JP2015064625A - 画像処理装置、画像処理方法およびプログラム - Google Patents

画像処理装置、画像処理方法およびプログラム Download PDF

Info

Publication number
JP2015064625A
JP2015064625A JP2013196485A JP2013196485A JP2015064625A JP 2015064625 A JP2015064625 A JP 2015064625A JP 2013196485 A JP2013196485 A JP 2013196485A JP 2013196485 A JP2013196485 A JP 2013196485A JP 2015064625 A JP2015064625 A JP 2015064625A
Authority
JP
Japan
Prior art keywords
image
region
target
area
evaluation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013196485A
Other languages
English (en)
Inventor
古川 至
Itaru Furukawa
至 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2013196485A priority Critical patent/JP2015064625A/ja
Publication of JP2015064625A publication Critical patent/JP2015064625A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】抽出対象領域が適切に抽出可能な複合画像処理を容易に生成する。【解決手段】画像処理装置1の処理済み画像取得部311は、複数の複合画像処理のそれぞれを対象画像に対して実行して複数の処理済み画像を取得する。対象画像における抽出対象領域を示す目標画像が予め準備されており、評価値算出部312は、抽出対象領域に含まれる第1特徴領域と、含まれない第2特徴領域のそれぞれにおいて、目標画像と各処理済み画像との一致度を示す領域評価値を求め、これらの領域評価値に基づいて、当該処理済み画像の取得に用いられた複合画像処理の評価値を求める。複合画像処理生成部313は、評価値が高い複合画像処理が優先的に含まれるように、遺伝的プログラミングにより、新たな複数の複合画像処理を生成する。繰返制御部314は、上記構成における処理を繰り返すことにより、対象画像を目標画像に近似させる複合画像処理を取得する。【選択図】図2

Description

本発明は、画像処理装置、画像処理方法およびプログラムに関する。
近年、遺伝的アルゴリズムを利用して画像処理を最適化する手法が提案されている(例えば、特許文献1および2参照)。当該最適化手法では、個体を表現する遺伝子により複数の画像処理を記述し、個体の評価や、遺伝子の組み換え等を繰り返すことにより、最適な個体が生成される。具体的には、一世代において複数の個体が準備され、各個体が示す複数の画像処理を対象画像に対して実行する(すなわち、複合画像処理を実行する)ことにより、処理済み画像が取得される。続いて、各処理済み画像と、対象画像に対して準備された目標画像との一致度を示す値が、当該処理済み画像の取得に用いられた複合画像処理の評価値として求められる。そして、評価値に基づいて、複合画像処理における画像処理の組み換え等を行いつつ、世代交代が繰り返される。
特開2007−87055号公報 特開2009−151371号公報
ところで、対象画像において一定の特徴を有する領域を抽出する複合画像処理を、上記最適化手法により生成する場合、対象画像において抽出すべき抽出対象領域を示す目標画像を準備することが考えられる。この場合に、各処理済み画像と目標画像との一致度を示す値として、例えば、特許文献1のように、処理済み画像と目標画像との画素毎の差分の画像全体における和を求めても、抽出対象領域が適切に抽出可能な複合画像処理を生成することが困難な場合がある。
本発明は上記課題に鑑みなされたものであり、抽出対象領域が適切に抽出可能な複合画像処理を容易に生成することを目的としている。
請求項1に記載の発明は、画像処理装置であって、選択された複数の画像処理を決められた順序にて画像に対して実行する処理を複合画像処理として、予め準備された複数の複合画像処理のそれぞれを対象画像に対して実行することにより、複数の処理済み画像を取得する処理済み画像取得部と、前記対象画像において抽出すべき抽出対象領域を示す目標画像が予め準備されており、前記抽出対象領域に含まれる第1特徴領域、および、前記抽出対象領域に含まれない第2特徴領域のそれぞれにおいて、前記目標画像と各処理済み画像との一致度を示す領域評価値を求め、前記第1特徴領域の前記領域評価値、および、前記第2特徴領域の前記領域評価値に基づいて、前記各処理済み画像の取得に用いられた複合画像処理の評価値を求める評価値算出部と、前記複数の複合画像処理のうち前記評価値が高い複合画像処理が優先的に含まれるように、遺伝的プログラミングにより、新たな複数の複合画像処理を生成する複合画像処理生成部と、前記処理済み画像取得部、前記評価値算出部および前記複合画像処理生成部における処理を、所定の条件を満たすまで繰り返すことにより、前記対象画像を前記目標画像に近似させる複合画像処理を取得する繰返制御部とを備える。
請求項2に記載の発明は、請求項1に記載の画像処理装置であって、前記評価値算出部が、前記目標画像と前記各処理済み画像との相違を示す画像における前記第1特徴領域および前記第2特徴領域のそれぞれを注目特徴領域とし、前記注目特徴領域において画素の値が所定値以上となる領域を相違領域として、前記注目特徴領域もしくは前記画像の全体に対する前記注目特徴領域の前記相違領域の面積率、または、前記注目特徴領域において孤立した前記相違領域の個数、もしくは、前記相違領域により分断された領域の個数に基づく前記領域評価値を求める。
請求項3に記載の発明は、請求項1または2に記載の画像処理装置であって、前記第1特徴領域が前記抽出対象領域の全体、または、前記抽出対象領域の外縁部を除く領域の全体である。
請求項4に記載の発明は、請求項3に記載の画像処理装置であって、前記対象画像が、対象物上の欠陥を示す画像であり、前記抽出対象領域が欠陥領域であり、前記第1特徴領域が前記欠陥領域に含まれ、前記第2特徴領域が非欠陥領域に含まれる。
請求項5に記載の発明は、請求項1ないし4のいずれかに記載の画像処理装置であって、前記第1特徴領域と前記第2特徴領域との間に両特徴領域に接する第3特徴領域が設定され、前記評価値算出部が、前記第3特徴領域の前記領域評価値を求め、前記第3特徴領域の前記領域評価値に基づいて前記評価値を求める。
請求項6に記載の発明は、請求項1ないし5のいずれかに記載の画像処理装置であって、複数の対象画像、および、前記複数の対象画像における同種の抽出対象領域を示す複数の目標画像が予め準備され、前記処理済み画像取得部が、各対象画像に対して前記複数の複合画像処理のそれぞれを実行し、前記評価値算出部が、各複合画像処理により前記複数の対象画像から取得された複数の処理済み画像に基づいて前記各複合画像処理の前記評価値を求める。
請求項7に記載の発明は、画像処理方法であって、a)選択された複数の画像処理を決められた順序にて画像に対して実行する処理を複合画像処理として、予め準備された複数の複合画像処理のそれぞれを対象画像に対して実行することにより、複数の処理済み画像を取得する工程と、b)前記対象画像において抽出すべき抽出対象領域を示す目標画像が予め準備されており、前記抽出対象領域に含まれる第1特徴領域、および、前記抽出対象領域に含まれない第2特徴領域のそれぞれにおいて、前記目標画像と各処理済み画像との一致度を示す領域評価値を求める工程と、c)前記第1特徴領域の前記領域評価値、および、前記第2特徴領域の前記領域評価値に基づいて、前記各処理済み画像の取得に用いられた複合画像処理の評価値を求める工程と、d)前記複数の複合画像処理のうち前記評価値が高い複合画像処理が優先的に含まれるように、遺伝的プログラミングにより、新たな複数の複合画像処理を生成する工程と、e)前記a)ないしd)工程を、所定の条件を満たすまで繰り返すことにより、前記対象画像を前記目標画像に近似させる複合画像処理を取得する工程とを備える。
請求項8に記載の発明は、請求項7に記載の画像処理方法であって、前記b)工程において、前記目標画像と前記各処理済み画像との相違を示す画像における前記第1特徴領域および前記第2特徴領域のそれぞれを注目特徴領域とし、前記注目特徴領域において画素の値が所定値以上となる領域を相違領域として、前記注目特徴領域もしくは前記画像の全体に対する前記注目特徴領域の前記相違領域の面積率、または、前記注目特徴領域において孤立した前記相違領域の個数、もしくは、前記相違領域により分断された領域の個数に基づく前記領域評価値が求められる。
請求項9に記載の発明は、請求項7または8に記載の画像処理方法であって、前記第1特徴領域が前記抽出対象領域の全体、または、前記抽出対象領域の外縁部を除く領域の全体である。
請求項10に記載の発明は、請求項9に記載の画像処理方法であって、前記対象画像が、対象物上の欠陥を示す画像であり、前記抽出対象領域が欠陥領域であり、前記第1特徴領域が前記欠陥領域に含まれ、前記第2特徴領域が非欠陥領域に含まれる。
請求項11に記載の発明は、請求項7ないし10のいずれかに記載の画像処理方法であって、前記第1特徴領域と前記第2特徴領域との間に両特徴領域に接する第3特徴領域が設定され、前記b)工程において、前記第3特徴領域の前記領域評価値が求められ、前記c)工程において、前記第3特徴領域の前記領域評価値に基づいて前記評価値が求められる。
請求項12に記載の発明は、請求項7ないし11のいずれかに記載の画像処理方法であって、複数の対象画像、および、前記複数の対象画像における同種の抽出対象領域を示す複数の目標画像が予め準備され、前記a)工程において、各対象画像に対して前記複数の複合画像処理のそれぞれが実行され、前記b)およびc)工程において、各複合画像処理により前記複数の対象画像から取得された複数の処理済み画像に基づいて前記各複合画像処理の前記評価値が求められる。
請求項13に記載の発明は、選択された複数の画像処理を決められた順序にて画像に対して実行する処理である複合画像処理をコンピュータに生成させるプログラムであって、前記プログラムの前記コンピュータによる実行は、前記コンピュータに、a)予め準備された複数の複合画像処理のそれぞれを対象画像に対して実行することにより、複数の処理済み画像を取得する工程と、b)前記対象画像において抽出すべき抽出対象領域を示す目標画像が予め準備されており、前記抽出対象領域に含まれる第1特徴領域、および、前記抽出対象領域に含まれない第2特徴領域のそれぞれにおいて、前記目標画像と各処理済み画像との一致度を示す領域評価値を求める工程と、c)前記第1特徴領域の前記領域評価値、および、前記第2特徴領域の前記領域評価値に基づいて、前記各処理済み画像の取得に用いられた複合画像処理の評価値を求める工程と、d)前記複数の複合画像処理のうち前記評価値が高い複合画像処理が優先的に含まれるように、遺伝的プログラミングにより、新たな複数の複合画像処理を生成する工程と、e)前記a)ないしd)工程を、所定の条件を満たすまで繰り返すことにより、前記対象画像を前記目標画像に近似させる複合画像処理を取得する工程とを実行させる。
本発明によれば、抽出対象領域が適切に抽出可能な複合画像処理を容易に生成することができる。
コンピュータの構成を示す図である。 画像処理装置の機能構成を示すブロック図である。 対象画像を示す図である。 参照画像を示す図である。 目標画像を示す図である。 複合画像処理を表す木構造を示す図である。 欠陥領域抽出用の複合画像処理を生成する処理の流れを示す図である。 遺伝的プログラミングにより複合画像処理を生成する処理の流れを示す図である。 目標画像を示す図である。 処理済み画像を示す図である。 交叉処理を説明するための図である。 交叉処理を説明するための図である。 突然変異処理を説明するための図である。 突然変異処理を説明するための図である。 目標画像を示す図である。 処理済み画像を示す図である。 処理済み画像を示す図である。 対象画像を示す図である。 対象画像を示す図である。 目標画像を示す図である。 目標画像を示す図である。 処理済み画像を示す図である。 処理済み画像を示す図である。 目標画像を示す図である。 処理済み画像を示す図である。 処理済み画像を示す図である。 目標画像を示す図である。 処理済み画像を示す図である。 処理済み画像を示す図である。
図1は、本発明の一の実施の形態に係る画像処理装置を実現するコンピュータ2の構成を示す図である。図1に示すように、コンピュータ2は、各種演算処理を行うCPU21、基本プログラムを記憶するROM22および各種情報を記憶するRAM23をバスラインに接続した一般的なコンピュータシステムの構成となっている。バスラインにはさらに、情報記憶を行う固定ディスク25、各種情報の表示を行うディスプレイ26、操作者からの入力を受け付けるキーボード27aおよびマウス27b(以下、「入力部27」と総称する。)、光ディスク、磁気ディスク、光磁気ディスク等のコンピュータ読み取り可能な記録媒体91から情報の読み取りを行ったり記録媒体91に情報の書き込みを行う読取/書込装置28、並びに、外部と通信を行う通信部29が、適宜、インターフェイス(I/F)を介する等して接続される。
コンピュータ2には、事前に読取/書込装置28を介して記録媒体91からプログラム92が読み出され、固定ディスク25に記憶される。そして、プログラム92がRAM23にコピーされるとともにCPU21がRAM23内のプログラムに従って演算処理を実行することにより(すなわち、コンピュータがプログラムを実行することにより)、コンピュータ2が、画像処理装置としての処理を行う。
図2は、コンピュータ2が実現する画像処理装置1の機能構成を示すブロック図である。画像処理装置1は、演算部31および記憶部32を備える。演算部31は、処理済み画像取得部311、評価値算出部312、複合画像処理生成部313および繰返制御部314を備える。演算部31の処理の詳細については後述する。なお、演算部31の機能は専用の電気回路により構築されてもよく、部分的に専用の電気回路が利用されてもよい。
記憶部32は、複数の画像データセット40を記憶する。各画像データセット40は、対象画像データ41、参照画像データ42および目標画像データ43を含む。対象画像データ41は対象画像を示し、参照画像データ42は参照画像を示し、目標画像データ43は目標画像を示す。以下の説明では、各画像データが示す画像に、当該画像データと同じ符号を付す。
図3は対象画像41を示す図であり、図4は参照画像42を示す図であり、図5は目標画像43を示す図である。図3の対象画像41のデータ、図4の参照画像42のデータ、および、図5の目標画像43のデータは、同じ画像データセット40に含まれる。対象画像41は、半導体基板やガラス基板、プリント配線基板等の基板上の欠陥、および、その周囲を示す画像であり、当該基板は所定のパターンを有する。対象画像41は、欠陥領域411と、欠陥領域411以外の領域412(以下、「非欠陥領域412」という。)と、を含む。
参照画像42は、基板上のパターンを示す画像である。参照画像42は、対象画像41と同じパターンの領域を示し、原則として、当該領域には欠陥領域は存在しない。目標画像43は、対象画像41における欠陥領域411のみを示す画像である。目標画像43は、例えば、操作者が、対象画像41における非欠陥領域412を塗りつぶす作業を行うことにより、予め生成されて準備される。もちろん、目標画像43は他の手法により生成されてよい。対象画像41、参照画像42および目標画像43は、多階調画像または二値画像のいずれであってもよい(後述の処理済み画像45において同様)。複数の画像データセット40は、パターンや撮像条件等が互いに異なる対象画像41を含む。以下の説明では、対象画像41、参照画像42および目標画像43が二値画像であるものとする。
画像処理装置1では、選択された複数の画像処理を決められた順序にて画像に対して実行する処理を複合画像処理として、各対象画像41を同じ画像データセット40に含まれる目標画像43に近似させる複合画像処理が生成される。すなわち、欠陥領域411を抽出対象領域として、欠陥領域抽出用の複合画像処理が生成される。また、欠陥領域抽出用の複合画像処理の生成では、遺伝的プログラミングが利用される。
図6は、一の複合画像処理を表す木構造を示す図である。画像処理装置1における複合画像処理は、木構造にて表現される。図6に示す複合画像処理は、1つの画像の入力を示す終端ノードI1〜I4と、1つまたは複数の画像が入力されるとともに1つの画像を出力する非終端ノードF1〜F7,F10,F100と、を含む。終端ノードI1〜I4には、一の画像データセット40に含まれる対象画像41または参照画像42(のデータ)が入力される。
非終端ノードF1〜F7,F10,F100は、典型的には、画像処理フィルタを示す。非終端ノードF1〜F7では、入力される1つの画像に対して所定の画像処理(平均値フィルタ処理や、最大値フィルタ処理等)が実行され、処理後の1つの画像が次のノードに出力される。非終端ノードF10では、2つの非終端ノードF3,F5から入力される2つの画像に対して所定の画像処理(論理和演算や、論理積演算等)が実行され、処理後の1つの画像が次のノードに出力される。ルートのノードF100では、非終端ノードF6,F7および終端ノードI4から入力される3つの画像に対して所定の画像処理が実行され、処理後の1つの画像が処理済み画像として出力される。画像処理装置1では、多種の画像処理(アルゴリズム)が準備されており、様々な木構造の各ノードとして任意の画像処理が割り当てられることにより、様々な複合画像処理が表現される。なお、同じアルゴリズムの画像処理であっても、各種パラメータの値が異なるものは、異なる画像処理として取り扱われる。
図7は、画像処理装置1が、欠陥領域抽出用の複合画像処理を生成する処理の流れを示す図である。複合画像処理の生成では、まず、複数の画像データセット40が準備され、画像処理装置1に入力される(ステップS11)。複数の画像データセット40は、記憶部32にて記憶される。ここでは、smax個の画像データセット40が準備され、各画像データセット40、並びに、当該画像データセット40に含まれる対象画像41、参照画像42および目標画像43には、0から(smax−1)までの番号sが付与される。同じ番号sの対象画像41、参照画像42および目標画像43は同じサイズであり、行方向の画素数はXmax(s)であり、列方向の画素数はYmax(s)である。
また、遺伝的プログラミングによる処理における各世代での個体の個数や、評価値の演算に係る係数の値、あるいは、交叉確率や突然変異確率等の情報(以下、「設定情報」と総称する。)が、入力部27等を介して画像処理装置1に入力される(ステップS12)。設定情報が取得されると、演算部31において遺伝的プログラミングにより複合画像処理を生成する処理が行われる(ステップS13)。
