JP2015065729A - モータの起動制御装置および空気圧縮機 - Google Patents

モータの起動制御装置および空気圧縮機 Download PDF

Info

Publication number
JP2015065729A
JP2015065729A JP2013196888A JP2013196888A JP2015065729A JP 2015065729 A JP2015065729 A JP 2015065729A JP 2013196888 A JP2013196888 A JP 2013196888A JP 2013196888 A JP2013196888 A JP 2013196888A JP 2015065729 A JP2015065729 A JP 2015065729A
Authority
JP
Japan
Prior art keywords
motor
rotor
energized
phase
energized phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013196888A
Other languages
English (en)
Inventor
和隆 岩田
Kazutaka Iwata
和隆 岩田
横田 伴義
Tomoyoshi Yokota
伴義 横田
栄二 中山
Eiji Nakayama
栄二 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2013196888A priority Critical patent/JP2015065729A/ja
Publication of JP2015065729A publication Critical patent/JP2015065729A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】運転時のモータ効率を高めつつ、モータの起動を円滑に行うことができるモータの起動制御装置を提供する。【解決手段】このモータの起動制御装置は、回転子と固定子と回転位置検出センサとを備えたブラシレスモータの起動を制御する。回転位置検出センサからの信号に基づいて固定子の基準位置よりも回転子が回転方向前方側となっているときに、各巻線に対する通電タイミングが進角制御される。モータ起動時には、最大トルクを発生させる通電相であって回転子の回転方向に隣り合った2つの通電相のうち、一方の第1の通電相の巻線に通電しても回転子の回転が検出されないときには、他方の第2の通電相の巻線に通電する。【選択図】図13

