JP2006086056A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2006086056A
JP2006086056A JP2004270967A JP2004270967A JP2006086056A JP 2006086056 A JP2006086056 A JP 2006086056A JP 2004270967 A JP2004270967 A JP 2004270967A JP 2004270967 A JP2004270967 A JP 2004270967A JP 2006086056 A JP2006086056 A JP 2006086056A
Authority
JP
Japan
Prior art keywords
layer
porous layer
dye
oxide semiconductor
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004270967A
Other languages
Japanese (ja)
Inventor
Motonari Adachi
基齊 足立
Jinting Jiu
金▲亭▼ 酒
Jun Takao
潤 高尾
Shoji Isoda
正二 磯田
Yoshitoshi Horiuchi
俊壽 堀内
Takeshi Itabashi
武之 板橋
Naoki Yoshimoto
尚起 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Mitsubishi Chemical Corp
Hitachi Ltd
Kyoto University
Nippon Telegraph and Telephone Corp
Pioneer Corp
Original Assignee
Rohm Co Ltd
Mitsubishi Chemical Corp
Hitachi Ltd
Kyoto University
Nippon Telegraph and Telephone Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd, Mitsubishi Chemical Corp, Hitachi Ltd, Kyoto University, Nippon Telegraph and Telephone Corp, Pioneer Electronic Corp filed Critical Rohm Co Ltd
Priority to JP2004270967A priority Critical patent/JP2006086056A/en
Publication of JP2006086056A publication Critical patent/JP2006086056A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell having high power generation efficiency in the dye-sensitized solar cell having an oxide semiconductor layer formed in a porous state by integrating fine particles in an optical electrode. <P>SOLUTION: The oxide semiconductor layer 25 emitting electrons by irradiating incident light has a first porous layer 26 formed by integrating first semiconductor particles 26a having a particle size of 1-5 nm, a second porous layer 27 formed by integrating second semiconductor particles 27a having particle diameter larger than the first semiconductor particles on the first porous layer 26, and sensitized dyes 28 adsorbed on the surfaces of the first porous layer 26 and the second porous layer 27, and exciting by absorbing the incident light U. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微粒子が集積して多孔質状に形成される酸化物半導体層を光電極に有する色素増感太陽電池に関し、特に発電効率の高い色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell having a photoelectrode having an oxide semiconductor layer in which fine particles are accumulated and formed into a porous shape, and particularly relates to a dye-sensitized solar cell with high power generation efficiency.

まず、色素増感太陽電池(以下、単に電池と記載する場合もある)の発電効率を向上させる第1の従来技術として、次に示すものが挙げられる。すなわち、入射光が入射する光電極の酸化物半導体層を構成する半導体粒子の粒径を小さくし、酸化物半導体層の比表面積を大きくする技術である。これにより、酸化物半導体層の表面に吸着させる増感色素の量を増加させることができるので、酸化物半導体層の単位厚みにおける吸着した増感色素の密度を高くすることができる。したがって、光電極に入射した入射光は、直進する過程で多くの増感色素を励起するので高効率な電気エネルギの変換が達成される。   First, as a first conventional technique for improving the power generation efficiency of a dye-sensitized solar cell (hereinafter sometimes simply referred to as a battery), the following may be mentioned. That is, this is a technique for reducing the particle size of the semiconductor particles constituting the oxide semiconductor layer of the photoelectrode on which incident light is incident and increasing the specific surface area of the oxide semiconductor layer. Thereby, since the amount of the sensitizing dye adsorbed on the surface of the oxide semiconductor layer can be increased, the density of the adsorbed sensitizing dye in the unit thickness of the oxide semiconductor layer can be increased. Therefore, the incident light incident on the photoelectrode excites many sensitizing dyes in the process of going straight, so that highly efficient conversion of electric energy is achieved.

次に、色素増感太陽電池の発電効率を向上させる第2の従来技術として、例えば、特許文献1,2に挙げられる技術が開示されている。
これらの従来技術によれば、酸化物半導体層は、微粒子の粒径が異なる複数の多孔質層が積層して構成されている。そして、多孔質層の内部における散乱効果と、隣接する多孔質層の界面における反射効果とを利用して入射光が閉じ込められることにより、光エネルギが高効率で電気エネルギに変換される。
特開2002−352868号公報 特開平10−255863号公報
Next, as a second conventional technique for improving the power generation efficiency of the dye-sensitized solar cell, for example, techniques disclosed in Patent Documents 1 and 2 are disclosed.
According to these conventional techniques, the oxide semiconductor layer is configured by laminating a plurality of porous layers having different particle diameters of fine particles. The incident light is confined using the scattering effect inside the porous layer and the reflection effect at the interface between the adjacent porous layers, so that the light energy is converted into electric energy with high efficiency.
JP 2002-352868 A JP-A-10-255863

しかし、第1の従来技術においては、半導体粒子の粒径が小さくなれば、半導体粒子間の間隙も小さくなり電解液中でこの間隙を移動するイオンの拡散が抑制されてしまう。したがって、入射光を吸収して増感色素が励起しても、イオンから電子が供与されないので、色素と半導体中の電子とが再結合してしまう。このため、酸化物半導体層を構成する半導体粒子の粒径を小さくしすぎると、逆に、電池の発電効率を低下させることになる。   However, in the first prior art, if the particle size of the semiconductor particles is reduced, the gap between the semiconductor particles is also reduced, and diffusion of ions moving through the gap in the electrolytic solution is suppressed. Therefore, even if the sensitizing dye is excited by absorbing incident light, electrons are not donated from the ions, so that the dye and the electrons in the semiconductor are recombined. For this reason, if the particle size of the semiconductor particles constituting the oxide semiconductor layer is too small, the power generation efficiency of the battery is reduced.

また、第2の従来技術において、前記した入射光の散乱効果を充分に発揮させるためには、微粒子の粒径が入射光の波長レベルすなわち数100nm以上であることが求められる。少なくとも、粒径が10nm以下の微粒子からなる多孔質層で酸化物半導体層が構成されている場合においては、このような散乱効果を期待することはできない。
また、前記した界面における反射効果を充分に発揮させるためには、界面を複数設ける必要があり、そのためには積層する多孔質層の層数を多くして酸化物半導体層を構成する必要がある。
Further, in the second prior art, in order to sufficiently exhibit the above-described incident light scattering effect, it is required that the particle diameter of the fine particles is the wavelength level of the incident light, that is, several hundred nm or more. Such a scattering effect cannot be expected when the oxide semiconductor layer is composed of at least a porous layer made of fine particles having a particle diameter of 10 nm or less.
Further, in order to sufficiently exhibit the reflection effect at the interface described above, it is necessary to provide a plurality of interfaces, and for this purpose, it is necessary to configure the oxide semiconductor layer by increasing the number of porous layers to be stacked. .

このように、第2の従来技術において、前記した散乱効果及び反射効果を充分に発揮させるために酸化物半導体層は、粒径の大きな微粒子からなる多孔質層が、多層に亘って積層して構成される必要がある。さらに、酸化物半導体層の層厚方向における増感色素の密度をある程度確保するためには、その層厚が大きくなることが避けられない。その結果、電極間隔が広がり、半導体に注入されたキャリアの損失量が多くなると共に、電解液中を増感色素から対向電極まで往復するイオンの移動行程が長距離化して電池の内部抵抗が大きくなることとなり、満足する発電効率が達成されない場合があった。
以上述べたように、色素増感太陽電池の発電効率を向上させる従来技術では、到達できる発電効率に限界があった。
As described above, in the second prior art, in order to sufficiently exhibit the scattering effect and the reflection effect described above, the oxide semiconductor layer is formed by laminating a porous layer composed of fine particles having a large particle diameter over a plurality of layers. Need to be configured. Further, in order to ensure a certain density of the sensitizing dye in the layer thickness direction of the oxide semiconductor layer, it is inevitable that the layer thickness becomes large. As a result, the distance between the electrodes is widened, the loss of carriers injected into the semiconductor is increased, and the travel of ions reciprocating from the sensitizing dye to the counter electrode in the electrolytic solution is lengthened to increase the internal resistance of the battery. As a result, satisfactory power generation efficiency may not be achieved.
As described above, the conventional power generation efficiency of the dye-sensitized solar cell has a limit in the power generation efficiency that can be reached.

そこで、本発明は、色素増感太陽電池の発電効率をさらに高いレベルに到達させることを解決すべき課題とする。   Then, this invention makes it the problem which should be solved to make the power generation efficiency of a dye-sensitized solar cell reach a still higher level.

前記課題を解決するため、請求項1に記載の色素増感太陽電池の発明は、透明電極層、酸化物半導体層、電解液、対向電極を備える色素増感太陽電池において、酸化物半導体層は、粒径が1〜5nmの第1半導体粒子が集積してなる第1多孔質層と、粒径が第1半導体粒子よりも大きい第2多孔質層と、第1多孔質層及び第2多孔質層の表面に吸着する増感色素と、が課題を解決するための手段として具備されることを特徴とする。   In order to solve the above problems, the dye-sensitized solar cell according to claim 1 is a dye-sensitized solar cell including a transparent electrode layer, an oxide semiconductor layer, an electrolytic solution, and a counter electrode. A first porous layer in which first semiconductor particles having a particle size of 1 to 5 nm are accumulated, a second porous layer having a particle size larger than that of the first semiconductor particles, a first porous layer, and a second porous layer A sensitizing dye adsorbed on the surface of the quality layer is provided as a means for solving the problem.

請求項1に記載の色素増感太陽電池によれば、透明電極層を透過して酸化物半導体層に照射される入射光が、まず最初に通過する第1多孔質層は、第1半導体粒子の粒径が1〜5nmと極めて微細であるため、層厚が薄いにもかかわらず充分に大きな比表面積を有している。このため、酸化物半導体層の透明電極層に接している幅狭部分、すなわち第1多孔質層の内部表面には、大量の増感色素が吸着されうる。そして、これら大量の増感色素が入射光を吸収して励起し半導体に電子注入しても、第1多孔質層の層厚が充分薄いので、電解液中のイオンは、励起している増感色素の近くにすぐに移動して電子を供与できるので、増感色素と第1多孔質層中の電子とが再結合することがない。そして、第1多孔質層で光エネルギが吸収されきれずに通り抜けた、入射光の一部は、次に第2多孔質層を通過して、その表面に吸着している増感色素を励起して吸収される。ところで、この第2多孔質層を構成する第2半導体粒子の粒径は、10〜100nmであるので、イオンが拡散するのに必要で十分な間隙が確保されているといえる。このため、第2多孔質層の層厚が大きくても、第1多孔質層と対向電極との間を電解液を介して大量に行き来するイオンの移動が妨げられることはない。   According to the dye-sensitized solar cell according to claim 1, the first porous layer through which the incident light that is transmitted through the transparent electrode layer and irradiated on the oxide semiconductor layer first passes is the first semiconductor particle. Has a sufficiently large specific surface area even though the layer thickness is small. For this reason, a large amount of sensitizing dye can be adsorbed on the narrow portion of the oxide semiconductor layer that is in contact with the transparent electrode layer, that is, the inner surface of the first porous layer. Even if these large amounts of sensitizing dye absorb and absorb incident light and inject electrons into the semiconductor, the first porous layer is sufficiently thin so that the ions in the electrolyte are excited. Since the electrons can be moved immediately in the vicinity of the sensitizing dye to donate electrons, the sensitizing dye and the electrons in the first porous layer are not recombined. Then, a part of the incident light that has passed through the first porous layer without being completely absorbed by the light passes through the second porous layer to excite the sensitizing dye adsorbed on the surface. Then absorbed. By the way, since the particle size of the second semiconductor particles constituting the second porous layer is 10 to 100 nm, it can be said that a sufficient gap necessary for ion diffusion is secured. For this reason, even if the layer thickness of the second porous layer is large, the movement of ions that travel back and forth between the first porous layer and the counter electrode via the electrolytic solution is not hindered.

したがって、通過する入射光によって励起された増感色素は、それが、第1多孔質層あるいは第2多孔質層の表面に吸着したものであるかにかかわらず、多孔質層中の電子と再結合する前に電解液中のイオンから電子の供与を受けることができる。また第1多孔質層は、層厚が薄いにもかかわらず、増感色素の密度が高いので、入射光は第1多孔質層を通過すると、その光エネルギのほとんどが吸収されることになる。そして、この第1多孔質層を通り抜けて第2多孔質層に入射する入射光は、すでにその光エネルギが相当に減衰しているので、第2多孔質層での吸収により入射光の光エネルギを充分に吸収することが可能である。よって、酸化物半導体層全体としての層厚を薄くすることができるので、透明電極層と対向電極との間隔を狭めることができることとなり、電池の内部抵抗を小さくすることができる。   Therefore, the sensitizing dye excited by the incident light passing therethrough does not recombine with electrons in the porous layer regardless of whether it is adsorbed on the surface of the first porous layer or the second porous layer. Before bonding, electrons can be donated from ions in the electrolyte. In addition, the first porous layer has a high density of sensitizing dyes although the layer thickness is thin, so that most of the light energy is absorbed when the incident light passes through the first porous layer. . The incident light that passes through the first porous layer and enters the second porous layer has already attenuated its optical energy considerably. Therefore, the light energy of the incident light is absorbed by the second porous layer. Can be sufficiently absorbed. Therefore, the thickness of the oxide semiconductor layer as a whole can be reduced, so that the interval between the transparent electrode layer and the counter electrode can be reduced, and the internal resistance of the battery can be reduced.

次に、請求項2に記載の色素増感太陽電池の発明においては、前記第1多孔質層の層厚は、0.5〜5μmであり、前記第2多孔質層の層厚は、2〜50μmであることを特徴とする。   Next, in the invention of the dye-sensitized solar cell according to claim 2, the layer thickness of the first porous layer is 0.5 to 5 μm, and the layer thickness of the second porous layer is 2 It is ˜50 μm.

請求項2に記載の色素増感太陽電池によれば、入射光の光エネルギの大半を第1多孔質層で吸収することが可能となり、かつ電解液中のイオンが第1多孔質層の内部に侵入して励起している増感色素のもとへ、電子が再結合する前に到達することが可能となる。そして、第1多孔質層を通り抜けた入射光の一部は、第2多孔質層を通過する過程においてその光エネルギのほとんどが吸収されることになる。   According to the dye-sensitized solar cell of claim 2, most of the light energy of the incident light can be absorbed by the first porous layer, and ions in the electrolytic solution are contained in the first porous layer. It is possible to reach the sensitizing dye that has been excited by penetrating into the substrate before electrons recombine. A part of the incident light passing through the first porous layer is absorbed in the process of passing through the second porous layer.

本発明は、微粒子が集積して多孔質状に形成される酸化物半導体層を光電極に有する色素増感太陽電池において、高効率で入射光の光エネルギを吸収できるので、高い光電変換効率が達成される。   Since the present invention can absorb light energy of incident light with high efficiency in a dye-sensitized solar cell having an oxide semiconductor layer in which a fine particle is accumulated and formed into a porous shape, the photoelectric conversion efficiency is high. Achieved.

以下、本発明の色素増感太陽電池の実施形態について図面を参照しつつ説明を行う。図1は、本実施形態に係る色素増感太陽電池10を示す側面断面図である。図2は、図1におけるA矢視部を示す拡大図である。   Hereinafter, embodiments of the dye-sensitized solar cell of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view showing a dye-sensitized solar cell 10 according to this embodiment. FIG. 2 is an enlarged view showing a portion indicated by an arrow A in FIG.

色素増感太陽電池10は、図1に示すように、入射光Uが入射する光電極20と、対向電極40と、これらの周辺部に介在して内部に密閉した空間を形成するスペーサ50a,50bと、この空間に充填される電解液30とからなる。そして、色素増感太陽電池10は、照射された入射光Uの光エネルギを電気エネルギに変換して、光電極20及び対向電極40に結線する外部負荷60に電力を供給するものである。   As shown in FIG. 1, the dye-sensitized solar cell 10 includes a photoelectrode 20 on which incident light U is incident, a counter electrode 40, and spacers 50 a that form a sealed space interposed therebetween. 50b and the electrolytic solution 30 filled in this space. And the dye-sensitized solar cell 10 converts the light energy of the incident light U irradiated into electric energy, and supplies electric power to the external load 60 connected to the photoelectrode 20 and the counter electrode 40.

光電極20は、図1に示すように、透明基板22及び導電性光透過膜23からなる透明電極層21と、第1多孔質層26及び第2多孔質層27からなる酸化物半導体層25とから構成される。
このうち、透明電極層21は、照射された入射光Uを、その光エネルギを減衰させることなく透過させる機能と、酸化物半導体層25が放出する電子を結線で導いて外部負荷60に伝達させる機能とを有するものである。
そして、透明電極層21は、板厚が0.1〜1mmの板状で、ガラス製またはプラスチック製の透明基板22における片面に、膜厚が2.5〜10μmの導電性光透過膜23が公知の方法によりコーティングされて形成されている。
As shown in FIG. 1, the photoelectrode 20 includes a transparent electrode layer 21 composed of a transparent substrate 22 and a conductive light transmission film 23, and an oxide semiconductor layer 25 composed of a first porous layer 26 and a second porous layer 27. It consists of.
Among these, the transparent electrode layer 21 transmits the incident incident light U without being attenuated in its light energy, and transmits the electrons emitted from the oxide semiconductor layer 25 to the external load 60 by connection. It has a function.
The transparent electrode layer 21 has a plate shape with a plate thickness of 0.1 to 1 mm, and a conductive light-transmitting film 23 with a film thickness of 2.5 to 10 μm is provided on one side of a transparent substrate 22 made of glass or plastic. It is formed by coating by a known method.

ところで、導電性光透過膜23は、電気伝導性を有し、入射光Uに対する透過性、及び透明基板22に対する密着性に優れるもので、ITO(Indium-Tin-Oxide:インジウム−スズ酸化物)が好ましく用いられる。また、導電性光透過膜23はITOに限定されず、IZO、ZnO等の透明導電膜を用いることができる。   By the way, the conductive light transmission film 23 has electrical conductivity, is excellent in transparency to incident light U, and adhesion to the transparent substrate 22, and is made of ITO (Indium-Tin-Oxide). Is preferably used. The conductive light transmission film 23 is not limited to ITO, and a transparent conductive film such as IZO or ZnO can be used.

また、酸化物半導体層25は、透明電極層21の導電性光透過膜23側に接して設けられ、入射光Uが照射されると、導電性光透過膜23に電子を放出するものである。そして、酸化物半導体層25は、透明電極層21に境界を接する幅狭部分が、第1多孔質層26で構成され、さらに第1多孔質層26の上に第2多孔質層27が積層されて、その主面が対向電極40に対向するように設けられている。   The oxide semiconductor layer 25 is provided in contact with the conductive light transmission film 23 side of the transparent electrode layer 21, and emits electrons to the conductive light transmission film 23 when irradiated with incident light U. . In the oxide semiconductor layer 25, the narrow portion in contact with the transparent electrode layer 21 is composed of the first porous layer 26, and the second porous layer 27 is laminated on the first porous layer 26. Thus, the main surface is provided to face the counter electrode 40.

そして、図2に示すように、第1多孔質層26は、粒径が1〜5nm、好ましくは2〜4nmの範囲に含まれるTiO2(以下、チタニアという)の第1半導体粒子26aが集積して形成される層厚が0.5〜5μm、望ましくは2〜4μmの多孔質層である。 As shown in FIG. 2, the first porous layer 26 is accumulated with first semiconductor particles 26 a of TiO 2 (hereinafter referred to as titania) having a particle diameter in the range of 1 to 5 nm, preferably 2 to 4 nm. A porous layer having a layer thickness of 0.5 to 5 μm, desirably 2 to 4 μm is formed.

そして、第2多孔質層27は、第1半導体粒子26aよりも粒径が大きい、好ましくは10〜100nm、さらに好ましくは20〜50nmの範囲に含まれる粒径を有するチタニアの第2半導体粒子27aが集積して形成される層厚が2〜50μm、好ましくは5〜20μmの多孔質状の膜である。   The second porous layer 27 has a larger particle size than the first semiconductor particles 26a, preferably 10 to 100 nm, more preferably 20 to 50 nm. Is a porous film having a layer thickness of 2 to 50 μm, preferably 5 to 20 μm.

なお、前記したように定めた粒径の範囲を有する第1半導体粒子26a、第2半導体粒子27aは、それぞれ第1多孔質層26、第2多孔質層27を構成する主成分であって、これらの範囲を逸脱する粒径を有するものが介在する場合を排除する訳ではない。また、第2多孔質層27は、比表面積を大きくすることを目的として、イオンの移動を妨げない程度に、第2半導体粒子27aよりも粒径の小さい半導体粒子(例えば第1半導体粒子26a)を含んでいてもよい。   The first semiconductor particles 26a and the second semiconductor particles 27a having the particle diameter ranges determined as described above are the main components constituting the first porous layer 26 and the second porous layer 27, respectively. The case where a particle having a particle size deviating from these ranges is not excluded. The second porous layer 27 is a semiconductor particle having a particle diameter smaller than that of the second semiconductor particle 27a (for example, the first semiconductor particle 26a) to an extent that does not hinder the movement of ions for the purpose of increasing the specific surface area. May be included.

このように、酸化物半導体層25が、第1多孔質層26と第2多孔質層27とから構成されることにより、酸化物半導体層25は、透明電極層21と境界を接する幅狭部分(第1多孔質層26)の比表面積を相対的に大きくすることができ、この部分の増感色素28の吸着密度を向上させることができる。   As described above, the oxide semiconductor layer 25 includes the first porous layer 26 and the second porous layer 27, so that the oxide semiconductor layer 25 has a narrow portion in contact with the transparent electrode layer 21. The specific surface area of the (first porous layer 26) can be relatively increased, and the adsorption density of the sensitizing dye 28 in this portion can be improved.

さらに、第1多孔質層26を構成する第1半導体粒子26aがチタニアであるとすると、粒径が1〜5nmといった極めて微細なチタニアの微粒子は、凝集し易く、塊となることが知られている。このような塊となったチタニアの微粒子は、ナノサイズのアナターゼ型チタニア微結晶が稠密に充填され、各微結晶の結晶面同士が直接接しているチタニア微結晶集合体を形成している。このため、第1多孔質層26においては、チタニア層を通して電子の移動が迅速に行われることとなり、電池の高効率化に寄与することになる。   Furthermore, if the first semiconductor particles 26a constituting the first porous layer 26 are titania, it is known that extremely fine titania particles having a particle diameter of 1 to 5 nm are likely to aggregate and form a lump. Yes. The titania fine particles formed into such a lump are densely filled with nano-sized anatase-type titania microcrystals to form a titania microcrystal aggregate in which the crystal faces of each microcrystal are in direct contact with each other. For this reason, in the 1st porous layer 26, an electron movement will be rapidly performed through a titania layer, and it will contribute to the high efficiency of a battery.

また、前記したチタニア微粒子の塊と塊の間はある程度の隙間が空いており、TEMの観察では、塊の大きさが、10〜15nm程度に対して、隙間が3〜5nmであることが判っている。この隙間の大きさは、後記するヨウ素イオンやI3 -イオンの拡散が行われるのに充分な大きさである。従って、第1半導体粒子26aの粒径が小さいことは、第1多孔質層26が0.5〜5μmの薄膜でイオンの拡散距離が短いことも含め、第1多孔質層26におけるイオンの移動を阻害する要因にはならない。なお、拡散に要する時間は拡散距離の二乗に比例するものであり、例えば、拡散距離が1/100になると、拡散時間は1/10000になる。 Further, there is a certain gap between the above-mentioned titania fine particles, and observation by TEM shows that the size of the lump is about 10 to 15 nm and the gap is 3 to 5 nm. ing. The size of the gap is large enough to allow the diffusion of iodine ions and I 3 ions, which will be described later. Accordingly, the small particle size of the first semiconductor particles 26a means that the movement of ions in the first porous layer 26 includes that the first porous layer 26 is a thin film of 0.5 to 5 μm and the ion diffusion distance is short. It does not become a factor to inhibit. Note that the time required for diffusion is proportional to the square of the diffusion distance. For example, when the diffusion distance becomes 1/100, the diffusion time becomes 1/10000.

一方、第2多孔質層27では、前記した粒径の範囲内の第2半導体粒子27a,27a…が形成する隙間は、ヨウ素イオンやI3 -イオンの拡散が迅速に行われるのに充分な大きさで確保されているといえる。このため、第2多孔質層27の内部を、第1多孔質層26の方向に移動したり、対向電極40の方向に移動したりするイオンを妨げることがない。 On the other hand, in the second porous layer 27, the gap formed by the second semiconductor particles 27a, 27a... Within the above-described particle diameter range is sufficient for rapid diffusion of iodine ions and I 3 ions. It can be said that it is secured in size. For this reason, the ion which moves inside the 2nd porous layer 27 in the direction of the 1st porous layer 26, or moves in the direction of the counter electrode 40 is not prevented.

ここで、第1半導体粒子26aの粒径が下限の1nm以下であると、後記する光電極20の作成する際に、増感色素28の分散したゲルを酸化物半導体層25の内部表面に浸透させようとしても、第1半導体粒子26a,26a…の間隙が狭すぎて増感色素28の拡散が不充分となり第1多孔質層26の内部表面に増感色素28を充分に吸着させることができない。そして、第1半導体粒子26aの粒径が上限の5nm以上であると、酸化物半導体層25の透明電極層21に接する幅狭部分の比表面積が小さくなり、吸着する増感色素28の密度が低下するため望まれる光電変換効率が得られない。   Here, when the particle diameter of the first semiconductor particle 26a is 1 nm or less, which is the lower limit, the gel in which the sensitizing dye 28 is dispersed penetrates the inner surface of the oxide semiconductor layer 25 when the photoelectrode 20 described later is formed. However, the gap between the first semiconductor particles 26 a, 26 a... Is too narrow and the diffusion of the sensitizing dye 28 becomes insufficient, so that the sensitizing dye 28 can be sufficiently adsorbed on the inner surface of the first porous layer 26. Can not. When the particle size of the first semiconductor particles 26a is 5 nm or more, which is the upper limit, the specific surface area of the narrow portion in contact with the transparent electrode layer 21 of the oxide semiconductor layer 25 is reduced, and the density of the sensitizing dye 28 to be adsorbed is reduced. The desired photoelectric conversion efficiency cannot be obtained due to the decrease.

また、第2半導体粒子27aの粒径が下限の10nm以下であると、第2多孔質層27の内部に浸透した電解液30中を移動するイオンの移動速度が遅くなり電池の内部抵抗を上昇させてしまう。さらに、第2半導体粒子27aの粒径が上限の100nmを超えると、第2多孔質層27の比表面積が低下するので、所望の光電変換効率を得るためには第2多孔質層27の層厚を大きくしなければならず、その結果、透明電極層21と対向電極40との電極間隔が大きくなり電池の内部抵抗を上昇させてしまう。   Further, when the particle size of the second semiconductor particles 27a is 10 nm or less, which is the lower limit, the moving speed of ions moving through the electrolytic solution 30 that has penetrated into the second porous layer 27 is slowed, and the internal resistance of the battery is increased. I will let you. Furthermore, when the particle size of the second semiconductor particles 27a exceeds the upper limit of 100 nm, the specific surface area of the second porous layer 27 is reduced. Therefore, in order to obtain a desired photoelectric conversion efficiency, the layer of the second porous layer 27 The thickness must be increased, and as a result, the electrode interval between the transparent electrode layer 21 and the counter electrode 40 is increased, and the internal resistance of the battery is increased.

ここで、第1多孔質層26の層厚の下限が0.5μmであることは、後記する光電極20を作成する際に、一回の成膜処理で形成される最低厚みであることによる。そして、第1多孔質層26の層厚の上限が5μm以上であると、第1多孔質層26の内部に浸透した電解液30中を移動するイオンの移動速度は極めて遅いため、透明電極層21との境界近傍までイオンが移動するのに時間がかかってしまう。このため、入射光Uを吸収して励起しても電子の供与を受けられずに、第1多孔質層26中の電子とが再結合してしまう増感色素28が増大し、望まれる光電変換効率が得られない。   Here, the lower limit of the layer thickness of the first porous layer 26 is 0.5 μm because it is the minimum thickness formed by one film formation process when the photoelectrode 20 described later is formed. . If the upper limit of the thickness of the first porous layer 26 is 5 μm or more, the moving speed of ions moving through the electrolyte 30 that has penetrated into the first porous layer 26 is extremely slow. It takes time for ions to move to the vicinity of the boundary with 21. For this reason, even if the incident light U is absorbed and excited, the sensitizing dye 28 that does not receive the donation of electrons and recombines with the electrons in the first porous layer 26 increases, and the desired photoelectric conversion is achieved. Conversion efficiency cannot be obtained.

また、第2多孔質層27の層厚の下限が2μm以下であることは、後記する光電極20を作成する際に、一回の成膜処理で形成される最低厚みであるからである。そして、第2多孔質層27の層厚が上限の50μmを超えると、透明電極層21と対向電極40との電極間隔が大きくなり電池の内部抵抗を上昇し望まれる光電変換効率が得られない。   Further, the lower limit of the layer thickness of the second porous layer 27 is 2 μm or less because it is the minimum thickness formed by one film formation process when the photoelectrode 20 described later is formed. When the thickness of the second porous layer 27 exceeds the upper limit of 50 μm, the electrode spacing between the transparent electrode layer 21 and the counter electrode 40 increases, increasing the internal resistance of the battery, and the desired photoelectric conversion efficiency cannot be obtained. .

なお、本実施形態において第1半導体粒子26a,第2半導体粒子27aを構成する化合物はチタニア(TiO2)であるとしたが、増感色素28から電子の注入が効率よく行われ、光エネルギから電気エネルギへの変換が効率よく実効される化合物であれば、特に限定されるものではない。
このため、酸化物半導体層25(第1半導体粒子26a,第2半導体粒子27a)を構成する化合物は、チタニア(TiO2)の他に、例えば、酸化スズ(SnO2)、酸化亜鉛(ZnO)、酸化ニオブ(Nb25)、酸化インジウム(In23)、酸化ジルコニウム(ZrO2)、酸化ランタン(La23)、酸化タンタル(Ta25)、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTiO3)等を用いることができる。
In the present embodiment, the compound constituting the first semiconductor particle 26a and the second semiconductor particle 27a is titania (TiO 2 ). However, electrons are efficiently injected from the sensitizing dye 28, and light energy is used. The compound is not particularly limited as long as it is a compound that can be efficiently converted into electric energy.
Therefore, the compounds constituting the oxide semiconductor layer 25 (first semiconductor particles 26a, second semiconductor particles 27a) are, for example, tin oxide (SnO 2 ), zinc oxide (ZnO) in addition to titania (TiO 2 ). Niobium oxide (Nb 2 O 5 ), indium oxide (In 2 O 3 ), zirconium oxide (ZrO 2 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), strontium titanate (SrTiO 3) ), Barium titanate (BaTiO 3 ), and the like.

そして、増感色素28は、酸化物半導体層25の内部表面、すなわちこれを構成する第1半導体粒子26a及び第2半導体粒子27aの表面に、単分子層状に吸着しているものである。このように吸着する増感色素28のうち、酸化物半導体層25の内部表面に直接化学結合する増感色素28のみが増感作用を示す。
この増感作用とは、入射光Uの光エネルギを吸収して増感色素28が、酸化物半導体層25を構成する化合物(チタニア)の伝導体のレベルよりも約0.2eV高いエネルギまで励起することにより、電子が増感色素28から酸化物半導体層25に注入される作用である。
The sensitizing dye 28 is adsorbed in the form of a monomolecular layer on the inner surface of the oxide semiconductor layer 25, that is, on the surfaces of the first semiconductor particles 26a and the second semiconductor particles 27a constituting the oxide semiconductor layer 25. Of the sensitizing dyes 28 adsorbed in this manner, only the sensitizing dye 28 that directly chemically bonds to the inner surface of the oxide semiconductor layer 25 exhibits a sensitizing action.
This sensitizing action absorbs the light energy of the incident light U, and the sensitizing dye 28 is excited to an energy about 0.2 eV higher than the level of the conductor of the compound (titania) constituting the oxide semiconductor layer 25. Thus, electrons are injected from the sensitizing dye 28 into the oxide semiconductor layer 25.

そして、本発明に用いられる増感色素28は、例えば、ルテニウム錯体、特にルテニウムビピリジン錯体、フタロシアニン、シアニン、メロシアニン、ポルフィリン、クロロフィル、ピレン、メチレンブルー、チオニン、キサンテン、クマリン、ローダミン等の金属錯体ないしは有機色素ならびにそれらの誘導体を用いることができる。   The sensitizing dye 28 used in the present invention is, for example, a ruthenium complex, particularly a ruthenium bipyridine complex, a metal complex or an organic compound such as phthalocyanine, cyanine, merocyanine, porphyrin, chlorophyll, pyrene, methylene blue, thionine, xanthene, coumarin, and rhodamine. Dyes as well as their derivatives can be used.

ところで、増感色素28の単分子層の一層分では入射光Uを完全に吸収することは、当然に出来ないので、入射光Uの吸収効率を向上させるためには、入射光Uが進行路上に単分子層が多層に存在させて入射光Uが突き抜けないようにする必要がある。そのためには、酸化物半導体層25の比表面積を大きくすればよく、構成する半導体微粒子の粒径を小さくさせたり、酸化物半導体層25の層厚を厚くしたりすることが有効である。しかし、酸化物半導体層25の層厚が厚くなると、透明電極層21と対向電極40との間隔が広がり、電池の内部抵抗が大きくなり、光電変換効率を低下させる原因になり得ることは、すでに述べた通りである。   By the way, since the incident light U cannot be completely absorbed by a single layer of the monomolecular layer of the sensitizing dye 28, the incident light U is on the traveling path in order to improve the absorption efficiency of the incident light U. In addition, it is necessary to prevent the incident light U from penetrating the monomolecular layer in multiple layers. For this purpose, the specific surface area of the oxide semiconductor layer 25 may be increased, and it is effective to reduce the particle diameter of the constituent semiconductor particles or increase the thickness of the oxide semiconductor layer 25. However, when the thickness of the oxide semiconductor layer 25 is increased, the distance between the transparent electrode layer 21 and the counter electrode 40 is increased, the internal resistance of the battery is increased, and this may cause a decrease in photoelectric conversion efficiency. As stated.

また、電解液30は、第1,第2半導体粒子26a,27aへ電子注入を果した励起後の増感色素28に電子を供与することができるイオンが含まれていれば特に限定されないが、I-/I3 -を含むヨウ素系の電解液30が好ましく用いられる。その他、Br-/Br3 -系、キノン/ハイドロキノン系などの電解質をアセトニトリル、炭酸プロピレン、エチレンカーボネートなどの電気化学的に不活性な溶媒(およびこれらの混合溶媒)に溶かしたものを使用してもよい。 The electrolyte 30 is not particularly limited as long as it contains ions capable of donating electrons to the sensitizing dye 28 after excitation that has injected electrons into the first and second semiconductor particles 26a and 27a. An iodine electrolyte solution 30 containing I / I 3 is preferably used. In addition, using electrolytes such as Br / Br 3 and quinone / hydroquinone dissolved in electrochemically inert solvents (and mixed solvents thereof) such as acetonitrile, propylene carbonate, and ethylene carbonate Also good.

そして、対向電極40は、固定板42の片面に白金材質等の導電膜41がコーティングされて形成されるものである。そして、この対向電極40及び光電極20が、それぞれ導電膜41及び酸化物半導体層25の面を内側に向けて所定間隔で対向するように、かつ形成される内部空間が密閉状態となるように、その周辺部分にスペーサ50a,50bが設けられている。   The counter electrode 40 is formed by coating one surface of the fixed plate 42 with a conductive film 41 made of a platinum material or the like. The counter electrode 40 and the photoelectrode 20 are opposed to each other at a predetermined interval with the surfaces of the conductive film 41 and the oxide semiconductor layer 25 facing inward, and the formed internal space is sealed. The spacers 50a and 50b are provided in the peripheral portion.

次に、図1を参照して本実施形態に係る色素増感太陽電池10の動作原理について説明する。まず、色素増感太陽電池10の光電極20に入射光Uが入射すると、この入射光Uは、透明電極層21では吸収されることなくほとんどが透過して酸化物半導体層25に到達する。そして、導電性光透過膜23と境界を接する第1多孔質層26の表面に吸着する増感色素28に入射光Uが当ると、この増感色素28は入射光Uの光エネルギの一部を吸収して励起する。この励起が、第1半導体粒子26aの伝導体のレベルよりも約0.2V高いエネルギまで到達すると、増感色素28から第1半導体粒子26aへ電子が注入される。   Next, the operation principle of the dye-sensitized solar cell 10 according to this embodiment will be described with reference to FIG. First, when the incident light U is incident on the photoelectrode 20 of the dye-sensitized solar cell 10, the incident light U is not absorbed by the transparent electrode layer 21 but is almost transmitted and reaches the oxide semiconductor layer 25. When the incident light U hits the sensitizing dye 28 adsorbed on the surface of the first porous layer 26 in contact with the conductive light transmitting film 23, the sensitizing dye 28 is part of the light energy of the incident light U. Is absorbed and excited. When this excitation reaches an energy of about 0.2 V higher than the level of the conductor of the first semiconductor particle 26a, electrons are injected from the sensitizing dye 28 into the first semiconductor particle 26a.

さらに、入射光Uは、第1多孔質層26の内部を進行しつつ、次々と第1多孔質層26の内部表面に吸着している増感色素28を励起して電子を第1半導体粒子26aへ注入していく。この注入された注入電子は、第1半導体粒子26aが前記したように微結晶の結晶面同士が直接接しているチタニア微結晶集合体を形成しているため、極めて迅速に導電性光透過膜23に導かれることになる。このため第1多孔質層26の表面に吸着している増感色素28は、次々に入射してくる入射光Uに対して励起動作のスピードを向上させることができ、結果的に、大量の注入電子がチタニア層に注入されて導電性光透過膜23に導かれることになる。
このようにして、入射光は、第1多孔質層26の内部を進行する過程で、大部分が光エネルギから電気エネルギに変換されるので、第2多孔質層27との界面に達するまでにはその光エネルギの大半は消失することとなる。
Further, the incident light U travels inside the first porous layer 26 and sequentially excites the sensitizing dye 28 adsorbed on the inner surface of the first porous layer 26 to convert electrons into the first semiconductor particles. Inject into 26a. Since the injected electrons form a titania microcrystal aggregate in which the crystal planes of the microcrystals are in direct contact with each other as described above, the first semiconductor particles 26a form the conductive light-transmitting film 23 very quickly. Will be led to. For this reason, the sensitizing dye 28 adsorbed on the surface of the first porous layer 26 can improve the speed of the excitation operation with respect to the incident light U incident one after another. The injected electrons are injected into the titania layer and guided to the conductive light transmission film 23.
In this way, most of the incident light is converted from light energy to electric energy in the process of traveling inside the first porous layer 26, so that the incident light reaches the interface with the second porous layer 27. Most of the light energy will be lost.

ところで、増感色素28は、入射光Uを吸収して励起してもそのままの状態で放置されると注入された電子が増感色素28と再結合することにより注入電子は失活してしまう。そこで、このような電子の再結合が増感色素28で起こる前に、その周りを取り囲んでいる電解液30中のイオンが移動して電子を供与する必要がある。   By the way, when the sensitizing dye 28 absorbs the incident light U and is excited, if it is left as it is, the injected electrons are recombined with the sensitizing dye 28 and the injected electrons are deactivated. . Therefore, before such electron recombination occurs in the sensitizing dye 28, ions in the electrolyte solution 30 surrounding it must move to donate electrons.

ところで、第1多孔質層26は、これを形成する第1半導体粒子26a,26a…が微細であることにより、イオンの拡散抵抗が大きく移動速度が遅いことが懸念される。しかし、前記したように、イオンは、第1半導体粒子26a,26a…の微粒子同士が凝集して形成された塊の隙間を移動するため、励起した増感色素28のもとに即座に到達して電子を供与することができる。さらに、第1多孔質層26は、透明電極層21に接する表層部分に層厚が薄く構成されているので、このため、大量に増感色素28が励起しても、注入電子と再結合する前に、イオンを増感色素28のもとに行き渡らせることができる。これにより、第1多孔質層26の内部表面で励起した増感色素28からチタニア層に注入された大量の電子のほとんどは、再結合すること無く導電性光透過膜23に導かれることになる。   By the way, there is a concern that the first porous layer 26 has a large ion diffusion resistance and a low moving speed due to the fineness of the first semiconductor particles 26a, 26a,. However, as described above, the ions move immediately through the gaps formed by the aggregation of the fine particles of the first semiconductor particles 26a, 26a..., So that they immediately reach the excited sensitizing dye 28. Can donate electrons. Furthermore, since the first porous layer 26 is configured to have a thin layer thickness at the surface layer portion in contact with the transparent electrode layer 21, even when the sensitizing dye 28 is excited in a large amount, it recombines with the injected electrons. Before, ions can be distributed to the sensitizing dye 28. Thereby, most of a large amount of electrons injected into the titania layer from the sensitizing dye 28 excited on the inner surface of the first porous layer 26 is guided to the conductive light transmission film 23 without recombination. .

そして、第1多孔質層26を通り抜けて第2多孔質層27に入射した入射光Uは、前記したのと同様のプロセスにより第2多孔質層27の内部表面に吸着した増感色素28を励起させて電子が注入される。なお、第2多孔質層27は、これを形成する第2半導体粒子27a,27a…が大きいので、電解液30が浸透する間隙が広くイオンが自由に移動することができる。従って、当然に、第2多孔質層27の内部表面に吸着する増感色素28に対してだけでなく、第1多孔質層26の内部表面に吸着する増感色素28に対しても、電子を供与するためのイオンの移動を妨げることはない。   Then, the incident light U that has entered the second porous layer 27 through the first porous layer 26 has absorbed the sensitizing dye 28 adsorbed on the inner surface of the second porous layer 27 by the same process as described above. Excited and injected with electrons. The second porous layer 27 is large in the size of the second semiconductor particles 27a, 27a, etc. that form the second porous layer 27, so that the gap through which the electrolytic solution 30 permeates is wide and ions can move freely. Therefore, naturally, not only for the sensitizing dye 28 adsorbed on the inner surface of the second porous layer 27, but also for the sensitizing dye 28 adsorbed on the inner surface of the first porous layer 26, Does not hinder the movement of ions to donate.

そして、酸化物半導体層25の内部表面に吸着した増感色素28に電子を供与して酸化されたイオンは、今度は、反対の対向電極40の方向に向かって第1,第2多孔質層26,27の間隙に浸透する電解液30中を移動する。そして、酸化されたイオンが、対向電極40に到達すると導電膜41から電子を受容することにより還元される。このように、イオンが電解液30の中を、酸化物半導体層25の内部表面に吸着する増感色素28と、対向電極40との間を何回も往復して酸化・還元反応を繰り返ことにより、光電極20と対向電極40との間に電位勾配が発生する。そして、導電性光透過膜23と導電膜41とが外部負荷60を介して短絡されると、この外部負荷60に電力が供給されることになる。   Then, the ions oxidized by donating electrons to the sensitizing dye 28 adsorbed on the inner surface of the oxide semiconductor layer 25 are now directed toward the opposite counter electrode 40 in the first and second porous layers. It moves through the electrolytic solution 30 penetrating into the gaps 26 and 27. When the oxidized ions reach the counter electrode 40, they are reduced by accepting electrons from the conductive film 41. In this manner, the oxidation / reduction reaction is repeated by many reciprocations between the sensitizing dye 28 adsorbed on the inner surface of the oxide semiconductor layer 25 and the counter electrode 40 in the electrolyte 30. As a result, a potential gradient is generated between the photoelectrode 20 and the counter electrode 40. When the conductive light transmission film 23 and the conductive film 41 are short-circuited via the external load 60, electric power is supplied to the external load 60.

以上述べたように、本発明における色素増感太陽電池は、極めて微細な第1半導体粒子26aにより第1多孔質層26が形成されているので、層の厚み方向における増感色素28の密度が向上され、第1多孔質層26における注入電子の伝導性に優れ、かつ電極間(光電極20、対向電極40の間に充填された電解液30)を行き交うイオンの移動性にも優れ、電極間隔を狭くして電池の内部抵抗を小さくすることができ、高い光電変換効率が達成される。   As described above, in the dye-sensitized solar cell according to the present invention, since the first porous layer 26 is formed by the extremely fine first semiconductor particles 26a, the density of the sensitizing dye 28 in the thickness direction of the layer is low. Improved, excellent conductivity of injected electrons in the first porous layer 26, and excellent mobility of ions passing between the electrodes (electrolytic solution 30 filled between the photoelectrode 20 and the counter electrode 40). The internal resistance of the battery can be reduced by narrowing the interval, and high photoelectric conversion efficiency is achieved.

以下に、実施例を示し本発明に係る光増感太陽電池の作成の詳細について説明する。
(第1多孔質層26の原料となる第1チタニアゲルの作成)
まず、BASF社のトリブロックコポリマーF127:HO-(CH2CH2O)106-(CH2C(CH)3H2O)70-(CH2CH2O)106Hを10 wt %含む水溶液を作った。具体的には、30 ml の蒸留水に2 M の塩酸を0.2 g 加え、そこにF127 を3 g 溶解させた。
次に、第1半導体粒子26aとなるチタンアルコキシドのテトライソプロピルオルトチタネート(TIPT)とアセチルアセトン(ACA)とをモル比で1 :1 で混合した。具体的には、3.4g のTIPTと1.2 g のACA を混合した。
そして、40 ℃で、前記したように作成したF127 の水溶液と、TIPT とACA の混合溶液とを混合し、24時間攪拌して透明な液を得た。透明になった液を80 ℃の空気恒温槽中で攪拌しないで3 日放置して液をゲル化させ、第1チタニアゲル得た。
Below, an Example is shown and the detail of preparation of the photosensitized solar cell which concerns on this invention is demonstrated.
(Preparation of the first titania gel used as the raw material of the first porous layer 26)
First, an aqueous solution containing 10 wt% of triblock copolymer F127 from BASF: HO— (CH 2 CH 2 O) 106 — (CH 2 C (CH) 3 H 2 O) 70 — (CH 2 CH 2 O) 106 H made. Specifically, 0.2 g of 2 M hydrochloric acid was added to 30 ml of distilled water, and 3 g of F127 was dissolved therein.
Next, the titanium alkoxide tetraisopropyl orthotitanate (TIPT) and acetylacetone (ACA) to be the first semiconductor particles 26a were mixed at a molar ratio of 1: 1. Specifically, 3.4 g TIPT and 1.2 g ACA were mixed.
Then, an aqueous solution of F127 prepared as described above and a mixed solution of TIPT and ACA were mixed at 40 ° C. and stirred for 24 hours to obtain a transparent liquid. The liquid that became transparent was allowed to stand for 3 days in an air constant temperature bath at 80 ° C. for 3 days to gel the liquid, thereby obtaining a first titania gel.

(第2多孔質層27の原料となる第2チタニアゲルの作成)
前記した第1チタニアゲルに、第2半導体粒子27aとしてDegussa P-25(日本アエロジル社)を8wt %及び11wt %になるように混合し、室温で24 時間攪拌し、均一な2種類の濃度の異なる第2チタニアゲル(8wt%),(11wt%)を得た。
(Preparation of the second titania gel used as the raw material of the second porous layer 27)
In the first titania gel, Degussa P-25 (Nippon Aerosil Co., Ltd.) as the second semiconductor particles 27a is mixed so as to be 8 wt% and 11 wt%, and stirred at room temperature for 24 hours, so that the two different concentrations are uniform. Second titania gels (8 wt%) and (11 wt%) were obtained.

(光電極20の作成)
シート抵抗が2 Ω/□のITO 透明導電膜(Indium-Tin Oxide )(ジオマテック社製)の上にセロテープ(登録商標)を所定の幅を空けて貼り、第1チタニアゲルを空いた部分にのせ、ガラス棒で押し伸ばし、乾燥後10 分間450 ℃で焼成して薄膜を得る。この工程を2回繰返し、第1多孔質層26を得る。次に、この第1多孔質層26の上に同様の方法で、セロテープ(登録商標)をスペーサとして、第2チタニアゲル(8wt%)を塗布し、乾燥後10 分間450 ℃で焼成する工程を2回繰り返し、さらに第2チタニアゲル(11wt%)を塗布し、乾燥後10 分間450 ℃で焼成する工程を1回行い、第2多孔質層27を得た。更にその上に入射光を散乱反射させる目的で、直径100 nmで長さ300 nm のチタニアナノロッドを1 層塗布した。その後、最終的に450 ℃で1 時間焼成して、酸化物半導体層25を形成した。このようにして、作成された酸化物半導体層25は、粒径が2〜5nmの第1半導体粒子26aから構成される第一多質孔質層と、Degussa P-25と第1半導体粒子26aの混合粒子により構成される第二多質孔質層から構成され、全体として25μmの層厚をなす。
酸化物半導体層25の焼成完了後、3 ×10-4 M の濃度のルテニウム色素N719 のエタノール溶液に作成した酸化物半導体層25を20 時間浸漬し、増感色素28をその内部表面に吸着させた。
(Creation of photoelectrode 20)
A sheet tape of 2 Ω / □ is applied to the ITO transparent conductive film (Indium-Tin Oxide) (manufactured by Geomat Co.) with a predetermined width, and the first titania gel is placed on the empty part. A thin film is obtained by stretching with a glass rod and baking at 450 ° C. for 10 minutes after drying. This process is repeated twice to obtain the first porous layer 26. Next, in the same manner, on the first porous layer 26, a second titania gel (8 wt%) is applied using cello tape (registered trademark) as a spacer, and dried, followed by baking at 450 ° C. for 10 minutes. The second porous layer 27 was obtained by repeating the step of applying the second titania gel (11 wt%) and baking it at 450 ° C. for 10 minutes after drying. In addition, a single layer of titania nanorods with a diameter of 100 nm and a length of 300 nm was applied for the purpose of scattering and reflecting incident light. Thereafter, the oxide semiconductor layer 25 was finally formed by baking at 450 ° C. for 1 hour. Thus, the created oxide semiconductor layer 25 includes a first porous layer composed of the first semiconductor particles 26a having a particle diameter of 2 to 5 nm, Degussa P-25, and the first semiconductor particles 26a. The second porous layer is composed of the mixed particles, and has a layer thickness of 25 μm as a whole.
After the firing of the oxide semiconductor layer 25 is completed, the prepared oxide semiconductor layer 25 is immersed in an ethanol solution of ruthenium dye N719 having a concentration of 3 × 10 −4 M for 20 hours, and the sensitizing dye 28 is adsorbed on the inner surface thereof. It was.

(色素増感太陽電池10の作成)
ITO 透明導電膜に白金を蒸着させた対向電極40と光電極20とを向かい合うように重ね合わせて、電極間に電解液30を満たし色素増感太陽電池10を構成した。なお、セルサイズは5 mm ×5 mmとし、電解液30は、0.6M DMPII(1,2-Dimethyl-3-propylimidazoliumiodide) 0.1M LiI, 0.05M I2 and 0.5M TBP(tert-butylpyridine) を Acetonitrile に溶解したものを用いた。
(Preparation of dye-sensitized solar cell 10)
The counter electrode 40 in which platinum was vapor-deposited on an ITO transparent conductive film and the photoelectrode 20 were superposed so as to face each other, and the electrolyte solution 30 was filled between the electrodes to constitute the dye-sensitized solar cell 10. The cell size is 5 mm × 5 mm, and the electrolyte 30 is 0.6 M DMPII (1,2-Dimethyl-3-propylimidazoliumiodide) 0.1 M LiI, 0.05 M I2 and 0.5 M TBP (tert-butylpyridine) in Acetonitrile. The dissolved one was used.

(測定結果)
光電極20側から入射光Uを照射し、色素増感太陽電池10の性能を測定した。この入射光Uは、Oriel 社製の擬似太陽光(100 mW/cm 2 )を用い、北斗電工製のポテンショスタットで電流−電圧曲線を測定した。その結果、短絡電流密度20.14 mA, 開放電圧 0.756 V, フィルファクター 0.679, 光電変換効率10.34 %という測定結果を得た。
(Measurement result)
Incident light U was irradiated from the photoelectrode 20 side, and the performance of the dye-sensitized solar cell 10 was measured. As the incident light U, pseudo-sunlight (100 mW / cm 2 ) manufactured by Oriel was used, and a current-voltage curve was measured with a potentiostat manufactured by Hokuto Denko. As a result, the measurement results of a short-circuit current density of 20.14 mA, an open-circuit voltage of 0.756 V, a fill factor of 0.679, and a photoelectric conversion efficiency of 10.34% were obtained.

本実施形態に係る色素増感太陽電池を示す側面断面図である。It is side surface sectional drawing which shows the dye-sensitized solar cell which concerns on this embodiment. 図1におけるA矢視部を示す拡大図である。It is an enlarged view which shows the A arrow view part in FIG.

符号の説明Explanation of symbols

10 色素増感太陽電池
20 光電極
21 透明電極層
22 透明基板
23 導電性光透過膜
25 酸化物半導体層
26 第1多孔質層
26a 第1半導体粒子
27 第2多孔質層
27a 第2半導体粒子
28 増感色素
30 電解液
40 対向電極
50a,50b スペーサ
60 外部負荷
U 入射光
DESCRIPTION OF SYMBOLS 10 Dye-sensitized solar cell 20 Photoelectrode 21 Transparent electrode layer 22 Transparent substrate 23 Conductive light transmission film 25 Oxide semiconductor layer 26 First porous layer 26a First semiconductor particle 27 Second porous layer 27a Second semiconductor particle 28 Sensitizing dye 30 Electrolyte 40 Counter electrode 50a, 50b Spacer 60 External load U Incident light

Claims (2)

入射光が照射されると隣接する透明電極層に電子を放出する酸化物半導体層と、
浸漬する前記酸化物半導体層に、電子を供与する電解液と、
前記透明電極層に対向し、前記電解液に接して設けられ、導電性を有する対向電極と、を備える色素増感太陽電池において、
前記酸化物半導体層は、
粒径が1〜5nmの第1半導体粒子が前記透明電極層上に集積してなる第1多孔質層と、
粒径が、第1半導体粒子よりも大きい第2半導体粒子を含む第2多孔質層と、
前記第1多孔質層及び前記第2多孔質層の表面に吸着し、前記入射光を吸収して励起する増感色素と、を有することを特徴とする色素増感太陽電池。
An oxide semiconductor layer that emits electrons to an adjacent transparent electrode layer when irradiated with incident light; and
An electrolyte that donates electrons to the oxide semiconductor layer to be immersed;
In the dye-sensitized solar cell, which is provided so as to face the transparent electrode layer and to be in contact with the electrolytic solution and have conductivity,
The oxide semiconductor layer is
A first porous layer in which first semiconductor particles having a particle size of 1 to 5 nm are accumulated on the transparent electrode layer;
A second porous layer containing second semiconductor particles having a particle size larger than the first semiconductor particles;
A dye-sensitized solar cell comprising: a sensitizing dye that is adsorbed on the surfaces of the first porous layer and the second porous layer and absorbs and excites the incident light.
前記第1多孔質層の層厚は、0.5〜5μmであり、前記第2多孔質層の層厚は、2〜50μmであることを特徴とする請求項1に記載の色素増感太陽電池。   2. The dye-sensitized sun according to claim 1, wherein the first porous layer has a thickness of 0.5 to 5 μm, and the second porous layer has a thickness of 2 to 50 μm. battery.
JP2004270967A 2004-09-17 2004-09-17 Dye-sensitized solar cell Pending JP2006086056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004270967A JP2006086056A (en) 2004-09-17 2004-09-17 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270967A JP2006086056A (en) 2004-09-17 2004-09-17 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2006086056A true JP2006086056A (en) 2006-03-30

Family

ID=36164362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270967A Pending JP2006086056A (en) 2004-09-17 2004-09-17 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2006086056A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273773A (en) * 2007-04-27 2008-11-13 Kyoto Univ Manufacturing method of titania microcrystal aggregate and dye-sensitized solar cell
WO2009020162A1 (en) * 2007-08-07 2009-02-12 Pioneer Corporation Titania crystal, process for producing the same, layered titania substrate, and dye-sensitized solar cell
KR100927212B1 (en) * 2007-07-24 2009-11-16 한국과학기술연구원 Photoelectrode for dye-sensitized solar cell containing hollow sphere metal oxide nanoparticles and method for manufacturing same
KR101017805B1 (en) * 2008-12-17 2011-02-28 하이디스 테크놀로지 주식회사 Dye-sensitized solar cell and method for preparing the same
JP2011233507A (en) * 2010-04-05 2011-11-17 Osaka Gas Co Ltd Substrate with porous titanium oxide coating film formed thereon
JP2012089380A (en) * 2010-10-20 2012-05-10 Toyo Seikan Kaisha Ltd Substrate for semiconductor electrode and electrode for use in dye-sensitized solar battery
WO2013094446A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element
JP2015064944A (en) * 2013-09-24 2015-04-09 学校法人同志社 Method of manufacturing light incident side electrode of dye-sensitized photoelectric conversion element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106222A (en) * 1998-09-28 2000-04-11 Fuji Photo Film Co Ltd Semiconductor film for photoelectric conversion element and photo-electrochemical cell
JP2000285979A (en) * 1999-03-31 2000-10-13 Toshiba Corp Photosensitized photovoltaic generation element
JP2000285974A (en) * 1999-03-30 2000-10-13 Toshiba Corp Photosensitized photovolatic power generation element
JP2001093591A (en) * 1999-09-28 2001-04-06 Toshiba Corp Photoelectric conversion device
JP2001273937A (en) * 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd Photoelectric transducer and solar battery
JP2002008740A (en) * 2000-06-22 2002-01-11 Yamaha Corp Dye sensitized photocell and its manufacturing method
JP2002280587A (en) * 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd Method for manufacturing photoelectric transfer device, photoelectric transfer device, and photoelectric cell
JP2003217688A (en) * 2002-01-18 2003-07-31 Sharp Corp Dye-sensitized photoelectric converter
JP2004079610A (en) * 2002-08-12 2004-03-11 Masaharu Kaneko Method for manufacturing tio2 thin film and electrode for pigment sensitized solar battery, and electrode for pigment sensitized solar battery
JP2005302509A (en) * 2004-04-12 2005-10-27 Toppan Printing Co Ltd Dye-sensitized solar cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106222A (en) * 1998-09-28 2000-04-11 Fuji Photo Film Co Ltd Semiconductor film for photoelectric conversion element and photo-electrochemical cell
JP2000285974A (en) * 1999-03-30 2000-10-13 Toshiba Corp Photosensitized photovolatic power generation element
JP2000285979A (en) * 1999-03-31 2000-10-13 Toshiba Corp Photosensitized photovoltaic generation element
JP2001093591A (en) * 1999-09-28 2001-04-06 Toshiba Corp Photoelectric conversion device
JP2001273937A (en) * 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd Photoelectric transducer and solar battery
JP2002008740A (en) * 2000-06-22 2002-01-11 Yamaha Corp Dye sensitized photocell and its manufacturing method
JP2002280587A (en) * 2001-03-21 2002-09-27 Fuji Photo Film Co Ltd Method for manufacturing photoelectric transfer device, photoelectric transfer device, and photoelectric cell
JP2003217688A (en) * 2002-01-18 2003-07-31 Sharp Corp Dye-sensitized photoelectric converter
JP2004079610A (en) * 2002-08-12 2004-03-11 Masaharu Kaneko Method for manufacturing tio2 thin film and electrode for pigment sensitized solar battery, and electrode for pigment sensitized solar battery
JP2005302509A (en) * 2004-04-12 2005-10-27 Toppan Printing Co Ltd Dye-sensitized solar cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273773A (en) * 2007-04-27 2008-11-13 Kyoto Univ Manufacturing method of titania microcrystal aggregate and dye-sensitized solar cell
KR100927212B1 (en) * 2007-07-24 2009-11-16 한국과학기술연구원 Photoelectrode for dye-sensitized solar cell containing hollow sphere metal oxide nanoparticles and method for manufacturing same
WO2009020162A1 (en) * 2007-08-07 2009-02-12 Pioneer Corporation Titania crystal, process for producing the same, layered titania substrate, and dye-sensitized solar cell
JP2009040622A (en) * 2007-08-07 2009-02-26 Kyoto Univ Titania crystal, process for producing the same, layered titania substrate, and dye-sensitized solar cell
KR101017805B1 (en) * 2008-12-17 2011-02-28 하이디스 테크놀로지 주식회사 Dye-sensitized solar cell and method for preparing the same
JP2011233507A (en) * 2010-04-05 2011-11-17 Osaka Gas Co Ltd Substrate with porous titanium oxide coating film formed thereon
JP2012089380A (en) * 2010-10-20 2012-05-10 Toyo Seikan Kaisha Ltd Substrate for semiconductor electrode and electrode for use in dye-sensitized solar battery
WO2013094446A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element
JPWO2013094446A1 (en) * 2011-12-22 2015-04-27 シャープ株式会社 Photoelectric conversion element
US9330853B2 (en) 2011-12-22 2016-05-03 Sharp Kabushiki Kaisha Photoelectric conversion element
JP2015064944A (en) * 2013-09-24 2015-04-09 学校法人同志社 Method of manufacturing light incident side electrode of dye-sensitized photoelectric conversion element

Similar Documents

Publication Publication Date Title
Boschloo Improving the performance of dye-sensitized solar cells
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5285062B2 (en) Photosensitizer and solar cell using the same
JP5428555B2 (en) Method for producing dye-sensitized photoelectric conversion element
JP3717506B2 (en) Dye-sensitized solar cell module
JP4287344B2 (en) Dye-sensitive solar cell
EP2043191A1 (en) Dye-sensitized solar cell module and method for fabricating same
JP2007234580A (en) Dye sensitized photoelectric conversion device
JP2009032547A (en) Dye-sensitized photoelectric conversion element, its manufacturing method, electronic equipment, semiconductor electrode, and its manufacturing method
JP5171810B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP4448478B2 (en) Dye-sensitized solar cell module
KR101045849B1 (en) High Efficiency Flexible Dye-Sensitized Solar Cell and Manufacturing Method Thereof
JP2012064485A (en) Dye-sensitized photoelectric conversion device
JP2006086056A (en) Dye-sensitized solar cell
KR101054250B1 (en) Metal oxide semiconductor electrode in which a very hydrophobic compound is introduced. Dye-sensitized solar cell comprising the same and method for manufacturing same
JP2009043482A (en) Dye-sensitized solar cell, and dye-sensitized solar cell module
RU2552597C1 (en) Flexible solar element
JP4772311B2 (en) Electrolyte composition, photoelectric conversion element and dye-sensitized solar cell using the same, and evaluation method for ionic liquid
TWI449190B (en) Dye-sensitized solar cell
JP6172562B2 (en) Dye-sensitized solar cell and electrode thereof
JP2011150881A (en) Photoelectric transfer element, optical sensor, and solar cell
JP2014086239A (en) Energy storage type dye-sensitized solar cell
JP2004303463A (en) Dye-sensitized solar cell module and its manufacturing method
JP2011150883A (en) Photoelectric transfer element, optical sensor, and solar cell
WO2013046956A1 (en) Wet-type solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906