図8は、遺伝的プログラミングにより複合画像処理を生成する処理の流れを示す図である。演算部31では、各画像データセット40に含まれる目標画像43に対して、複数の特徴領域が抽出される(ステップS21)。具体的には、図9に示す目標画像43では、細い破線にて示すように、欠陥特徴領域441、エッジ特徴領域442および背景特徴領域443が、所定の画像処理により抽出される。エッジ特徴領域442は、目標画像43における欠陥領域411のエッジを含む領域である。欠陥特徴領域441は、欠陥領域411においてエッジ特徴領域442を除く領域である。すなわち、欠陥特徴領域441は、欠陥領域411の外縁部を除く領域の全体である。背景特徴領域443は、目標画像43において欠陥特徴領域441およびエッジ特徴領域442を除く領域の全体である。このようにして、各画像データセット40に対して、欠陥領域411に含まれる欠陥特徴領域441、欠陥領域411に含まれない背景特徴領域443、および、欠陥特徴領域441と背景特徴領域443との間にて両特徴領域441,443に接するエッジ特徴領域442が設定される。
例えば、環状のエッジ特徴領域442の幅として、欠陥領域411のエッジに対して欠陥領域411の内側の幅と外側の幅とが個別に設定可能である。画像処理装置1では、欠陥特徴領域441、エッジ特徴領域442および背景特徴領域443が、目標画像43から自動的に抽出される。本実施の形態では、各特徴領域441〜443は、当該特徴領域441〜443の画素の値が1であり、他の画素の値が0である二値画像にて表現され、当該二値画像は目標画像43と同じ大きさである。以下の説明では、番号sの目標画像43の欠陥特徴領域441を示す二値画像は(すなわち、当該二値画像の行方向の位置Xおよび列方向の位置Yの画素の値は)、Mask_f(s,X,Y)と表現される。同様に、エッジ特徴領域442および背景特徴領域443を示す二値画像は、それぞれMask_e(s,X,Y)およびMask_b(s,X,Y)と表現される。なお、目標画像43が欠陥領域411を含まない場合や、目標画像43の全体が欠陥領域411である場合には、他の特徴領域(エッジ特徴領域442を含む。)は抽出されない。複数の特徴領域441〜443は、対象画像41や参照画像42を用いて抽出されてもよい。また、複数の特徴領域441〜443が、入力部27を介して操作者により指定されてもよい。
複数の特徴領域441〜443が抽出されると、処理済み画像取得部311では、初期世代の複数の個体、すなわち、初期世代の複数の複合画像処理が準備される(ステップS22)。本実施の形態では、複合画像処理生成部313において、ランダムに選択された複数の終端ノードと非終端ノードとをランダムに結合することにより、互いに相違する初期世代の複数の複合画像処理が生成され、処理済み画像取得部311に入力される。初期世代の複数の複合画像処理は、入力部27を介した操作者の入力に従って生成されてもよい。
続いて、処理済み画像取得部311において、複数の複合画像処理を実行することにより、複数の処理済み画像が取得される(ステップS23)。後述するように、各処理済み画像と、対象画像41中の欠陥領域411を示す目標画像43との一致度に基づいて、新たな複合画像処理の生成、および、処理済み画像の取得が繰り返される。したがって、原則として、各複合画像処理における少なくとも1つの終端ノードは、対象画像41が入力されるものとなり、複合画像処理は、対象画像41に対して実行されるものと捉えることができる。よって、ステップS23の処理では、複数の複合画像処理のそれぞれを対象画像に対して実行することにより、複数の処理済み画像が取得される。例えば、図3の対象画像41(および図4の参照画像42)が、一の複合画像処理における複数の終端ノードに入力され、図10に示す処理済み画像45が取得される。図10の処理済み画像45は、二値画像であり、処理済み画像45では、値が1の画素の集合である複数の領域451(以下、「抽出領域451」という。)が抽出されている。
評価値算出部312では、欠陥特徴領域441、エッジ特徴領域442および背景特徴領域443のそれぞれにおいて、目標画像43と各処理済み画像45との一致度を示す領域評価値が求められる(ステップS24)。例えば、番号sの対象画像41(および参照画像42)に対する番号iの複合画像処理により取得された処理済み画像45において、背景特徴領域443における領域評価値Dbs(i,s)は、数1により求められる。数1において、Q(i,s,X,Y)は、番号sの対象画像41に対する番号iの複合画像処理により取得された処理済み画像45を示し、M(s,X,Y)は、番号sの目標画像43を示す。既述のように、Mask_b(s,X,Y)は、番号sの背景特徴領域443を示す二値画像であり、背景特徴領域443を示す画素の値が1である。各画像の行方向の画素数はXmax(s)であり、列方向の画素数はYmax(s)である。
Figure 2015064625
ここでは、目標画像43および処理済み画像45は共に二値画像である。したがって、数1の分子では、処理済み画像45の各画素の値と、目標画像43の対応する画素の値との差の二乗を示す画像(差分画像)において値が1となる画素の背景特徴領域443における総数が求められる。換言すると、処理済み画像45と目標画像43との間で値が相違する画素の背景特徴領域443における総数が求められる。また、数1の分母では、背景特徴領域443の画素数が求められる。よって、数1では、各処理済み画像45と目標画像43との相違を示す画像において画素の値が1となる領域を相違領域として、背景特徴領域443に含まれる相違領域の背景特徴領域443に対する面積率が、背景特徴領域443の領域評価値Dbs(i,s)として求められる。背景特徴領域443の領域評価値Dbs(i,s)は、背景特徴領域443における処理済み画像45と目標画像43との一の種類の一致度を示し、本処理例では、一致度が高いほど、領域評価値Dbs(i,s)の値は小さくなる。
また、数1におけるMask_b(s,X,Y)をMask_f(s,X,Y)に置き換えた演算により、欠陥特徴領域441に含まれる相違領域の欠陥特徴領域441に対する面積率が、欠陥特徴領域441の領域評価値Dfs(i,s)として求められる。さらに、数1におけるMask_b(s,X,Y)をMask_e(s,X,Y)に置き換えた演算により、エッジ特徴領域442に含まれる相違領域のエッジ特徴領域442に対する面積率が、エッジ特徴領域442の領域評価値Des(i,s)として求められる。数1または数1を変形して求められる各特徴領域441〜443の領域評価値は、0.0〜1.0の範囲内の値となる。なお、各特徴領域441〜443が存在しない場合には、当該特徴領域441〜443の領域評価値は0となる。
既述のように、画像処理装置1では、複数の画像データセット40が準備されており、各複合画像処理に対して複数の処理済み画像45が取得される。評価値算出部312では、各複合画像処理により取得される複数の処理済み画像45における欠陥特徴領域441の領域評価値の代表値、エッジ特徴領域442の領域評価値の代表値、および、背景特徴領域443の領域評価値の代表値がさらに求められる。本処理例では、各特徴領域441〜443に対して2種類の代表値が求められる。具体的には、番号iの複合画像処理により取得された複数の処理済み画像45における領域評価値Dbs(i,s)の加重平均値が、背景特徴領域443の領域評価値の代表値Db1(i)として数2により求められる。また、当該複数の処理済み画像45における領域評価値Dbs(i,s)の最大値が、背景特徴領域443の領域評価値のもう1つの代表値Db2(i)として数3により求められる。数2におけるKs(s)は、処理済み画像45毎の重み係数であり、各処理済み画像45の処理前の画像である対象画像41の内容や重要度に応じて、操作者により予め設定される。
Figure 2015064625
Figure 2015064625
また、領域評価値Dfs(i,s)を用いて、数2と同様の演算により欠陥特徴領域441の領域評価値の代表値Df1(i)が求められ、数3と同様の演算により欠陥特徴領域441の領域評価値のもう1つの代表値Df2(i)が求められる。さらに、領域評価値Des(i,s)を用いて、数2と同様の演算によりエッジ特徴領域442の領域評価値の代表値De1(i)が求められ、数3と同様の演算によりエッジ特徴領域442の領域評価値のもう1つの代表値De2(i)が求められる。
評価値算出部312では、各特徴領域441〜443における相違領域の画像全体に対する面積率がさらに求められる。例えば、番号sの対象画像41に対する番号iの複合画像処理により取得された処理済み画像45と番号sの目標画像43との相違を示す画像において、背景特徴領域443における相違領域の画像全体に対する面積率が、領域評価値Abs(i,s)として数4により求められる。
Figure 2015064625
また、数4におけるMask_b(s,X,Y)をMask_f(s,X,Y)に置き換えた演算により、欠陥特徴領域441に含まれる相違領域の画像全体に対する面積率が、欠陥特徴領域441の領域評価値Afs(i,s)として求められる。さらに、数4におけるMask_b(s,X,Y)をMask_e(s,X,Y)に置き換えた演算により、エッジ特徴領域442に含まれる相違領域の画像全体に対する面積率が、エッジ特徴領域442の領域評価値Aes(i,s)として求められる。数4または数4を変形して求められる各特徴領域441〜443の領域評価値は、0.0〜1.0の範囲内の値となる。なお、各特徴領域441〜443が存在しない場合には、当該特徴領域441〜443の領域評価値は0となる。
続いて、領域評価値Abs(i,s)を用いて、数2と同様の演算により背景特徴領域443の領域評価値の代表値Ab1(i)が求められ、数3と同様の演算により背景特徴領域443の領域評価値のもう1つの代表値Ab2(i)が求められる。また、領域評価値Afs(i,s)を用いて、数2と同様の演算により欠陥特徴領域441の領域評価値の代表値Af1(i)が求められ、数3と同様の演算により欠陥特徴領域441の領域評価値のもう1つの代表値Af2(i)が求められる。さらに、領域評価値Aes(i,s)を用いて、数2と同様の演算によりエッジ特徴領域442の領域評価値の代表値Ae1(i)が求められ、数3と同様の演算によりエッジ特徴領域442の領域評価値のもう1つの代表値Ae2(i)が求められる。
評価値算出部312では、各特徴領域441〜443において孤立した相違領域の個数、または、相違領域により分断された非相違領域の個数が、他の領域評価値としてさらに求められる。例えば、番号sの対象画像41に対する番号iの複合画像処理により取得された処理済み画像45と番号sの目標画像43との相違を示す画像において、背景特徴領域443における領域評価値Cbs(i,s)は、数5により求められる。
Figure 2015064625
数5において、Sb(s)は、番号sの目標画像43における背景特徴領域443の面積(画素数)を示し、Cbsn(i,s)は、当該相違を示す画像の背景特徴領域443に含まれる孤立した相違領域の個数を示す。ここで、当該相違を示す画像において、値1の画素の8近傍に、値1の他の画素が存在する場合には、これらの画素は互いに接続するものとする。孤立した相違領域は、互いに接続する値1の画素の1つの集合である。また、仮に、当該相違を示す画像を、2行2列の多数の画素群に分割した場合に、当該多数の画素群における同じ位置の画素の値が1であり、残りの画素の値が0であるときに、当該画像において孤立した相違領域の個数が最大となる。数5では、背景特徴領域443における孤立した相違領域の個数(カウント数)を、背景特徴領域443にてとり得る、孤立した相違領域の最大個数にて割ることにより、孤立した相違領域のカウント率を求めている。
評価値算出部312では、番号iの複合画像処理により取得された複数の処理済み画像45における領域評価値Cbs(i,s)の加重平均値が、背景特徴領域443の領域評価値の代表値Cb1(i)として数6により求められる。また、当該複数の処理済み画像45における領域評価値Cbs(i,s)の最大値が、背景特徴領域443の領域評価値のもう1つの代表値Cb2(i)として数7により求められる。数6におけるKs(s)は、数2と同様に、処理済み画像45毎に設定される重み係数である。
Figure 2015064625
Figure 2015064625
エッジ特徴領域442についても、孤立した相違領域のカウント率である領域評価値Ces(i,s)が数5に準じた演算により求められる。そして、領域評価値Ces(i,s)を用いて、数6と同様の演算によりエッジ特徴領域442の領域評価値の代表値Ce1(i)が求められ、数7と同様の演算によりエッジ特徴領域442の領域評価値のもう1つの代表値Ce2(i)が求められる。
一方、欠陥特徴領域441では、孤立した相違領域ではなく、相違領域により分断された領域のカウント率である領域評価値Cfs(i,s)が数5に準じた演算により求められる。欠陥特徴領域441において相違領域により分断された領域は、孤立した非相違領域と捉えることができる。すなわち、相違領域により分断された各非相違領域は、欠陥特徴領域441内で互いに接続する値0の画素の1つの集合である。
ここで、仮に、処理済み画像45において欠陥特徴領域441の全体が、抽出領域451として正確に取得されている場合、処理済み画像45と目標画像43との相違を示す画像では、欠陥特徴領域441の全体の画素の値が0となる。この場合、欠陥特徴領域441では、相違領域は存在せず、非相違領域の個数は1となる(すなわち、分断されない。)。また、図10に示すように、処理済み画像45において欠陥特徴領域441内に2つの抽出領域451が取得される場合、処理済み画像45と目標画像43との相違を示す画像では、欠陥特徴領域441内で相違領域により分断された非相違領域の個数は2となる。図10の処理済み画像45では、欠陥特徴領域441内に余分な1つの抽出領域451が取得されていると捉えることができる。
したがって、数5に準じた演算により欠陥特徴領域441の領域評価値Cfs(i,s)を求める際には、数5中のCbsn(i,s)は、欠陥特徴領域441内で相違領域により分断された非相違領域の個数から1を引いた値に置き換えられることが好ましい。そして、領域評価値Cfs(i,s)を用いて、数6と同様の演算により欠陥特徴領域441の領域評価値の代表値Cf1(i)が求められ、数7と同様の演算により欠陥特徴領域441の領域評価値のもう1つの代表値Cf2(i)が求められる。なお、目標画像43において孤立した複数の欠陥領域411が存在する場合、これらの欠陥領域411の集合が欠陥特徴領域441として扱われてもよい。この場合、数5中のCbsn(i,s)は、欠陥特徴領域441内で相違領域により分断された非相違領域の個数から、欠陥領域411の個数を引いた値に置き換えられることが好ましい。
以上のように、番号iの複合画像処理に対して、背景特徴領域443の領域評価値の6個の代表値Db1(i)、Db2(i)、Cb1(i)、Cb2(i)、Ab1(i)、Ab2(i)、欠陥特徴領域441の領域評価値の6個の代表値Df1(i)、Df2(i)、Cf1(i)、Cf2(i)、Af1(i)、Af2(i)、並びに、エッジ特徴領域442の領域評価値の6個の代表値De1(i)、De2(i)、Ce1(i)、Ce2(i)、Ae1(i)、Ae2(i)が取得される。
評価値算出部312では、番号iの個体である複合画像処理の評価値T(i)が、数8により求められる(ステップS25)。数8中のKDb1、KDf1、KDe1、KDb2、KDf2、KDe2、KCb1、KCf1、KCe1、KCb2、KCf2、KCe2、KAb1、KAf1、KAe1、KAb2、KAf2、KAe2は、重み係数であり、ステップS12の処理にて設定される設定情報に含まれる。また、数8中の(Kmul/Ksum)は、上記領域評価値の代表値の加重平均を示す。
Figure 2015064625
評価値算出部312では、番号iの複合画像処理の評価値T(i)が、数9により求められてもよい。数9においてMax{α,β}は、αおよびβの最大値を示す。
Figure 2015064625
数9では、欠陥特徴領域441および背景特徴領域443(の領域評価値)が同列に取り扱われる。また、エッジ特徴領域442については、欠陥特徴領域441および背景特徴領域443と区別して取り扱われる。この場合に、エッジ特徴領域442に対して小さい重み係数を付与することにより、エッジ特徴領域442の評価値T(i)への寄与率を低くすることが可能である。複合画像処理の適応値を示す評価値の算出は、様々な手法にて行われてよく、条件式等により得られる値を用いて評価値が算出されてもよい。例えば、領域評価値を取得する際に、処理済み画像45と目標画像43との相違を示す画像において、背景特徴領域443における孤立した相違領域の個数Cbsn(i,s)が、目標画像43における欠陥領域411の個数よりも多い場合に、エラーカウント値Eb0をインクリメントするような、IF判定が利用されてよい。各複合画像処理により取得される全ての処理済み画像45に対してIF判定が行われることにより得られるエラーカウント値Eb0は、当該複合画像処理の評価値の算出に用いられる。
各複合画像処理の評価値が求められると、繰返制御部314では、現世代(ここでは、初期世代)の複数の複合画像処理における評価値のうち最大の評価値が、予め定められた設定値以上であるか否かが判定される(ステップS26)。ここでは、最大の評価値が設定値未満であると確認される。また、現世代が、予め指定されたG番目の世代(Gは正の整数)であるか否かが判定される(ステップS27)。ここでは、現世代がG番目の世代ではないと確認される。
続いて、複合画像処理生成部313では、後述の交叉処理を行う際に用いられる選択確率が、各複合画像処理の評価値に基づいて算出される(ステップS28)。例えば、各複合画像処理の評価値を、現世代の全ての複合画像処理の評価値の和で割った値が、当該複合画像処理の選択確率として求められる。これにより、評価値が高い複合画像処理ほど、選択確率が高くなる。選択確率は、他の手法にて求められてよい。
各複合画像処理の選択確率が求められると、選択確率に基づいて2つの複合画像処理を選択し、当該2つの複合画像処理から新たな2つの複合画像処理を生成する交叉処理が行われる(ステップS29)。交叉処理では、当該2つの複合画像処理を表現する2つの木構造のそれぞれにおいて、1つのノードを交叉位置としてランダムに選択し、当該交叉位置よりも末端の部分である部分木を当該2つの木構造にて入れ替えることにより、新たな個体である2つの複合画像処理が生成される。
例えば、図11中に符号R11を付して示す木構造の複合画像処理と、符号R21を付して示す木構造の複合画像処理とがペアとして選択され、木構造R11のノードP11と、木構造R21のノードP21とが交叉位置としてランダムに選択される。そして、木構造R11のノードP11より末端部分の部分木(図11中にて符号L1を付す実線の矩形にて囲む部分木)と、木構造R21のノードP21より末端部分の部分木(図11中にて符号L2を付す破線の矩形にて囲む部分木)とが入れ替えられる(交叉が行われる)。これにより、図12中に符号R12を付して示す木構造の複合画像処理と、符号R22を付して示す木構造の複合画像処理とが新たに生成される。既述のように、交叉が行われる複合画像処理のペアは、選択確率に従って選択されるため、評価値が高い複合画像処理同士にて交叉が行われる確率が高くなる。
本実施の形態における交叉処理では、例えば、初期世代の個体としてN個(Nは正の整数)の複合画像処理が存在する場合に、Nが偶数であるときには、(N−2)個の複合画像処理が選択確率に従って選択され、((N/2)−1)組のペアが生成される。また、Nが奇数であるときには、(N−1)個の複合画像処理が選択確率に従って選択され、((N−1)/2)組のペアが生成される。そして、ステップS12の処理にて設定された交叉確率に従って、各ペアにおいて実際に交叉処理を行うか否かが決定される。交叉処理を行うペアでは、上記のように新たな2つの複合画像処理が生成される。交叉処理を行わないペアでは、当該ペアの複合画像処理がそのまま新たな2つの複合画像処理として扱われる。したがって、ステップS29の処理では、現世代のN個の複合画像処理から(N−2)個または(N−1)個の新たな複合画像処理が取得される。なお、ステップS29の処理にて取得される新たな複合画像処理の個数は任意に決定されてよい。
続いて、複数の新たな複合画像処理に対して突然変異処理が行われる(ステップS30)。例えば、図13に示す木構造R31の複合画像処理では、1つのノードP31がランダムに選択される。そして、当該ノードP31が、ランダムに生成された部分木(図14中にて符号L3を付す破線の矩形にて囲む部分木)に変更され、図14に示す木構造R32が取得される。このように、突然変異処理では、木構造においてノードや部分木の変更または削除がランダムに行われる。実際には、複数の新たな複合画像処理のそれぞれにおいて、ステップS12の処理にて設定された突然変異確率に従って、実際に突然変異処理を行うか否かが決定される。
突然変異処理が完了すると、エリート保存処理が行われる(ステップS31)。エリート保存処理では、直前のステップS25の処理にて取得された評価値のうち最大の評価値の複合画像処理が、そのまま新たな複合画像処理に追加される。新たな複合画像処理の個数がN個に満たない場合(ここでは、Nが偶数の場合)には、2番目に評価値が高い複合画像処理が、そのまま新たな複合画像処理に追加される、または、ランダムに生成した複合画像処理が新たな複合画像処理に追加される。このようにして、新たな世代(ここでは、2番目の世代)のN個の複合画像処理が取得される。新たな世代の複数の複合画像処理では、直前の世代の複数の複合画像処理のうち評価値が高い複合画像処理の全体または一部が優先的に含まれているといえる。すなわち、複合画像処理生成部313では、複数の複合画像処理のうち評価値が高い複合画像処理が優先的に含まれるように、遺伝的プログラミングにより、新たな複数の複合画像処理が生成される。
新たな世代の複合画像処理が取得されると、ステップS23に戻って、当該新たな世代の各複合画像処理を対象画像に対して実行することにより、複数の処理済み画像が取得される。続いて、各処理済み画像に関して、欠陥特徴領域441、エッジ特徴領域442および背景特徴領域443のそれぞれにおいて領域評価値が求められる(ステップS24)。そして、欠陥特徴領域441の領域評価値、エッジ特徴領域442の領域評価値、および、背景特徴領域443の領域評価値に基づいて、各処理済み画像の取得に用いられた複合画像処理の評価値が求められる(ステップS25)。
繰返制御部314では、現世代の複数の複合画像処理の評価値のうち最大の評価値が、予め定められた設定値以上であるか否かが判定される(ステップS26)。最大の評価値が設定値未満である場合、現世代がG番目の世代(Gは正の整数)であるか否かが判定される(ステップS27)。現世代がG番目の世代ではない場合、上記と同様に、選択確率の算出、交叉処理、突然変異処理、および、エリート保存処理が行われ、次の世代の新たな複数の複合画像処理が取得される(ステップS28〜S31)。そして、複数の処理済み画像の取得、領域評価値の算出、および、評価値の算出が行われる(ステップS23〜S25)。ステップS28〜S31,S23〜S25の処理は、最大の評価値が設定値以上となる、または、現世代がG番目の世代となるまで繰り返される(ステップS26,S27)。ステップS28〜S31,S23〜S25の処理の繰り返しは、他の条件を満たすまで繰り返されてよい。例えば、ステップS25の処理後、評価値が最大の複合画像処理による複数の処理済み画像45が複数の目標画像43と共にディスプレイ26に表示され、操作者の入力により、ステップS28〜S31,S23〜S25の処理の繰り返しの要否が決定されてもよい。
ステップS26の処理にて最大の評価値が設定値以上となることが確認される、または、ステップS27の処理にて現世代がG番目の世代となることが確認されると、現世代における最大の評価値の複合画像処理が、対象画像41を目標画像43に近似させる欠陥領域抽出用の複合画像処理として自動的に選択される(ステップS32)。そして、ステップS23の処理にて当該複合画像処理により生成された複数の処理済み画像45が複数の目標画像43と共にディスプレイ26に表示され、操作者により欠陥領域抽出用の複合画像処理が適切であるか否かが確認される(図7:ステップS14)。なお、ステップS32の処理にて評価値が高い複数の複合画像処理が選択されてもよい。この場合、ステップS14の処理にて当該複数の複合画像処理による処理済み画像45が目標画像43と共にディスプレイ26に表示され、操作者の入力により、1つの複合画像処理が欠陥領域抽出用の複合画像処理として選択される。以上により、欠陥領域抽出用の複合画像処理を生成する処理が完了する。
ここで、複合画像処理の生成に利用される評価値について述べる。例えば、図15に示す目標画像43に対して、図16に示す処理済み画像45a、および、図17に示す処理済み画像45bが異なる2つの複合画像処理により取得される場合、目標画像43と処理済み画像45a,45bとの相違を示す画像に基づいて当該2つの複合画像処理の評価値が求められる。具体的に、目標画像43の全体の面積(画素数)は1000、欠陥特徴領域441(ここでは、エッジ特徴領域442を設定しないため、対象画像41の欠陥領域411と同じである。後述の図21、図24および図27において同様。)の面積が10であり、処理済み画像45a,45bにて取得された抽出領域451の面積がそれぞれ7および0である。したがって、図16の処理済み画像45aでは、欠陥特徴領域441における相違領域の面積は3となり、図17の処理済み画像45bでは、欠陥特徴領域441における相違領域の面積は10となる。
この場合に、比較例として、目標画像43の全体の面積に対する画像全体の相違領域の面積率を評価値として求めると、図16の処理済み画像45aに対応する複合画像処理の評価値は0.997(=1−(3/1000))となり、図17の処理済み画像45bに対応する複合画像処理の評価値は0.990(=1−(10/1000))となる。このように、比較例の処理では、欠陥特徴領域441内で抽出領域451が取得される処理済み画像45aに対応する複合画像処理の評価値と、欠陥特徴領域441内で抽出領域451が取得されない処理済み画像45bに対応する複合画像処理の評価値との間において大きな差が生じない。したがって、比較例の処理では、欠陥特徴領域441において抽出領域451を確実に取得するための複合画像処理を生成することが困難となる。
このような場合に、画像処理装置1では、欠陥特徴領域441における相違領域の欠陥特徴領域441に対する面積率が、欠陥特徴領域441の領域評価値として求められるとともに、当該領域評価値に対する重み係数が比較的大きい値に設定される。例えば、図16の処理済み画像45aでは、欠陥特徴領域441および背景特徴領域443の領域評価値はそれぞれ0.3および0.0となり、欠陥特徴領域441および背景特徴領域443に対する重み係数をそれぞれ0.8および0.2として、評価値は0.760(=1−(0.8×0.3+0.2×0.0))となる。また、図17の処理済み画像45bでは、欠陥特徴領域441および背景特徴領域443の領域評価値はそれぞれ1.0および0.0となり、評価値は0.200(=1−(0.8×1.0+0.2×0.0))となる。このように、処理済み画像45において欠陥特徴領域441における抽出領域451が消える複合画像処理では、評価値が大幅に低下する。
以上のように、欠陥特徴領域441に対する相違領域(欠陥特徴領域441内の相違領域)の面積率に基づく評価値を求めることにより、処理済み画像45の欠陥特徴領域441において抽出領域451をより確実に取得する複合画像処理が生成可能となる。なお、処理済み画像45の欠陥特徴領域441において抽出領域451をより確実に取得する場合には、抽出領域451のサイズが目標画像43が示す欠陥領域411のサイズと相違することはあまり問題ではない。
ところで、図18および図19に示す対象画像41c,41dのように、欠陥領域411の大きさは画像毎に大きく異なることがある。特に、図19のように、小さい欠陥領域411を含む対象画像41dでは、処理済み画像45において抽出領域451が消えやすくなる。このような場合でも、欠陥特徴領域441に対する相違領域の面積率に基づく評価値を求めることにより、画像処理装置1では、欠陥特徴領域441において抽出領域451の消滅の回避が可能な複合画像処理を生成することが実現される。
なお、図20に示す目標画像43では、孤立した複数の欠陥領域411を含むため、欠陥特徴領域441のエッジの長さの合計が大きくなる。したがって、エッジ特徴領域442を設定する場合に、エッジ特徴領域442の面積が大きくなる。欠陥領域411のエッジが複雑な形状である場合も同様に、エッジ特徴領域442の面積が大きくなる。また、処理済み画像45における抽出領域451のサイズのわずかな変動により、エッジ特徴領域442では、相違領域の面積率が変動しやすい。このようにエッジ特徴領域442の領域評価値が不安定となる場合には、評価値の算出においてエッジ特徴領域442の重み係数(寄与率)を低くすることが好ましい。
画像処理装置1では、背景特徴領域443の重み係数を、欠陥特徴領域441の重み係数に比べて十分に小さくする場合には、欠陥特徴領域441および背景特徴領域443のそれぞれにおける相違領域の画像全体に対する面積率に基づく評価値が求められてもよい。例えば、図21に示す目標画像43に対して、図22に示す処理済み画像45e、および、図23に示す処理済み画像45fが異なる2つの複合画像処理により取得される場合を考える。目標画像43の全体の面積は1000、欠陥特徴領域441の面積は10である。処理済み画像45e,45fの欠陥特徴領域441における相違領域の面積は、それぞれ5および0であり、背景特徴領域443における相違領域の面積は、それぞれ0および5である。
この場合に、比較例として、目標画像43の全体の面積に対する画像全体の相違領域の面積率を評価値として求めると、図22の処理済み画像45eに対応する複合画像処理の評価値は0.9950(=1−(5/1000))となり、図23の処理済み画像45fに対応する複合画像処理の評価値も同じである。したがって、これらの複合画像処理の評価値には差が生じない。
このような場合に、画像処理装置1では、欠陥特徴領域441および背景特徴領域443のそれぞれにおける相違領域の画像全体に対する面積率が領域評価値として求められるとともに、欠陥特徴領域441の重み係数が、背景特徴領域443の重み係数に比べて十分に大きい値に設定される。例えば、図22の処理済み画像45eでは、欠陥特徴領域441および背景特徴領域443の領域評価値はそれぞれ0.0050および0.0000となり、欠陥特徴領域441および背景特徴領域443に対する重み係数をそれぞれ0.9および0.1として、評価値は0.9955(=1−(0.9×0.0050+0.1×0.0000))となる。また、図23の処理済み画像45fでは、欠陥特徴領域441および背景特徴領域443の領域評価値はそれぞれ0.0000および0.0050となり、評価値は0.9995(=1−(0.9×0.0000+0.1×0.0050))となる。
このように、各特徴領域441,443における相違領域の画像全体に対する面積率に基づく評価値を求める場合でも、これらの特徴領域441,443の重み係数を調整する(異ならせる)ことにより、2つの処理済み画像45e,45fに対応する2つの複合画像処理の評価値に差をつけることができる。なお、上記のように背景特徴領域443の重み係数を低くする場合、処理済み画像45において背景特徴領域443に抽出領域451(すなわち、偽欠陥領域であり、ノイズである。)が生じやすくなるが、欠陥特徴領域441における欠陥領域411は抽出領域451として忠実に取得されやすくなる。換言すると、欠陥特徴領域441における欠陥領域411の忠実な取得を、背景特徴領域443におけるノイズの抑制よりも優先した複合画像処理が生成される。
次に、背景特徴領域443における孤立した相違領域の個数(カウント数)に基づく評価値について述べる。例えば、図24に示す目標画像43に対して、図25に示す処理済み画像45g、および、図26に示す処理済み画像45hが異なる2つの複合画像処理により取得される場合を考える。目標画像43の全体の面積は1000、欠陥特徴領域441の面積は10である。処理済み画像45g,45hでは、欠陥特徴領域441における相違領域の面積は共に0であり、背景特徴領域443における相違領域の面積は、それぞれ5および3である。
この場合に、目標画像43の全体の面積に対する画像全体の相違領域の面積率を評価値として求める比較例では、図25の処理済み画像45gに対応する複合画像処理の評価値は0.995(=1−(5/1000))となり、図26の処理済み画像45hに対応する複合画像処理の評価値は0.997(=1−(3/1000))となる。
これに対し、画像処理装置1では、欠陥特徴領域441および背景特徴領域443のそれぞれにおける相違領域の当該特徴領域441,443に対する面積率に加えて、背景特徴領域443における孤立した相違領域の個数が領域評価値として求められる。欠陥特徴領域441の相違領域の面積率、背景特徴領域443の相違領域の面積率、および、背景特徴領域443における孤立した相違領域の個数に対する重み係数をそれぞれ0.8、0.2および0.1とすると、背景特徴領域443における孤立した相違領域の個数が1である図25の処理済み画像45gでは、評価値は0.908(=1−(0.8×0.0+0.2×0.005+0.1×1)/1.1)となる。背景特徴領域443における孤立した相違領域の個数が3である図26の処理済み画像45hでは、評価値は0.727(=1−(0.8×0.0+0.2×0.003+0.1×3)/1.1)となり、処理済み画像45gにおける評価値よりも低くなる。
このように、背景特徴領域443における孤立した相違領域の個数を領域評価値として用いることにより、処理済み画像45において背景特徴領域443に複数の偽欠陥領域(ノイズ)が生じやすくなる複合画像処理が生成されることを抑制することができる。例えば、処理済み画像45における背景特徴領域443において、面積が大きい1つの偽欠陥領域が発生することよりも、複数の偽欠陥領域が発生することが、後続の欠陥分類処理において好ましくない場合等に、上記複合画像処理は有効となる。
次に、欠陥特徴領域441において相違領域により分断された非相違領域(すなわち、孤立した非相違領域)の個数に基づく評価値について述べる。例えば、図27に示す目標画像43に対して、図28に示す処理済み画像45i、および、図29に示す処理済み画像45jが異なる2つの複合画像処理により取得される場合を考える。目標画像43の全体の面積は1000、欠陥特徴領域441の面積は10である。処理済み画像45i,45jでは、欠陥特徴領域441における相違領域の面積は共に4であり、背景特徴領域443における相違領域の面積は共に0である。
この場合に、目標画像43の全体の面積に対する画像全体の相違領域の面積率を評価値として求める比較例では、図28の処理済み画像45iに対応する複合画像処理の評価値は0.996(=1−(4/1000))となり、図29の処理済み画像45jに対応する複合画像処理の評価値も0.996(=1−(4/1000))となる。
これに対し、画像処理装置1では、欠陥特徴領域441および背景特徴領域443のそれぞれにおける相違領域の当該特徴領域441,443に対する面積率に加えて、欠陥特徴領域441において孤立した非相違領域の個数が領域評価値として求められる。欠陥特徴領域441の相違領域の面積率、背景特徴領域443の相違領域の面積率、および、欠陥特徴領域441において孤立した非相違領域の個数に対する重み係数をそれぞれ0.8、0.2および0.05とすると、欠陥特徴領域441において孤立した非相違領域の個数が1である図28の処理済み画像45iでは、評価値は0.648(=1−(0.8×0.4+0.2×0.0+0.05×1)/1.05)となる。欠陥特徴領域441において孤立した非相違領域の個数が4である図29の処理済み画像45jでは、評価値は0.505(=1−(0.8×0.4+0.2×0.0+0.05×4)/1.05)となり、処理済み画像45iにおける評価値よりも低くなる。
このように、欠陥特徴領域441において孤立した非相違領域の個数を領域評価値として用いることにより、処理済み画像45の欠陥特徴領域441において、1つの欠陥領域411が複数の抽出領域451に分割されやすい複合画像処理が生成されることを抑制することができる。すなわち、対象画像41における1つの欠陥領域411が、処理済み画像45において複数の抽出領域451に分割されにくい複合画像処理を生成することができる。
以上に説明したように、画像処理装置1では、遺伝的プログラミングにより複数の複合画像処理が生成され、複数の複合画像処理のそれぞれを対象画像41に対して実行することにより、複数の処理済み画像45が取得される。また、対象画像41において抽出すべき欠陥領域411を示す目標画像43が予め準備され、欠陥領域411に含まれる欠陥特徴領域441、および、欠陥領域411に含まれない背景特徴領域443のそれぞれにおいて、目標画像43と各処理済み画像45との一致度を示す領域評価値(上記処理例では、複数種類の一致度を示す複数の領域評価値)が求められる。そして、欠陥特徴領域441の領域評価値、および、背景特徴領域443の領域評価値に基づいて、各処理済み画像45の取得に用いられた複合画像処理の評価値が求められる。これにより、抽出対象領域である欠陥領域411が、処理済み画像45において抽出領域451として適切に抽出可能な複合画像処理を容易に生成することができる。
ところで、目標画像43の全体の面積に対する画像全体の相違領域の面積率を評価値として求める上記比較例では、複合画像処理の世代が高くなると、同世代の複数の複合画像処理において評価値が拮抗して選択確率の差がつきにくくなり、複合画像処理の最適化が停滞する傾向がある。これに対し、画像処理装置1における上記処理では、特徴領域441〜443毎の領域評価値を用いて各複合画像処理の評価値が求められるため、複合画像処理の最適化の停滞を抑制することができる。
また、画像処理装置1では、目標画像43と各処理済み画像45との相違を示す画像における欠陥特徴領域441および背景特徴領域443のそれぞれを注目特徴領域とし、注目特徴領域において画素の値が1となる領域が相違領域として特定される。そして、注目特徴領域もしくは当該画像の全体に対する相違領域の面積率、または、注目特徴領域において孤立した相違領域の個数、もしくは、相違領域により分断された非相違領域の個数に基づく領域評価値が求められる。これにより、処理済み画像45において欠陥特徴領域441における抽出領域451の消滅や抽出領域451の分裂、あるいは、背景特徴領域443に多数の抽出領域451が発生する等の場合に評価値を小さくして、好ましい複合画像処理を取得することができる。
さらに、複数の対象画像41、および、当該複数の対象画像41における同種の抽出対象領域(すなわち、欠陥領域411)を示す複数の目標画像43が予め準備され、各対象画像41に対して複数の複合画像処理のそれぞれが実行される。そして、各複合画像処理により複数の対象画像41から取得された複数の処理済み画像45に基づいて当該複合画像処理の評価値が求められる。これにより、複数の対象画像41から取得される複数の処理済み画像45において適切な抽出領域451がより確実に取得可能な、さらに好ましい複合画像処理を生成することが実現される。
上記画像処理装置1では様々な変形が可能である。
既述のように、エッジ特徴領域442が省略され(エッジ特徴領域442の幅が0に設定され)、欠陥特徴領域441および背景特徴領域443のみが設定されてもよい。この場合、欠陥特徴領域441は、抽出対象領域である欠陥領域411の全体(または、ほぼ全体)となる。以上のように、画像処理装置1では、欠陥領域411に含まれる欠陥特徴領域441、および、欠陥領域411に含まれない、すなわち、非欠陥領域412に含まれる背景特徴領域443が設定されることが好ましい。より好ましくは、背景特徴領域443は、目標画像43における欠陥特徴領域441(エッジ特徴領域442が設定される場合、欠陥特徴領域441およびエッジ特徴領域442)を除く領域の全体(または、ほぼ全体)である。
複数の特徴領域は、欠陥特徴領域441、エッジ特徴領域442および背景特徴領域443には限定されない。例えば、パターン領域においてパターン欠陥特徴領域およびパターン背景特徴領域が設定され、非パターン領域において非パターン欠陥特徴領域および非パターン背景特徴領域が設定されてもよい。また、テクスチャ領域が1つの特徴領域とされてもよい。特徴領域は、対象画像41や参照画像42に基づいて決定されてもよい。
領域評価値を求める際に利用される、目標画像43と各処理済み画像45との相違を示す画像は差分画像以外であってもよい。例えば、両画像の互いに対応する画素の値の比の値を示す画像であってもよい。この場合も、目標画像43の各画素の値と、処理済み画像45の対応する画素の値との相違が大きいほど、当該相違を示す画像における画素の値は大きくなる。
上記実施の形態では、目標画像43および処理済み画像45が2値画像であるため、両画像の相違を示す画像において、画素の値が1となる領域が相違領域として扱われるが、目標画像43および処理済み画像45が多階調画像である場合には、画素の値が所定値以上となる領域が相違領域として扱われる。
対象画像41は、基板以外の対象物上の欠陥を示す画像であってよい。また、抽出対象領域は欠陥領域以外であってもよい。例えば、人を撮像したカラーの画像を対象画像とし、肌色領域を抽出対象領域として、複合画像処理を生成する上記処理が行われてもよい。この場合、対象画像における肌色領域が、処理済み画像において抽出領域として抽出可能な複合画像処理が生成される。
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
1 画像処理装置
2 コンピュータ
41,41c,41d 対象画像
43 目標画像
45,45a,45b,45e〜45j 処理済み画像
92 プログラム
311 処理済み画像取得部
312 評価値算出部
313 複合画像処理生成部
314 繰返制御部
411 欠陥領域
412 非欠陥領域
441 欠陥特徴領域
442 エッジ特徴領域
443 背景特徴領域
R11,R12,R21,R22,R31,R32 木構造
S11〜S14,S21〜S32 ステップ

Claims (13)

  1. 画像処理装置であって、
    選択された複数の画像処理を決められた順序にて画像に対して実行する処理を複合画像処理として、予め準備された複数の複合画像処理のそれぞれを対象画像に対して実行することにより、複数の処理済み画像を取得する処理済み画像取得部と、
    前記対象画像において抽出すべき抽出対象領域を示す目標画像が予め準備されており、前記抽出対象領域に含まれる第1特徴領域、および、前記抽出対象領域に含まれない第2特徴領域のそれぞれにおいて、前記目標画像と各処理済み画像との一致度を示す領域評価値を求め、前記第1特徴領域の前記領域評価値、および、前記第2特徴領域の前記領域評価値に基づいて、前記各処理済み画像の取得に用いられた複合画像処理の評価値を求める評価値算出部と、
    前記複数の複合画像処理のうち前記評価値が高い複合画像処理が優先的に含まれるように、遺伝的プログラミングにより、新たな複数の複合画像処理を生成する複合画像処理生成部と、
    前記処理済み画像取得部、前記評価値算出部および前記複合画像処理生成部における処理を、所定の条件を満たすまで繰り返すことにより、前記対象画像を前記目標画像に近似させる複合画像処理を取得する繰返制御部と、
    を備えることを特徴とする画像処理装置。
  2. 請求項1に記載の画像処理装置であって、
    前記評価値算出部が、前記目標画像と前記各処理済み画像との相違を示す画像における前記第1特徴領域および前記第2特徴領域のそれぞれを注目特徴領域とし、前記注目特徴領域において画素の値が所定値以上となる領域を相違領域として、前記注目特徴領域もしくは前記画像の全体に対する前記注目特徴領域の前記相違領域の面積率、または、前記注目特徴領域において孤立した前記相違領域の個数、もしくは、前記相違領域により分断された領域の個数に基づく前記領域評価値を求めることを特徴とする画像処理装置。
  3. 請求項1または2に記載の画像処理装置であって、
    前記第1特徴領域が前記抽出対象領域の全体、または、前記抽出対象領域の外縁部を除く領域の全体であることを特徴とする画像処理装置。
  4. 請求項3に記載の画像処理装置であって、
    前記対象画像が、対象物上の欠陥を示す画像であり、
    前記抽出対象領域が欠陥領域であり、
    前記第1特徴領域が前記欠陥領域に含まれ、前記第2特徴領域が非欠陥領域に含まれることを特徴とする画像処理装置。
  5. 請求項1ないし4のいずれかに記載の画像処理装置であって、
    前記第1特徴領域と前記第2特徴領域との間に両特徴領域に接する第3特徴領域が設定され、
    前記評価値算出部が、前記第3特徴領域の前記領域評価値を求め、前記第3特徴領域の前記領域評価値に基づいて前記評価値を求めることを特徴とする画像処理装置。
  6. 請求項1ないし5のいずれかに記載の画像処理装置であって、
    複数の対象画像、および、前記複数の対象画像における同種の抽出対象領域を示す複数の目標画像が予め準備され、
    前記処理済み画像取得部が、各対象画像に対して前記複数の複合画像処理のそれぞれを実行し、
    前記評価値算出部が、各複合画像処理により前記複数の対象画像から取得された複数の処理済み画像に基づいて前記各複合画像処理の前記評価値を求めることを特徴とする画像処理装置。
  7. 画像処理方法であって、
    a)選択された複数の画像処理を決められた順序にて画像に対して実行する処理を複合画像処理として、予め準備された複数の複合画像処理のそれぞれを対象画像に対して実行することにより、複数の処理済み画像を取得する工程と、
    b)前記対象画像において抽出すべき抽出対象領域を示す目標画像が予め準備されており、前記抽出対象領域に含まれる第1特徴領域、および、前記抽出対象領域に含まれない第2特徴領域のそれぞれにおいて、前記目標画像と各処理済み画像との一致度を示す領域評価値を求める工程と、
    c)前記第1特徴領域の前記領域評価値、および、前記第2特徴領域の前記領域評価値に基づいて、前記各処理済み画像の取得に用いられた複合画像処理の評価値を求める工程と、
    d)前記複数の複合画像処理のうち前記評価値が高い複合画像処理が優先的に含まれるように、遺伝的プログラミングにより、新たな複数の複合画像処理を生成する工程と、
    e)前記a)ないしd)工程を、所定の条件を満たすまで繰り返すことにより、前記対象画像を前記目標画像に近似させる複合画像処理を取得する工程と、
    を備えることを特徴とする画像処理方法。
  8. 請求項7に記載の画像処理方法であって、
    前記b)工程において、前記目標画像と前記各処理済み画像との相違を示す画像における前記第1特徴領域および前記第2特徴領域のそれぞれを注目特徴領域とし、前記注目特徴領域において画素の値が所定値以上となる領域を相違領域として、前記注目特徴領域もしくは前記画像の全体に対する前記注目特徴領域の前記相違領域の面積率、または、前記注目特徴領域において孤立した前記相違領域の個数、もしくは、前記相違領域により分断された領域の個数に基づく前記領域評価値が求められることを特徴とする画像処理方法。
  9. 請求項7または8に記載の画像処理方法であって、
    前記第1特徴領域が前記抽出対象領域の全体、または、前記抽出対象領域の外縁部を除く領域の全体であることを特徴とする画像処理方法。
  10. 請求項9に記載の画像処理方法であって、
    前記対象画像が、対象物上の欠陥を示す画像であり、
    前記抽出対象領域が欠陥領域であり、
    前記第1特徴領域が前記欠陥領域に含まれ、前記第2特徴領域が非欠陥領域に含まれることを特徴とする画像処理方法。
  11. 請求項7ないし10のいずれかに記載の画像処理方法であって、
    前記第1特徴領域と前記第2特徴領域との間に両特徴領域に接する第3特徴領域が設定され、
    前記b)工程において、前記第3特徴領域の前記領域評価値が求められ、
    前記c)工程において、前記第3特徴領域の前記領域評価値に基づいて前記評価値が求められることを特徴とする画像処理方法。
  12. 請求項7ないし11のいずれかに記載の画像処理方法であって、
    複数の対象画像、および、前記複数の対象画像における同種の抽出対象領域を示す複数の目標画像が予め準備され、
    前記a)工程において、各対象画像に対して前記複数の複合画像処理のそれぞれが実行され、
    前記b)およびc)工程において、各複合画像処理により前記複数の対象画像から取得された複数の処理済み画像に基づいて前記各複合画像処理の前記評価値が求められることを特徴とする画像処理方法。
  13. 選択された複数の画像処理を決められた順序にて画像に対して実行する処理である複合画像処理をコンピュータに生成させるプログラムであって、前記プログラムの前記コンピュータによる実行は、前記コンピュータに、
    a)予め準備された複数の複合画像処理のそれぞれを対象画像に対して実行することにより、複数の処理済み画像を取得する工程と、
    b)前記対象画像において抽出すべき抽出対象領域を示す目標画像が予め準備されており、前記抽出対象領域に含まれる第1特徴領域、および、前記抽出対象領域に含まれない第2特徴領域のそれぞれにおいて、前記目標画像と各処理済み画像との一致度を示す領域評価値を求める工程と、
    c)前記第1特徴領域の前記領域評価値、および、前記第2特徴領域の前記領域評価値に基づいて、前記各処理済み画像の取得に用いられた複合画像処理の評価値を求める工程と、
    d)前記複数の複合画像処理のうち前記評価値が高い複合画像処理が優先的に含まれるように、遺伝的プログラミングにより、新たな複数の複合画像処理を生成する工程と、
    e)前記a)ないしd)工程を、所定の条件を満たすまで繰り返すことにより、前記対象画像を前記目標画像に近似させる複合画像処理を取得する工程と、
    を実行させることを特徴とするプログラム。
JP2013196485A 2013-09-24 2013-09-24 画像処理装置、画像処理方法およびプログラム Pending JP2015064625A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013196485A JP2015064625A (ja) 2013-09-24 2013-09-24 画像処理装置、画像処理方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013196485A JP2015064625A (ja) 2013-09-24 2013-09-24 画像処理装置、画像処理方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2015064625A true JP2015064625A (ja) 2015-04-09

Family

ID=52832480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013196485A Pending JP2015064625A (ja) 2013-09-24 2013-09-24 画像処理装置、画像処理方法およびプログラム

Country Status (1)

Country Link
JP (1) JP2015064625A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126046A1 (ja) * 2016-01-20 2017-07-27 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP2017162069A (ja) * 2016-03-08 2017-09-14 株式会社Screenホールディングス 最適化方法、最適化装置、プログラムおよび画像処理装置
CN110544243A (zh) * 2019-08-28 2019-12-06 中国兵器科学研究院宁波分院 一种ct图像小缺陷自动检出、定量及可靠性评价方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126046A1 (ja) * 2016-01-20 2017-07-27 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
CN108475425A (zh) * 2016-01-20 2018-08-31 富士通株式会社 图像处理装置、图像处理方法及图像处理程序
JPWO2017126046A1 (ja) * 2016-01-20 2018-09-20 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
CN108475425B (zh) * 2016-01-20 2022-03-08 富士通株式会社 图像处理装置、图像处理方法及计算机可读取的记录介质
US11468261B2 (en) 2016-01-20 2022-10-11 Fujitsu Limited Information processing apparatus, image processing method, and computer-readable recording medium recording image processing program
JP2017162069A (ja) * 2016-03-08 2017-09-14 株式会社Screenホールディングス 最適化方法、最適化装置、プログラムおよび画像処理装置
CN110544243A (zh) * 2019-08-28 2019-12-06 中国兵器科学研究院宁波分院 一种ct图像小缺陷自动检出、定量及可靠性评价方法
CN110544243B (zh) * 2019-08-28 2022-05-17 中国兵器科学研究院宁波分院 一种ct图像小缺陷自动检出、定量及可靠性评价方法

Similar Documents

Publication Publication Date Title
Nie et al. A revised progressive TIN densification for filtering airborne LiDAR data
KR101183391B1 (ko) 메트릭 임베딩에 의한 이미지 비교
JP6341650B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6641195B2 (ja) 最適化方法、最適化装置、プログラムおよび画像処理装置
JP2015079505A (ja) 視差深度画像のノイズ識別方法及びノイズ識別装置
JP6179224B2 (ja) 画像処理フィルタの作成装置及びその方法
JP2008238590A5 (ja)
CN113947537A (zh) 图像去雾方法、装置及设备
CN113281239B (zh) 多尺度煤岩孔隙网络生成方法和装置
JP4712885B2 (ja) 画像処理装置および画像処理方法
JP2015064625A (ja) 画像処理装置、画像処理方法およびプログラム
Hashim et al. An extensive analysis and conduct comparative based on statistical attach of LSB substitution and LSB matching
Tang et al. Feature preserving 3d mesh denoising with a dense local graph neural network
CN108986210B (zh) 三维场景重建的方法和设备
US20130222368A1 (en) Mesh generating apparatus and method
JP2009151371A (ja) 画像処理装置、画像処理方法およびプログラム
JP5600693B2 (ja) クラスタリング装置及び方法及びプログラム
JP6546385B2 (ja) 画像処理装置及びその制御方法、プログラム
KR101953479B1 (ko) 거리의 상대적 비율을 적용한 그룹 탐색 최적화 데이터 클러스터링 방법 및 시스템
JP6196517B2 (ja) 目標画像生成支援装置、目標画像生成支援方法およびプログラム
CN111080512B (zh) 动漫图像生成方法、装置、电子设备及存储介质
KR102404982B1 (ko) 엘라스틱 넷 회귀를 이용한 변수 선택 장치 및 방법
JP6159211B2 (ja) 目標画像生成支援装置、目標画像生成支援方法およびプログラム
CN116993629B (zh) 基于图像分解的平滑方法、装置、电子设备及存储介质
CN109741264A (zh) 图像过度表示方法、装置、电子设备及可读存储介质