JP2015066470A - Washing method, and washing device - Google Patents

Washing method, and washing device Download PDF

Info

Publication number
JP2015066470A
JP2015066470A JP2013200249A JP2013200249A JP2015066470A JP 2015066470 A JP2015066470 A JP 2015066470A JP 2013200249 A JP2013200249 A JP 2013200249A JP 2013200249 A JP2013200249 A JP 2013200249A JP 2015066470 A JP2015066470 A JP 2015066470A
Authority
JP
Japan
Prior art keywords
cleaning
cleaning liquid
washing
ultrapure water
ufb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013200249A
Other languages
Japanese (ja)
Other versions
JP6159210B2 (en
Inventor
秀彰 小林
Hideaki Kobayashi
秀彰 小林
卓治 脇田
Takuji Wakita
卓治 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Corp filed Critical Idec Corp
Priority to JP2013200249A priority Critical patent/JP6159210B2/en
Publication of JP2015066470A publication Critical patent/JP2015066470A/en
Application granted granted Critical
Publication of JP6159210B2 publication Critical patent/JP6159210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a washing method capable of washing more efficiently.SOLUTION: While an article B to be washed is dipped in a washing liquid A containing fine ultra fine bubbles (air bubbles of a size less than 1 μm), and a cleaning liquid A is cased to flow by the rotation of a rotor 2a. The flow velocity of the washing liquid is at or higher than the flow velocity, at which the change of the cleaning efficiency starts to become blunt in the washing case with a cleaning liquid containing no ultra fine bubble. As a result, the article B can be cleaned more efficiently than with the cleaning liquid containing no ultra fine bubble.

Description

本発明は例えば金属物や半導体基板などの洗浄に関する。   The present invention relates to cleaning, for example, metal objects and semiconductor substrates.

近年、粒径が1μm未満の気泡(ultra fine bubble、ウルトラファインバブル、以下、「UFB」と称す)を含有する液体を洗浄液として用いる洗浄方法が期待されている。   In recent years, a cleaning method using a liquid containing bubbles (ultra fine bubble, hereinafter referred to as “UFB”) having a particle diameter of less than 1 μm as a cleaning liquid is expected.

特開2011−88979号公報JP 2011-89799 A

しかしながら、UFBを含有する洗浄液を用いる洗浄方法について、さらに洗浄効率を高めることが求められているという課題がある。   However, there is a problem in that a cleaning method using a cleaning solution containing UFB is required to further increase cleaning efficiency.

本発明は、この課題を解決するため、より効率的に洗浄することができる洗浄方法を提供する。   In order to solve this problem, the present invention provides a cleaning method capable of cleaning more efficiently.

請求項1に記載の発明は、ウルトラファインバブルを含有する洗浄液中に被洗浄物を浸した状態で、当該洗浄液を流動させ、前記洗浄液の流速は、ウルトラファインバブルを含有しない洗浄液で洗浄した場合において洗浄効率の変化が鈍化し始める流速以上である。   The invention according to claim 1 is a case where the cleaning liquid is flowed in a state in which an object to be cleaned is immersed in a cleaning liquid containing ultra fine bubbles, and the flow rate of the cleaning liquid is washed with a cleaning liquid not containing ultra fine bubbles. The flow rate is higher than the flow rate at which the change in cleaning efficiency begins to slow down.

請求項2に記載の発明は、前記被洗浄物は、半導体基板である。   According to a second aspect of the present invention, the object to be cleaned is a semiconductor substrate.

請求項3に記載の発明は、ウルトラファインバブルを含有する洗浄液中に被洗浄物を浸した状態で、当該洗浄液を流動させ、前記洗浄液の流速は、ウルトラファインバブルを含有しない洗浄液で洗浄した場合において洗浄効率の変化が鈍化し始める流速以上である。   The invention according to claim 3 is a case where the cleaning liquid is flowed in a state in which an object to be cleaned is immersed in a cleaning liquid containing ultrafine bubbles, and the flow rate of the cleaning liquid is a cleaning liquid that does not contain ultrafine bubbles. The flow rate is higher than the flow rate at which the change in cleaning efficiency begins to slow down.

本発明によれば、より効率的に洗浄することができる。   According to the present invention, cleaning can be performed more efficiently.

本発明の実施の形態における洗浄装置100を模式的に示す断面図である。It is sectional drawing which shows typically the washing | cleaning apparatus 100 in embodiment of this invention. 本発明の実施の形態における洗浄装置100の流速洗浄効率特性を示す図である。It is a figure which shows the flow-rate washing | cleaning efficiency characteristic of the washing | cleaning apparatus 100 in embodiment of this invention. 本発明の実施の形態における洗浄装置100の流速洗浄効率特性を示す図である。It is a figure which shows the flow-rate washing | cleaning efficiency characteristic of the washing | cleaning apparatus 100 in embodiment of this invention. 本発明の実施の形態における洗浄装置100による洗浄効率を説明するための図である。It is a figure for demonstrating the cleaning efficiency by the cleaning apparatus 100 in embodiment of this invention. 本発明の実施の形態における洗浄装置100による洗浄効率を説明するための図である。It is a figure for demonstrating the cleaning efficiency by the cleaning apparatus 100 in embodiment of this invention.

図1は本発明の実施の形態における洗浄装置100を示す模式図である。洗浄装置100は、洗浄槽1と、攪拌部2と、載置部3とを含んで構成されている。   FIG. 1 is a schematic diagram showing a cleaning apparatus 100 according to an embodiment of the present invention. The cleaning device 100 includes a cleaning tank 1, a stirring unit 2, and a placement unit 3.

洗浄槽1は底のある円筒形状であって、洗浄液Aが貯留される内部空間1aを有する。攪拌部2は洗浄槽1の内壁の底に置かれた棒状の磁石であって洗浄液Aを攪拌する回転子2aと、主として電磁石で構成され回転子2aの方へ磁界を与えることにより回転子2aを回転させる駆動部2bと、駆動部2bに電気的に接続されて回転子2aを所定の回転速度、所定の洗浄時間で回転するように駆動部2bを制御する制御部2cとを含む。回転子2aは洗浄槽1aの底面の法線方向を中心として回転する。載置部3は洗浄槽1の内壁の中間位置に突設されて被洗浄物Bが載せられる。   The cleaning tank 1 has a cylindrical shape with a bottom and has an internal space 1a in which the cleaning liquid A is stored. The stirring unit 2 is a rod-shaped magnet placed on the bottom of the inner wall of the cleaning tank 1, and is composed of a rotor 2a that stirs the cleaning liquid A and an electromagnet mainly, and applies a magnetic field toward the rotor 2a to provide the rotor 2a. And a control unit 2c that is electrically connected to the drive unit 2b and controls the drive unit 2b to rotate the rotor 2a at a predetermined rotation speed and a predetermined cleaning time. The rotor 2a rotates around the normal direction of the bottom surface of the cleaning tank 1a. The mounting portion 3 is projected at an intermediate position of the inner wall of the cleaning tank 1 and the object to be cleaned B is placed thereon.

上記の洗浄装置100を用いて実験的に行った洗浄について説明する。   The cleaning performed experimentally using the above-described cleaning apparatus 100 will be described.

まず、洗浄液AとしてUFB(粒径が1μm未満の気泡)を含まない超純水(HO)を、液面が載置部3上方に位置するまで注ぐ。注いだ超純水の量は具体的には1リットルである。 First, as the cleaning liquid A, ultrapure water (H 2 O) not containing UFB (bubbles having a particle diameter of less than 1 μm) is poured until the liquid level is located above the placement unit 3. Specifically, the amount of ultrapure water poured is 1 liter.

次に、シリコン(Si)ウェハを載置部3上に載置する。このシリコンウェハには洗浄効率を診るために、総量50ナノグラムのアルミニウム(Al)元素を有する液体をシリコンウェハの一方面に滴下して塗布して乾燥させることによって、総量50ナノグラムのアルミニウム元素を含む異物を一方面に付着させている。この異物が付着した面を洗浄槽1の底に対向するようにシリコンウェハを載置部3上に載置する。   Next, a silicon (Si) wafer is placed on the placement unit 3. In order to examine the cleaning efficiency of this silicon wafer, a liquid having a total amount of 50 nanograms of aluminum (Al) element is dropped onto one surface of the silicon wafer, and dried, so that it contains a total amount of 50 nanograms of aluminum element. Foreign matter is attached to one side. The silicon wafer is placed on the placement portion 3 so that the surface on which the foreign matter is attached faces the bottom of the cleaning tank 1.

次に、制御部2cによって回転速度850rpmで30分間、回転子2aを回転させることによって、洗浄液Aに流れを付けて攪拌してシリコンウェハを洗浄する。   Next, the control part 2c rotates the rotor 2a at a rotational speed of 850 rpm for 30 minutes, whereby the cleaning liquid A is flowed and stirred to clean the silicon wafer.

次に、洗浄後のシリコンウェハを洗浄液A中から取り出して、気相分解法及びICP(Inductively Coupled Plasma)質量分析法を組み合わせて、洗浄後のシリコンウェハに残ったアルミニウム元素の量を記録する。   Next, the cleaned silicon wafer is taken out from the cleaning liquid A, and the amount of aluminum element remaining on the cleaned silicon wafer is recorded by combining the vapor phase decomposition method and ICP (Inductively Coupled Plasma) mass spectrometry.

また、回転速度を400rpm、0rpm、その他の条件を同じにして上記と同様の洗浄を行った。   Further, cleaning was performed in the same manner as described above with the rotation speed set to 400 rpm, 0 rpm, and other conditions being the same.

さらに、アルミニウム元素をガリウム(Ga)元素に置き換え、その他の条件を同じにして上記と同様の洗浄を行った。   Further, the aluminum element was replaced with a gallium (Ga) element, and the same cleaning was performed as above under the same conditions.

以上のように、洗浄液AとしてUFBを含まない超純水を用いる洗浄について、回転速度が0rpm、400rpm、850rpmの3つの場合、異物に含まれる元素がアルミニウム元素、ガリウム元素の2つの場合、3×2で計6つの場合について実験を行い、それぞれの場合について洗浄後に残った元素の量を記録した。   As described above, for cleaning using ultrapure water that does not contain UFB as the cleaning liquid A, when the rotational speeds are three at 0 rpm, 400 rpm, and 850 rpm, when the elements contained in the foreign substance are aluminum elements and gallium elements, 3 Experiments were conducted for a total of six cases with × 2, and the amount of element remaining after washing was recorded for each case.

また、洗浄液AとしてUFBを含む超純水(以下、「UFB超純水」と称す)を用いる洗浄を行った。この実験では、上述の超純水をUFB超純水に置き換えたものであり、その他の条件は同じである。このUFB超純水は、1ミリリットル当たり約45億個のUFBが含まれ、全てが窒素で構成されるUFBを含む超純水を採用した。なお、この出願時点の技術水準では、1ミリリットル当たり約80億個のUFBを有する液体を生成することが可能である。   Further, cleaning using ultrapure water containing UFB (hereinafter referred to as “UFB ultrapure water”) was performed as the cleaning liquid A. In this experiment, the above-described ultrapure water was replaced with UFB ultrapure water, and other conditions were the same. This UFB ultrapure water contains approximately 4.5 billion UFB per milliliter, and ultrapure water containing UFB composed entirely of nitrogen was employed. It should be noted that with the state of the art as of this filing, it is possible to produce a liquid having about 8 billion UFB per milliliter.

図2は上記アルミニウム元素を異物に含む場合の洗浄の実験結果を示し、図3はガリウム元素を異物に含む場合の洗浄の実験結果を示す。図2及び図3の横軸は上述の回転速度、縦軸は上述の洗浄後のシリコンウェハに残った元素の量であって、洗浄前の異物の総量50ナノグラムに対する洗浄後に残った異物の総量を百分率(%)で表している。破線は超純水を用いた洗浄、実線はUFB超純水を用いた洗浄を示す。   FIG. 2 shows a cleaning experiment result when the above-mentioned aluminum element is contained in the foreign matter, and FIG. 3 shows a cleaning experiment result when the gallium element is contained in the foreign matter. 2 and 3, the horizontal axis represents the above-described rotation speed, and the vertical axis represents the amount of the element remaining on the silicon wafer after the cleaning, and the total amount of the foreign matter remaining after cleaning with respect to the total amount of foreign matter 50 nanograms before cleaning. Is expressed as a percentage (%). A broken line indicates cleaning using ultrapure water, and a solid line indicates cleaning using UFB ultrapure water.

図2及び図3が示すように、超純水を用いた洗浄ではシリコンウェハに残った元素の量は回転速度0rpmから400rpmの領域では減少しているが、400rpmから850rpmの領域はほぼ横ばいである。これに対して、UFB超純水を用いた洗浄ではシリコンウェハに残った元素の量は回転速度0rpmから400rpmの領域ではほぼ横ばいないしは減少しているが、400rpmから850rpmの領域は急激に減少している。   As shown in FIG. 2 and FIG. 3, the amount of elements remaining on the silicon wafer in the cleaning using ultrapure water decreases in the region of the rotational speed of 0 rpm to 400 rpm, but the region of 400 rpm to 850 rpm is almost flat. is there. On the other hand, in the cleaning using UFB ultrapure water, the amount of the element remaining on the silicon wafer is not substantially flat or decreased in the region of the rotational speed of 0 rpm to 400 rpm, but rapidly decreases in the region of 400 rpm to 850 rpm. ing.

また、上述の実験結果について、回転速度850rpmでの洗浄後のシリコンウェハに残った異物の量であって、洗浄前の異物の総量50ナノグラムに対する洗浄後に残った異物の総量を百分率(%)で表したものを、洗浄液Aとして超純水の場合及びUFB超純水の場合それぞれについて、図4では異物にアルミニウムを含む場合、図5では異物にゲルマニウムを含む場合を示している。これらに示すように、超純水を用いた洗浄ではアルミニウムを含有する異物が26%、ガリウム元素を含有する異物が36%しか除去できないのに対して、UFB超純水を用いた洗浄ではアルミニウム元素を含有する異物が70%、ガリウム元素を含有する異物が89%も除去でき、超純水の洗浄の場合と比較して明らかに差があることが分かった。   In addition, regarding the above experimental results, the amount of foreign matter remaining on the silicon wafer after cleaning at a rotational speed of 850 rpm, and the total amount of foreign matter remaining after cleaning with respect to the total amount of foreign matter 50 nanograms before cleaning is expressed as a percentage (%). In the case of ultrapure water and UFB ultrapure water as the cleaning liquid A, the case shown in FIG. 4 shows the case where the foreign matter contains aluminum, and FIG. 5 shows the case where the foreign matter contains germanium. As shown in these figures, cleaning using ultrapure water can remove only 26% of foreign matter containing aluminum and 36% of foreign matter containing gallium element, whereas cleaning using UFB ultrapure water can remove aluminum. It was found that 70% of foreign substances containing elements and 89% of foreign substances containing gallium elements could be removed, which was clearly different from the case of cleaning with ultrapure water.

以上のことから、回転速度を400rpm以上から850rpmに上げても、超純水では26〜36%しか異物を除去できず、400rpmから850rpmへの傾向からして、850rpm以上に回転速度を上げても異物のさらなる除去は期待できない。これに対して、UFB超純水では超純水と比べて70〜89%と明らかな差で異物を除去でき、400rpmから850rpmへの傾向からして、850rpm以上に回転速度を上げれば異物のさらなる除去が期待できる。このように、UFB超純水を用いた洗浄では、超純水と比較して画期的に洗浄効率が上がることが確認できた。   From the above, even if the rotational speed is increased from 400 rpm or higher to 850 rpm, ultrapure water can remove only 26 to 36% of foreign matter, and the rotational speed is increased to 850 rpm or higher due to the tendency from 400 rpm to 850 rpm. However, further removal of foreign materials cannot be expected. In contrast, UFB ultrapure water can remove foreign matter with a clear difference of 70 to 89% compared to ultrapure water. From the tendency from 400 rpm to 850 rpm, if the rotational speed is increased to 850 rpm or more, the foreign matter can be removed. Further removal can be expected. As described above, it was confirmed that the cleaning efficiency using UFB ultrapure water was dramatically improved as compared with ultrapure water.

以上のように、UFB超純水中にシリコンウェハを浸した状態で、UFB超純水を流動させる洗浄において、UFBを含有しない超純水洗浄液で洗浄した場合において洗浄効率の変化が鈍化し始める流速(図2及び図3に示す洗浄装置100の流速洗浄効率特性においては、破線の傾きがマイナスから0以上へ変わる点であり、400rpm)以上であれば、UFB超純水を用いた洗浄は超純水を用いた洗浄よりも画期的に洗浄効率が上がる。   As described above, in the cleaning in which the UFB ultrapure water is flowed in the state where the silicon wafer is immersed in the UFB ultrapure water, the change in the cleaning efficiency starts to slow down when the cleaning is performed with the ultrapure water cleaning liquid not containing UFB. If the flow rate is higher than the flow rate (in the flow rate cleaning efficiency characteristics of the cleaning apparatus 100 shown in FIGS. 2 and 3, the slope of the broken line changes from minus to 0 or more, 400 rpm), the cleaning using UFB ultrapure water is performed. The cleaning efficiency is dramatically improved compared to cleaning with ultrapure water.

また一般的に、他の洗浄液としては化学物質を含んだ洗浄液がある。化学物質を含む洗浄液を用いた洗浄では、洗浄後、被洗浄物に付着した洗浄液が蒸発して化学物質が残ってしまい、残った化学物質を除去するためにはさらなる洗浄が必要となるなど、デメリットがある。これに対して、UFB超純水を用いた洗浄では、洗浄液が蒸発した後は何も残らず、当然、化学物質を除去するための洗浄は必要ない。特に、シリコンウェハの洗浄においては従来から超純水を用いた洗浄が行われているが、これをUFB超純水に置き換えれば、超純水と同等レベルで上述のデメリットがなく、しかも、超純水よりも異物が除去できることが期待できる。   In general, another cleaning liquid includes a cleaning liquid containing a chemical substance. In cleaning using a cleaning liquid containing chemical substances, the cleaning liquid attached to the object to be cleaned evaporates after cleaning, leaving chemical substances, and further cleaning is necessary to remove the remaining chemical substances. There are disadvantages. On the other hand, in cleaning using UFB ultrapure water, nothing remains after the cleaning liquid evaporates, and naturally cleaning for removing chemical substances is not necessary. In particular, in the cleaning of silicon wafers, cleaning using ultrapure water has been conventionally performed. However, if this is replaced with UFB ultrapure water, the above-mentioned disadvantages are not reached at the same level as ultrapure water, and It can be expected that foreign substances can be removed more than pure water.

また、洗浄装置100を用いてシリコンウェハ以外にも様々な種類の被洗浄物を洗う場合は以下のように構成してもよい。すなわち、様々な種類の被洗浄物ごとに、UFBを含まない所定の洗浄液を用いた洗浄を行い、図2及び図3に示すような洗浄液の流速と洗浄効率との関係を示す流速洗浄効率特性をデータとして予め測定して制御部2cに記憶しておく。そして、ある被洗浄物を洗浄装置100で洗う場合は、予め記憶された複数の流速洗浄効率特性の中からこの被洗浄物に対応する流速洗浄効率特性を選択して、この選択された流速洗浄効率特性から上記鈍化し始める流速(回転速度)を所定の基準によって算出し、さらに、この算出した鈍化し始める流速以上の適度な流速を、所定の計算式(例えば鈍化し始める流速の2倍、3倍など)で制御部2cが算出する。そして、この算出された流速で、この流速洗浄特性に対応する洗浄液にUFBを加えた洗浄液を用いて被洗浄物を洗う。これによって、被洗浄物を効率的に洗浄を行うことができる。   Moreover, when washing | cleaning various kinds of to-be-washed objects other than a silicon wafer using the washing | cleaning apparatus 100, you may comprise as follows. That is, the various types of objects to be cleaned are cleaned using a predetermined cleaning liquid that does not contain UFB, and the flow rate cleaning efficiency characteristics showing the relationship between the cleaning liquid flow rate and the cleaning efficiency as shown in FIGS. Is previously measured and stored in the control unit 2c. When a certain object to be cleaned is cleaned by the cleaning apparatus 100, a flow rate cleaning efficiency characteristic corresponding to the object to be cleaned is selected from a plurality of flow rate cleaning efficiency characteristics stored in advance, and the selected flow rate cleaning is performed. The flow velocity (rotational speed) at which the above-mentioned slowing starts from the efficiency characteristic is calculated according to a predetermined standard, and an appropriate flow velocity equal to or higher than the calculated flow velocity at which the slowing starts is determined by a predetermined calculation formula (for example, twice the flow velocity at which slowing starts, The control unit 2c calculates by 3 times. Then, the object to be cleaned is washed with the cleaning liquid obtained by adding UFB to the cleaning liquid corresponding to the flow rate cleaning characteristic at the calculated flow rate. As a result, the object to be cleaned can be efficiently cleaned.

<変形例>
なお、本発明は実施の形態に限らない。例えば、UFB超純水に含まれるUFBは窒素で構成される場合を説明したが、窒素以外でもよい。また、UFBが含まれる液体は超純水以外でもよい。また、半導体基板はシリコンウェハ以外でもよい。また、基板はウェハ状のもの以外でもよい。被洗浄物は半導体基板の他、金属物などでもよい。また、洗浄液の流速とは、上記実施の形態で説明したように流速を生じさせる攪拌部の回転速度でもよいし、洗浄液自体の流速でもよい。
<Modification>
The present invention is not limited to the embodiment. For example, although the case where UFB contained in UFB ultrapure water is composed of nitrogen has been described, it may be other than nitrogen. Moreover, the liquid containing UFB may be other than ultrapure water. The semiconductor substrate may be other than a silicon wafer. The substrate may be other than a wafer. The object to be cleaned may be a metal object in addition to the semiconductor substrate. Further, the flow rate of the cleaning liquid may be the rotational speed of the stirring unit that generates the flow rate as described in the above embodiment, or the flow rate of the cleaning liquid itself.

1 洗浄槽、1a 内部空間、2 攪拌部 2a 回転子 2b 駆動部、2c 制御部 3 載置部、100 洗浄装置、A 洗浄液、B 被洗浄物   DESCRIPTION OF SYMBOLS 1 Cleaning tank, 1a Internal space, 2 Stirring part 2a Rotor 2b Drive part, 2c Control part 3 Mounting part, 100 Cleaning apparatus, A Cleaning liquid, B To-be-cleaned object

Claims (3)

ウルトラファインバブルを含有する洗浄液中に被洗浄物を浸した状態で、当該洗浄液を流動させ、
前記洗浄液の流速は、
ウルトラファインバブルを含有しない洗浄液で洗浄した場合において洗浄効率の変化が鈍化し始める流速以上である洗浄方法。
In a state where the object to be cleaned is immersed in a cleaning liquid containing ultra fine bubbles, the cleaning liquid is flowed,
The flow rate of the cleaning liquid is
A cleaning method in which a change in cleaning efficiency begins to slow down when cleaning with a cleaning liquid that does not contain ultrafine bubbles.
前記被洗浄物は、
半導体基板である請求項1に記載の洗浄方法。
The object to be cleaned is
The cleaning method according to claim 1, wherein the cleaning method is a semiconductor substrate.
ウルトラファインバブルを含有する洗浄液中に被洗浄物を浸した状態で、当該洗浄液を流動させ、
前記洗浄液の流速は、
ウルトラファインバブルを含有しない洗浄液で洗浄した場合において洗浄効率の変化が鈍化し始める流速以上である洗浄装置。
In a state where the object to be cleaned is immersed in a cleaning liquid containing ultra fine bubbles, the cleaning liquid is flowed,
The flow rate of the cleaning liquid is
A cleaning device having a flow rate higher than the flow rate at which the change in cleaning efficiency begins to slow down when cleaning with a cleaning liquid that does not contain ultrafine bubbles.
JP2013200249A 2013-09-26 2013-09-26 Cleaning method and cleaning device Expired - Fee Related JP6159210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200249A JP6159210B2 (en) 2013-09-26 2013-09-26 Cleaning method and cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200249A JP6159210B2 (en) 2013-09-26 2013-09-26 Cleaning method and cleaning device

Publications (2)

Publication Number Publication Date
JP2015066470A true JP2015066470A (en) 2015-04-13
JP6159210B2 JP6159210B2 (en) 2017-07-05

Family

ID=52833790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200249A Expired - Fee Related JP6159210B2 (en) 2013-09-26 2013-09-26 Cleaning method and cleaning device

Country Status (1)

Country Link
JP (1) JP6159210B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105234143A (en) * 2015-10-27 2016-01-13 昆山洺九机电有限公司 Keyboard cover cleaning device
CN112663071A (en) * 2020-12-10 2021-04-16 博峰汽配科技(芜湖)有限公司 Automatic pickling processing device for steel wire production
KR20230068052A (en) * 2021-11-10 2023-05-17 (주)정신전자 Ultrasonic cleaner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2006310456A (en) * 2005-04-27 2006-11-09 Dainippon Screen Mfg Co Ltd Particle removing method and substrate processing equipment
JP2010075827A (en) * 2008-09-25 2010-04-08 Mitsubishi Electric Corp Cleaning method and cleaning apparatus
JP2011088979A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Cleaning liquid, cleaning method, and cleaning liquid production device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2006310456A (en) * 2005-04-27 2006-11-09 Dainippon Screen Mfg Co Ltd Particle removing method and substrate processing equipment
JP2010075827A (en) * 2008-09-25 2010-04-08 Mitsubishi Electric Corp Cleaning method and cleaning apparatus
JP2011088979A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Cleaning liquid, cleaning method, and cleaning liquid production device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105234143A (en) * 2015-10-27 2016-01-13 昆山洺九机电有限公司 Keyboard cover cleaning device
CN112663071A (en) * 2020-12-10 2021-04-16 博峰汽配科技(芜湖)有限公司 Automatic pickling processing device for steel wire production
KR20230068052A (en) * 2021-11-10 2023-05-17 (주)정신전자 Ultrasonic cleaner
KR102563302B1 (en) 2021-11-10 2023-08-03 (주)정신전자 Ultrasonic cleaner

Also Published As

Publication number Publication date
JP6159210B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
KR100907125B1 (en) Substrate processing method and substrate processing apparatus
JP6159210B2 (en) Cleaning method and cleaning device
US9773688B2 (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus
JP2018026477A (en) Liquid treatment apparatus and liquid treatment method
WO2006068127A1 (en) Method for producing epitaxial silicon wafer
JP5408982B2 (en) Substrate charge removal device and charge removal method
KR101172591B1 (en) Rinsing and drying device of chemical mechanical polishing system
JP6797622B2 (en) Board processing equipment
CN102496591A (en) Wafer cleaning device and cleaning method
WO2016127423A1 (en) Method and apparatus for integrated substrate cleaning and drying
JP2009246000A (en) Processing equipment and method of substrate
TW201023254A (en) Cleaning method of semiconductor wafer
CN108987306A (en) Substrate processing method using same and substrate board treatment
US9922835B2 (en) Plating method, plating apparatus, and storage medium
JP2007273806A (en) Semiconductor substrate cleaning method and cleaning apparatus
WO2013159943A1 (en) Method for cleaning photomasks using megasonic energy
TWI706433B (en) Method and device for cleaning and drying integrated circuit substrate
US20080169007A1 (en) Apparatus and method for processing a hydrophobic surface of a substrate
CN103128073A (en) Wafer washing method, wafer washing device and wafer
TWI571506B (en) Treatment liquid for inhibiting pattern collapse in microstructure and method of manufacturing microstructure using the same
JP2014029931A (en) Etching method
JP2010212363A (en) Substrate processing apparatus and substrate processing method
JP6471322B2 (en) Cleaning device
JP2006181555A (en) Washing method and washing device of polycrystalline silicon
JP2010027640A (en) Cleaning device and cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170609

R150 Certificate of patent or registration of utility model

Ref document number: 6159210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees