JP2015066558A - Joint method for metallic component, and joint metal product - Google Patents

Joint method for metallic component, and joint metal product Download PDF

Info

Publication number
JP2015066558A
JP2015066558A JP2013200749A JP2013200749A JP2015066558A JP 2015066558 A JP2015066558 A JP 2015066558A JP 2013200749 A JP2013200749 A JP 2013200749A JP 2013200749 A JP2013200749 A JP 2013200749A JP 2015066558 A JP2015066558 A JP 2015066558A
Authority
JP
Japan
Prior art keywords
metal
metal members
bonding
heated
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013200749A
Other languages
Japanese (ja)
Inventor
正仁 加藤
Masahito Kato
正仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013200749A priority Critical patent/JP2015066558A/en
Publication of JP2015066558A publication Critical patent/JP2015066558A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metallic component jointing method for diffusion-jointing metallic components, while heating the metal members in abutment against each other, to provide jointed parts excellent in mechanical strengths, and a jointed metal product using that method.SOLUTION: Abutment interfaces are made to abut against each other, after a residual compression strain was applied under a pressure of 50% or less to at least one of butting interfaces in the vicinity of the interface, and are heated at or higher than a re-crystallization temperature.

Description

本発明は、金属部材同士を突き合わせながら加熱して拡散接合させる金属部材の接合方法及びこの方法を用いた接合金属製品に関する。   The present invention relates to a method for joining metal members that are heated and diffused while abutting metal members together, and a joined metal product using this method.

金属部材同士を突き合わせてその表面にある原子同士を一定距離以上に近接させると、金属結合によって原子同士が互いに結合しようとして金属部材同士を接合できる。実際には、機械加工等によって得られた平滑面では、原子同士を金属結合させる程度の距離を遙かに超える大きさの凹凸が存在し、金属部材の表面の全ての原子同士を一定距離以上に近接させることは困難である。そこで、再結晶温度以上に加熱して原子を拡散させながら接合を行う。かかる「拡散接合法」では、突き合わせ界面に原子の拡散を阻害させるような、例えば、酸化皮膜等があると原子の拡散が進まずに接合できない。一般に、金属部材同士を加圧しながら拡散接合を行うのは、金属部材の表面に形成されている酸化皮膜等を加圧することで機械的に除去し、新生面を接合面として得た上で原子を拡散させようとするためである。また、接合面を洗浄液で洗浄してから直ちに金属部材同士を突き合わせるのも、同様の理由からである。   When metal members are brought into contact with each other and atoms on the surface thereof are brought closer to each other by a certain distance or more, the metal members can be joined to each other in an attempt to bond the atoms to each other by metal bonding. Actually, on a smooth surface obtained by machining, etc., there are irregularities with a size that far exceeds the distance that allows atoms to be metal-bonded, and all atoms on the surface of the metal member are more than a certain distance apart. It is difficult to bring them close to each other. Therefore, bonding is performed while the atoms are diffused by heating above the recrystallization temperature. In such a “diffusion bonding method”, for example, if there is an oxide film or the like that inhibits the diffusion of atoms at the butt interface, the atoms cannot be bonded without progressing. In general, diffusion bonding is performed while pressing metal members together by mechanically removing the oxide film formed on the surface of the metal members by pressurization and obtaining a new surface as a bonding surface. This is for spreading. Further, the reason why the metal members are brought into contact with each other immediately after the bonding surfaces are cleaned with the cleaning liquid is also the same.

例えば、特許文献1では、このような新生面を機械的に得ながら拡散接合を行う方法が開示されている。詳細には、第1の金属板材の上に第2の金属板材を重ね合わせ、第1及び第2の金属板材を同時に打ち抜き加工する。かかる打ち抜き加工により新生面が生じつつ、第2の金属板材が第1の金属板材に嵌め込まれる。更に、第2の金属板材が第1の金属板材に嵌め込まれた状態で加熱されると、第1及び第2の金属板材の異なる熱膨張率の差によって、新生面には圧縮力が生じて更なる新生面を生成し、両金属板材の拡散接合をより確実なものとできるとしている。   For example, Patent Document 1 discloses a method of performing diffusion bonding while mechanically obtaining such a new surface. Specifically, the second metal plate material is overlaid on the first metal plate material, and the first and second metal plate materials are simultaneously punched. The second metal plate is fitted into the first metal plate while a new surface is generated by the punching process. Furthermore, when the second metal plate is heated while being fitted in the first metal plate, a compressive force is generated on the new surface due to the difference in the coefficient of thermal expansion between the first and second metal plates. It is said that a new surface can be formed and diffusion bonding of both metal plate materials can be made more reliable.