Description

本発明は、モータを始動させる際におけるモータの起動制御装置およびモータの起動制御装置が設けられた空気圧縮機に関する。
モータや圧縮空気を駆動エネルギーとした動力工具としては、ねじやボルト等の締め付け作業を行うためのインパクトドライバ等がある。インパクトドライバには、モータを駆動エネルギーとして被駆動部材である先端工具を駆動するようにしたタイプと、圧縮空気の膨張する力を駆動エネルギーとして先端工具を駆動するようにしたタイプとがある。圧縮空気を駆動源としたものはエアインパクトドライバと言われる。このエアインパクトドライバや釘打機等のように、圧縮空気を駆動源とする空気工具には、空気圧縮機から圧縮空気が供給される。空気圧縮機はモータにより駆動される圧縮空気生成部を有している。空気釘打機などの空気工具に用いられる圧縮空気を生成するために、例えば、特許文献1に記載されるような往復動式の空気圧縮機が使用されている。
このように、被駆動部材としての先端工具を駆動するようにした電動工具の駆動源や、被駆動部材としての圧縮空気生成部を駆動するようにした空気圧縮機の駆動源としては、高効率であるブラシレスモータが用いられることがある。
ブラシレスモータには永久磁石同期モータやリラクタンスモータ等がある。永久磁石同期モータは、それぞれ磁極部を構成する複数の永久磁石が設けられたロータつまり回転子と、それぞれ巻線電流が供給される複数のコイルつまり界磁巻線が設けられたステータつまり固定子とを有しており、回転子の回転位置に応じた最適な駆動電流を巻線に印加することにより、駆動トルクが回転子に発生する。回転子は被駆動部材に連結されて、被駆動部材を駆動する。回転子が固定子に対向して固定子の内側に配置されるタイプはインナーロータ型であり、回転子が固定子に対向して固定子の外側に配置されるタイプはアウターロータ型である。回転子の回転位置を検出するために、ホール素子やホールIC等の磁界検出素子が回転位置検出センサとして、回転子の近傍に位置させて固定子側に配置されている。
回転位置検出センサは、回転子の回転により変化する回転子周辺の磁束の変化を検出し、この検出信号に基づいて回転子の回転位置が検出される。それぞれの界磁巻線に最適な駆動電流を印加するために、それぞれの界磁巻線にはインバータが接続されている。インバータによりそれぞれの界磁巻線に対する駆動電流の印加タイミングつまり転流動作が制御される。回転位置検出センサにより検出された回転子の回転位置に応じた最適な駆動電流を巻線に印加することで回転子に駆動トルクが発生し、駆動トルクが発生することで回転位置が変化し、回転位置の変化に応じて駆動電流の通電パターンつまり通電相モードが切り換えられる。
特許第4009949号公報
回転子の回転位置を検出するための回転位置検出センサは、回転方向に所定の間隔を隔てて複数個配置されており、それぞれの回転位置検出センサの検出値に基づいて回転位置を算出している。回転子が回転すると、それぞれの回転位置検出センサの検出値が変化するので、回転子の回転位置が検出される。回転位置検出センサの検出切り替わりのタイミングで、巻線への通電パターンを切り替えている方式が一般的である。したがって、最大トルクが発生する通電パターンの切り換えタイミングと回転位置検出センサの切り替わりタイミングとを一致させると、最大トルクでブラシレスモータを起動させることが可能となる。
これに対し、最大トルクが発生する通電パターンの切り替わりタイミングつまり転流タイミングよりも早く通電切替を行うように進角制御を行うと、モータ運転時の運転効率を最大とすることができる。上述のように、最大トルクが発生する通電パターンの切り換えタイミングと回転位置検出センサの切り替わりタイミングとを一致させた制御を電気進角0度とする。進角制御は、最大トルクが発生する通電パターンの切り替わりタイミングよりも、通電切替を回転子の回転方向前方側に所定の角度θだけ進めて行うことである。通電パターンの切り替わりタイミングを早く行って進角制御を行うために、回転位置検出センサの位置を、通電パターンの切り替わりタイミングを早く通電切替可能な位置に角度θだけ進角を進めることにより、進角制御が可能となる。このように回転位置検出センサの位置をずらした進角制御方式は、機械的進角制御である。ただし、進角を進めると、モータ運転時は高効率モータとなるが、モータ起動時には最大トルクが発生する通電パターンとは異なるため起動トルクが低下することになる。
例えば、往復動式の空気圧縮機を駆動するために使用されるモータにおいては、空気圧縮機の圧縮空気生成部はシリンダ内を往復動するピストンを有している。空気圧縮機を起動させるときには、ピストンとシリンダとの摩擦や、シリンダ内に残った空気の圧力による抵抗がモータに加わることになる。
したがって、進角を早めてモータ運転時のモータ効率を高めると、モータ起動時は最大トルクが発生する通電パターンとは異なる通電パターンとなるために、起動トルクが低下し、空気圧縮機の起動不良が発生することが考えられる。
また、進角制御をおこなわない場合でも、回転位置検出センサの検出値が変化する位置の付近にロータが停止していた場合には、モータ回転位置が微小な位置の違いによって誤検出され、モータ起動時に最大トルクが発生する通電パターンとは異なる通電パターンとなるために、起動トルクが低下し、空気圧縮機の起動不良が発生することが考えられる。
本発明の目的は、運転時のモータ効率を高めつつ、モータの起動を円滑に行うことができるモータの起動制御装置を提供することにある。
本発明の他の目的は、モータの起動を円滑に行うことができるようにした空気圧縮機を提供することにある。
本発明のモータの起動制御装置は、複数の磁極部が設けられ被駆動部材を駆動する回転子と、複数の巻線が前記回転子に対向して設けられハウジングに取り付けられる固定子と、を備えたモータの起動制御装置であって、前記回転子の前記固定子に対する回転位置を検出する回転位置検出センサと、前記回転子の回転位置に応じて、複数の前記巻線のうち電流が供給されて通電相となる巻線に対する通電タイミングを制御するモータ制御回路と、を有し、前記モータ制御回路は、モータ起動時に最大トルクを発生させる通電相であって前記回転子の回転方向に隣り合った2つの通電相のうち、一方の通電相の巻線に通電しても前記回転子の回転が検出されないときには、他方の通電相の巻線に電流を供給する。
本発明の空気圧縮機は、モータと、被駆動部材としての圧縮空気生成部と、当該圧縮空気生成部により生成された圧縮空気を貯溜する空気タンクと、上記モータの起動制御装置とを有する。
モータ起動時に最大トルクを発生させる通電相であって回転子の回転方向に隣り合った2つの通電相のうち、一方の通電相の巻線にまず通電し、回転子の回転が検出されなかったときには他方の通電相の巻線に通電する。これにより、モータを円滑に起動つまり始動させることができる。したがって、本発明のモータの起動制御装置は、運転時のモータ効率を高めつつ、モータの起動を円滑に行うことができる。
