JPH04327383A - Production of stainless steel clad product - Google Patents

Production of stainless steel clad product

Info

Publication number
JPH04327383A
JPH04327383A JP9752691A JP9752691A JPH04327383A JP H04327383 A JPH04327383 A JP H04327383A JP 9752691 A JP9752691 A JP 9752691A JP 9752691 A JP9752691 A JP 9752691A JP H04327383 A JPH04327383 A JP H04327383A
Authority
JP
Japan
Prior art keywords
stainless steel
foil
clad
steel foil
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9752691A
Other languages
Japanese (ja)
Other versions
JP2774706B2 (en
Inventor
Takao Fujikawa
隆男 藤川
Yoshinori Narahashi
楢橋 良典
Yasuo Manabe
康夫 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3097526A priority Critical patent/JP2774706B2/en
Publication of JPH04327383A publication Critical patent/JPH04327383A/en
Application granted granted Critical
Publication of JP2774706B2 publication Critical patent/JP2774706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To subject bag-shaped stainless steel foil and a material to be clad to solid-phase diffusion joining by inserting the latter into the former and deforming both at cold, then pressurizing both under heating. CONSTITUTION:The stainless steel foil having 20 to 30mum thickness is formed to a bag shape 2 and the material 1 to be clad is inserted therein. After the inside of the foil is hermetically sealed, >=100kg/cm<2> isotropic pressure is acted at cold on the stainless steel foil to deform the foil along the outside surface shape of the member 1 to be clad. The foil and the member are then heated under >=10kg/cm<2> isotropic pressure. The solid-phase diffusion joining of the stainless steel foil and the member to be clad is executed in this way. The stainless steel foil is thus securely joined to the member to be clad having ruggedness on the surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、静水圧力およびガス圧
を利用した固相拡散接合方法を用いて、ステンレスクラ
ッドされた金属製品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing stainless steel clad metal products using a solid phase diffusion bonding method using hydrostatic pressure and gas pressure.

【0002】0002

【従来の技術】近年、我々の日常生活で目に触れる金属
製品で、錆が美観や機能の点で問題となるものでは、従
来の普通鋼からステンレス鋼に、もしくはステンレスで
クラッドした普通鋼に材料が変化しつつある。とくにス
テンレスでクラッドした製品の普及は、建材、日用製品
を主体に急速に進みつつある。建材としては、電車等の
内装材、日用製品としては物干しざおや鍋釜の類がそれ
らの例としてあげられる。これら製品の製造方法として
は、大きく分けて2つの方法が知られている。
[Prior Art] In recent years, for metal products that we see in our daily lives, where rust is a problem in terms of aesthetics and functionality, we have changed from conventional ordinary steel to stainless steel or ordinary steel clad with stainless steel. Materials are changing. In particular, products clad with stainless steel are rapidly becoming popular, mainly for building materials and everyday products. Examples of building materials include interior materials for trains, etc., and everyday products such as drying rods and pots and pots. There are two known methods for manufacturing these products.

【0003】その1つは、圧延や押出し加工時に、芯材
とクラッド材を重ねて素材としてこの加工時に接合させ
て、ステンレスでクラッドされた板やパイプなどの中間
素材を得、この中間素材を更に絞り加工して鍋・釜とす
る方法である。もう1つは、ステンレスの熱膨張係数が
大きいことを利用して、焼嵌め的な方法で、パイプなど
の外面にステンレス箔を密着させる方法である。
One method is to stack a core material and a cladding material during rolling or extrusion processing and join them together as a raw material to obtain an intermediate material such as a plate or pipe clad with stainless steel. This method involves further drawing to make pots and pots. The other method is to make use of the large coefficient of thermal expansion of stainless steel to tightly adhere stainless steel foil to the outer surface of a pipe or the like using a shrink-fitting method.