また、特許文献2では、フリップチップ接合をはんだ付けよりも低温で行うべく、拡散接合において接合面の新生面を洗浄液で得る方法について開示している。詳細には、少なくとも一方に錫を含む金属部材同士の表面を蟻酸若しくはクエン酸溶液中において煮沸し、又は、蟻酸蒸気やクエン酸蒸気に暴露させてから、この金属部材の表面同士を突き合わせて加熱及び加圧するとしている。ここでは、金属部材表面の酸化物を除去するとともに、金属と蟻酸が反応した蟻酸化合物や、金属とクエン酸が反応したクエン酸化合物によって置換し、酸化物の除去された金属表面を再び酸化しないようにするとしている。   Further, Patent Document 2 discloses a method of obtaining a new surface of a bonding surface with a cleaning liquid in diffusion bonding in order to perform flip chip bonding at a temperature lower than that of soldering. Specifically, the surfaces of metal members containing at least one of tin are boiled in a formic acid or citric acid solution, or exposed to formic acid vapor or citric acid vapor, and then the surfaces of the metal members are butted against each other and heated. And pressurization. Here, the oxide on the surface of the metal member is removed and the metal surface from which the oxide has been removed is not oxidized again by being replaced by a formic acid compound in which the metal and formic acid have reacted or a citric acid compound in which the metal and citric acid have reacted. I am going to do so.

ところで、新生面の形成以外で拡散接合における接合性を高める方法についても提案されている。   By the way, a method for improving the bonding property in diffusion bonding other than the formation of a new surface has also been proposed.

例えば、特許文献3では、圧下率の高いステンレス箔を用いることでメタル担体の平箔と波箔の拡散接合を安定的に行い得ることを開示している。結晶粒界では粒内に比べて拡散係数が大きくなるため、結晶粒サイズが小さいほど高い粒界密度となって、拡散が助長されることを述べた上で、加工を加えた圧下率の高いステンレス箔ほど拡散接合性に優れることを述べている。   For example, Patent Document 3 discloses that diffusion bonding of a flat foil and a corrugated foil of a metal carrier can be stably performed by using a stainless foil having a high rolling reduction. The grain boundary has a larger diffusion coefficient than the grain interior, so the smaller the grain size, the higher the grain boundary density and the more the diffusion is promoted. It states that stainless steel foil is superior in diffusion bonding.

また、特許文献4では、金属部材の被接合面に予め歪を導入した後、金属部材を互いに重ね合わせ、降伏点以上の圧力を与えながら加熱し、接合界面に動的再結晶を生じさせながら拡散接合する拡散接合法を開示している。従来の拡散接合法では塑性変形を生じない条件下での接合を前提にしていたが、ここでは逆に接合部を塑性変形させるとき、動的再結晶化が進行し、接合強度が向上されるとしている。   Further, in Patent Document 4, after strain is introduced in advance on the surface to be joined of the metal member, the metal members are superposed on each other and heated while applying a pressure higher than the yield point, while causing dynamic recrystallization at the joint interface. A diffusion bonding method for diffusion bonding is disclosed. The conventional diffusion bonding method presupposes bonding under conditions that do not cause plastic deformation, but here, when the joint is plastically deformed, dynamic recrystallization proceeds and the bonding strength is improved. It is said.

特開2009−248125号公報JP 2009-248125 A 特開2011−200930号公報JP 2011-200930 A 特開平9−279310号公報JP-A-9-279310 特開2002−103055号公報JP 2002-103055 A

特許文献3又は4に開示の方法のように、拡散接合による接合性を高めることでより低温で接合でき金属部材の軟化を生じさせず、故に、機械強度に優れる接合部品の製造ができる。一方で、金属部材同士の突き合わせにおいて、界面に新生面を生じさせるためには、界面を塑性変形させる程度の突き合わせ力が必要となり、かかる塑性変形によって金属部材の外形変化及び機械強度の劣化が問題となっている。   Like the method disclosed in Patent Document 3 or 4, it is possible to bond at a lower temperature by increasing the bonding property by diffusion bonding, and the metal member is not softened. Therefore, a bonded part having excellent mechanical strength can be manufactured. On the other hand, in order to create a new surface at the interface in the butt-matching of the metal members, a butting force to the extent that the interface is plastically deformed is required, and due to the plastic deformation, there is a problem of a change in the outer shape of the metal member and a deterioration of the mechanical strength. It has become.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、金属部材同士を突き合わせながら加熱して拡散接合させる金属部材の接合方法において、機械強度に優れる接合部品を健全な外観を維持したまま得られる方法及びこの方法を用いた接合金属製品の提供にある。   The present invention has been made in view of the situation as described above, and the object of the present invention is to join a metal member having a high mechanical strength in a joining method in which metal members are heated and diffused together while abutting each other. The present invention provides a method for obtaining a component while maintaining a sound appearance and a bonded metal product using the method.

本発明による方法は、金属部材同士を突き合わせながら加熱してこれを拡散接合させる方法であって、突き合わせ界面の少なくとも一方に前記界面の近傍で50%圧下を超えて残留圧縮ひずみを与えてからこれを突き合わせて再結晶温度以上に加熱することを特徴とする。   The method according to the present invention is a method in which metal members are heated while being butted together and diffusion-bonded to each other, and at least one of the butted interfaces is applied with a residual compressive strain in the vicinity of the interface exceeding 50% reduction. And heating above the recrystallization temperature.

かかる発明によれば、機械強度に優れる接合部品を健全な外観を維持したまま得られるのである。更に、あらかじめ与えておく内部エネルギー、すなわち、残留圧縮歪みを加熱温度及び時間によって調整し接合界面近傍の内部微細組織を調整することで、素材製造と部品組立とを一連の工程で行い得る。また、接合界面における酸素の吸着に大きく依存することなく接合できるから、金属部材の取り扱いが容易である。   According to this invention, it is possible to obtain a bonded component having excellent mechanical strength while maintaining a sound appearance. Furthermore, by adjusting the internal energy given in advance, that is, the residual compressive strain by the heating temperature and time, and adjusting the internal microstructure near the joint interface, the material production and parts assembly can be performed in a series of steps. Further, since the joining can be performed without greatly depending on the adsorption of oxygen at the joining interface, the metal member can be easily handled.

上記した発明において、前記金属部材の降伏点以下の荷重を与えて突き合わせることを特徴としてもよい。かかる発明によれば、機械強度に優れる接合部品を特に健全な外観を維持したまま得られるのである。   In the above-mentioned invention, it is good also as giving a load below the yield point of the said metal member, and matching. According to this invention, it is possible to obtain a joined component having excellent mechanical strength while maintaining a particularly healthy appearance.

上記した発明において、前記残留圧縮ひずみを与えられた挿入材を前記金属部材の間に挟んだ上で加熱することを特徴としてもよい。かかる発明によれば、より簡単な操作で機械強度に優れる接合部品を健全な外観を維持したまま得られるのである。   In the above-described invention, the insert material given the residual compressive strain may be heated after being sandwiched between the metal members. According to this invention, it is possible to obtain a joined part having excellent mechanical strength with a simple operation while maintaining a sound appearance.

また、本発明による接合金属製品は上記した方法で得られたことを特徴とする。かかる発明によれば、健全な外観を維持しながら、機械強度に優れるのである。   The bonded metal product according to the present invention is obtained by the above-described method. According to this invention, it is excellent in mechanical strength while maintaining a sound appearance.

本発明による接合方法を示す断面図である。It is sectional drawing which shows the joining method by this invention. 本発明による接合方法を示す工程図である。It is process drawing which shows the joining method by this invention. 本発明による接合方法で接合された銅系材料の断面の光学顕微鏡写真である。It is an optical microscope photograph of the cross section of the copper-type material joined by the joining method by this invention. 90%圧延した純チタンを各種温度で焼鈍した後の硬さを示すグラフである。It is a graph which shows the hardness after annealing 90% rolled pure titanium at various temperatures. 90%圧延した純ニッケルを各種温度で焼鈍した後の硬さを示すグラフである。It is a graph which shows the hardness after annealing the pure nickel which rolled 90% at various temperature.

本願発明者は、金属材料を組織調整する熱処理における「再結晶現象」に着目した。かかる現象では、金属材料の内部に新しく発生した結晶粒(再結晶粒)がその周囲から原子を表面に取り込みながら成長していく。この成長の駆動力は、平衡状態で内部エネルギーの低く安定である再結晶粒と、ひずみを含む内部エネルギーの高く不安定な未再結晶粒と、の間における内部エネルギー差に依存する。   The inventor of the present application paid attention to the “recrystallization phenomenon” in the heat treatment for adjusting the structure of the metal material. In such a phenomenon, newly generated crystal grains (recrystallized grains) inside the metal material grow while taking atoms into the surface from the surroundings. The driving force for this growth depends on the internal energy difference between the recrystallized grains having a low internal energy and being stable in an equilibrium state and the unrecrystallized grains having a high internal energy and an unstable strain.

ところで、図1を参照しながら、上記「再結晶現象」の原理について接合界面12を挟んだ拡散接合に適用したときのことを考える。接合対象である金属部材10及び11のうちのいずれか一方若しくは双方(ここでは、金属部材11の一方とする。)の内部エネルギーを高めて不安定にしておくと、金属部材11の表面近傍の原子は接合界面12を越えて接合相手側の金属部材10の表面に出現している再結晶粒の表面に移動する方がより安定な状態となる。また、接合界面12が消滅すると、よりエネルギーを低く安定な状態にできる。つまり、加熱による原子移動の駆動力を与えると、金属部材11の相手方の再結晶粒は接合界面12を越えて成長し、金属部材10及び11を一体化した強固な接合とするのである(図1(c)を参照)。このとき接合界面12を挟んだ両者の内部エネルギー差が十分に大きければ、結晶粒の成長は接合界面12の多少の汚染によって妨げられることなく進行できる。   By the way, with reference to FIG. 1, the case where the principle of the “recrystallization phenomenon” is applied to diffusion bonding with the bonding interface 12 sandwiched therebetween will be considered. If the internal energy of one or both of the metal members 10 and 11 to be joined (here, one of the metal members 11) is increased to be unstable, the vicinity of the surface of the metal member 11 is increased. It is more stable for the atoms to move beyond the bonding interface 12 to the surface of the recrystallized grains appearing on the surface of the metal member 10 on the bonding partner side. Further, when the bonding interface 12 disappears, the energy can be made lower and stable. That is, when a driving force for atomic movement by heating is applied, the recrystallized grains on the other side of the metal member 11 grow beyond the bonding interface 12 to form a strong bond in which the metal members 10 and 11 are integrated (see FIG. 1 (c)). At this time, if the internal energy difference between the two sandwiching the bonding interface 12 is sufficiently large, the growth of crystal grains can proceed without being hindered by some contamination of the bonding interface 12.

具体的に、上記した原理について金属部材同士を突き合わせながら加熱してこれを拡散接合させる接合方法に適用する1つの実施例を図2に沿って、適宜、図1を参照しながら説明する。   Specifically, an example in which the above-described principle is applied to a joining method in which metal members are heated while being brought into contact with each other and diffusion-bonded to each other will be described with reference to FIG.

まず、拡散接合を行うための加熱(S4)に先だって、金属部材10及び11の突き合わせ界面の少なくとも一方(ここでは、金属部材11)を圧下し、好ましくは、該界面の近傍で50%以上の大きな圧下を加えて、金属部材11の内部、特に、界面近傍に大きな残留圧縮ひずみを蓄積させておく(S1)。   First, prior to heating (S4) for performing diffusion bonding, at least one of the butted interfaces of the metal members 10 and 11 (here, the metal member 11) is reduced, and preferably 50% or more in the vicinity of the interface. A large reduction is applied to accumulate a large residual compressive strain inside the metal member 11, particularly in the vicinity of the interface (S1).

次に、適宜、残留圧縮ひずみを与えた金属部材11の面を突き合わせの阻害とならない程度の平滑度となるように表面加工する(S2)。かかる表面加工が残留圧縮ひずみを除去若しくは開放するものであってはならないことはいうまでもない。   Next, the surface of the metal member 11 to which the residual compressive strain is given is appropriately processed so as to have a smoothness that does not hinder the butt (S2). It goes without saying that such surface processing should not remove or release residual compressive strain.

次に、金属部材10及び11を突き合わせて密着させ(S3)、その再結晶が開始する温度である再結晶開始温度以上に加熱する(S4)。これにより、金属部材11の内部で再結晶粒が生成し、接合界面12を越えて金属部材10側へと成長し、接合界面12を消滅させようとする。故に、機械強度に優れる強固な接合を健全な外観を維持したまま得られるのである。   Next, the metal members 10 and 11 are brought into contact with each other (S3), and heated to a recrystallization start temperature or higher which is a temperature at which the recrystallization starts (S4). As a result, recrystallized grains are generated inside the metal member 11, grows to the metal member 10 side beyond the bonding interface 12, and tries to disappear the bonding interface 12. Therefore, it is possible to obtain a strong joint excellent in mechanical strength while maintaining a sound appearance.

上記したように、本方法は拡散接合性に優れるため、比較的低い温度に加熱するだけで、しかも金属部材10及び11の降伏点以下の突き合わせ荷重であっても強固に接合できて、接合界面12周囲(接合部)のより高い健全性を維持できる。また、接合界面12における酸素の吸着があっても接合可能であり、接合における金属部材10及び11の取り扱いが容易である。   As described above, since this method is excellent in diffusion bonding property, it can be firmly bonded even if it is a butt load below the yield point of the metal members 10 and 11 only by heating to a relatively low temperature, and the bonding interface. It is possible to maintain higher soundness around 12 (joint portions). Moreover, even if there exists adsorption | suction of oxygen in the joining interface 12, it can join and the handling of the metal members 10 and 11 in joining is easy.

なお、金属部材10及び11の突き合わせ界面に残留圧縮ひずみを蓄積させておくステップ(S1)において、残留圧縮ひずみを与えられた挿入材を金属部材10と11の間に挟みこんでもよい。   In addition, in the step (S1) of accumulating the residual compressive strain at the butt interface between the metal members 10 and 11, an insert material to which the residual compressive strain is applied may be sandwiched between the metal members 10 and 11.

次に、いくつかの材種の金属部材を用いた接合実験について説明する。   Next, a joining experiment using several kinds of metal members will be described.

[銅系金属部材の拡散接合]
550℃で1時間の焼鈍を加えて内部ひずみを除去した純銅に90%の圧延を加えた。かかる厚さ1mmの板を12mm幅×20mm長の小片に切断し、片面を大気中でエメリー紙とバフで研磨し鏡面加工した。この研磨面同士を向かい合わせて十文字状に重ね、真空チャンバ中に配置した。このときの重なり面積は、12mm×12mmである。真空引き後、板を密着するように5kNの荷重を加えながら、高周波加熱で純銅の再結晶温度以上である350℃に加熱し、30分間保持した後に荷重を除荷し、冷却後に真空チャンバから取り出した。
[Diffusion bonding of copper-based metal members]
90% rolling was applied to pure copper which was annealed at 550 ° C. for 1 hour to remove internal strain. The 1 mm thick plate was cut into small pieces of 12 mm width × 20 mm length, and one side was polished with emery paper and buffing in the atmosphere and mirror finished. The polished surfaces were opposed to each other in a cross shape and placed in a vacuum chamber. The overlapping area at this time is 12 mm × 12 mm. After evacuation, while applying a load of 5 kN so that the plates are in close contact with each other, it is heated to 350 ° C., which is higher than the recrystallization temperature of pure copper by high-frequency heating, held for 30 minutes, and then the load is removed. I took it out.

図3には、重ね合わせ面における接合界面の光学顕微鏡写真を示した。矢印の接合界面を跨いで結晶粒が成長していることが分かる。通常は600℃程度で拡散接合を行い得る純銅ではあるが、本方法で接合することで、より低温で強固に接合できる。また、接合後の金属部材は結晶粒が微細化されており、後述するように、焼鈍した板よりも硬くなっていた。   In FIG. 3, the optical micrograph of the joining interface in an overlapping surface was shown. It can be seen that crystal grains grow across the bonding interface indicated by the arrow. Usually, it is pure copper that can perform diffusion bonding at about 600 ° C., but it can be firmly bonded at a lower temperature by bonding by this method. Moreover, the crystal | crystallization grain was refined | miniaturized and the metal member after joining was harder than the annealed board so that it may mention later.

更に、焼鈍後の純銅からは、厚さ1mm×12mm幅×20mm長に切断した2個の小片を切り出した。この片面を大気中でエメリー紙とバフで研磨し鏡面加工した。この研磨面同士を向かい合わせて十文字状に重ね真空チャンバ中に配置した。このときも重なり面積は、12mm×12mmである。   Further, from the annealed pure copper, two small pieces cut into a thickness of 1 mm × 12 mm width × 20 mm length were cut out. This one side was polished with emery paper and buffing in the atmosphere and mirror finished. The polished surfaces face each other in a cross shape and are placed in a vacuum chamber. At this time, the overlapping area is 12 mm × 12 mm.

接合状態の確認のため、十文字状に接合された金属部材の片方を万力で固定し、もう一方を引きはがす向きにハンマでたたいた。すると、金属部材同士ははがれずに、万力で固定したほうの金属部材が曲がってしまった。つまり、焼鈍した板よりも硬くなっていた。一方、比較のため、550℃で1時間の焼鈍を加えて内部ひずみを除去した厚さ1mmの純銅板、つまり残留圧縮歪みを付与しない純銅板を用いて同様の温度加圧条件で接合実験を行ったところ、手で容易にはがれてしまった。   In order to confirm the joining state, one of the metal members joined in a cross shape was fixed with a vise, and the other was struck with a hammer in a direction to peel off the other. Then, the metal members fixed with a vise were bent without peeling off the metal members. In other words, it was harder than the annealed plate. On the other hand, for comparison, a 1 mm thick pure copper plate subjected to annealing at 550 ° C. for 1 hour to remove internal strain, that is, a pure copper plate not imparting residual compressive strain, was subjected to a joining experiment under the same temperature and pressure conditions. When I went there, it came off easily by hand.

[チタン系金属部材の拡散接合]
アーク溶解したボタン状試料を冷間末込圧延で厚さ10mmの板状体に成形し、700℃で4時間の焼鈍を加えて内部ひずみを除去した純チタンに90%の圧延を加えた。かかる厚さ1mmの板を12mm幅×20mm長に切断した2個の小片をそれぞれの片面を大気中でエメリー紙とバフで研磨し鏡面加工した。この研磨面同士を向かい合わせて十文字状に重ね真空チャンバ中に配置した。このときの重なり面積は、12mm×12mmである。真空引き後、板を密着するように5kNの荷重を加えながら、高周波加熱で純チタンの再結晶温度以上である530℃に加熱し(図4を参照。各温度で1時間焼鈍後の硬さを測定。)、1時間保持した後に荷重を除荷し、冷却後に真空チャンバから取り出した。
[Diffusion bonding of titanium metal members]
An arc-melted button-like sample was formed into a plate-like body having a thickness of 10 mm by cold end rolling, and 90% rolling was applied to pure titanium from which internal strain was removed by annealing at 700 ° C. for 4 hours. Two small pieces obtained by cutting a plate having a thickness of 1 mm into a width of 12 mm and a length of 20 mm were each mirror polished by emery paper and buffing on one side. The polished surfaces face each other in a cross shape and are placed in a vacuum chamber. The overlapping area at this time is 12 mm × 12 mm. After vacuuming, while applying a load of 5 kN so that the plates are in close contact, it is heated to 530 ° C., which is higher than the recrystallization temperature of pure titanium by high frequency heating (see FIG. 4. Hardness after annealing for 1 hour at each temperature ) After holding for 1 hour, the load was removed, and after cooling, it was removed from the vacuum chamber.

接合状態の確認のため、十文字状に接合された金属部材の片方を万力で固定し、もう一方を引きはがす向きにハンマでたたいた。すると、金属部材同士ははがれずに、万力で固定したほうの金属部材が曲がってしまった。一方、比較のため、700℃で4時間の焼鈍を加えて内部ひずみを除去した厚さ1mmの純チタン板、つまり残留圧縮歪みを付与しない純チタン板を用いて同様の温度加圧条件で接合実験を行ったところ、軽くハンマがあたった程度で容易にはがれてしまった。   In order to confirm the joining state, one of the metal members joined in a cross shape was fixed with a vise, and the other was struck with a hammer in a direction to peel off the other. Then, the metal members fixed with a vise were bent without peeling off the metal members. On the other hand, for comparison, bonding was performed under the same temperature and pressure conditions using a pure titanium plate having a thickness of 1 mm that had been subjected to annealing at 700 ° C. for 4 hours to remove internal strain, that is, a pure titanium plate that did not impart residual compressive strain. When the experiment was conducted, it was easily peeled off with a slight hammer hit.

[ニッケル系金属部材の拡散接合]
800℃で1時間の焼鈍を加えて内部ひずみを除去した純ニッケルに90%の圧延を加えた。かかる厚さ1mmの板を12mm幅×20mm長に切断した2個の小片をそれぞれの片面を大気中でエメリー紙とバフで研磨し鏡面加工した。この研磨面同士を向かい合わせて十文字状に重ね真空チャンバ中に配置した。このときの重なり面積は、12mm×12mmである。真空引き後、板を密着するように5kNの荷重を加えながら、高周波加熱で純ニッケルの再結晶温度以上である550℃に加熱し(図5を参照。各温度で1時間焼鈍後の硬さを測定。)、1時間保持した後に荷重を除荷し、冷却後に真空チャンバから取り出した。
[Diffusion bonding of nickel-based metal members]
90% rolling was applied to pure nickel that had been annealed at 800 ° C. for 1 hour to remove internal strain. Two small pieces obtained by cutting a plate having a thickness of 1 mm into a width of 12 mm and a length of 20 mm were each mirror polished by emery paper and buffing on one side. The polished surfaces face each other in a cross shape and are placed in a vacuum chamber. The overlapping area at this time is 12 mm × 12 mm. After vacuuming, while applying a load of 5 kN so that the plates are in close contact, it is heated to 550 ° C., which is higher than the recrystallization temperature of pure nickel by high-frequency heating (see FIG. 5. Hardness after annealing for 1 hour at each temperature ) After holding for 1 hour, the load was removed, and after cooling, it was removed from the vacuum chamber.

接合状態の確認のため、十文字状に接合された金属部材の片方を万力で固定し、もう一方を引きはがす向きにハンマでたたいた。すると、金属部材同士ははがれずに、万力で固定したほうの金属部材が曲がってしまった。一方、比較のため、800℃で1時間の焼鈍を加えて内部ひずみを除去した厚さ1mmの純ニッケル板、つまり残留圧縮歪みを付与しない純ニッケル板を用いて同様の温度加圧条件で接合実験を行ったところ、やはり軽くハンマがあたった程度で容易にはがれてしまった。   In order to confirm the joining state, one of the metal members joined in a cross shape was fixed with a vise, and the other was struck with a hammer in a direction to peel off the other. Then, the metal members fixed with a vise were bent without peeling off the metal members. On the other hand, for comparison, bonding is performed under the same temperature and pressure conditions using a pure nickel plate having a thickness of 1 mm that has been subjected to annealing at 800 ° C. for 1 hour to remove internal strain, that is, a pure nickel plate that does not impart residual compressive strain. When the experiment was conducted, it was easily peeled off to the extent that it was lightly hammered.

以上述べてきたように、本発明の方法は、上記したような原理から、接合対象である金属部材の材種に関わらず適用が可能である。また、広く金属部材の組み立て一般に適用が可能である。例えば、金属部材は金属薄板若しくは箔であって、これらを複数枚だけ積層させて接合して組み立てる製造方法にも適用できる。   As described above, the method of the present invention can be applied regardless of the material type of the metal member to be joined based on the principle described above. Further, it can be widely applied to general assembly of metal members. For example, the metal member is a thin metal plate or foil, and the present invention can also be applied to a manufacturing method in which only a plurality of metal members are stacked and joined together.

ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるだろう。   So far, representative examples and modified examples based on the examples have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments without departing from the scope of the appended claims.

10,11 金属部材
12 接合界面
10,11 Metal member 12 Bonding interface

Claims (4)

金属部材同士を突き合わせながら加熱してこれを拡散接合させる方法であって、
突き合わせ界面の少なくとも一方に前記界面の近傍で50%圧下を超えて残留圧縮ひずみを与えてからこれを突き合わせて再結晶温度以上に加熱することを特徴とする金属部材の接合方法。
It is a method in which the metal members are heated while abutting each other to diffusely bond them,
A method for joining metal members, characterized in that at least one of the butt interfaces is subjected to a residual compressive strain exceeding 50% in the vicinity of the interface and then butted and heated to a recrystallization temperature or higher.
前記金属部材の降伏点以下の荷重を与えて突き合わせることを特徴とする請求項1記載の金属部材の接合方法。 The metal member joining method according to claim 1, wherein the metal members are matched by applying a load equal to or lower than a yield point of the metal members. 前記残留圧縮ひずみを与えられた挿入材を前記金属部材の間に挟んだ上で加熱することを特徴とする請求項1又は2に記載の金属部材の接合方法。   The method for joining metal members according to claim 1 or 2, wherein the insert member given the residual compressive strain is heated after being sandwiched between the metal members. 請求項1乃至3のうちの1つに記載の方法で得られたことを特徴とする接合金属製品。


A bonded metal product obtained by the method according to claim 1.


JP2013200749A 2013-09-27 2013-09-27 Joint method for metallic component, and joint metal product Pending JP2015066558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200749A JP2015066558A (en) 2013-09-27 2013-09-27 Joint method for metallic component, and joint metal product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200749A JP2015066558A (en) 2013-09-27 2013-09-27 Joint method for metallic component, and joint metal product

Publications (1)

Publication Number Publication Date
JP2015066558A true JP2015066558A (en) 2015-04-13

Family

ID=52833865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200749A Pending JP2015066558A (en) 2013-09-27 2013-09-27 Joint method for metallic component, and joint metal product

Country Status (1)

Country Link
JP (1) JP2015066558A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363584A (en) * 1986-09-02 1988-03-19 Nippon Steel Corp Solid phase joining method for metal
JPS63119993A (en) * 1986-11-07 1988-05-24 Sumitomo Metal Ind Ltd Diffusion joining method
JPH09279310A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Stainless foil excellent in diffusion joinability and metal carrier using the same
JP2013173181A (en) * 2012-02-27 2013-09-05 Nisshin Steel Co Ltd Stainless steel diffusion bonded product and method of manufacturing the same
WO2015046091A1 (en) * 2013-09-27 2015-04-02 独立行政法人産業技術総合研究所 Methods for joining stainless steel members, and stainless steels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363584A (en) * 1986-09-02 1988-03-19 Nippon Steel Corp Solid phase joining method for metal
JPS63119993A (en) * 1986-11-07 1988-05-24 Sumitomo Metal Ind Ltd Diffusion joining method
JPH09279310A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Stainless foil excellent in diffusion joinability and metal carrier using the same
JP2013173181A (en) * 2012-02-27 2013-09-05 Nisshin Steel Co Ltd Stainless steel diffusion bonded product and method of manufacturing the same
WO2015046091A1 (en) * 2013-09-27 2015-04-02 独立行政法人産業技術総合研究所 Methods for joining stainless steel members, and stainless steels

Similar Documents

Publication Publication Date Title
KR102325939B1 (en) Method for producing metal laminate material
JP4256018B2 (en) Aluminum / stainless steel clad material and manufacturing method thereof
US20030011143A1 (en) Metallic gasket for vacuum device and method of producing thereof
JPH10158829A (en) Production of assembly of sputtering target
KR20160138985A (en) Method for producing metal laminate material
US10549380B2 (en) Method for bonding stainless steel members and stainless steel
JP2007245211A (en) Manufacturing method of target having backing plate
KR20200043515A (en) Metallic sputtering target integrated with backing plate, and method for manufacturing same
JP2004519330A (en) Method for producing clad material having steel base material and corrosion resistant metal coating
JP2015066558A (en) Joint method for metallic component, and joint metal product
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JP4155124B2 (en) Metal clad plate and manufacturing method thereof
US20040134776A1 (en) Assemblies comprising molybdenum and aluminum; and methods of utilizing interlayers in forming target/backing plate assemblies
JPH0976076A (en) Manufacture of al-ti clad plate
JP6522952B2 (en) Bonding body and method for manufacturing the same
JPS58100993A (en) Production of gold-tin eutectic type alloy brazing filler metal
JPH0353074B2 (en)
JP7162960B2 (en) Rolled bonded body, manufacturing method thereof, and heat dissipation reinforcing member for electronic equipment
JP2823411B2 (en) Diffusion bonding member manufacturing method
JP2019034453A (en) Manufacturing method of laminate thin sheet, and laminate thin sheet
KR101506891B1 (en) A fabricating of sheet-type Al-Mg-Al hybrid materials and Method for fabricating of it
JP2019018221A (en) Laminate and method for production thereof
JPS6344473B2 (en)
JPH01154831A (en) Composite die stock
JPH04327383A (en) Production of stainless steel clad product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170411