JP2015064944A - Method of manufacturing light incident side electrode of dye-sensitized photoelectric conversion element - Google Patents

Method of manufacturing light incident side electrode of dye-sensitized photoelectric conversion element Download PDF

Info

Publication number
JP2015064944A
JP2015064944A JP2013196730A JP2013196730A JP2015064944A JP 2015064944 A JP2015064944 A JP 2015064944A JP 2013196730 A JP2013196730 A JP 2013196730A JP 2013196730 A JP2013196730 A JP 2013196730A JP 2015064944 A JP2015064944 A JP 2015064944A
Authority
JP
Japan
Prior art keywords
semiconductor fine
fine particle
dye
transparent substrate
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013196730A
Other languages
Japanese (ja)
Other versions
JP6269923B2 (en
Inventor
進三 吉門
Shinzo Yoshikado
進三 吉門
祐喜 佐藤
Yuki Sato
祐喜 佐藤
亮 川上
Ryo Kawakami
亮 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2013196730A priority Critical patent/JP6269923B2/en
Publication of JP2015064944A publication Critical patent/JP2015064944A/en
Application granted granted Critical
Publication of JP6269923B2 publication Critical patent/JP6269923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a light incident side electrode of a dye-sensitized photoelectric conversion element at a low cost and with stability.SOLUTION: A plurality of semiconductor fine particle groups having different average grain diameters are prepared (S1). Each of the plurality of semiconductor fine particle groups is individually mixed in dispersion media to form a plurality of colloids (S2). A pair of electrodes one of which consists of a transparent substrate having a transparent conductive film are inserted into the colloid of the semiconductor fine particle group having the minimum average grain diameter, and a current is applied between the electrodes to perform electrophoresis (S3). During the electrophoresis, the colloids of the remaining semiconductor fine particle groups are added by a predetermined amount at a predetermined time interval, in an ascending order of the average grain diameter, and thereby, semiconductor fine particles are laminated on the transparent conductive film of the transparent substrate (S4). The transparent substrate on which the semiconductor fine particles are laminated is subjected to heat treatment (S5). A semiconductor fine particle layer on the transparent substrate is made adsorb dye (S6).

Description

本発明は、色素増感型光電変換素子、特に色素増感型太陽電池の光入射側電極を製造する方法に関するものである。   The present invention relates to a method for producing a light-incident side electrode of a dye-sensitized photoelectric conversion element, particularly a dye-sensitized solar cell.

近年、シリコン系太陽電池に代わる新たな太陽電池として、色素増感型太陽電池が注目されている。
色素増感型太陽電池は、通常、透明導電膜を有する透明基板、および当該透明基板上に形成され、色素を吸着した多孔質半導体層からなる光入射側電極と、光入射側電極の多孔質半導体層に対向して配置された対極と、光入射側電極および対極間に保持された電解液層と、から構成されている。
In recent years, dye-sensitized solar cells have attracted attention as new solar cells that can replace silicon-based solar cells.
A dye-sensitized solar cell is usually a transparent substrate having a transparent conductive film, a light incident side electrode formed on the transparent substrate and having a porous semiconductor layer adsorbing the dye, and a porous surface of the light incident side electrode. It is comprised from the counter electrode arrange | positioned facing a semiconductor layer, and the electrolyte solution layer hold | maintained between the light-incidence side electrode and the counter electrode.

そして、光が光入射側電極の透明基板側(光入射面)から入射し、入射光は、多孔質半導体層に到達すると、色素に吸収され、色素分子中の電子が励起される。この励起電子のエネルギーレベルは、多孔質半導体層を構成する半導体微粒子のフェルミレベルよりも負側にあるので、励起電子は半導体微粒子に注入される。一方、色素は酸化された状態となる。半導体微粒子に注入された電子は、多孔質半導体層内を移動し、光入射側電極の透明導電膜に達した後、外部回路を通って対極に至る。対極では、電解液との界面において酸化還元種の還元反応が起こり、対極に達した電子は電解質中のイオンに受け渡される。電子を受け渡されたイオンは、電解質中を多孔質半導体層まで移動し、酸化状態にある色素を還元する。そして、この一連のプロセスが繰り返されることによって、太陽光線等の光エネルギーから電気エネルギーが取り出される。   Then, light enters from the transparent substrate side (light incident surface) of the light incident side electrode, and when the incident light reaches the porous semiconductor layer, it is absorbed by the dye and the electrons in the dye molecule are excited. Since the energy level of the excited electrons is on the negative side of the Fermi level of the semiconductor fine particles constituting the porous semiconductor layer, the excited electrons are injected into the semiconductor fine particles. On the other hand, the dye is in an oxidized state. The electrons injected into the semiconductor fine particles move in the porous semiconductor layer, reach the transparent conductive film of the light incident side electrode, and then reach the counter electrode through the external circuit. At the counter electrode, a reduction reaction of the redox species occurs at the interface with the electrolytic solution, and the electrons reaching the counter electrode are transferred to ions in the electrolyte. The ions that have passed the electrons move through the electrolyte to the porous semiconductor layer, and reduce the dye in the oxidized state. Then, by repeating this series of processes, electric energy is extracted from light energy such as sunlight.

この場合、色素増感型太陽電池の光電変換の効率を上げるには、多孔質半導体層中の色素による入射光の吸収効率を上げることが重要であり、そのため、従来技術においては、光入射側電極の多孔質半導体層を多層構造化し、光入射面側から遠ざかるにつれて、半導体微粒子の平均粒径が層毎に次第に増大するように構成した光入射側電極が提案されている(例えば、特許文献1、2参照)。   In this case, in order to increase the photoelectric conversion efficiency of the dye-sensitized solar cell, it is important to increase the absorption efficiency of incident light by the dye in the porous semiconductor layer. There has been proposed a light incident side electrode configured such that the porous semiconductor layer of the electrode has a multilayer structure and the average particle diameter of the semiconductor fine particles gradually increases for each layer as the distance from the light incident surface side increases (for example, Patent Documents). 1 and 2).

この光入射側電極によれば、光入射面側に位置する平均粒径の小さい半導体微粒子の層において光の散乱が抑制される一方、光入射面から遠い側に位置する平均粒径の大きい半導体微粒子の層において光が散乱されることによって、入射光が色素に効率よく吸収され、その結果、色素増感型太陽電池の光電変換の効率が上がる。   According to the light incident side electrode, light scattering is suppressed in the layer of semiconductor fine particles having a small average particle diameter located on the light incident surface side, while the semiconductor having a large average particle diameter located on the side far from the light incident surface. When light is scattered in the fine particle layer, incident light is efficiently absorbed by the dye, and as a result, the efficiency of photoelectric conversion of the dye-sensitized solar cell is increased.

しかしながら、この従来技術においては、多層構造の多孔質半導体層の形成が、予め準備されたそれぞれ平均粒径の異なる複数種類のコロイド溶液を、平均粒径の小さいものから順に、基板上に塗布し、塗布するたびに、得られた塗膜を乾燥した後、50〜800℃の温度範囲内で10秒〜12時間程度焼成することによってなされる。そのため、3層以上の多層構造の多孔質半導体層を得ようよすると、時間がかかり、また製造コストもかかるという問題があった。加えて、塗布では、広い面積にわたり、また湾曲した面上に均一な厚さの塗膜を形成することは容易ではなく、よって、大きなサイズの電極や、平板状でない電極を製造することは難しかった。   However, in this prior art, a porous semiconductor layer having a multilayer structure is formed by applying a plurality of colloidal solutions prepared in advance, each having a different average particle diameter, on a substrate in order of decreasing average particle diameter. Each time coating is performed, the obtained coating film is dried and then baked in a temperature range of 50 to 800 ° C. for about 10 seconds to 12 hours. For this reason, when obtaining a porous semiconductor layer having a multilayer structure of three or more layers, there is a problem that it takes time and the production cost also increases. In addition, in coating, it is not easy to form a coating having a uniform thickness over a large area and on a curved surface. Therefore, it is difficult to produce a large size electrode or an electrode that is not flat. It was.

特開2002−352868号公報JP 2002-352868 A 特開2003−217688号公報JP 2003-217688 A

したがって、本発明の課題は、色素増感型光電変換素子の光入射側電極を安価にかつ安定的に製造できる方法を提供することにある。   Therefore, the subject of this invention is providing the method which can manufacture the light-incidence side electrode of a dye-sensitized photoelectric conversion element cheaply and stably.