モータにより駆動される空気圧縮機の外観を示す斜視図である。 図1の平面側の断面図である。 カバーを切り欠いた状態における図1の平面図である。 図2に示したモータの回転子と固定子とを示す断面図である。 モータ起動制御装置のモータ制御回路を示すブロック図である。 (A)〜(F)は各巻線に対する転流動作によって巻線に電流が供給される通電相を示す。 回転位置検出センサとしてのホール素子のオンオフ信号とモータの回転子位置情報との関係を示すタイムチャートである。 3つのホール素子の論理パターンと回転子位置情報の設定値との関係を示す論理表である。 図7および図8に示した回転子位置情報と通電相との関係を示す論理表である。 回転子位置情報と転流設定情報とに基づいて設定される通電相を示すタイムチャートである。 モータを進角制御した場合における回転子位置情報と、起動時に最大トルクが発生する通電相との関係を示すタイムチャートである。 回転子位置情報と通電相設定情報との関係を示す論理表である。 モータ起動制御方式のアルゴリズムの1つの具体例を示すフローチャートである。 モータ起動制御方式のアルゴリズムの他の具体例を示すフローチャートである。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1〜図3に示される空気圧縮機10は、平行となって基台11に取り付けられる2つの空気タンク12a,12bを有している。それぞれの空気タンク12a,12bの両端部下面には、脚部13が取り付けられており、空気圧縮機10は脚部13の部分で所定の設置箇所に配置される。基台11の両端部にはハンドル部14a,14bが設けられており、空気圧縮機10はハンドル部14a,14bを作業者が把持して持ち運ぶことができる。
基台11には、図2に示されるように、駆動ボックス15が取り付けられており、この駆動ボックス15にはモータ16が取り付けられている。このモータ16は、ロータつまり回転子18と円筒形のステータつまり固定子19とを有している。回転子18にはモータ回転軸17が取り付けられ、モータ回転軸17を介して被駆動部材としての圧縮空気生成部30を駆動する。固定子19には複数の界磁巻線つまり巻線が回転子18に対向して設けられている。回転子18は固定子19の内部に組み込まれており、このモータ16はインナーロータ型となっている。固定子19はモータ16を収容するハウジングとしての駆動ボックス15に取り付けられる。
モータ回転軸17は駆動ボックス15に回転自在に支持されている。駆動ボックス15には、モータ回転軸17の回転方向に180度の位相をずらして2つのシリンダ21a,21bが取り付けられており、それぞれのシリンダ21a,21bにはピストン22a,22bが軸方向に往復動自在に組み込まれている。モータ回転軸17の回転運動をピストン22a,22bの軸方向の往復運動に変換するために、それぞれのピストン22a,22bには、コネクティングロッド23a,23bの一端部がピン結合されている。コネクティングロッド23a,23bの他端部には、モータ回転軸17に装着される偏心カム24a,24bが設けられており、それぞれの偏心カム24a,24bはピストン22a,22bの往復動方向に逆向きに偏心している。これにより、一方のピストン22aが駆動室25a,25bを圧縮する方向に駆動されると、他方のピストン22bは駆動室25a,25bを膨張させる方向に駆動される。
それぞれのシリンダ21a,21bに設けられたシリンダヘッド26a,26bには、逆止弁27a,27bが設けられている。ピストン22a,22bが駆動室25a,25bを圧縮させる方向に駆動されると、吐出室28a,28bから配管29a,29bを介して空気タンク12a,12bに圧縮空気が供給される。ピストン22bは外気を導入して圧縮する第1段目の低圧用のピストンであり、低圧用のピストン22bにより圧縮された空気は第2段目の高圧用のピストン22aによりさらに圧縮される。上述したシリンダ21a,21bとピストン22a,22b等は、圧縮空気生成部30を構成しており、モータ16の回転子18はモータ回転軸17を介して圧縮空気生成部30に連結される。モータ16により圧縮空気生成部30が駆動されると、高圧用のピストン22aから吐出された圧縮空気が空気タンク12a,12bに貯溜される。
モータ回転軸17の一端部には、モータ16の外側に位置させて冷却ファン31aが取り付けられており、モータ回転軸17の他端部には冷却ファン31bが取り付けられている。冷却ファン31bの外側には制御基盤32が配置されている。冷却ファン31aにより生成される冷却風はモータ16に吹き付けられ、冷却ファン31bにより生成される冷却風は制御基盤32に吹き付けられる。基台11にはカバー33が装着されており、上述した圧縮空気生成部30はカバー33により覆われている。
それぞれの空気タンク12a,12bに貯溜された圧縮空気を外部に供給するために、図1に示されるように、空気タンク12a,12bの端部上方にはカプラ34a,34bが設けられている。それぞれのカプラ34a,34bから外部に排出される圧縮空気の圧力を調整するために、減圧弁35a,35bが空気タンク12a,12bに設けられており、減圧された空気の圧力は圧力計36a,36bに表示される。
カバー33には操作パネル37が設けられており、この操作パネル37に設けられた図示しない操作部を操作することにより、モータ16の起動指令やモータ回転数が入力される。
図4は、図2に示したモータ16の回転子18と固定子19とを示す断面図である。このモータ16は、永久磁石型の4極の3相ブラシレスモータであり、回転子18には円周方向に間隔を置いて4つの永久磁石41が設けられており、永久磁石41により磁極部が形成されている。回転子18の回転方向に隣り合う永久磁石41の極性は相互に逆極性となっている。固定子19は、円筒形状の基部42と、円周方向に60度置きに径方向内方に突出する6つのティース部つまりアーム部43とを有し、アーム部43の間に6つのスロットが設けられた6スロット形である。それぞれのアーム部43には、コイルつまり巻線44が巻き付けられている。なお、図4においては、巻線44は便宜的にそれぞれのアーム部43に1層分のみ示されている。円周方向に180度ずれた位置のアーム部43に巻き付けられた巻線は、相互に直列に接続されて同位相となっている。つまり、巻線U1と巻線U2によりU相の巻線が形成される。同様に巻線V1と巻線V2によりV相の巻線が形成され、巻線W1と巻線W2によりW相の巻線が形成される。このように、固定子19にはU相、V相、W相の3相の巻線44が巻き付けられており、図示するモータ16は3相ブラシレスモータとなっている。このモータ16を120度通電制御方式で駆動する場合には、それぞれの相の巻線に、誘起電圧が最大となる点を挟んだ前後の通電角60度区間の120度の通電区間において通電する。この通電区間は、起動トルクが最大となる区間である。
固定子19に対する回転子18の回転位置を検出するために、図4に示されるように、回転位置検出センサとして、3相の巻線に対応させて3つのホール素子S1〜S3が固定子19側に配置されている。ホール素子S3は、ホール素子S1よりも回転子18の回転方向に60度ずれており、ホール素子S2はホール素子S3よりも回転子18の回転方向に60度ずれている。それぞれのホール素子S1〜S3は、磁束を検出することにより、回転子18の磁極部の極性がN極とS極の中性点となったときに検出信号を出力する磁界検出素子であり、ホール素子S1〜S3からの検出信号に基づいて回転子18の位置を検出し、それぞれの巻線に対する転流動作つまり巻線に対する通電切替動作が行われる。回転位置検出センサとしては、ホール素子のみに限られず、コンパレータの機能を有する電子回路とホール素子をワンチップ化したホールICを用いるようにしても良い。
回転位置検出センサとしてのホール素子S1〜S3を、図4において符号S1a、S3a、S2aで示すように、スロットの中心に配置すると、電気進角が0度となり、起動トルクが最大となる通電区間の切り替わりタイミングでホール素子S1〜S1の検出信号も切り替わる。したがって、ホール素子S1〜S3の信号が切り替わるタイミングで各相の巻線に対する転流動作を行って、通電を切り替えると、常に起動トルクが最大となる状態でモータ16を駆動することが可能となる。符号S1a、S3a、S2aで示すようにホール素子S1〜S3をスロットの中心に配置したときを、回転位置検出センサの基準位置とすると、この位置は、最大トルクが発生する通電パターンの切り換えタイミングと、回転位置検出センサの切り替わりタイミングとを一致させた制御、つまり電気進角0度の制御となる。
これに対し、進角制御を行って、起動トルクが最大となる通電タイミングよりも電気進角を角度θだけ早く転流動作を行うと、モータ16が起動された後のモータ運転時つまりモータ定常運転時には、モータ定常運転時のモータ効率を向上させることが可能となる。そこで、モータ効率を向上させるために、図4に示されるように、それぞれのホール素子S1〜S3は、基準位置つまり電気進角0度の位置よりも回転子18の回転方向前方側に角度θだけずらして配置されている。これにより、各相の巻線に対しては、進角制御されて転流動作が行われる。図4においては、角度θは約12度となっており、回転子18の中性点が基準位置よりも角度θだけ早く転流動作が行われる。この角度θは、モータ定常運転時のモータ効率を考慮して、任意の角度に設定される。
進角制御は、ホール素子S1〜S3の位置を符号S1a、S3a、S2aで示す基準位置に配置して機械的進角制御を行うことなく、電気的進角制御を行うようにしても良い。その場合には、ホール素子S1〜S3を基準位置に配置して、回転子18の回転角度を検出することによって、転流動作を進角制御する。
図5はモータ起動制御装置のモータ制御回路を示すブロック図である。この制御回路は、U相、V相およびW相の各巻線に対する駆動電流を制御するためのインバータ回路51を有している。インバータ回路51には、商用電源52の交流を直流に整流するための整流回路54と、整流された直流電圧を昇圧してインバータ回路51に供給するための力率改善回路(PFC)55とを介して電力が供給される。力率改善回路55は、MOSFETからなるトランジスタTrにPWM制御信号を出力するIC56を有しており、インバータ回路51のスイッチング素子で発生する高調波電流を制限値以下に抑える。なお、電源52と整流回路54との間には、インバータ回路51等で生じたノイズを電源側に伝えないようにするために、雑音対策回路53が設けられている。
インバータ回路51は、3相フルブリッジインバータ回路であり、それぞれ直列に接続された2つのスイッチング素子Tr1、Tr2と、2つのスイッチング素子Tr3、Tr4と、2つのスイッチング素子Tr5、Tr6とを有し、それぞれは、力率改善回路55の正極と負極の出力端子に接続される。正極側に接続される3つのスイッチング素子Tr1、Tr3、Tr5は、ハイサイド側となっており、負極側に接続される3つのスイッチング素子Tr2、Tr4、Tr6は、ロウサイド側となっている。2つのスイッチング素子Tr1、Tr2の間には、U相の巻線の一方の接続端子が接続される。2つのスイッチング素子Tr3、Tr4の間には、V相の巻線の一方の接続端子が接続される。2つのスイッチング素子Tr5、Tr6の間には、W相の巻線の一方の接続端子が接続される。U相、V相およびW相のそれぞれの巻線の他方の接続端子は、相互に接続されており、各巻線はスター結線となっている。なお、結線方式としては、デルタ結線としても良い。それぞれのスイッチング素子Tr1〜Tr6としては、MOSFETが使用されている。
例えば、ハイサイド側のスイッチング素子Tr1と、ロウサイド側のスイッチング素子Tr4のゲートに制御信号が通電されると、U相とV相の巻線に電流が供給される。それぞれのスイッチング素子に供給される制御信号のタイミングを調整することにより、各巻線に対する転流動作が制御される。
インバータ回路51に制御信号を演算して出力するモータ制御ユニット61は、コントローラ62を有しており、コントローラ62は図2に示した制御基盤32に設けられている。コントローラ62からは制御信号出力回路63を介してインバータ回路51に制御信号が送られる。図1に示した操作パネル37に設けられた操作スイッチ64を作業者が操作することにより、モータのオンオフとモータ回転数の信号が操作スイッチ検出回路65を介してコントローラ62に送られる。回転位置検出センサとしてのホール素子S1〜S3の検出信号は、回転子位置検出回路66に送られる。回転子位置検出回路66からはモータ回転数検出回路67に信号が送られ、モータ回転数検出回路67からはコントローラ62にモータ回転数に応じた信号が出力される。モータ16に流れる電流を検出するためのモータ電流検出回路68からは、コントローラ62にモータ電流に応じた検出信号が送られる。コントローラ62は、制御信号を演算するマイクロプロセッサと、制御プログラム、演算式およびデータなどが格納されるメモリとを有しており、コントローラ62は、巻線に対する通電タイミングを制御する通電相切替制御部と、ホール素子S1〜S3の検出信号に基づいて通電タイミングを進めるための進角制御部とを構成している。
モータ回転数は各巻線に供給される電圧を調整することにより制御される。巻線に対する電圧制御は、スイッチング素子をPWM制御することによって、インバータ回路51の各スイッチング素子Tr1〜Tr6のゲートに印加されるオン信号のデューティ比を調整することにより行われる。例えば、デューティ比を10%に設定すると、力率改善回路55からの出力電圧の10%の電圧が各巻線に供給され、デューティ比を100%に設定すると、モータ回転数は最大回転数となる。
