure.

半導体発光素子14としては、波長450nm〜470nmで発光する青色発光ダイオード(青色LED)ES−CEBL912(EPISTAR社製)を用い、この青色LEDをフレーム12の凹部13の端子に銀ペーストを用いてダイボンデイングし、この銀ペーストを150℃にて2時間加熱し、銀ペーストを硬化させて電極16とした。次いで、ボンディングワイヤ18として直径25μmの金線を用い、この金線を用いて、青色LEDと電極17とをワイヤボンデイングした。   As the semiconductor light emitting element 14, a blue light emitting diode (blue LED) ES-CEBL 912 (manufactured by EPISTAR) that emits light with a wavelength of 450 nm to 470 nm is used. Bonding was performed, and the silver paste was heated at 150 ° C. for 2 hours to harden the silver paste to obtain an electrode 16. Next, a gold wire with a diameter of 25 μm was used as the bonding wire 18, and the blue LED and the electrode 17 were wire bonded using this gold wire.

発光層15に含まれる発光物質としては、黄色蛍光体として実施例2の複合波長変換粒子を用い、赤色蛍光体24として波長520nm〜760nmの光を発光する赤色蛍光体であるSr0.8Ca0.192Eu0.008AlSiNを用い、緑色蛍光体23として波長500nm〜560nmの光を発光する緑色蛍光体であるEu賦活βサイアロンを用いた。
ここでは、黄色蛍光体、赤色蛍光体、緑色蛍光体の質量比は、50:25:25とした。これら黄色蛍光体、赤色蛍光体及び緑色蛍光体の全質量に対し、シリコーン樹脂 OE6630(東レダウ(株)社製)の主剤を8:107の質量比となるように加えて混合し、さらに、上記の各種蛍光体及びシリコーン樹脂を含む樹脂混合物の合計質量に対して100:70の割合で硬化剤を加えて混練機で混合して蛍光体スラリー(蛍光体含有樹脂組成物)を作製した。
As the light-emitting substance contained in the light-emitting layer 15, Sr 0.8 Ca, which is a red phosphor that emits light having a wavelength of 520 nm to 760 nm as the red phosphor 24, using the composite wavelength conversion particle of Example 2 as a yellow phosphor. Eu activated β sialon, which is a green phosphor that emits light having a wavelength of 500 nm to 560 nm, was used as the green phosphor 23 using 0.192 Eu 0.008 AlSiN 3 .
Here, the mass ratio of the yellow phosphor, the red phosphor, and the green phosphor was set to 50:25:25. The main component of silicone resin OE6630 (manufactured by Toray Dow Co., Ltd.) is added to the total mass of these yellow phosphor, red phosphor and green phosphor to a mass ratio of 8: 107, and further mixed. A curing agent was added at a ratio of 100: 70 with respect to the total mass of the resin mixture containing the various phosphors and the silicone resin, and mixed with a kneader to prepare a phosphor slurry (phosphor-containing resin composition).

次いで、この蛍光体スラリーをフレーム12の凹部13に注入し、150℃にて2時間加熱することにより硬化させ、発光層15とした。
以上により、実施例13の表面実装型発光装置を作製した。
Next, this phosphor slurry was poured into the concave portion 13 of the frame 12 and cured by heating at 150 ° C. for 2 hours to obtain a light emitting layer 15.
As described above, a surface-mounted light-emitting device of Example 13 was produced.

次いで、この表面実装型発光装置を、青色LEDに20mAの電流を通電して駆動し、発光させ、分光器 USB2000(積分球仕様)及び色・照度測定ソフトウエア(オーシャン オプティクス社製)を用いて、この表面実装型発光装置の白色色度座標を測定した。
この白色色度座標の測定は、発光スペクトルの380nm〜780nmの波長領域のデータから、JIS Z 8701「色の表示方法」で規定されるXY表色系における色度座標として色度値(x,y)を算出することにより行った。
この表面実装型発光装置の白色色度座標は(x、y)=(0.31,0.33)でありほぼ無彩色の白色発光であった。
Next, this surface mount type light emitting device is driven by applying a current of 20 mA to a blue LED to emit light, and using a spectroscope USB2000 (integral sphere specification) and color / illuminance measurement software (manufactured by Ocean Optics). The white chromaticity coordinates of this surface-mounted light emitting device were measured.
The measurement of the white chromaticity coordinates is performed by using chromaticity values (x, x, This was done by calculating y).
The white chromaticity coordinates of this surface-mounted light-emitting device were (x, y) = (0.31, 0.33), which was almost achromatic white light emission.

本発明の複合波長変換粒子は、フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有してなるフッ化物からなるマトリクス粒子中に、イットリウムアルミニウムガーネット系蛍光体を分散し、さらに、発光強度の最大値を560nm以上かつ580nm以下の波長領域としたことにより、光の利用効率及び粒子自体の利用効率を高めることができ、したがって、高効率で発光させることができ、しかも、この高効率発光は長期間に亘って安定しているので、信頼性を高めることができるものであるから、各種表示装置、照明装置、太陽光発電装置、フォトニックデバイス、光アンプ等、様々な光学装置の発光材料として有益であり、その工業的価値は大きい。   The composite wavelength conversion particle of the present invention is a yttrium aluminum garnet-based matrix particle made of a fluoride containing one or more selected from the group consisting of magnesium fluoride, calcium fluoride and strontium fluoride. By dispersing the phosphor and further setting the maximum value of the emission intensity to a wavelength region of 560 nm or more and 580 nm or less, the light use efficiency and the particle use efficiency can be increased, and therefore light is emitted with high efficiency. In addition, since this high-efficiency light emission is stable over a long period of time, the reliability can be improved, so various display devices, lighting devices, solar power generation devices, photonic devices, It is useful as a light emitting material for various optical devices such as optical amplifiers, and its industrial value is great.

1 複合波長変換粒子
2 マトリクス粒子
3 イットリウムアルミニウムガーネット系蛍光体
11 表面実装型発光装置
14 半導体発光素子
15 発光層
21 透明性を有する樹脂
22 複合波長変換粒子
23 緑色蛍光体
24 赤色蛍光体
31 表面実装型発光装置
32 複合波長変換粒子含有樹脂層
33 蛍光体含有樹脂層
34 発光層
41 表面実装型発光装置
42 樹脂
43 発光層
DESCRIPTION OF SYMBOLS 1 Composite wavelength conversion particle | grains 2 Matrix particle | grain 3 Yttrium aluminum garnet-type fluorescent substance 11 Surface mount type light-emitting device 14 Semiconductor light emitting element 15 Light emitting layer 21 Resin having transparency 22 Compound wavelength conversion particle 23 Green fluorescent substance 24 Red fluorescent substance 31 Surface mount Type light emitting device 32 composite wavelength conversion particle-containing resin layer 33 phosphor-containing resin layer 34 light emitting layer 41 surface mount type light emitting device 42 resin 43 light emitting layer

Claims (6)

フッ化マグネシウム、フッ化カルシウム及びフッ化ストロンチウムの群から選択される1種または2種以上を含有してなるフッ化物からなるマトリクス粒子中に、イットリウムアルミニウムガーネット系蛍光体を分散してなり、
発光強度の最大値は560nm以上かつ580nm以下の波長領域にあることを特徴とする複合波長変換粒子。
Yttrium aluminum garnet phosphor is dispersed in matrix particles made of fluoride containing one or more selected from the group of magnesium fluoride, calcium fluoride and strontium fluoride,
A composite wavelength conversion particle having a maximum value of emission intensity in a wavelength region of 560 nm or more and 580 nm or less.
前記イットリウムアルミニウムガーネット系蛍光体は、
(Y3−x−zCe)(Al5−y―wSi)O12 ……(1)
(但し、MはCeを除くランタノイド及びBiのうち少なくとも1種、RはIn、Gaのうち少なくとも1種であり、0.21≦x≦0.9、0≦y≦1.5、0≦z≦1.5、0≦w≦1.0)
を主成分とすることを特徴とする請求項1記載の複合波長変換粒子。
The yttrium aluminum garnet phosphor is
(Y 3-x-z Ce x M z) (Al 5-y-w R w Si y) O 12 ...... (1)
(However, M is at least one of lanthanoid and Bi excluding Ce, R is at least one of In and Ga, and 0.21 ≦ x ≦ 0.9, 0 ≦ y ≦ 1.5, 0 ≦ z ≦ 1.5, 0 ≦ w ≦ 1.0)
The composite wavelength conversion particle according to claim 1, comprising:
前記フッ化物に対する前記イットリウムアルミニウムガーネット系蛍光体の質量百分率は、20質量%以上かつ70質量%以下であることを特徴とする請求項1または2記載の複合波長変換粒子。   3. The composite wavelength conversion particle according to claim 1, wherein a mass percentage of the yttrium aluminum garnet-based phosphor with respect to the fluoride is 20% by mass or more and 70% by mass or less. 請求項1ないし3のいずれか1項記載の複合波長変換粒子を樹脂中に分散してなることを特徴とする複合波長変換粒子含有樹脂組成物。   A composite wavelength conversion particle-containing resin composition, wherein the composite wavelength conversion particle according to any one of claims 1 to 3 is dispersed in a resin. 300nm以上かつ500nm以下の波長領域の光を発光する半導体発光素子と、この半導体発光素子から出射される光を受光することにより可視光線を発光する発光層と、を備え、
前記発光層は、請求項1ないし3のいずれか1項記載の複合波長変換粒子を含有してなることを特徴とする発光装置。
A semiconductor light emitting element that emits light in a wavelength region of 300 nm or more and 500 nm or less, and a light emitting layer that emits visible light by receiving light emitted from the semiconductor light emitting element,
The light emitting device is characterized in that the light emitting layer contains the composite wavelength conversion particles according to any one of claims 1 to 3.
前記発光層は、黄色蛍光体、青色蛍光体、緑色蛍光体及び赤色蛍光体のいずれか1種または2種以上を含有してなることを特徴とする請求項5記載の発光装置。   The light emitting device according to claim 5, wherein the light emitting layer contains one or more of a yellow phosphor, a blue phosphor, a green phosphor, and a red phosphor.
JP2013204296A 2013-09-30 2013-09-30 Composite wavelength conversion particle, composite wavelength conversion particle-containing resin composition, and light emitting device Active JP6123619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204296A JP6123619B2 (en) 2013-09-30 2013-09-30 Composite wavelength conversion particle, composite wavelength conversion particle-containing resin composition, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204296A JP6123619B2 (en) 2013-09-30 2013-09-30 Composite wavelength conversion particle, composite wavelength conversion particle-containing resin composition, and light emitting device

Publications (2)

Publication Number Publication Date
JP2015067754A true JP2015067754A (en) 2015-04-13
JP6123619B2 JP6123619B2 (en) 2017-05-10

Family

ID=52834778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204296A Active JP6123619B2 (en) 2013-09-30 2013-09-30 Composite wavelength conversion particle, composite wavelength conversion particle-containing resin composition, and light emitting device

Country Status (1)

Country Link
JP (1) JP6123619B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168536A (en) * 2016-03-14 2017-09-21 住友大阪セメント株式会社 Composite powder, surface treated composite powder, resin composition, cured product, and optical semiconductor light emitting device
JP2018021198A (en) * 2016-07-04 2018-02-08 パナソニックIpマネジメント株式会社 Fluophor and light-emitting device
US10141484B2 (en) 2016-05-26 2018-11-27 Nichia Corporation Light emitting device
JPWO2018155671A1 (en) * 2017-02-27 2019-12-12 パナソニックIpマネジメント株式会社 Wavelength conversion member
WO2020040306A1 (en) * 2018-08-24 2020-02-27 国立研究開発法人産業技術総合研究所 Yttrium aluminum garnet phosphor and light-emitting device provided with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212281A (en) * 2008-03-04 2009-09-17 Panasonic Corp Semiconductor light-emitting device
WO2009154193A1 (en) * 2008-06-16 2009-12-23 株式会社ニコン Ceramic composition, phosphor ceramic and method for producing the same, and light-emitting device
WO2013073592A1 (en) * 2011-11-17 2013-05-23 株式会社ニコン Caf2 translucent ceramics and manufacturing method therefor
WO2014046173A1 (en) * 2012-09-21 2014-03-27 住友大阪セメント株式会社 Composite wavelength conversion powder, resin composition containing composite wavelength conversion powder, and light emitting device
JP2014145012A (en) * 2013-01-28 2014-08-14 Mitsubishi Chemicals Corp Resin composition, wavelength conversion member, light-emitting device, led lighting equipment, and optical member
JP2014172940A (en) * 2013-03-06 2014-09-22 Nemoto Lumi-Materials Co Ltd Fluophor dispersion ceramic plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212281A (en) * 2008-03-04 2009-09-17 Panasonic Corp Semiconductor light-emitting device
WO2009154193A1 (en) * 2008-06-16 2009-12-23 株式会社ニコン Ceramic composition, phosphor ceramic and method for producing the same, and light-emitting device
WO2013073592A1 (en) * 2011-11-17 2013-05-23 株式会社ニコン Caf2 translucent ceramics and manufacturing method therefor
WO2014046173A1 (en) * 2012-09-21 2014-03-27 住友大阪セメント株式会社 Composite wavelength conversion powder, resin composition containing composite wavelength conversion powder, and light emitting device
JP2014145012A (en) * 2013-01-28 2014-08-14 Mitsubishi Chemicals Corp Resin composition, wavelength conversion member, light-emitting device, led lighting equipment, and optical member
JP2014172940A (en) * 2013-03-06 2014-09-22 Nemoto Lumi-Materials Co Ltd Fluophor dispersion ceramic plate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168536A (en) * 2016-03-14 2017-09-21 住友大阪セメント株式会社 Composite powder, surface treated composite powder, resin composition, cured product, and optical semiconductor light emitting device
US10141484B2 (en) 2016-05-26 2018-11-27 Nichia Corporation Light emitting device
US10559725B2 (en) 2016-05-26 2020-02-11 Nichia Corporation Light emitting device
US11011684B2 (en) 2016-05-26 2021-05-18 Nichia Corporation Light emitting device
JP2018021198A (en) * 2016-07-04 2018-02-08 パナソニックIpマネジメント株式会社 Fluophor and light-emitting device
JPWO2018155671A1 (en) * 2017-02-27 2019-12-12 パナソニックIpマネジメント株式会社 Wavelength conversion member
US11131914B2 (en) 2017-02-27 2021-09-28 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member
WO2020040306A1 (en) * 2018-08-24 2020-02-27 国立研究開発法人産業技術総合研究所 Yttrium aluminum garnet phosphor and light-emitting device provided with same
JPWO2020040306A1 (en) * 2018-08-24 2021-08-26 国立研究開発法人産業技術総合研究所 Yttrium aluminum garnet phosphor and light emitting device equipped with it
JP7265274B2 (en) 2018-08-24 2023-04-26 国立研究開発法人産業技術総合研究所 Yttrium-aluminum-garnet phosphor, light-emitting device provided with the same, and method for producing yttrium-aluminum-garnet phosphor

Also Published As

Publication number Publication date
JP6123619B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5245222B2 (en) Phosphor and light emitting device using the same
US7857994B2 (en) Green emitting phosphors and blends thereof
KR101731741B1 (en) Red line emitting phosphors for use in led applications
US8277687B2 (en) Phosphor and light-emitting device using same
EP2128219B1 (en) Phosphor, method for production thereof, wavelength converter, illumination device and luminaire
US9758722B2 (en) Eu2+-activated phosphors
JP5092667B2 (en) Light emitting device
JP6115432B2 (en) Composite wavelength conversion particle, composite wavelength conversion particle-containing resin composition, and light emitting device
JP2009173905A (en) Phosphor, method of manufacturing phosphor, phosphor-containing composition, and light emitting device
JP2008274254A (en) Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device
WO2008032812A1 (en) Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display and illuminating device
US10000697B2 (en) Magnesium alumosilicate-based phosphor
JP6123619B2 (en) Composite wavelength conversion particle, composite wavelength conversion particle-containing resin composition, and light emitting device
JP2008095091A (en) Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device
JP2009040918A (en) Fluorescent substance and its production method, composition containing fluorescent substance, light emitting device, and image display and illuminating device
JP2008038081A (en) Fluorophor and light-emitting device using the same
JP2009040944A (en) Phosphor, phosphor-containing composition, light emitter, lighting apparatus, and image display device
JP2008050493A (en) Phosphor and light-emitting device by using the same
JP5590092B2 (en) Phosphor, phosphor-containing composition, light emitting device, image display device and lighting device
JP2008174621A (en) Phosphor, phosphor-containing composition, light-emitting device, image display device and illumination device
JP2009126891A (en) Oxide fluorophor and its production method, and fluorophor-containing composition, light-emitting device, image display device and illuminating device
JP5194395B2 (en) Oxynitride phosphor and light-emitting device using the same
US20170084797A1 (en) Conversion phosphors
JP2009238887A (en) Wavelength converter and light-emitting device, and lighting device
WO2014068907A1 (en) Phosphor, wavelength conversion member, and fluorescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R150 Certificate of patent or registration of utility model

Ref document number: 6123619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150