【0004】0004

【発明が解決しようとする課題】前記の2つの従来方法
には、下記の如き欠点がある。まず、第1に、両方法と
も、表面に数mmレベル以上の凹凸のあるような製品を
得ることが不可能である。また、前者の中間素材として
クラッドした板を用いる方法の場合には、これを必要な
大きさに切出して使用することとなるが、この際、切断
端面では、内部の素材が露出するため、この内部素材が
普通鋼であれば、この部分が錆びるという問題がある。 さらに、この中間素材を溶接して製品とする場合には、
溶接部の溶接金属は内部の普通鋼と表面のステンレス鋼
が混じった組成となり、同様に錆の問題や、とくに応力
腐食割れの問題を生じやすくなる。
The above two conventional methods have the following drawbacks. First, with both methods, it is impossible to obtain a product whose surface has irregularities of several millimeters or more. In addition, in the case of the former method of using a clad plate as an intermediate material, it is necessary to cut it to the required size and use it, but at this time, the internal material is exposed at the cut end. If the internal material is ordinary steel, there is a problem that this part will rust. Furthermore, when welding this intermediate material into a product,
The weld metal in the weld zone has a composition that is a mixture of internal ordinary steel and surface stainless steel, and is also susceptible to rust problems and, in particular, stress corrosion cracking problems.

【0005】一方、後者の焼嵌め的な方法の場合には、
形状が限定されること、および冶金学的にクラッドされ
たステンレスが母材と結合していないため、とくに面方
向に大きな摩擦力を受けるような部材には適用ができな
い。本発明は、上記の如き従来技術の欠点を解消し、種
々の形状、とくに表面に凹凸を持つような製品にも適用
が可能な方法を提供することを目的とする。
On the other hand, in the case of the latter shrink-fitting method,
Because the shape is limited and the metallurgically clad stainless steel is not bonded to the base material, it cannot be applied to members that are particularly subject to large frictional forces in the plane direction. SUMMARY OF THE INVENTION An object of the present invention is to provide a method that eliminates the drawbacks of the prior art as described above and can be applied to products with various shapes, especially those with uneven surfaces.

【0006】[0006]

【課題を解決するための手段】本発明は上記の目的を達
成するため、厚さ30〜300 μm のステンレス箔
を袋状もしくは容器状に形成し、その内部に被クラッド
部材を挿入して内部を気密に封入した後、冷間で 10
0kgf/cm2 以上の等方圧力を作用させてステン
レス箔を被クラッド部材の外面形状に沿って変形させ、
次いで、10kgf/cm2 以上の等方圧力下で加熱
してステンレス箔と被クラッド部材を固相拡散接合させ
る構成を採用し、更に冷間での等方圧力による加工と、
固相拡散接合とを、HIP装置内で連続して行うという
構成を採用したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention forms stainless steel foil with a thickness of 30 to 300 μm into the shape of a bag or container, inserts a member to be clad inside the bag, and After airtightly sealing, 10
Applying an isotropic pressure of 0 kgf/cm2 or more to deform the stainless steel foil along the outer surface shape of the cladding member,
Next, a configuration was adopted in which the stainless steel foil and the cladding member were solid-phase diffusion bonded by heating under an isostatic pressure of 10 kgf/cm2 or more, and further processing was performed using cold isostatic pressure.
This method employs a configuration in which solid-phase diffusion bonding is performed continuously within a HIP device.

【0007】[0007]

【実施例】以下、本発明の実施例を図1〜図9により詳
細に説明する。図1〜図4は本発明方法の工程を順次示
した説明図である。図1において、1 は被クラッド部
材であり、該部材1 をステンレス箔を溶接して作製し
た封筒状の袋2 に収納する。ステンレス箔の厚さは、
30〜300 μm 、好ましくは50〜150 μm
 である。なお、本発明で箔の厚さを30〜300 μ
m に限定したのは30μm 未満では箔にピンホール
状の孔が含まれることが多く、等方圧を作用させる際に
シール不良となって接合されなかったり、また強度不足
で破れることも多いことによる。
Embodiments Hereinafter, embodiments of the present invention will be explained in detail with reference to FIGS. 1 to 9. 1 to 4 are explanatory diagrams sequentially showing the steps of the method of the present invention. In FIG. 1, 1 is a member to be clad, and the member 1 is housed in an envelope-shaped bag 2 made by welding stainless steel foil. The thickness of stainless steel foil is
30-300 μm, preferably 50-150 μm
It is. In addition, in the present invention, the thickness of the foil is 30 to 300 μm.
The reason for limiting the thickness to m is that if the foil is less than 30 μm, the foil will often contain pinhole-like pores, and when applying isostatic pressure, the seal will fail and the bond will not be joined, or the foil will often break due to insufficient strength. by.

【0008】一方、300 μm を越えると装着性を
良くするのに大きな圧力が必要となり、従ってコスト高
の要因ともなり、また、通常の用途では厚いクラッドは
不変である。また後述するように、冷間圧縮時の破損軽
減の観点から焼なまし処理をして、延性を充分に付与し
たものを使用する。袋状への加工は、ハイパルスTIG
、シーム溶接あるいはYAGレーザ溶接法を用いて、重
ね溶接したものが、簡便かつ気密性確保の観点から推奨
される。この場合の溶接線は符号3 の如くである。
On the other hand, if the thickness exceeds 300 .mu.m, a large pressure is required to improve the installation property, which also causes high costs, and in normal applications, a thick cladding remains unchanged. In addition, as will be described later, from the viewpoint of reducing damage during cold compression, a material that has been annealed to provide sufficient ductility is used. High pulse TIG is used for processing into bag shapes.
, lap welding using seam welding or YAG laser welding is recommended from the viewpoint of simplicity and ensuring airtightness. The welding line in this case is as shown in numeral 3.

【0009】次いで図2Aに示すように、袋2 を溶接
線3 の部分で開口4 部分を溶接して気密に封入する
。袋2 の内部は真空とすることが好ましいが、後述の
拡散接合のための加熱時の温度で、空気の主成分である
窒素と酸素を吸収しやすいジルコニウムやチタンなどを
ゲッター材として袋の中に入れておいても真空封入に近
い効果を得ることが可能である。なお、図2Bは図2A
の断面図を示す。
Next, as shown in FIG. 2A, the bag 2 is hermetically sealed by welding the opening 4 along the weld line 3. Although it is preferable to keep the inside of bag 2 in a vacuum, the inside of the bag may be made of getter material such as zirconium or titanium, which easily absorbs nitrogen and oxygen, which are the main components of air, at the temperature during heating for diffusion bonding, which will be described later. It is possible to obtain an effect similar to that of vacuum sealing even if it is placed in a vacuum chamber. Note that FIG. 2B is similar to FIG. 2A.
A cross-sectional view is shown.

【0010】次いで、図3Aに示すようにこの袋全体を
たとえば、冷間静水圧プレス(CIP)装置に入れて 
100kgf/cm2 以上の静水圧力を作用させて、
ステンレス箔を被クラッド材1 の外面形状に沿うよう
に変形させる。圧力は、ステンレス箔の厚さ、硬さ、被
クラッド材1 の凹部の形状によって適宜選択する。し
かしながら、本発明で前記 100kgf/cm2 以
上に限定したのは、多くの材料で 100kgf/cm
2 未満では表形が不十分であり、特に凹形のコーナ部
での密着性が乏しくなるという理由からである。アニー
ル処理して硬さをHv〜180 kgf/mm2 とし
た 100μm厚のSUS304箔であれば、100 
kgf/cm2の圧力で凹のRが1mm弱のものにまで
密着変形させることが可能である。また、この静水圧圧
縮時に箔の表面が圧媒の水に接触して汚れることがある
が、これを防止するため全体をさらにポリエチレンの袋
に封入することが好ましい。なお、図3Bは図3Aの断
面図を示す。
The entire bag is then placed in, for example, a cold isostatic press (CIP) device as shown in FIG. 3A.
Applying hydrostatic pressure of 100 kgf/cm2 or more,
The stainless steel foil is deformed so as to follow the outer shape of the cladding material 1. The pressure is appropriately selected depending on the thickness and hardness of the stainless steel foil and the shape of the recess in the cladding material 1. However, in the present invention, the above-mentioned 100 kgf/cm2 or more is limited to 100 kgf/cm2 for many materials.
This is because if it is less than 2, the surface shape will be insufficient, and the adhesion will be poor, especially at concave corners. 100 μm thick SUS304 foil that has been annealed to have a hardness of Hv ~ 180 kgf/mm2
With a pressure of kgf/cm2, it is possible to closely deform the concave radius to less than 1 mm. Further, during this hydrostatic compression, the surface of the foil may come into contact with the water of the pressure medium and become dirty, but to prevent this, it is preferable to further enclose the entire foil in a polyethylene bag. Note that FIG. 3B shows a cross-sectional view of FIG. 3A.

【0011】このようにして、準備した被処理体をHI
P装置6 などの高温下でガス圧力を作用させる装置に
入れ、昇温・昇圧する (図4A、図4B参照)。昇温
・昇圧のパターンおよび最終的な温度・圧力は、被クラ
ッド材1 の材質や、ステンレス箔袋内の真空度の完全
さなどによるが、図5に示すように、少なくとも最初に
10kgf/cm2 以上の圧力をかけて、昇温に伴う
袋の膨張を抑制することが推奨される。このさい前記圧
力に限定したのは300 μm 以下の箔であればこの
程度の圧力で接合に必要な密着性が得られるという理由
からである。被クラッド材がSS41などの普通鋼の場
合、温度が1000℃以上であれば10kgf/cm2
 以上の圧力で一応の拡散接合が可能である。なお、前
記温度は被クラッド材の材質により適宜選択するが、再
結晶温度より高い温度であることが必要である。この拡
散接合処理工程では、基本的にはアルゴンなどの不活性
ガスを加圧媒体として使用するが、このガスが不純物等
で汚れている場合には、クラッド後の製品の表面が光沢
を失いかつ変色するので、ガスの純度を保つため、ゲッ
ター材を炉の中に配置したり、製品をステンレス製の袋
の中に入れて(溶接封入はしない)セットするなどの方
策を併用することが推奨される。
[0011] The object to be processed thus prepared is subjected to HI
The sample is placed in a device that applies gas pressure under high temperature, such as P device 6, and the temperature and pressure are increased (see FIGS. 4A and 4B). The temperature/pressure increase pattern and the final temperature/pressure depend on the material of the cladding material 1 and the degree of vacuum inside the stainless foil bag, but as shown in Figure 5, at least 10 kgf/cm2 is initially applied. It is recommended to apply the above pressure to suppress expansion of the bag due to temperature rise. The reason why the pressure is limited to the above-mentioned value is that if the foil is 300 μm or less, the adhesion required for bonding can be obtained with this pressure. If the cladding material is ordinary steel such as SS41, if the temperature is 1000℃ or higher, 10kgf/cm2
Diffusion bonding is possible at the above pressure. Note that the temperature is appropriately selected depending on the material of the cladding material, but it is necessary that the temperature is higher than the recrystallization temperature. In this diffusion bonding process, an inert gas such as argon is basically used as a pressurizing medium, but if this gas is contaminated with impurities, the surface of the product after cladding may lose its luster. Because it will discolor, it is recommended to use other measures to maintain the purity of the gas, such as placing a getter material in the furnace or placing the product in a stainless steel bag (not welding it). be done.

【0012】以上のように拡散接合処理の終った製品は
、余分なステンレス箔部を切断除去して、最終製品 (
図示せず) となる。本発明の注目すべき点は、まず冷
間でクラッドしようとするステンレス箔を被クラッド部
材の外面形状に沿うように変形させる点にある。すなわ
ち、比較的硬度の低い(Hvで 250kgf/mm2
 以下) 、たとえばアニールされたステンレス箔は、
冷間での変形能に富んでおり、流体圧力を用いれば、被
クラッド部材の凹凸部の高さの差が、箔の厚さの50〜
100 倍程度までであれば、圧力値やエッジの有無に
もよるが、破断することなく変形させることが可能との
知見を得たことにより、なしえたものである。また、高
温下で同様のステンレス箔の変形加工をしようとすると
、被クラッド部材がSS41などの普通鋼や銅合金の場
合、高温下ではこれら材料の強度低下が著るしく、ステ
ンレス箔の変形と同時に被クラッド部材まで変形してし
まうという現象を発見したことによりなし得たものであ
る。
[0012] After completing the diffusion bonding process as described above, the excess stainless steel foil portion of the product is cut and removed, and the final product (
(not shown). The noteworthy feature of the present invention is that first, the stainless steel foil to be clad is cold-deformed so as to follow the outer shape of the member to be clad. In other words, the hardness is relatively low (250 kgf/mm2 in Hv).
(below), for example, annealed stainless steel foil is
It has excellent cold deformability, and if fluid pressure is used, the height difference between the uneven parts of the cladding member can be reduced by 50 to 50% of the foil thickness.
This was possible due to the knowledge that it is possible to deform up to about 100 times as much without breaking, depending on the pressure value and the presence or absence of edges. In addition, when attempting to deform stainless steel foil in a similar manner at high temperatures, if the cladding material is made of ordinary steel such as SS41 or copper alloy, the strength of these materials decreases significantly at high temperatures, resulting in deformation of the stainless steel foil. This was achieved by discovering a phenomenon in which the cladding member also deforms at the same time.

【0013】この冷間でのステンレス箔成形の圧力は、
箔の厚さと被クラッド部材の形状、とくに凹部エッジの
曲率Rなどにより選定される。前述の如く、ステンレス
箔の厚さが 100μm 程度の場合、100 kgf
/cm2 の圧力でR〜1mm程度まで成形が可能であ
るが、箔厚が更に大きい場合や、Rがもっと小さいもの
を含む被クラッド部材の場合には、数千kgf/cm2
 以上の圧力を付与することが好ましい。
[0013] The pressure of this cold stainless steel foil forming is:
The selection is made depending on the thickness of the foil and the shape of the cladding member, especially the curvature R of the recessed edge. As mentioned above, when the thickness of stainless steel foil is about 100μm, 100 kgf
It is possible to mold up to approximately 1 mm in radius with a pressure of 1.5 kgf/cm2, but if the foil thickness is even larger or the cladding material includes a material with a smaller radius, the pressure may be several thousand kgf/cm2.
It is preferable to apply a pressure higher than that.

【0014】なお、本発明は場合によっては、前述の冷
間静水圧処理とガス圧下での拡散接合処理を、同一の装
置で連続的に行うことも実施可能で、この場合には、H
IP装置を用いることが適している。圧力・温度のパタ
ーンは、たとえば図6のようになる。この場合の利点と
しては、ステンレス箔が水(通常は防錆油を含む)に接
触しないのでクリーンなまま全処理が可能であること、
および拡散接合処理時の圧力を数100 kgf/cm
2 以上の高圧にする場合には、トータルの処理時間を
短縮できることがあげられる。
[0014] In some cases, the present invention may also be implemented in which the above-mentioned cold isostatic pressure treatment and diffusion bonding treatment under gas pressure are performed continuously in the same apparatus.
It is suitable to use an IP device. The pressure/temperature pattern is as shown in FIG. 6, for example. The advantage in this case is that the stainless steel foil does not come into contact with water (usually containing anti-rust oil), so the entire process can be done cleanly;
and the pressure during the diffusion bonding process is several 100 kgf/cm.
When using a high pressure of 2 or more, the total processing time can be shortened.

【0015】以下、本発明の具体的実施例を比較例と共
に、表1および図7〜図9により説明する。図7、図8
、図9に示す被クラッド部材は、いずれも、従来技術で
は製造が困難なものである。
Hereinafter, specific examples of the present invention will be explained with reference to Table 1 and FIGS. 7 to 9, together with comparative examples. Figure 7, Figure 8
, and the cladding members shown in FIG. 9 are difficult to manufacture using conventional techniques.

【0016】[0016]

【表1】[Table 1]

【0017】上記表1における実施例1〜3によれば、
得られた製品は何れも良好なクラッド状況を呈していた
。特に形状的には最も単純な実施例3のSUS304ク
ラッド銅材は、圧延などの従来法では強固な接合状態が
得られなかったものであるが、前記のように強固な接合
状態が得られ、この材料を使用して、塑性加工により鍋
などの成形が可能となったのである。
According to Examples 1 to 3 in Table 1 above,
All of the obtained products exhibited good cladding conditions. In particular, with the SUS304 clad copper material of Example 3, which is the simplest in terms of shape, a strong bond could not be obtained by conventional methods such as rolling, but a strong bond was obtained as described above. Using this material, it became possible to mold pots and other items through plastic processing.

【0018】一方、比較例1は、本発明の拡散接合条件
であるガス圧が5kgf/cm2 と低く、比較例2は
ステンレス箔の厚さが20mmと薄く、比較例3は 5
00℃の熱間成形であり、何れも表1の結果に記載した
ように良好な製品が得られなかった。
On the other hand, in Comparative Example 1, the gas pressure, which is the diffusion bonding condition of the present invention, is as low as 5 kgf/cm2, in Comparative Example 2, the thickness of the stainless steel foil is as thin as 20 mm, and in Comparative Example 3, the thickness of the stainless steel foil is as low as 5 kgf/cm2.
As shown in the results in Table 1, good products were not obtained in either case.

【0019】[0019]

【発明の効果】本発明は、厚さ30〜300 μm の
ステンレス箔を袋状若しくは容器状に形成し、その内部
に被クラッド部材を挿入して内部を気密に封入した後、
冷間で特定の静水圧力を作用させ、ステンレス箔の被ク
ラッド部材の外面形状に変形させ、次いで特定のガス圧
力下で加熱してステンレス箔と被クラッド部材を固相拡
散接合させるようにしたので、従来技術では製造の困難
であった凹凸を有するような被クラッド部材に対し強固
なクラッド状態が得られ、また、従来技術では強固な接
合が得られなかった銅材へのステンレスクラッドも可能
になるなど、種々の産業分野への寄与するところ頻る大
きいと考えられる。とりわけ、近年の建材や日用品の装
飾性の向上の観点から、錆を発生しないステンレス鋼を
安価な普通鋼材の表面に、比較的安価にクラッドしうる
本発明は、時代の要請に応える技術として大きな期待が
寄せられるものと考える。
Effects of the Invention According to the present invention, stainless steel foil with a thickness of 30 to 300 μm is formed into a bag or container shape, a member to be cladded is inserted into the bag, and the inside is hermetically sealed.
A specific hydrostatic pressure is applied cold to deform the external shape of the stainless steel foil to the cladding member, and then the stainless steel foil and the cladding member are solid phase diffusion bonded by heating under a specific gas pressure. , it is possible to obtain a strong cladding condition for cladding materials with unevenness, which was difficult to manufacture with conventional techniques, and also to make it possible to attach stainless steel cladding to copper materials, for which it was not possible to obtain a strong bond with conventional techniques. It is believed that the contribution to various industrial fields is often large. In particular, from the perspective of improving the decorativeness of building materials and daily necessities in recent years, the present invention, which allows the surface of inexpensive ordinary steel to be clad with rust-free stainless steel at a relatively low cost, is a significant technology that meets the needs of the times. I think this is something to look forward to.

【0020】また、本発明において、特に冷間でのステ
ンレス箔の静水圧力による加工と、ガス圧下で拡散接合
を同一装置を用い、ガス圧力で連続して行なうと、ステ
ンレス箔が水に接触しないので、クリーンなまゝ全処理
が可能であり、かつ拡散接合処理時の圧力を数100 
kgf/cm2 以上の高圧にする場合には、トータル
の処理時間を短縮することができるという効果もある。
[0020] In addition, in the present invention, especially when cold processing of stainless steel foil using hydrostatic pressure and diffusion bonding under gas pressure are performed consecutively using the same equipment under gas pressure, the stainless steel foil does not come into contact with water. Therefore, the entire process can be performed cleanly, and the pressure during the diffusion bonding process can be reduced to several hundred
When using a high pressure of kgf/cm2 or more, there is also the effect that the total processing time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法の最初の工程であるセットを示す説
明図である。
FIG. 1 is an explanatory diagram showing a set which is the first step of the method of the present invention.

【図2】本発明方法の次の工程である真空封入を示す説
明図Aと断面図Bである。
FIG. 2 is an explanatory view A and a cross-sectional view B showing vacuum sealing, which is the next step of the method of the present invention.

【図3】本発明方法の、更に次の工程であるステンレス
箔成形(CIP)を示す説明図Aと断面図Bである。
FIG. 3 is an explanatory view A and a cross-sectional view B showing stainless steel foil forming (CIP), which is the next step in the method of the present invention.

【図4】本発明方法の、更に次の工程である拡散接合(
HIP)を示す説明図Aと断面図Bである。
FIG. 4: Diffusion bonding (the next step in the method of the present invention)
FIG. 2 is an explanatory view A and a cross-sectional view B showing HIP.

【図5】本発明方法の昇温・昇圧のパターンを示したグ
ラフ図である。
FIG. 5 is a graph showing a pattern of temperature increase and pressure increase in the method of the present invention.

【図6】本発明方法の昇温・昇圧のパターンを示したグ
ラフ図である。
FIG. 6 is a graph showing a pattern of temperature increase and pressure increase in the method of the present invention.

【図7】被クラッド部材の1例斜視図である。FIG. 7 is a perspective view of an example of a cladding member.

【図8】被クラッド部材の1例斜視図である。FIG. 8 is a perspective view of an example of a cladding member.

【図9】被クラッド部材の1例斜視図である。FIG. 9 is a perspective view of an example of a cladding member.

【符号の説明】[Explanation of symbols]

1  被クラッド部材 2  ステンレス箔の袋 3  溶接線 4  開口 5  溶接線 6  HIP装置 1 Cladding member 2 Stainless steel foil bag 3 Welding line 4 Opening 5 Welding line 6 HIP device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】厚さ30〜300 μm のステンレス箔
を袋状もしくは容器状に形成し、その内部に被クラッド
部材を挿入して内部を気密に封入した後、冷間で 10
0kgf/cm2 以上の等方圧力を作用させてステン
レス箔を被クラッド部材の外面形状に沿って変形させ、
次いで、10kgf/cm2 以上の等方圧力下で加熱
してステンレス箔と被クラッド部材を固相拡散接合させ
ることを特徴とするステンレスクラッド製品の製造方法
Claim 1: A stainless steel foil with a thickness of 30 to 300 μm is formed into a bag or container shape, a member to be cladded is inserted into the bag, the inside is hermetically sealed, and then the bag is heated for 10 minutes in a cold state.
Applying an isotropic pressure of 0 kgf/cm2 or more to deform the stainless steel foil along the outer surface shape of the cladding member,
A method for manufacturing a stainless steel clad product, which comprises: then heating under an isotropic pressure of 10 kgf/cm2 or more to solid phase diffusion bond the stainless steel foil and the clad member.
【請求項2】冷間での等方圧力による加工と、固相拡散
接合とを、HIP装置内で連続して行うことを特徴とす
る請求項1に記載のステンレスクラッド製品の製造方法
2. The method for manufacturing a stainless steel clad product according to claim 1, wherein cold isostatic pressure processing and solid phase diffusion bonding are performed continuously in a HIP device.
JP3097526A 1991-04-26 1991-04-26 Manufacturing method of stainless clad products Expired - Lifetime JP2774706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3097526A JP2774706B2 (en) 1991-04-26 1991-04-26 Manufacturing method of stainless clad products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3097526A JP2774706B2 (en) 1991-04-26 1991-04-26 Manufacturing method of stainless clad products