図6はインバータによる各巻線に対する転流動作によって、巻線に電流が供給された通電相を示す。通電相つまり通電モードは、120度通電制御方式の3相モータの場合には、図6に示されるように、6つのパターンを有している。例えば、図6(A)に示すように、U相側をハイサイド側とし、W相側をロウサイド側として、U相巻線側からW相巻線側に電流が供給されたときは「U+相・W−相」となり、図6(B)に示すように、U相巻線側からV相巻線側に電流が供給されたときは「U+相・V−相」となる。他の通電相は、図6(C)〜図6(F)に示すようになる。
図7はホール素子のオンオフ信号とモータの回転子位置情報との関係を示すタイムチャートである。図8は3つのホール素子の論理パターンと回転子位置情報の設定値との関係を示す論理表である。図9は図7および図8に示した回転子位置情報と通電相との関係を示す論理表である。ホール素子のオンオフ信号に基づく回転子位置情報は、コントローラ62に送られ、回転子位置情報に基づいて通電相が演算されて、所定の通電相の巻線に通電される。
図7〜図9に示されるように、ホール素子S1〜S3のオンオフ信号に基づいて回転子18の位置情報が得られ、この回転子位置情報に基づく転流設定情報つまり通電相設定情報により通電モードつまり通電相が転流制御される。例えば、ホール素子S1とホール素子S2とがオフつまりL信号を出力し、ホール素子S3がオンつまりH信号を出力しているときの回転子位置情報を「0」で表現すると、このときの位置情報つまり転流設定情報「0」に基づいて、上アーム部側は「U+相」、下アーム部側は「V−相」となる。このときの通電相は、図6(B)に示すように、「U+相・V−相」となる。
図10は回転子位置情報と転流設定情報とに基づいて設定される通電相を示すタイムチャートである。図10に示すように、回転子位置情報が算出されると、その回転子位置情報に基づいて転流設定情報が決定されて転流動作が行われる。つまり、回転子位置情報に基づいて最適な通電相が決定され、モータ駆動制御が行われる。モータ16の駆動は、ホール素子S1〜S3のオンオフの切り替わりタイミングを進角の角度分だけずらして検出するようにしているので、モータ16は進角制御され、運転時にはモータ16を高効率で駆動することができる。
図11はモータ16を進角制御した場合における回転子位置情報と起動時に最大トルクが発生する通電相との関係を示すタイムチャートである。図12は回転子位置情報と通電相設定情報との関係を示す論理表である。
モータ16を進角制御すると、回転子18のN極とS極の中性点がスロットの中心点に到達する前に、ホール素子S1〜S3は回転位置情報を出力する。これにより、上述したように、モータ16は進角制御されて、モータ16を高効率で駆動することができる。
しかしながら、進角制御すると、モータ起動時にホール素子S1〜S3が回転位置情報を出力したときには、図11および図12に示されるように、起動時には、回転方向に隣り合った2つの通電相のいずれかが最大トルクを発生させる通電相となる。つまり、1つの回転位置情報は、起動トルクが最大となり得る2つの通電相設定情報を含むことになる。例えば、回転子位置情報が「0」のときには、第1の通電相としての「U+相・W−相」の通電相と、第2の通電相としての「V+相・W−相」の2つの通電相設定情報を含むことになる。両方の通電相を比較とすると、一方の通電相は他方の通電相よりも起動トルクが低くなる。換言すれば、隣り合う巻線の何れに通電するかによって、起動時トルクが異なり、最大トルクを得られる場合と、得られない場合が生じる。また、進角制御をおこなわない場合でも、回転位置検出センサの検出値が変化する位置の付近に回転子18が停止していた場合には、隣り合う2つの通電相のいずれかが選択される。この場合、モータ回転位置が微小な位置の違いによって誤検出されモータ起動時に最大トルクが発生する通電パターンとは異なる通電パターンとなりうる。起動トルクが低くなる通電相に通電してモータを起動させてモータ起動処理を開始すると、起動不良などの問題が発生する可能性が高くなる。
特に、モータ16により空気圧縮機10を駆動する場合には、ピストン22a,22bに加わる抵抗力がモータ回転軸17に加わるので、モータ起動時にもモータ回転軸17には負荷が加わっている。このため、駆動トルクが不足すると、円滑にモータを起動できなくなる可能性がある。
そこで、モータ起動時に回転方向に隣り合う2つの通電相の候補のうち、一方の通電相に通電を開始したときに起動ができなかった場合には、他方の通電相に通電を開始することにより、モータ起動不良を回避することができる。つまり、通電相で通電を開始して起動ができなかった場合は、当該通電相を基準にして隣り合う巻線に通電することで、起動トルクを増大させることができる。
モータ起動時には、通常運転時よりも低い電圧を巻線に印加することにより、いわゆるソフトスタート制御を行うようにしている。モータ起動時に巻線に印加される電圧を低くして、電圧をソフトスタート初期値つまり始動初期電圧の値に設定すると、発生トルクも小さくなるので、モータ回転軸17に負荷が加わっていると、円滑にモータを起動させることができなくなる。これに対し、モータ始動処理を、2つの通電相の候補のうち一方に通電したときに起動ができなかった場合には、他方の通電相に通電を開始するようにすると、ソフトスタートを行いつつ、確実にモータを起動させることができる。
モータ起動方式としては、一方の通電相に通電してから、所定の判定時間が経過してもモータを起動できなかったときには、他方の通電相に通電する通電相切替方式がある。他のモータ起動方式としては、所定の判定時間が経過するまでには、ソフトスタート初期値の電圧を徐々に高めて通電する昇圧方式があり、この昇圧方式においても、一方の通電相に徐々に電圧を高めながら通電してもモータを起動できなかったときには、他方の通電相に徐々に電圧を高めながら通電してモータを起動させる方式がある。昇圧する通電相切替方式においては、両方の通電相の少なくともいずれか一方の通電相に通電するときに昇圧するようにしても良い。
図13はモータ起動制御方式のアルゴリズムの1つの具体例を示すフローチャートである。図13に示されるように、ステップS1において電源スイッチのオンが判定されると、回転位置検出センサとしてのホール素子S1〜S3からの検出信号に基づいて、回転位置情報を取得し、図12に示される第1の通電相と第2の通電相を算出する(ステップS2,S3)。モータ起動時つまり始動時には、ソフトスタートを行うために、ステップS4において、インバータ回路51における各スイッチング素子のゲートに印加されるPWMのデューティ比が10%に設定される。つまり、モータ起動時に巻線には最大電圧の10%の始動電圧が供給される。ステップS5においては、モータ起動時に2つの通電相の候補のうち図12に示した第1の通電相に通電する。ステップS6において、モータの回転が検出されたら、起動処理が円滑に行われたことになり、ステップS7の通常運転が実行される。通常運転時には巻線には起動処理時よりも高い電圧が供給されて、モータ回転軸17の回転速度は高められる。これにより、空気圧縮機10の圧縮空気生成部30が駆動されて、空気タンク12a,12bには圧縮空気が溜められる。作業者により電源スイッチがオフされたら、モータ16は停止される(ステップS8,S9)。
一方、ステップS10において、第1の通電相に通電してから所定の判定時間、例えば1秒程度経過してもモータ16が回転していないと判定されたときには、第2の通電相に通電する(ステップS11)。これにより、モータ16が回転すれば、ステップS7の通常運転が実行される。ここで、回転子18が180度に満たない角度だけ回転して、その後回転が検出されなくなった場合も、回転が検出されないときと同様に以下の制御をおこなうようにしても良い。これに対し、ステップS13により判定時間が経過しても、モータが起動されなければ、通電が停止される(ステップS14)。このように停止処理を行うことにより、ロック保護の動作が達成される。ステップS6におけるモータが回転開始したことの検出と、ステップS10におけるモータが回転しないことの検出は、回転子位置検出回路66からコントローラ62に送られる信号により行われる。ステップS15において電源スイッチがオフされると、ステップS1に戻される。ステップS13における判定時間も、1秒程度に設定されている。ただし、それぞれの判定時間としては、1秒に限られることはない。
このように、一方の通電相に通電してから、所定の判定時間が経過してもモータを起動できなかったときには、他方の通電相に通電することにより、モータ起動電圧を高めることなく、円滑にモータを起動させることができる。モータ起動時に最初に通電する通電相は、起動トルクが最大となり得る2つの通電相のうち、検出された回転子位置情報の範囲において、起動トルクが最大となる回転位置の範囲が広い方とすることが好ましい。ただし、起動トルクが最大となる回転位置の範囲が狭い方から通電を開始することも可能である。起動トルクが最大となる回転位置の範囲の大小関係は、回転子18の回転位置等を検出、判定することにより求めることができる。もしくは、モータ起動時に最初に通電する通電相は、モータ起動時に検出された回転子位置の範囲において起動トルクが最大となり得る2つの通電相のうち、進角が比較的大きい方とすることが好ましい。ただし、進角が比較的小さい方から通電することも可能である。
図14はモータ起動制御方式のアルゴリズムの他の具体例を示すフローチャートである。図14に示されるステップS21〜S25は、図13に示したステップS1〜S5に対応する。ステップS26においては、ソフトスタートの始動電圧の最大値がデューティ比20%以下であることを条件とし、ステップS27においてデューティ比を1%加算する。1%毎のデューティ比の加算は、最大値を超えないことを条件として、ステップS32において所定の判定時間が経過するまで、徐々に繰り返される。この判定時間も1秒程度に設定されている。ステップS28においてモータの回転が判定されたら、ステップS29〜S31が実行される。ステップS29〜S31は、図13に示したステップS7〜S9に対応する。
ステップS32において、第1の通電相に対して判定時間が経過するまで、デューティ比を加算させても、モータを起動させることができなかった場合には、デューティ比をソフトスタートとしての始動電圧に設定するために10%に設定して、第2の通電相に通電する(ステップS33,S34)。第2の通電相に対しても、ソフトスタート初期値の最大値がデューティ比20%以下であることを条件とし、ステップS36においてデューティ比を1%加算する。1%毎のデューティ比の加算は、最大値を超えないことを条件として、ステップS38において所定の判定時間が経過するまで、徐々に繰り返される。モータ16が起動したことが、ステップS37で判定されたら、ステップS29の通常運転が実行される。モータが起動されなければ、通電が停止され(ステップS39)る。ステップS40において電源スイッチがオフされると、ステップS21に戻される。ステップS38における判定時間も、1秒程度に設定されている。ただし、それぞれの判定時間としては、1秒に限られることはない。また、ステップS27,S36における加算すべきデューティ比としては、1%に限られることはない。
このように、所定の判定時間が経過するまでには、ソフトスタート初期値の始動電圧を一定値毎に繰り返して加算することにより、モータ起動電圧をソフトスタートの範囲に抑制しつつ、円滑にモータを起動させることができる。しかも、一方の通電相に徐々に電圧を高めながら通電してもモータを起動できなかったときには、他方の通電相に徐々に電圧を高めながら通電することにより、確実にモータ16を起動させることができる。これにより、図1〜図3に示した空気圧縮機10を円滑に起動させることができる。
空気圧縮機10としては、図1〜図3に示したようにピストン22a,22bを往復動させるようにした往復式の空気圧縮機のみに限られない。例えば、径方向に移動自在のベーンが設けられたロータをモータ回転軸により駆動するようにしたベーン形のような回転式の空気圧縮機、および径方向にブレードが設けられた羽根車をモータ回転軸により駆動するようにした遠心式の空気圧縮機のモータの制御にも、この発明を適用することができる。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、この発明は空気圧縮機に搭載されるモータ16の起動を制御するために適用されているが、インパクトドライバ等のように、モータを駆動源とする動力工具つまり電動工具に搭載されるモータの起動を制御するためにも適用することができる。また、モータ16としては、永久磁石同期モータのみならず、リラクタンスモータをも使用することができる。上述したモータ16は4極の3相ブラシレスモータであるが、極数や相数はこれに限られることはない。
10…空気圧縮機、11…基台、12a,12b…空気タンク、13…脚部、14a,14b…ハンドル部、15…駆動ボックス、16…モータ、17…モータ回転軸、18…回転子、19…固定子、21a,21b…シリンダ、22a,22b…ピストン、23a,23b…コネクティングロッド、24a,24b…偏心カム、25a,25b…駆動室、26a,26b…シリンダヘッド、27a,27b…逆止弁、28a,28b…吐出室、29a,29b…配管、30…圧縮空気生成部、31a,31b…冷却ファン、32…制御基盤、33…カバー、34a,34b…カプラ、35a,35b…減圧弁、37…操作パネル、41…永久磁石、42…基部、43…アーム部、44…巻線、51…インバータ回路、52…商用電源、54…整流回路、55…力率改善回路(PFC)、61…モータ制御ユニット、62…コントローラ、63…制御信号出力回路、64…操作スイッチ、65…操作スイッチ検出回路、66…回転子位置検出回路、67…モータ回転数検出回路、68…モータ電流検出回路。

Claims (11)

  1. 複数の磁極部が設けられ被駆動部材を駆動する回転子と、複数の巻線が前記回転子に対向して設けられハウジングに取り付けられる固定子と、を備えたモータの起動制御装置であって、
    前記回転子の前記固定子に対する回転位置を検出する回転位置検出センサと、
    前記回転子の回転位置に応じて、複数の前記巻線のうち電流が供給されて通電相となる巻線に対する通電タイミングを制御するモータ制御回路と、を有し、
    前記モータ制御回路は、前記回転子の回転方向に隣り合った2つの通電相のうち、一方の通電相の巻線に通電しても前記回転子の回転が検出されないときには、他方の通電相の巻線に電流を供給する、モータの起動制御装置。
  2. 一方の前記通電相と他方の前記通電相の少なくともいずれか一方の通電相の巻線に通電するときに、所定の判定時間において徐々に電圧を昇圧する、請求項1記載のモータの起動制御装置。
  3. 前記回転位置検出センサからの信号に基づいて前記固定子の基準位置よりも前記回転子が回転方向前方側となっているときに通電タイミングを進める進角制御部を有する、請求項1記載のモータの起動制御装置。
  4. 一方の前記通電相と他方の前記通電相のうち、モータ起動時に検出された回転子位置の範囲において、起動トルクが最大となる回転位置の範囲が広い方の前記通電相から通電を開始する、請求項1または2記載のモータの起動制御装置。
  5. 一方の前記通電相と他方の前記通電相のうち、進角が比較的大きい方の前記通電相から通電を開始する、請求項1〜4いずれか1項に記載のモータの起動制御装置。
  6. 他方の前記通電相の巻線に通電を開始してから所定の判定時間において前記回転子の回転が検出されないときには、通電を停止する、請求項1〜5のいずれか1項に記載のモータの起動制御装置。
  7. 前記回転子の回転が検出されるまでの起動処理時には、前記回転子が回転したときに前記通電相の巻線に供給される電圧よりも低い始動電圧とする、請求項1〜6のいずれか1項に記載のモータの起動制御装置。
  8. 前記モータ制御回路は、スイッチング素子を有するインバータ回路を有し、前記スイッチング素子をPWM制御することにより、前記巻線に供給される電圧を調整する、請求項1〜7のいずれか1項に記載のモータの起動制御装置。
  9. 前記回転位置検出センサは、前記回転子の磁束を検出する磁界検出素子であり、該磁界検出素子が前記回転子の回転位置に対応する磁束を検出することにより前記回転子の位置を検出する、請求項1〜8のいずれか1項に記載のモータの起動制御装置。
  10. 前記固定子は、3相の前記巻線を有し、
    前記モータ制御回路は、それぞれの前記巻線に接続されるハイサイド側の3つのスイッチング素子と、ロウサイド側の3つのスイッチング素子とが設けられたインバータ回路を有し、
    前記ハイサイド側の1つのスイッチング素子と、前記ロウサイド側の1つのスイッチング素子とに通電して前記通電相を設定し、
    前記通電相を前記回転位置検出センサにより検出される前記回転子の回転位置により前記通電相を切り替えて、前記回転子を駆動する、請求項1〜9のいずれか1項に記載のモータの起動制御装置。
  11. 前記モータと、前記被駆動部材としての圧縮空気生成部と、当該圧縮空気生成部により生成された圧縮空気を貯溜する空気タンクと、請求項1〜10のいずれか1項に記載のモータの起動制御装置とを有する空気圧縮機。
JP2013196888A 2013-09-24 2013-09-24 モータの起動制御装置および空気圧縮機 Pending JP2015065729A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013196888A JP2015065729A (ja) 2013-09-24 2013-09-24 モータの起動制御装置および空気圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013196888A JP2015065729A (ja) 2013-09-24 2013-09-24 モータの起動制御装置および空気圧縮機

Publications (1)

Publication Number Publication Date
JP2015065729A true JP2015065729A (ja) 2015-04-09

Family

ID=52833173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013196888A Pending JP2015065729A (ja) 2013-09-24 2013-09-24 モータの起動制御装置および空気圧縮機

Country Status (1)

Country Link
JP (1) JP2015065729A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436682A (zh) * 2019-08-23 2021-03-02 广东美的生活电器制造有限公司 电机组件、送风装置、家用电器和电动车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268386A (ja) * 1986-05-14 1987-11-20 Brother Ind Ltd ブラシレスモ−タの制御装置
JPS63121490A (ja) * 1986-11-08 1988-05-25 Brother Ind Ltd ブラシレスモ−タの制御装置
JPH06105589A (ja) * 1992-09-21 1994-04-15 Nec Ibaraki Ltd Dcブラシレスモータ駆動制御装置
JP2006125237A (ja) * 2004-10-27 2006-05-18 Hitachi Koki Co Ltd 空気圧縮機
JP2007336611A (ja) * 2006-06-12 2007-12-27 Denso Corp 同期モータの制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268386A (ja) * 1986-05-14 1987-11-20 Brother Ind Ltd ブラシレスモ−タの制御装置
JPS63121490A (ja) * 1986-11-08 1988-05-25 Brother Ind Ltd ブラシレスモ−タの制御装置
JPH06105589A (ja) * 1992-09-21 1994-04-15 Nec Ibaraki Ltd Dcブラシレスモータ駆動制御装置
JP2006125237A (ja) * 2004-10-27 2006-05-18 Hitachi Koki Co Ltd 空気圧縮機
JP2007336611A (ja) * 2006-06-12 2007-12-27 Denso Corp 同期モータの制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436682A (zh) * 2019-08-23 2021-03-02 广东美的生活电器制造有限公司 电机组件、送风装置、家用电器和电动车辆

Similar Documents

Publication Publication Date Title
EP3343751B1 (en) Refrigerator
JP4515432B2 (ja) 圧縮機の駆動方法
WO2004084401A1 (ja) 電動圧縮機
JP2015065730A (ja) モータの起動制御装置および空気圧縮機
JP4341266B2 (ja) ブラシレスdcモータの駆動方法及びその装置
JP6134905B2 (ja) モータ駆動装置およびにこれを用いた電気機器
JP6533950B2 (ja) モータ駆動装置、およびこれを用いた圧縮機の駆動装置、冷凍装置および冷蔵庫
JP2008160950A (ja) モータ駆動装置およびこれを具備した冷蔵庫
JP2008206386A (ja) インバータ装置
WO2012053148A1 (ja) インバータ制御装置と電動圧縮機および電気機器
JP4352883B2 (ja) ブラシレスdcモータの駆動方法及び駆動装置
JP2010226842A (ja) ブラシレスdcモータの制御方法およびブラシレスdcモータの制御装置
JP2015065729A (ja) モータの起動制御装置および空気圧縮機
JP2008172880A (ja) ブラシレスdcモータの駆動方法及び駆動装置
JP2007267451A (ja) レシプロ式圧縮機の制御装置及び制御方法
KR100859077B1 (ko) 압축기 구동 모터의 기동제어 방법
JP2010252480A (ja) モータ駆動装置およびこれを用いた冷蔵庫
KR100847454B1 (ko) 브러시리스 직류 모터의 정렬 제어 방법
JP4300991B2 (ja) ブラシレスdcモータの駆動装置
JP4289003B2 (ja) ブラシレスdcモータの駆動方法及びその装置
JP4476112B2 (ja) 圧縮機の駆動装置
JP6450939B2 (ja) モータ駆動装置、およびこれを用いた圧縮機の駆動装置、冷凍装置および冷蔵庫
JP2007040281A (ja) レシプロ式圧縮機の制御装置
KR100677876B1 (ko) 브러시리스 직류모터의 정렬제어방법
KR20100058203A (ko) 압축기의 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170725