上記課題を解決するため、本発明によれば、色素増感型光電変換素子の光入射側電極の製造法であって、(1)平均粒径が異なる複数の半導体微粒子群を準備するステップと、(2)前記複数の半導体微粒子群のそれぞれを個別に分散媒中に混ぜることにより、複数のコロイドを形成するステップと、(3)前記複数の半導体微粒子群のうちの平均粒径が最小の半導体微粒子群のコロイドを容器に収容し、当該コロイド中に、少なくとも一方が透明導電膜を有する透明基板からなる一対の電極を挿入し、前記一対の電極間に、前記透明導電膜を有する透明基板が陰極となるように電流を流して電気泳動を行うステップと、(4)前記電気泳動の間に、残りの半導体微粒子群のコロイドを、平均粒径が小さいものから順に所定の時間間隔で所定量添加することにより、前記陰極側の前記透明基板の透明導電膜上に半導体微粒子を積層するステップと、(5)前記半導体微粒子を積層した前記透明基板を前記容器から取り出して熱処理するステップと、(6)前記熱処理後の透明基板上の半導体微粒子層に色素を吸着させるステップと、からなっていることを特徴とする製造法が提供される。   In order to solve the above-mentioned problems, according to the present invention, there is provided a method for producing a light incident side electrode of a dye-sensitized photoelectric conversion element, comprising: (1) preparing a plurality of semiconductor fine particle groups having different average particle diameters; (2) a step of forming a plurality of colloids by individually mixing each of the plurality of semiconductor fine particle groups in a dispersion medium; and (3) an average particle size of the plurality of semiconductor fine particle groups being the smallest. A colloid of a group of semiconductor fine particles is contained in a container, a pair of electrodes, at least one of which is a transparent substrate having a transparent conductive film, is inserted into the colloid, and the transparent substrate having the transparent conductive film is interposed between the pair of electrodes. (4) during the electrophoresis, the remaining colloids of the semiconductor fine particle groups are predetermined at predetermined time intervals in order from the smallest average particle diameter. Adding a semiconductor fine particle on the transparent conductive film of the transparent substrate on the cathode side by adding, and (5) removing the transparent substrate on which the semiconductor fine particle has been laminated from the container and performing a heat treatment, 6) There is provided a production method characterized by comprising a step of adsorbing a dye to a semiconductor fine particle layer on the transparent substrate after the heat treatment.

上記製造法において、好ましくは、前記ステップ(4)において、コロイドの添加は、当該添加すべきコロイドを一定の添加速度で所定の時間にわたって連続的に添加することからなっている。   In the above production method, preferably, in the step (4), the colloid is added by continuously adding the colloid to be added at a constant addition rate over a predetermined time.

そして、上記本発明の製造法によれば、透明導電膜を有する透明基板と、前記透明基板の透明導電膜上に形成された半導体微粒子層と、前記半導体微粒子層に吸着された色素と、からなり、前記半導体微粒子層が、前記透明基板から遠ざかるにつれて、次第に粒径の大きい半導体微粒子の割合が増大するように構成されていることを特徴とする光入射側電極が製造される。   According to the production method of the present invention, a transparent substrate having a transparent conductive film, a semiconductor fine particle layer formed on the transparent conductive film of the transparent substrate, and a dye adsorbed on the semiconductor fine particle layer, Thus, the light incident side electrode is manufactured such that the proportion of the semiconductor fine particles having a larger particle diameter gradually increases as the semiconductor fine particle layer moves away from the transparent substrate.

本発明の別の好ましい実施例によれば、前記複数の半導体微粒子群はそれぞれ結晶構造が異なる半導体微粒子から形成されるとともに、前記ステップ(6)において、前記半導体微粒子層への色素の吸着が、前記半導体微粒子群毎に当該半導体微粒子群に適合する色素を準備し、前記平均粒径が最小の半導体微粒子群に適合する色素の溶液を第2の容器中に収容し、当該色素の溶液中に前記透明基板を一方の電極とする一対の電極を挿入し、前記一対の電極間に電流を流して電気泳動を行い、この電気泳動の間に、残りの色素のそれぞれの溶液を、平均粒径が小さい半導体微粒子群に適合するものから順に所定の時間間隔で所定量添加することにより、前記透明基板上の半導体微粒子層に色素を吸着させることによって行われる。   According to another preferred embodiment of the present invention, each of the plurality of semiconductor fine particle groups is formed from semiconductor fine particles having different crystal structures, and in step (6), the adsorption of the dye to the semiconductor fine particle layer is performed. A dye suitable for the semiconductor fine particle group is prepared for each of the semiconductor fine particle groups, and a solution of the dye compatible with the semiconductor fine particle group having the smallest average particle diameter is contained in a second container. A pair of electrodes having the transparent substrate as one electrode is inserted, and a current is passed between the pair of electrodes to perform electrophoresis. During this electrophoresis, each solution of the remaining dye is average particle size. Is carried out by adsorbing the dye to the semiconductor fine particle layer on the transparent substrate by adding a predetermined amount at predetermined time intervals in order from the one that is suitable for the semiconductor fine particle group having a small size.

そして、この製造法によれば、透明導電膜を有する透明基板と、前記透明基板の透明導電膜上に形成された半導体微粒子層と、前記半導体微粒子層に吸着された色素と、からなり、前記半導体微粒子層が、前記透明基板から遠ざかるにつれて、次第に粒径の大きい半導体微粒子の割合が増大するとともに、この粒径の遷移に対応して半導体微粒子の結晶構造が次第に変化するように構成され、さらに、前記半導体微粒子層には、前記半導体微粒子の結晶構造に適合した色素が吸着されていることを特徴とする光入射側電極が製造される。   And according to this manufacturing method, the transparent substrate having a transparent conductive film, a semiconductor fine particle layer formed on the transparent conductive film of the transparent substrate, and a dye adsorbed on the semiconductor fine particle layer, As the semiconductor fine particle layer moves away from the transparent substrate, the proportion of the semiconductor fine particles having a large particle diameter gradually increases, and the crystal structure of the semiconductor fine particles gradually changes corresponding to the transition of the particle diameter. The light incident side electrode is manufactured by adsorbing the semiconductor fine particle layer with a dye suitable for the crystal structure of the semiconductor fine particle.

本発明のさらに別の好ましい実施例によれば、前記複数の半導体微粒子群はそれぞれ異なる種類の半導体から形成される。
本発明の別の好ましい実施例によれば、前記複数の半導体微粒子群はいずれも酸化チタンから形成される。
According to still another preferred embodiment of the present invention, the plurality of semiconductor fine particle groups are formed of different types of semiconductors.
According to another preferred embodiment of the present invention, each of the plurality of semiconductor fine particle groups is formed from titanium oxide.

本発明によれば、色素増感型光電変換素子の光入射側電極の半導体微粒子層を電気泳動によって形成し、この電気泳動を、予め準備しておいた平均粒径が異なる複数の半導体微粒子群のうち平均粒径が最小の半導体微粒子群のコロイドから出発して、このコロイドに、残りの半導体微粒子群を平均粒径が小さい順に添加することによって行うので、光入射側電極の半導体微粒子層を、当該層中において、透明基板から遠ざかるにつれて、次第に粒径がより大きい半導体微粒子の割合が増大するような構造とすることができる。   According to the present invention, the semiconductor fine particle layer of the light incident side electrode of the dye-sensitized photoelectric conversion element is formed by electrophoresis, and this electrophoresis is performed in advance. Starting from the colloid of the semiconductor fine particle group having the smallest average particle diameter, the remaining semiconductor fine particle group is added to this colloid in order of increasing average particle diameter. In the layer, a structure in which the proportion of semiconductor fine particles having a larger particle diameter gradually increases as the distance from the transparent substrate increases.

半導体微粒子層のこの構造によって、透明基板側(光入射面)から入射した光の半導体微粒子層中の透過率は、透明基板から遠ざかるにつれて低下し、そして、入射光は、透明基板から最も離れた半導体微粒子層の端部に達したときには適度に減衰する。こうして、入射光を半導体微粒子層によって効率的に捕集することが可能となる。   With this structure of the semiconductor fine particle layer, the transmittance in the semiconductor fine particle layer of light incident from the transparent substrate side (light incident surface) decreases as the distance from the transparent substrate increases, and the incident light is farthest from the transparent substrate. When it reaches the end of the semiconductor fine particle layer, it attenuates moderately. Thus, incident light can be efficiently collected by the semiconductor fine particle layer.