Publications (2)

Publication Number Publication Date
JPH04327383A true JPH04327383A (en) 1992-11-16
JP2774706B2 JP2774706B2 (en) 1998-07-09

Family

ID=14194698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097526A Expired - Lifetime JP2774706B2 (en) 1991-04-26 1991-04-26 Manufacturing method of stainless clad products

Country Status (1)

Country Link
JP (1) JP2774706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353981B2 (en) * 2004-01-15 2008-04-08 All-Clad Metalcrafters Llc Method of making a composite metal sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225505A (en) * 1988-03-04 1989-09-08 Nikkiso Co Ltd Isotropic pressure molding method
JPH0265492U (en) * 1988-11-04 1990-05-17
JPH0313283A (en) * 1989-06-09 1991-01-22 Nippon Metal Ind Co Ltd Manufacture of diffusion junction clad plate utilizing atmospheric pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225505A (en) * 1988-03-04 1989-09-08 Nikkiso Co Ltd Isotropic pressure molding method
JPH0265492U (en) * 1988-11-04 1990-05-17
JPH0313283A (en) * 1989-06-09 1991-01-22 Nippon Metal Ind Co Ltd Manufacture of diffusion junction clad plate utilizing atmospheric pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353981B2 (en) * 2004-01-15 2008-04-08 All-Clad Metalcrafters Llc Method of making a composite metal sheet

Also Published As

Publication number Publication date
JP2774706B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
EP0209606B1 (en) Method and apparatus for the superplastic forming and/or diffusion bonding of sheet metal
US4117970A (en) Method for fabrication of honeycomb structures
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
US4304350A (en) Method of pressurization system for superplastic forming and diffusion bonding
US5224645A (en) Diffusion bonding of aluminum and aluminum alloys
JP2004519330A (en) Method for producing clad material having steel base material and corrosion resistant metal coating
US20200230699A1 (en) Powder hot isostatic pressing
JPH11164784A (en) Metallic vacuum double container
JPH04327383A (en) Production of stainless steel clad product
US4029254A (en) Method of diffusion bonding and brazing of materials
CN111687530B (en) Method for compounding hydrogen absorption expansion substance and other materials
JPH04325470A (en) Metallic foil clad ceramics product and its manufacture
JPS62156088A (en) Dissimilar metal joint
SU1109293A1 (en) Process for manufacturing multilayer panels by diffusion welding
JPS607590B2 (en) Product manufacturing method using diffusion bonding
JP3464563B2 (en) Method for producing composite
JPS58167089A (en) Manufacture of clad pipe
JPH01150419A (en) Superplastic forming method for metallic foil
US6015080A (en) Method of manufacturing clad metal plates
Stöver et al. HIP diffusion bonding of ODS materials
JP2823411B2 (en) Diffusion bonding member manufacturing method
JPH0275480A (en) Diffusion joining method for cylindrical laminated material
JPH058056A (en) Joining method for stainless steel and aluminum or aluminum alloy
JPS59140914A (en) Nut and its manufacture
JPH0284285A (en) Diffusion joining method for cylindrical laminated material