そして、本発明によれば、電気泳動の間のコロイド中の半導体粒子群の混合比を制御するだけで、半導体微粒子層中の半導体微粒子の粒径の遷移を自在に変えることができ、従来の塗布法を用いた場合のように多層構造を形成すべく層毎に乾燥・焼成を繰り返す必要がなく、よって、光電変換素子の光入射側電極をより短時間に低コストで製造することができる。
さらに、本発明では、電気泳動によって透明基板上に半導体微粒子層を形成するので、サイズの大きな電極や、平板状以外の形状の電極であっても安定的に製造することが可能である。
According to the present invention, it is possible to freely change the particle size transition of the semiconductor fine particles in the semiconductor fine particle layer simply by controlling the mixing ratio of the semiconductor particle groups in the colloid during electrophoresis. There is no need to repeat drying and firing for each layer to form a multilayer structure as in the case of using the coating method, and therefore, the light incident side electrode of the photoelectric conversion element can be manufactured in a shorter time and at lower cost. .
Furthermore, in the present invention, since the semiconductor fine particle layer is formed on the transparent substrate by electrophoresis, even a large-sized electrode or an electrode having a shape other than a flat plate shape can be stably manufactured.

本発明の1実施例による色素増感型光電変換素子の入射側電極の製造法のフロー図である。It is a flowchart of the manufacturing method of the incident side electrode of the dye-sensitized photoelectric conversion element by one Example of this invention. (A)は、図1に示した製造法の電気泳動プロセスを説明する概略図であり、(B)は、図1に示した製造法で作製した光入射側電極を用いた色素増感型太陽電池の構成例を示す断面図である。(A) is the schematic explaining the electrophoresis process of the manufacturing method shown in FIG. 1, (B) is the dye-sensitized type | mold using the light-incidence side electrode produced with the manufacturing method shown in FIG. It is sectional drawing which shows the structural example of a solar cell. 図1に示した製造法で作製した光入射側電極の1例の断面SEM画像である。It is a cross-sectional SEM image of one example of the light-incidence side electrode produced with the manufacturing method shown in FIG. (A)は、各実施例の電気泳動の間におけるコロイド中の半導体微粒子の混合比の予測値を示すグラフであり、(B)は、各実施例の光入射側電極の光捕集の入射光波長依存性を示すグラフである。(A) is a graph which shows the prediction value of the mixing ratio of the semiconductor fine particle in the colloid during the electrophoresis of each Example, (B) is incident light collection of the light incident side electrode of each Example. It is a graph which shows light wavelength dependence. (A)は、各実施例の光入射側電極を用いた色素増感型太陽電池の電流密度−電圧特性を示すグラフであり、(B)は、実施例の光入射側電極および比較例の光入射側電極をそれぞれ用いた色素増感型太陽電池の電流密度−電圧特性を示すグラフである。(A) is a graph which shows the current density-voltage characteristic of the dye-sensitized solar cell using the light incident side electrode of each Example, (B) is the light incident side electrode of an Example, and a comparative example. It is a graph which shows the current density-voltage characteristic of the dye-sensitized solar cell which respectively used the light-incidence side electrode.

以下、添付図面を参照して本発明の好ましい実施例について説明する。図1は、本発明の1実施例による色素増感型光電変換素子の光入射側電極の製造法を説明するフロー図である。
図1を参照して、本発明によれば、まず、平均粒径が異なる複数の半導体微粒子群が準備される(図1のステップS1)。この場合、半導体微粒子群毎に粒子径を揃えるために、通常、分級法が使用される。また、複数の半導体微粒子群のそれぞれが異なる種類の半導体から形成されていてもよいし、複数の半導体微粒子群がいずれも、例えば酸化チタン等のような同じ種類の半導体から形成されていてもよい。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a flowchart for explaining a method of manufacturing a light incident side electrode of a dye-sensitized photoelectric conversion device according to one embodiment of the present invention.
Referring to FIG. 1, according to the present invention, first, a plurality of semiconductor fine particle groups having different average particle diameters are prepared (step S1 in FIG. 1). In this case, in order to make the particle diameter uniform for each semiconductor fine particle group, a classification method is usually used. In addition, each of the plurality of semiconductor fine particle groups may be formed of different types of semiconductors, or each of the plurality of semiconductor fine particle groups may be formed of the same type of semiconductor such as titanium oxide. .

次に、複数の半導体微粒子群のそれぞれが個別に分散媒中に混ぜられ、複数のコロイドが形成される(図1のステップS2)。
そして、図2(A)に示すように、複数の半導体微粒子群のうちの平均粒径が最小の半導体微粒子群のコロイド2が容器1に収容され、当該コロイド2中に、少なくとも一方が透明導電膜3aを有する透明基板3からなる一対の電極3、4が挿入され、これら一対の電極3、4間に、透明導電膜3aを有する透明基板3が陰極となるように電流が流されて電気泳動が行われる(図1のステップS3)。
Next, each of the plurality of semiconductor fine particle groups is individually mixed in the dispersion medium to form a plurality of colloids (step S2 in FIG. 1).
Then, as shown in FIG. 2A, the colloid 2 of the semiconductor fine particle group having the smallest average particle diameter among the plurality of semiconductor fine particle groups is accommodated in the container 1, and at least one of the colloids 2 is transparent conductive. A pair of electrodes 3 and 4 made of a transparent substrate 3 having a film 3a is inserted, and an electric current is passed between the pair of electrodes 3 and 4 so that the transparent substrate 3 having a transparent conductive film 3a becomes a cathode. Electrophoresis is performed (step S3 in FIG. 1).

この電気泳動の間に、残りの半導体微粒子群のコロイドが平均粒径の小さいものから順に、所定の時間間隔で所定量添加され、それによって、陰極側の透明基板3の透明導電膜3a上に、半導体微粒子が積層されて、多孔質の半導体微粒子層が形成される(図1のステップS4)。
この場合、コロイドの添加は、当該添加すべきコロイドを一定の添加速度で所定の時間にわたって連続的に添加することによって行われることが好ましい。
During this electrophoresis, the remaining colloids of the semiconductor fine particle groups are added in a predetermined amount at predetermined time intervals in order from the one having the smallest average particle diameter, and thereby on the transparent conductive film 3a of the transparent substrate 3 on the cathode side. The semiconductor fine particles are laminated to form a porous semiconductor fine particle layer (step S4 in FIG. 1).
In this case, the colloid is preferably added by continuously adding the colloid to be added at a constant addition rate over a predetermined time.

その後、半導体微粒子の積層された透明基板3が容器1から取り出されて熱処理され(図1のステップS5)、熱処理後の透明基板上の半導体微粒子層に色素が吸着される(図1のステップS6)。
この半導体微粒子層への色素の吸着は、通常、浸漬法を用いて行われる。
しかしながら、複数の半導体微粒子群のそれぞれが結晶構造の異なる半導体微粒子から形成されている場合には、結晶構造が異なるとそのエネルギー準位も異なることから、結晶構造毎に、それに適合した色素を吸着させることが好ましい。
Thereafter, the transparent substrate 3 on which the semiconductor fine particles are laminated is taken out from the container 1 and heat-treated (Step S5 in FIG. 1), and the dye is adsorbed on the semiconductor fine-particle layer on the transparent substrate after the heat treatment (Step S6 in FIG. 1). ).
The adsorption of the dye to the semiconductor fine particle layer is usually performed using an immersion method.
However, when each of a plurality of semiconductor fine particle groups is formed of semiconductor fine particles having different crystal structures, the energy level also differs if the crystal structure is different. Therefore, a suitable dye is adsorbed for each crystal structure. It is preferable to make it.

よって、複数の半導体微粒子群のそれぞれが結晶構造の異なる半導体微粒子から形成されている場合には、半導体微粒子層への色素の吸着が、半導体微粒子群毎に当該半導体微粒子群に適合する色素を準備し、平均粒径が最小の半導体微粒子群に適合する色素の溶液を第2の容器中に収容し、当該色素の溶液中に当該半導体微粒子層を備えた透明基板を一方の電極とする一対の電極を挿入し、一対の電極間に電流を流して電気泳動を行い、この電気泳動の間に、残りの色素のそれぞれの溶液を、平均粒径が小さい半導体微粒子群に適合するものから順に所定の時間間隔で所定量添加することにより、透明基板上の半導体微粒子層に色素を吸着させることによって行われる。   Therefore, when each of the plurality of semiconductor fine particle groups is formed of semiconductor fine particles having different crystal structures, a dye suitable for the semiconductor fine particle group is prepared for each semiconductor fine particle group. Then, a solution of a dye compatible with the semiconductor fine particle group having the smallest average particle diameter is accommodated in the second container, and a pair of the transparent substrate having the semiconductor fine particle layer in the dye solution is used as one electrode. Electrophoresis is performed by inserting an electrode and passing a current between a pair of electrodes. During this electrophoresis, each remaining dye solution is determined in order from the one that matches the group of semiconductor fine particles having a small average particle diameter. The dye is adsorbed to the semiconductor fine particle layer on the transparent substrate by adding a predetermined amount at the time interval.

こうして、本発明によれば、色素増感型光電変換素子の光入射側電極の半導体微粒子層を電気泳動によって形成し、この電気泳動を、予め準備しておいた平均粒径が異なる複数の半導体微粒子群のうち平均粒径が最小の半導体微粒子群のコロイドから出発して、このコロイドに残りの半導体微粒子群を平均粒径が小さい順に添加することによって行うので、光入射側電極の半導体微粒子層を、当該層中において、透明基板から遠ざかるにつれて、次第に粒径がより大きい半導体微粒子の割合が増大するように構成することができる。   Thus, according to the present invention, the semiconductor fine particle layer of the light incident side electrode of the dye-sensitized photoelectric conversion element is formed by electrophoresis, and this electrophoresis is performed in advance by a plurality of semiconductors having different average particle diameters. Starting from the colloid of the semiconductor fine particle group having the smallest average particle size among the fine particle groups, the remaining semiconductor fine particle group is added to this colloid in order of increasing average particle size, so that the semiconductor fine particle layer of the light incident side electrode In the layer, the proportion of the semiconductor fine particles having a larger particle diameter gradually increases as the distance from the transparent substrate increases.

それによって、透明基板側(光入射面)から入射した光の半導体微粒子層中の透過率は、透明基板から遠ざかるにつれて低下し、入射光は、透明基板から最も離れた半導体微粒子層の端部に達したときには適度に減衰する。それによって、入射光を半導体微粒子層によって効率的に捕集することができる。   Thereby, the transmittance of the light entering the semiconductor fine particle layer from the transparent substrate side (light incident surface) decreases as the distance from the transparent substrate increases, and the incident light reaches the end of the semiconductor fine particle layer farthest from the transparent substrate. When it reaches, it attenuates moderately. Thereby, incident light can be efficiently collected by the semiconductor fine particle layer.

そして、本発明によれば、電気泳動の間のコロイド中の半導体粒子群の混合比を制御するだけで、半導体微粒子層中の半導体微粒子の粒径の遷移を自在に変えることができ、従来の塗布法を用いた場合のように多層構造の形成時に層毎に乾燥・焼成を繰り返す必要がなく、よって、光電変換素子の光入射側電極をより短時間に低コストで製造することができる。加えて、本発明では、電気泳動によって透明基板上に半導体微粒子層を形成するので、サイズの大きな電極や、平板状以外の形状の電極であっても安定的に製造することが可能である。   According to the present invention, it is possible to freely change the particle size transition of the semiconductor fine particles in the semiconductor fine particle layer simply by controlling the mixing ratio of the semiconductor particle groups in the colloid during electrophoresis. Unlike the case where the coating method is used, it is not necessary to repeat drying and baking for each layer when forming the multilayer structure, and thus the light incident side electrode of the photoelectric conversion element can be manufactured in a shorter time and at lower cost. In addition, in the present invention, since the semiconductor fine particle layer is formed on the transparent substrate by electrophoresis, even a large-sized electrode or an electrode having a shape other than a flat plate shape can be stably manufactured.

次に、本発明の作用効果を調べるべく実証実験を行った。実験の内容は次のとおりである。
(実施例1)
(i)TiOナノ粒子の形成
チタン酸アルコキシドとしてテトライソプロピルオルトチタネート(TIPT)と、有機溶媒としてアセチルアセトン(ACAC)をモル比1:1で混合し、TIPT溶液を形成した。次いで、このTIPT溶液に、水溶性界面活性剤として0.1モルのラウリルアミン塩酸塩(LAHC)水溶液をモル比4:1で混合し、沈殿を生じさせた。
そして、この混合液を恒温槽中においてマグネットスターラによって40℃で3〜5日間撹拌することで沈殿物をすべて溶かし、その後、80℃で加水分解および重縮反応を進行させることで、酸化チタン(TiO)ナノ粒子を形成(合成)した。
Next, a verification experiment was conducted in order to examine the effects of the present invention. The contents of the experiment are as follows.
Example 1
(I) Formation of TiO 2 nanoparticles Tetraisopropyl orthotitanate (TIPT) as a titanate alkoxide and acetylacetone (ACAC) as an organic solvent were mixed at a molar ratio of 1: 1 to form a TIPT solution. Next, 0.1 mol of laurylamine hydrochloride (LAHC) aqueous solution as a water-soluble surfactant was mixed with this TIPT solution at a molar ratio of 4: 1 to cause precipitation.
Then, the mixture is stirred in a thermostatic chamber at 40 ° C. for 3 to 5 days with a magnetic stirrer to dissolve all precipitates, and then the hydrolysis and polycondensation reactions are allowed to proceed at 80 ° C. TiO 2 ) nanoparticles were formed (synthesized).

(ii)粒子の分級
形成したTiOナノ粒子を、分散媒(2−プロパノール)中に分散させて遠心管に封入し、まず10000rpmで遠心分離を行い、粒径の大きい粗い粒子を沈殿させて取り除いた。続いて、残った上澄み液を、さらに高速の13,500rpmで分離沈殿させることにより、粒子径の揃ったTiOナノ粒子群(平均粒径=5nm)を得た。
また、市販のP25微粒子(デグッサ製)を水に分散させて遠心管に封入し、前と同様に遠心分離を行うことによって、粒子径の揃ったP25微粒子群(平均粒径=50nm)を得た。
(Ii) Particle classification The formed TiO 2 nanoparticles are dispersed in a dispersion medium (2-propanol) and sealed in a centrifuge tube, and then centrifuged at 10,000 rpm to precipitate coarse particles having a large particle size. Removed. Subsequently, the remaining supernatant was separated and precipitated at a higher speed of 13,500 rpm to obtain a TiO 2 nanoparticle group (average particle diameter = 5 nm) having a uniform particle diameter.
Also, commercially available P25 fine particles (manufactured by Degussa) are dispersed in water, sealed in a centrifuge tube, and centrifuged as before to obtain a P25 fine particle group (average particle size = 50 nm) having a uniform particle size. It was.

(iii)コロイドの形成
・コロイドA
分級によって得られたTiO微粒子群(平均粒径=5nm)を、エタノール中に濃度0.40Vol%となるように加え、マグネットスターラにより5分間撹拌後、超音波を5分間照射し、再びマグネットスターラにより5分間撹拌し、コロイドAを調製した。
・コロイドB
分級によって得られたP25微粒子群(平均粒径=50nm)を、エタノール中に濃度1.0Vol%となるように加え、マグネットスターラによる5分間の拡散、および5分間の超音波照射を繰り返し行うことで、コロイドBを調製した。
(Iii) Colloid formation-Colloid A
The TiO 2 fine particle group (average particle size = 5 nm) obtained by classification is added to ethanol so that the concentration becomes 0.40 Vol%, stirred with a magnetic stirrer for 5 minutes, irradiated with ultrasonic waves for 5 minutes, and then magnetized again. The mixture was stirred with a stirrer for 5 minutes to prepare colloid A.
・ Colloid B
The P25 fine particle group (average particle size = 50 nm) obtained by classification is added to ethanol so as to have a concentration of 1.0 Vol%, and diffusion for 5 minutes with a magnetic stirrer and ultrasonic irradiation for 5 minutes are repeated. Colloid B was prepared.

(iv)電気泳動による半導体微粒子の積層
40ccのコロイドAを容器に入れ、コロイドA中に、陰極としてITO基板(フルウチ化学製、10Ω/cm)と、陽極としてアルミニウム板(純度99.99%)を挿入し、ITO基板面がコロイド液面に垂直になり、かつITO基板とアルミニウム板が互いに平行になるように配置した。
そして、極板間に一定電流(0.1A/cm)を供給するとともに、電流供給の開始から60秒間はコロイドAのみで電気泳動を行い、次いで(電流供給の開始から60秒経過後)、コロイドBをコロイドAに滴下速度6.24×10−2cc/秒で300秒間添加した後、電流供給を停止して電気泳動を終了し、基板上に厚さが7.2μmの半導体微粒子層を積層させた。
(v)色素の吸着
増感色素としてN719(Cis-di(thiocyanate)bis(2,2’-bipyridy 1-4,4’-di-carboxy-late) - ruthenium (II) bis - tetra - butylammonium)と呼ばれるルテニウム金属錯体色素を用い、これを濃度3.0×10−4Mとなるようにエタノール中に溶解させて色素分散溶液を調製した。
そして、半導体微粒子層を積層させた基板を取り出して熱処理した後、この色素分散溶液中に、溶液の温度を40℃に保った状態で24時間浸漬させることによって、半導体微粒子層中に色素を吸着させ、光電変換素子の光入射側電極を作製した。
(Iv) Lamination of semiconductor fine particles by electrophoresis 40 cc of colloid A is put in a container, and in colloid A, an ITO substrate (manufactured by Furuuchi Chemical, 10Ω / cm 2 ) as an anode and an aluminum plate (purity 99.99% as an anode) ) Was inserted, and the ITO substrate surface was perpendicular to the colloidal liquid surface, and the ITO substrate and the aluminum plate were arranged parallel to each other.
Then, while supplying a constant current (0.1 A / cm) between the electrode plates, electrophoresis is performed only with colloid A for 60 seconds from the start of current supply, and then (after 60 seconds have elapsed from the start of current supply), After colloid B is added to colloid A at a dropping rate of 6.24 × 10 −2 cc / sec for 300 seconds, the current supply is stopped to terminate electrophoresis, and a semiconductor fine particle layer having a thickness of 7.2 μm on the substrate Were laminated.
(V) Dye adsorption N719 (Cis-di (thiocyanate) bis (2,2'-bipyridy 1-4,4'-di-carboxy-late)-ruthenium (II) bis-tetra-butylammonium) as a sensitizing dye A ruthenium metal complex dye called “I” was dissolved in ethanol so as to have a concentration of 3.0 × 10 −4 M to prepare a dye dispersion solution.
And after taking out the board | substrate which laminated | stacked the semiconductor fine particle layer and heat-processing, it is made to adsorb | suck a pigment | dye in a semiconductor fine particle layer by immersing in this pigment dispersion solution in the state which maintained the temperature of the solution at 40 degreeC for 24 hours. Thus, a light incident side electrode of the photoelectric conversion element was produced.

(実施例2)
コロイドBの滴下速度を4.16×10−2cc/秒として、実施例1と同様にして電気泳動を行い、基板上に厚さが4μmの半導体微粒子層を積層させ、実施例1と同様にして半導体微粒子層中に色素を吸着させることによって、光電変換素子の光入射側電極を作製した。
(実施例3)
コロイドBの滴下速度を2.08×10−2cc/秒として、実施例1と同様にして電気泳動を行い、基板上に厚さが5μmの半導体微粒子層を積層させ、実施例1と同様にして半導体微粒子層中に色素を吸着させることによって、光電変換素子の光入射側電極を作製した。
(Example 2)
Electrophoresis was performed in the same manner as in Example 1 at a colloid B dropping rate of 4.16 × 10 −2 cc / sec, and a semiconductor fine particle layer having a thickness of 4 μm was laminated on the substrate. Thus, the light incident side electrode of the photoelectric conversion element was produced by adsorbing the dye in the semiconductor fine particle layer.
(Example 3)
Electrophoresis was performed in the same manner as in Example 1 at a colloid B dropping rate of 2.08 × 10 −2 cc / sec, and a semiconductor fine particle layer having a thickness of 5 μm was laminated on the substrate. Thus, the light incident side electrode of the photoelectric conversion element was produced by adsorbing the dye in the semiconductor fine particle layer.

図4(A)は、上記実施例1〜3のそれぞれにおける電気泳動中の時間経過に伴う容器中のTiOナノ粒子とP25微粒子の混合比の変化の予測値を示したグラフである。図4(A)において、X、YおよびZは、それぞれ、実施例1、実施例2および実施例3のグラフを示している。 FIG. 4A is a graph showing a predicted value of a change in the mixing ratio of TiO 2 nanoparticles and P25 fine particles in the container with the passage of time during electrophoresis in each of Examples 1 to 3. In FIG. 4A, X, Y, and Z show the graphs of Example 1, Example 2, and Example 3, respectively.

(比較例1)
実施例1で分級によって得た平均粒径が5nmのTiOナノ粒子群と、平均粒径が50nmのP25微粒子群とを1:1の質量比で混合したコロイドを形成し、このコロイド中に、実施例1と同様の一対の電極を挿入して電気泳動を行い、透明基板の透明導電膜上に厚さが7.2μmの半導体微粒子層を積層し、この半導体微粒子層中に実施例1と同様にして色素を吸着させることによって光電変換素子の光入射側電極を作製した。
(比較例2)
実施例1で分級によって得た平均粒径が50nmのP25微粒子群を用い、実験1と同様にしてコロイドを形成し、このコロイド中に、実験1と同様の一対の電極を挿入して電気泳動を行い、透明基板の透明導電膜上に厚さが7.2μmの半導体微粒子層を積層し、この半導体微粒子層中に実施例1と同様にして色素を吸着させることによって光電変換素子の光入射側電極を作製した。
(Comparative Example 1)
A colloid obtained by mixing the TiO 2 nanoparticle group having an average particle diameter of 5 nm obtained by classification in Example 1 and the P25 fine particle group having an average particle diameter of 50 nm at a mass ratio of 1: 1 is formed, and the colloid is formed in the colloid. Electrophoresis is performed by inserting a pair of electrodes similar to those in Example 1, and a semiconductor fine particle layer having a thickness of 7.2 μm is laminated on the transparent conductive film of the transparent substrate, and Example 1 is placed in the semiconductor fine particle layer. In the same manner as described above, the light incident side electrode of the photoelectric conversion element was produced by adsorbing the dye.
(Comparative Example 2)
Using a P25 fine particle group having an average particle diameter of 50 nm obtained by classification in Example 1, a colloid was formed in the same manner as in Experiment 1, and a pair of electrodes similar to those in Experiment 1 were inserted into this colloid for electrophoresis. Then, a semiconductor fine particle layer having a thickness of 7.2 μm is laminated on the transparent conductive film of the transparent substrate, and the dye is adsorbed in the semiconductor fine particle layer in the same manner as in Example 1, thereby allowing light incident on the photoelectric conversion element. A side electrode was produced.

[実験1]
実施例1の光入射側電極の断面をSEM(走査型電子顕微鏡)によって観察した。図3は、このSEM画像を示したものであり、(A)は断面の全体の画像であり、(B)〜(E)は、それぞれ、(A)中の領域(1)〜(4)の拡大画像である。
図3(A)において、領域(1)は、コロイドBの滴下前のコロイドAのみでの電気泳動にて形成された領域であり、そして、図3(B)から、この領域にはTiOナノ粒子のみが積層されていることがわかる。
図3(A)において、領域(2)は、コロイドBの滴下が開始直後に形成された領域であり、そして、図3(C)から、この領域においてTiOナノ粒子の層からP25微粒子の層への移行部分が形成されていることがわかる。
図3(A)において、領域(3)は、コロイドBの滴下の中間時点で形成された領域であり、領域(4)は、電気泳動の終了直前に形成された領域であり、そして、図3(D)、(E)から、コロイドBの滴下時間の経過につれてP25微粒子の割合が増大していることがわかる。
[Experiment 1]
The cross section of the light incident side electrode of Example 1 was observed by SEM (scanning electron microscope). FIG. 3 shows this SEM image, (A) is an image of the entire cross section, and (B) to (E) are regions (1) to (4) in (A), respectively. It is an enlarged image of.
In FIG. 3A, a region (1) is a region formed by electrophoresis only with colloid A before colloid B is dropped. From FIG. 3B, this region contains TiO 2. It can be seen that only nanoparticles are laminated.
In FIG. 3 (A), region (2) is a region formed immediately after the start of colloid B dripping, and from FIG. 3 (C), from this layer, a layer of P25 fine particles is formed from a layer of TiO 2 nanoparticles. It can be seen that a transition portion to the layer is formed.
In FIG. 3A, the region (3) is a region formed at an intermediate point of colloid B dropping, the region (4) is a region formed immediately before the end of electrophoresis, and FIG. 3 (D) and (E) show that the proportion of P25 fine particles increases as the colloid B dropping time elapses.

[実験2]
実施例1、実施例2および実施例3のそれぞれの光入射側電極について、その光捕集効率の入射光波長依存性を測定した。
測定結果を図4(B)のグラフに示した。図4(B)において、X、YおよびZは、それぞれ、実施例1、実施例2および実施例3のグラフを示している。
図4(B)のグラフから、光入射側電極の半導体微粒子層の層厚が増大するにつれて、入射光の全波長にわたって光捕集効率が向上することがわかった。
[Experiment 2]
For each light incident side electrode of Example 1, Example 2, and Example 3, the dependency of the light collection efficiency on the incident light wavelength was measured.
The measurement results are shown in the graph of FIG. In FIG. 4B, X, Y, and Z show the graphs of Example 1, Example 2, and Example 3, respectively.
From the graph of FIG. 4B, it was found that the light collection efficiency is improved over the entire wavelength of incident light as the thickness of the semiconductor fine particle layer of the light incident side electrode increases.

[実験3]
実施例1の光入射側電極を使用して、色素増感型太陽電池を作製した。図2(B)に、作製した太陽電池の構成を概略的に示す。
図2(B)を参照して、まず、実施例1の光入射側電極5の色素を吸着させた半導体微粒子層5a上に、スペーサー6として、中央に5.0mm×5.0mmの開口部6aを有する厚さ50μmのハイミラン(登録商標)の板を載せ、スペーサ6の開口部6aに電解質溶液7を注入した。なお、電解質溶液7は、溶媒として3-Methoxy-propionitrileを用い、これにLiIを0.1M、Iを0.005M、DMPII(1-propyl-2,3 dimethylimidazolium iodide)を0.6M、TBP(4-tert-butylpyridine)を0.5M添加したものからなっている。
[Experiment 3]
Using the light incident side electrode of Example 1, a dye-sensitized solar cell was produced. FIG. 2B schematically shows the structure of the manufactured solar cell.
Referring to FIG. 2B, first, an opening of 5.0 mm × 5.0 mm is formed as a spacer 6 on the semiconductor fine particle layer 5a on which the dye of the light incident side electrode 5 of Example 1 is adsorbed. A 50 μm-thick Hi Milan (registered trademark) plate having 6 a was placed, and the electrolyte solution 7 was injected into the opening 6 a of the spacer 6. Incidentally, the electrolyte solution 7, using 3-Methoxy-propionitrile as a solvent, to which 0.1M of LiI, 0.005 M to I 2, DMPII (1-propyl -2,3 dimethylimidazolium iodide) to 0.6M, TBP (4-tert-butylpyridine) added with 0.5M.

そして、スペーサー6の上に、白金をスパッタしたITOガラス電極8を重ね合わせ、2枚の電極5、8を(図示しない)外側からバインダークリップで挟んで固定することによって、太陽電池とした。
得られた色素増感型太陽電池の光入射面(光入射側電極の半導体微粒子層と反対側の面)に、標準光源として、校正されたソーラシミュレータ(SAN-EI ELECTRIC, XES-40S1)の光を照射し、太陽電池の電流密度−電圧特性を測定した。
Then, an ITO glass electrode 8 sputtered with platinum was placed on the spacer 6 and the two electrodes 5 and 8 were sandwiched and fixed from outside (not shown) by a binder clip to obtain a solar cell.
The solar simulator (SAN-EI ELECTRIC, XES-40S1) calibrated as a standard light source on the light incident surface of the dye-sensitized solar cell (surface opposite to the semiconductor fine particle layer of the light incident side electrode) Light was irradiated and the current density-voltage characteristics of the solar cell were measured.

実施例1の光入射側電極の代わりに実施例2の光入射側電極を使用し、実施例1と同様にして色素増感型太陽電池を作製し、得られた色素増感型太陽電池の電流密度−電圧特性を実施例1の場合と同様にして測定した。
また、実施例1の光入射側電極の代わりに実施例3の光入射側電極を使用し、実施例1と同様にして色素増感型太陽電池を作製し、得られた色素増感型太陽電池の電流密度−電圧特性を実施例1の場合と同様にして測定した。
Using the light incident side electrode of Example 2 instead of the light incident side electrode of Example 1, a dye-sensitized solar cell was produced in the same manner as in Example 1, and the obtained dye-sensitized solar cell was The current density-voltage characteristics were measured in the same manner as in Example 1.
A dye-sensitized solar cell was prepared in the same manner as in Example 1, using the light-incident side electrode of Example 3 instead of the light-incident side electrode of Example 1, and the resulting dye-sensitized solar cell The current density-voltage characteristics of the battery were measured in the same manner as in Example 1.

これらの測定結果を図5(A)のグラフに示した。図5(A)中、X、YおよびZは、それぞれ、実施例1、実施例2および実施例3のグラフを示している。
図5(A)のグラフから、光入射側電極の半導体微粒子層の厚さが増大するにつれて、より大きな短絡電流密度が得られることがわかった。
These measurement results are shown in the graph of FIG. In FIG. 5A, X, Y, and Z show the graphs of Example 1, Example 2, and Example 3, respectively.
From the graph of FIG. 5A, it was found that a larger short circuit current density can be obtained as the thickness of the semiconductor fine particle layer of the light incident side electrode increases.

[実験4]
実施例1の光入射側電極の代わりに比較例1の光入射側電極を使用し、実施例1と同様にして色素増感型太陽電池を作製し、得られた色素増感型太陽電池の電流密度−電圧特性を実施例1の場合と同様にして測定した。
また、実施例1の光入射側電極の代わりに比較例2の光入射側電極を使用し、実施例1と同様にして色素増感型太陽電池を作製し、得られた色素増感型太陽電池の電流密度−電圧特性を実施例1の場合と同様にして測定した。
[Experiment 4]
Using the light incident side electrode of Comparative Example 1 instead of the light incident side electrode of Example 1, a dye sensitized solar cell was produced in the same manner as in Example 1, and the obtained dye sensitized solar cell was The current density-voltage characteristics were measured in the same manner as in Example 1.
A dye-sensitized solar cell was prepared in the same manner as in Example 1 using the light-incident side electrode of Comparative Example 2 instead of the light-incident side electrode of Example 1, and the resulting dye-sensitized solar cell The current density-voltage characteristics of the battery were measured in the same manner as in Example 1.

これらの測定結果を図5(B)のグラフに示した。図5(B)中、CおよびCは、それぞれ、比較例1および比較例2のグラフを示している。なお、図5(B)中のグラフXは、比較のために、図5(A)に示した実施例1のグラフXを再掲載したものてある。
図5(B)のグラフから、実施例1、比較例1、比較例2の順に、短絡電流密度が大きくなることがわかった。
These measurement results are shown in the graph of FIG. In FIG. 5B, C 1 and C 2 indicate graphs of Comparative Example 1 and Comparative Example 2, respectively. In addition, the graph X in FIG.5 (B) reproduces the graph X of Example 1 shown in FIG.5 (A) for the comparison.
From the graph of FIG. 5B, it was found that the short-circuit current density increased in the order of Example 1, Comparative Example 1, and Comparative Example 2.

これは、実施例1では、半導体微粒子層を、当該層中において、透明基板から遠ざかるにつれて、次第に粒径がより大きい半導体微粒子の割合が増大するような構造としたので、入射光の半導体微粒子層中の透過率が透明基板から遠ざかるにつれて低下し、そして、入射光が透明基板から最も離れた半導体微粒子層の端部に達したときには適度に減衰し、それによって、入射光が半導体微粒子層に効率的に捕集されるのに対し、比較例1や比較例2では、入射光が半導体微粒子層中で適度に減衰せず、この層によって十分に捕集されなかったためであると考えられる。   In Example 1, the semiconductor fine particle layer has a structure in which the proportion of the semiconductor fine particles having a larger particle diameter gradually increases as the distance from the transparent substrate in the layer increases. The transmittance decreases as the distance from the transparent substrate decreases, and when the incident light reaches the end of the semiconductor particle layer farthest from the transparent substrate, it is moderately attenuated, so that the incident light is efficiently transmitted to the semiconductor particle layer. In contrast, in Comparative Example 1 and Comparative Example 2, it is considered that the incident light was not appropriately attenuated in the semiconductor fine particle layer and was not sufficiently collected by this layer.

1 容器
2 コロイド
3 透明基板
3a 透明導電膜
4 電極
5 光入射側電極
5a 色素を吸着させた半導体微粒子層
6 スペーサ
6a 開口部
7 電解質溶液
8 電極
DESCRIPTION OF SYMBOLS 1 Container 2 Colloid 3 Transparent substrate 3a Transparent electrically conductive film 4 Electrode 5 Light incident side electrode 5a Semiconductor fine particle layer 6 which the pigment | dye was adsorbed 6 Spacer 6a Opening part 7 Electrolyte solution 8 Electrode

Claims (9)

色素増感型光電変換素子の光入射側電極の製造法であって、
(1)平均粒径が異なる複数の半導体微粒子群を準備するステップと、
(2)前記複数の半導体微粒子群のそれぞれを個別に分散媒中に混ぜることにより、複数のコロイドを形成するステップと、
(3)前記複数の半導体微粒子群のうちの平均粒径が最小の半導体微粒子群のコロイドを容器に収容し、当該コロイド中に、少なくとも一方が透明導電膜を有する透明基板からなる一対の電極を挿入し、前記一対の電極間に、前記透明導電膜を有する透明基板が陰極となるように電流を流して電気泳動を行うステップと、
(4)前記電気泳動の間に、残りの半導体微粒子群のコロイドを、平均粒径が小さいものから順に所定の時間間隔で所定量添加することにより、前記陰極側の前記透明基板の透明導電膜上に半導体微粒子を積層するステップと、
(5)前記半導体微粒子を積層した前記透明基板を前記容器から取り出して熱処理するステップと、
(6)前記熱処理後の透明基板上の半導体微粒子層に色素を吸着させるステップと、からなっていることを特徴とする製造法。
A method for producing a light incident side electrode of a dye-sensitized photoelectric conversion element,
(1) preparing a plurality of semiconductor fine particle groups having different average particle diameters;
(2) forming a plurality of colloids by individually mixing each of the plurality of semiconductor fine particle groups in a dispersion medium;
(3) A colloid of a semiconductor fine particle group having a minimum average particle diameter among the plurality of semiconductor fine particle groups is accommodated in a container, and a pair of electrodes, at least one of which is a transparent substrate having a transparent conductive film, in the colloid. Inserting and conducting electrophoresis by passing a current between the pair of electrodes so that the transparent substrate having the transparent conductive film serves as a cathode; and
(4) A transparent conductive film of the transparent substrate on the cathode side is added during the electrophoresis by adding a predetermined amount of the colloid of the remaining semiconductor fine particle group in order from the smallest average particle size at a predetermined time interval. Laminating semiconductor fine particles thereon,
(5) removing the transparent substrate on which the semiconductor fine particles are laminated from the container and performing a heat treatment;
(6) A method comprising adsorbing a dye on a semiconductor fine particle layer on the transparent substrate after the heat treatment.
前記ステップ(4)において、コロイドの添加を、当該添加すべきコロイドを一定の添加速度で所定の時間にわたって連続的に添加することによって行うことを特徴とする請求項1に記載の製造法。   In the step (4), the colloid is added by continuously adding the colloid to be added at a constant addition rate over a predetermined time. 前記複数の半導体微粒子群のそれぞれを結晶構造が異なる半導体微粒子から形成するとともに、
前記ステップ(6)において、前記半導体微粒子層への色素の吸着を、前記半導体微粒子群毎に当該半導体微粒子群に適合する色素を準備し、前記平均粒径が最小の半導体微粒子群に適合する色素の溶液を第2の容器中に収容し、当該色素の溶液中に前記透明基板を一方の電極とする一対の電極を挿入し、前記一対の電極間に電流を流して電気泳動を行い、この電気泳動の間に、残りの色素のそれぞれの溶液を、平均粒径が小さい半導体微粒子群に適合するものから順に所定の時間間隔で所定量添加することにより、前記透明基板上の半導体微粒子層に色素を吸着させることによって行うことを特徴とする請求項1または請求項2に記載の製造法。
Each of the plurality of semiconductor fine particle groups is formed from semiconductor fine particles having different crystal structures,
In the step (6), for the adsorption of the dye to the semiconductor fine particle layer, a dye suitable for the semiconductor fine particle group is prepared for each semiconductor fine particle group, and the dye suitable for the semiconductor fine particle group having the smallest average particle diameter is prepared. In a second container, a pair of electrodes having the transparent substrate as one electrode is inserted into the dye solution, and an electric current is passed between the pair of electrodes to perform electrophoresis. During electrophoresis, each solution of the remaining dye is added to the semiconductor fine particle layer on the transparent substrate by adding a predetermined amount at predetermined time intervals in order from the one that matches the semiconductor fine particle group having a small average particle diameter. The method according to claim 1 or 2, wherein the method is performed by adsorbing a dye.
前記複数の半導体微粒子群のそれぞれを異なる種類の半導体から形成したことを特徴とする請求項1〜請求項3のいずれかに記載の製造法。   The manufacturing method according to any one of claims 1 to 3, wherein each of the plurality of semiconductor fine particle groups is formed of a different type of semiconductor. 前記複数の半導体微粒子群をいずれも酸化チタンから形成したことを特徴とする請求項1〜請求項3のいずれかに記載の製造法。   The manufacturing method according to claim 1, wherein each of the plurality of semiconductor fine particle groups is made of titanium oxide. 請求項1または請求項2に記載の製造法によって製造された色素増感型光電変換素子の光入射側電極であって、
透明導電膜を有する透明基板と、
前記透明基板の透明導電膜上に形成された半導体微粒子層と、
前記半導体微粒子層に吸着された色素と、からなり、
前記半導体微粒子層が、前記透明基板から遠ざかるにつれて、次第に粒径の大きい半導体微粒子の割合が増大するように構成されていることを特徴とする光入射側電極。
A light incident side electrode of a dye-sensitized photoelectric conversion element manufactured by the manufacturing method according to claim 1 or 2,
A transparent substrate having a transparent conductive film;
A semiconductor fine particle layer formed on the transparent conductive film of the transparent substrate;
A dye adsorbed on the semiconductor fine particle layer,
The light incident side electrode, wherein the semiconductor fine particle layer is configured so that a ratio of semiconductor fine particles having a large particle diameter gradually increases as the distance from the transparent substrate increases.
請求項3に記載の製造法によって製造された色素増感型光電変換素子の光入射側電極であって、
透明導電膜を有する透明基板と、
前記透明基板の透明導電膜上に形成された半導体微粒子層と、
前記半導体微粒子層に吸着された色素と、からなり、
前記半導体微粒子層が、前記透明基板から遠ざかるにつれて、次第に粒径の大きい半導体微粒子の割合が増大するとともに、この粒径の遷移に対応して半導体微粒子の結晶構造が次第に変化するように構成され、さらに、前記半導体微粒子層には、前記半導体微粒子の結晶構造に適合した色素が吸着されていることを特徴とする光入射側電極。
A light incident side electrode of a dye-sensitized photoelectric conversion element manufactured by the manufacturing method according to claim 3,
A transparent substrate having a transparent conductive film;
A semiconductor fine particle layer formed on the transparent conductive film of the transparent substrate;
A dye adsorbed on the semiconductor fine particle layer,
As the semiconductor fine particle layer moves away from the transparent substrate, the proportion of the semiconductor fine particles having a large particle size gradually increases, and the crystal structure of the semiconductor fine particles gradually changes corresponding to the transition of the particle size, Further, the light incident side electrode, wherein the semiconductor fine particle layer is adsorbed with a dye suitable for a crystal structure of the semiconductor fine particle.
前記複数の半導体微粒子群のそれぞれが異なる種類の半導体からなっていることを特徴とする請求項6または請求項7に記載の光入射側電極。   8. The light incident side electrode according to claim 6, wherein each of the plurality of semiconductor fine particle groups is made of a different type of semiconductor. 前記複数の半導体微粒子群がいずれも酸化チタンからなっていることを特徴とする請求項6または請求項7に記載の光入射側電極。   8. The light incident side electrode according to claim 6, wherein each of the plurality of semiconductor fine particle groups is made of titanium oxide.
JP2013196730A 2013-09-24 2013-09-24 Manufacturing method of light incident side electrode of dye-sensitized photoelectric conversion element Expired - Fee Related JP6269923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013196730A JP6269923B2 (en) 2013-09-24 2013-09-24 Manufacturing method of light incident side electrode of dye-sensitized photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013196730A JP6269923B2 (en) 2013-09-24 2013-09-24 Manufacturing method of light incident side electrode of dye-sensitized photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2015064944A true JP2015064944A (en) 2015-04-09
JP6269923B2 JP6269923B2 (en) 2018-01-31

Family

ID=52832700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013196730A Expired - Fee Related JP6269923B2 (en) 2013-09-24 2013-09-24 Manufacturing method of light incident side electrode of dye-sensitized photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6269923B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222971A (en) * 2001-01-29 2002-08-09 Sharp Corp Photoelectric converter
JP2002352868A (en) * 2001-05-29 2002-12-06 Toyota Central Res & Dev Lab Inc Optical electrode and dye sensitizing type solar battery having the same
JP2003142170A (en) * 2001-10-31 2003-05-16 Toyota Central Res & Dev Lab Inc Photo-electrode and dye sensitized solar cell equipped therewith
JP2004087148A (en) * 2002-08-23 2004-03-18 Sony Corp Dye-sensitized photoelectric converter and its fabricating process
JP2005116302A (en) * 2003-10-07 2005-04-28 Sony Corp Photoelectric conversion element and electronic equipment
JP2006086056A (en) * 2004-09-17 2006-03-30 Kyoto Univ Dye-sensitized solar cell
JP2006313668A (en) * 2005-05-06 2006-11-16 Dainippon Printing Co Ltd Transfer material for oxide semiconductor electrode, substrate for dye-sensitized solar cell, dye-sensitized solar cell, and method of manufacturing them
JP2007128895A (en) * 2005-11-03 2007-05-24 Samsung Sdi Co Ltd Solar battery and its manufacturing method
JP2008204956A (en) * 2008-03-26 2008-09-04 Sony Corp Dye sensitized solar battery
JP2009016236A (en) * 2007-07-06 2009-01-22 Konica Minolta Holdings Inc Dye-sensitized solar cell
JP2010113905A (en) * 2008-11-05 2010-05-20 Sony Corp Dye-sensitized solar cell and process for producing the same
WO2010103759A1 (en) * 2009-03-11 2010-09-16 国立大学法人九州工業大学 Dye-sensitized solar cell
US20110100532A1 (en) * 2009-10-29 2011-05-05 Industrial Technology Research Institute Method for manufacturing an electrode
JP2012053983A (en) * 2010-08-03 2012-03-15 Fujifilm Corp Photoelectric converter and photoelectrochemical cell
JP2012114017A (en) * 2010-11-26 2012-06-14 Panasonic Corp Photoelectrochemical cell and energy system using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222971A (en) * 2001-01-29 2002-08-09 Sharp Corp Photoelectric converter
JP2002352868A (en) * 2001-05-29 2002-12-06 Toyota Central Res & Dev Lab Inc Optical electrode and dye sensitizing type solar battery having the same
JP2003142170A (en) * 2001-10-31 2003-05-16 Toyota Central Res & Dev Lab Inc Photo-electrode and dye sensitized solar cell equipped therewith
JP2004087148A (en) * 2002-08-23 2004-03-18 Sony Corp Dye-sensitized photoelectric converter and its fabricating process
JP2005116302A (en) * 2003-10-07 2005-04-28 Sony Corp Photoelectric conversion element and electronic equipment
JP2006086056A (en) * 2004-09-17 2006-03-30 Kyoto Univ Dye-sensitized solar cell
JP2006313668A (en) * 2005-05-06 2006-11-16 Dainippon Printing Co Ltd Transfer material for oxide semiconductor electrode, substrate for dye-sensitized solar cell, dye-sensitized solar cell, and method of manufacturing them
JP2007128895A (en) * 2005-11-03 2007-05-24 Samsung Sdi Co Ltd Solar battery and its manufacturing method
JP2009016236A (en) * 2007-07-06 2009-01-22 Konica Minolta Holdings Inc Dye-sensitized solar cell
JP2008204956A (en) * 2008-03-26 2008-09-04 Sony Corp Dye sensitized solar battery
JP2010113905A (en) * 2008-11-05 2010-05-20 Sony Corp Dye-sensitized solar cell and process for producing the same
WO2010103759A1 (en) * 2009-03-11 2010-09-16 国立大学法人九州工業大学 Dye-sensitized solar cell
US20110100532A1 (en) * 2009-10-29 2011-05-05 Industrial Technology Research Institute Method for manufacturing an electrode
JP2012053983A (en) * 2010-08-03 2012-03-15 Fujifilm Corp Photoelectric converter and photoelectrochemical cell
JP2012114017A (en) * 2010-11-26 2012-06-14 Panasonic Corp Photoelectrochemical cell and energy system using the same

Also Published As

Publication number Publication date
JP6269923B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
Mao et al. High efficiency dye-sensitized solar cells constructed with composites of TiO2 and the hot-bubbling synthesized ultra-small SnO2 nanocrystals
Sakai et al. Efficiency enhancement of ZnO-based dye-sensitized solar cells by low-temperature TiCl4 treatment and dye optimization
Jung et al. Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells
Concina et al. Metal oxide semiconductors for dye‐and quantum‐dot‐sensitized solar cells
He et al. Enhanced sunlight harvesting of dye-sensitized solar cells assisted with long persistent phosphor materials
Sauvage et al. Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%
Yao et al. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO: Eu3+, Tb3+ coated TiO2 film
Guerin et al. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications
Kim et al. Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions
Williams et al. Fast transporting ZnO–TiO2 coaxial photoanodes for dye-sensitized solar cells based on ALD-modified SiO2 aerogel frameworks
Li et al. Macroporous SnO2 synthesized via a template-assisted reflux process for efficient dye-sensitized solar cells
Guo et al. Hierarchical TiO2 submicrorods improve the photovoltaic performance of dye-sensitized solar cells
An et al. Enhanced Photoconversion Efficiency of All‐Flexible Dye‐Sensitized Solar Cells Based on a Ti Substrate with TiO2 Nanoforest Underlayer
Zhai et al. High Electrocatalytic and Wettable Nitrogen‐Doped Microwave‐Exfoliated Graphene Nanosheets as Counter Electrode for Dye‐Sensitized Solar Cells
Zhan et al. Oxygen-deficient nanofiber WO3–x/WO3 homojunction photoanodes synthesized via a novel metal self-reducing method
Zhang et al. TiO2 nanorods: a facile size-and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells
Wang et al. Polyoxometalate/TiO2 interfacial layer with the function of accelerating electron transfer and retarding recombination for dye-sensitized solar cells
Lee et al. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell
Chu et al. A facile and green approach to synthesize mesoporous anatase TiO2 nanomaterials for efficient dye-sensitized and hole-conductor-free perovskite solar cells
Yu et al. Rapid Electron Injection in Nitrogen-and Fluorine-Doped Flower-Like Anatase TiO2 with {001} Dominated Facets and Dye-Sensitized Solar Cells with a 52% Increase in Photocurrent
Jiang et al. Efficient light scattering from one-pot solvothermally derived TiO2 nanospindles
Baker et al. Disassembly, reassembly, and photoelectrochemistry of etched TiO2 nanotubes
Luo et al. TiO2 nanotube arrays formed on Ti meshes with periodically arranged holes for flexible dye-sensitized solar cells
JP2002075477A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
Peng et al. Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171129

R150 Certificate of patent or registration of utility model

Ref document number: 6269923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees