JP2015062980A - Hard material and cutting tool - Google Patents
Hard material and cutting tool Download PDFInfo
- Publication number
- JP2015062980A JP2015062980A JP2013198831A JP2013198831A JP2015062980A JP 2015062980 A JP2015062980 A JP 2015062980A JP 2013198831 A JP2013198831 A JP 2013198831A JP 2013198831 A JP2013198831 A JP 2013198831A JP 2015062980 A JP2015062980 A JP 2015062980A
- Authority
- JP
- Japan
- Prior art keywords
- hard
- core
- phase
- shell
- hard material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 123
- 238000005520 cutting process Methods 0.000 title claims abstract description 61
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 23
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 12
- 230000002093 peripheral effect Effects 0.000 claims abstract description 12
- 150000004767 nitrides Chemical class 0.000 claims abstract description 8
- 230000000737 periodic effect Effects 0.000 claims abstract description 7
- 239000011230 binding agent Substances 0.000 claims description 69
- 239000011248 coating agent Substances 0.000 claims description 43
- 238000000576 coating method Methods 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 5
- 150000001247 metal acetylides Chemical class 0.000 claims description 4
- 230000035939 shock Effects 0.000 abstract description 12
- 239000012071 phase Substances 0.000 description 116
- 239000011162 core material Substances 0.000 description 58
- 239000000843 powder Substances 0.000 description 47
- 238000000034 method Methods 0.000 description 33
- 239000002245 particle Substances 0.000 description 30
- 238000005245 sintering Methods 0.000 description 24
- 239000002994 raw material Substances 0.000 description 16
- 239000007791 liquid phase Substances 0.000 description 14
- 238000002156 mixing Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 229910052721 tungsten Inorganic materials 0.000 description 12
- 239000011258 core-shell material Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000011812 mixed powder Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000001226 reprecipitation Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000007771 core particle Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910010037 TiAlN Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102220005308 rs33960931 Human genes 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
本発明は、鋼や鋳鉄、焼結合金などの金属材料の切削に好適な硬質材料、及びその硬質材料を用いた切削工具に関する。 The present invention relates to a hard material suitable for cutting a metal material such as steel, cast iron, and sintered alloy, and a cutting tool using the hard material.
従来、鋼や鋳鉄、焼結合金を切削するための硬質材料としては超硬合金、或いはそれらの表面にセラミックスの硬質被覆を設けた被覆超硬合金が知られている。超硬合金は強度と破壊靱性に優れ、熱伝導率にも優れているため、鋼や鋳鉄の粗加工や断続切削などに用いる切削工具に適している。 Conventionally, as a hard material for cutting steel, cast iron, and sintered alloy, cemented carbide or a coated cemented carbide in which a hard coating of ceramics is provided on the surface thereof is known. Cemented carbide is excellent in strength and fracture toughness, and is also excellent in thermal conductivity, so it is suitable for cutting tools used for roughing and intermittent cutting of steel and cast iron.
超硬合金の主要原料であるタングステンは原料供給の地域偏在性が高く、供給リスクが懸念されるため、タングステンの使用量を削減し、かつ超硬合金の代替となり得る硬質材料の開発が望まれている。特許文献1には、Tiの炭化物及びTiの炭窒化物の少なくとも一方からなるコアと、WCで構成されてコアを覆うシェルとを有するコアシェル構造の硬質相を備える硬質材料が開示されている。この硬質材料は、硬質相と鉄族金属を含む結合相とを含む原料粉末を混合し、所定の圧力にて圧縮して成形体とし、その成形体を焼結することで製造される。 Tungsten, the main raw material for cemented carbides, is highly localized in the region, and there is concern about supply risks. Therefore, it is desirable to develop hard materials that can replace tungsten and reduce the amount of tungsten used. ing. Patent Document 1 discloses a hard material having a core-shell structure hard phase having a core made of at least one of Ti carbide and Ti carbonitride and a shell made of WC and covering the core. This hard material is manufactured by mixing raw material powder containing a hard phase and a binder phase containing an iron group metal, compressing it at a predetermined pressure to form a compact, and sintering the compact.
しかし、硬質材料中にWCによる熱伝導パスを形成させ、硬質材料の耐熱衝撃性を向上させるにあたり、原料粉末にコアシェル構造の硬質相を用いただけでは、十分とは言い難いことがある。例えば、コアの組成や、シェルの被覆厚みによっては、焼結過程において、WCが溶解してしまい、熱伝導パスを形成できない場合がある。 However, in order to form a heat conduction path by WC in a hard material and improve the thermal shock resistance of the hard material, it may not be sufficient to use only a hard phase having a core-shell structure as a raw material powder. For example, depending on the composition of the core and the coating thickness of the shell, WC may be dissolved during the sintering process, and a heat conduction path may not be formed.
本発明は上記事情に鑑みてなされたもので、本発明の目的の一つは、超硬合金の代替となり得る耐熱衝撃性を備える硬質材料を提供することにある。また、本発明の別の目的は、耐熱衝撃性に優れる切削工具を提供することにある。 This invention is made | formed in view of the said situation, and one of the objectives of this invention is to provide the hard material provided with the thermal shock resistance which can substitute for a cemented carbide. Another object of the present invention is to provide a cutting tool having excellent thermal shock resistance.
本発明の硬質材料は、硬質相と、鉄族金属を主成分とする結合相とを備える硬質材料である。前記硬質相は、Wを除く周期表4,5,6族元素及びSiから選択される一つ以上の元素を含有する炭化物、窒化物、及び炭窒化物の少なくとも一種で構成されるコアと、WCで構成されて、前記コアを覆うシェルとを有する。前記結合相は、V及びCrの双方を含有する。 The hard material of the present invention is a hard material including a hard phase and a binder phase mainly composed of an iron group metal. The hard phase is a core composed of at least one of carbide, nitride, and carbonitride containing one or more elements selected from Group 4, 5 and 6 elements of the periodic table excluding W and Si; A shell made of WC and covering the core. The binder phase contains both V and Cr.
本発明の硬質材料は、耐熱衝撃性に優れる。 The hard material of the present invention is excellent in thermal shock resistance.
[本発明の実施形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.
(1)実施形態の硬質材料は、硬質相と、鉄族金属を主成分とする結合相とを備える硬質材料である。前記硬質相は、Wを除く周期表4,5,6族元素及びSiから選択される一つ以上の元素を含有する炭化物、窒化物、及び炭窒化物の少なくとも一種で構成されるコアと、WCで構成されて、前記コアを覆うシェルとを有する。前記結合相は、V及びCrの双方を含有する。 (1) The hard material of the embodiment is a hard material including a hard phase and a binder phase mainly composed of an iron group metal. The hard phase is a core composed of at least one of carbide, nitride, and carbonitride containing one or more elements selected from Group 4, 5 and 6 elements of the periodic table excluding W and Si; A shell made of WC and covering the core. The binder phase contains both V and Cr.
上記した実施形態の硬質材料によれば、結合相にV及びCrを含有することで、硬質材料の焼結過程において生成する液相に、WCが溶解することを抑制することができる。よって、コアの外周をシェルで覆ったコアシェル構造の硬質相を結合相で結合した焼結体とできる。従って、シェルを熱伝導パスとすることで、高熱伝導率の硬質材料とでき、耐熱衝撃性に優れる硬質材料とできる。 According to the hard material of the above-described embodiment, by containing V and Cr in the binder phase, it is possible to suppress the dissolution of WC in the liquid phase generated in the sintering process of the hard material. Therefore, it can be set as the sintered compact which combined the hard phase of the core-shell structure which covered the outer periphery of the core with the shell with the binder phase. Therefore, by using the shell as a heat conduction path, a hard material having high thermal conductivity can be obtained, and a hard material having excellent thermal shock resistance can be obtained.
結合相がVを含有することで、焼結過程において、液相へ溶解したWCが液相中で再析出することを抑制できる。また、結合相がCrを含有することで、焼結過程において、WCの結合相への溶解度を低下させることができる。つまり、結合相にV及びCrの双方を含有することで、焼結条件が高温である場合でも、WC被覆を維持し易い。 When the binder phase contains V, WC dissolved in the liquid phase can be prevented from reprecipitation in the liquid phase during the sintering process. Further, since the binder phase contains Cr, the solubility of WC in the binder phase can be reduced during the sintering process. That is, by including both V and Cr in the binder phase, it is easy to maintain the WC coating even when the sintering conditions are high.
(2)実施形態の硬質材料としては、前記結合相は、Vの含有量が結合相全体に対して5質量%以下であることが挙げられる。 (2) As a hard material of the embodiment, the binder phase may have a V content of 5% by mass or less based on the total binder phase.
Vの含有量は多いほど上記溶解・再析出を抑制することができ、WC被覆の維持に効果的であるが、多過ぎるとVが析出し易く脆化の原因となる。よって、Vの含有量が結合相全体に対して5質量%以下であることで、結合相中のVの含有量を適量にでき、脆化を防止することができる。 The more the content of V, the more the dissolution and reprecipitation can be suppressed, and the more effective the maintenance of the WC coating is. However, when the content is too large, V is likely to precipitate and causes embrittlement. Therefore, when the V content is 5% by mass or less with respect to the entire binder phase, the V content in the binder phase can be made appropriate, and embrittlement can be prevented.
(3)実施形態の硬質材料としては、前記結合相は、Crの含有量が結合相全体に対して10質量%以下であることが挙げられる。 (3) As a hard material of the embodiment, the binder phase may have a Cr content of 10% by mass or less based on the total binder phase.
Crの含有量は多いほどWCの結合相への溶解度を低下でき、WC被覆の維持に効果的であるが、多過ぎるとCrが析出し易く脆化の原因となる。よって、Crの含有量が結合相全体に対して10質量%以下であることで、結合相中のCrの含有量を適量にでき、脆化を防止することができる。 The greater the Cr content, the lower the solubility of the WC in the binder phase, and the more effective the maintenance of the WC coating. However, too much Cr tends to precipitate and cause embrittlement. Therefore, when the Cr content is 10% by mass or less with respect to the entire binder phase, the Cr content in the binder phase can be made appropriate, and embrittlement can be prevented.
(4)実施形態の切削工具は、逃げ面及びすくい面の両面の稜線部で構成される切刃とその近傍とを含む切刃周辺領域を備える。少なくとも前記切刃周辺領域は、上記した実施形態の硬質材料からなる基材と、前記基材を覆う硬質被覆とを備える。前記基材を構成する硬質材料は、前記逃げ面及びすくい面の少なくとも一部において前記コアが露出することなく前記シェルで覆われている。 (4) The cutting tool according to the embodiment includes a cutting edge peripheral region including a cutting edge constituted by ridges on both sides of the flank face and the rake face and the vicinity thereof. At least the peripheral region of the cutting edge includes a base material made of the hard material of the above-described embodiment and a hard coating that covers the base material. The hard material which comprises the said base material is covered with the said shell, without exposing the said core in at least one part of the said flank and rake face.
実施形態の硬質材料で基材を構成し、その基材表面に硬質被覆を設けた切削工具とした場合、切刃周辺領域、特に切削工具の逃げ面及びすくい面の少なくとも一部の基材を構成するコアがシェルで覆われていることで、硬質被覆がWCのシェルに対して成膜されることになる。そのため、コアが露出している基材に対して硬質被覆を成膜する場合に比べて、硬質被覆の基材への密着力を高めることができる。その結果、切削工具としての寿命を長くできる。この切削工具は、上述した硬質材料を用いているため、耐熱衝撃性に優れる。 When a base material is constituted by the hard material of the embodiment and the cutting tool is provided with a hard coating on the base material surface, at least a part of the base material in the peripheral region of the cutting edge, in particular, the flank and rake face of the cutting tool. Since the core to be formed is covered with a shell, a hard coating is formed on the shell of the WC. Therefore, the adhesion of the hard coating to the base material can be increased as compared with the case where the hard coating is formed on the base material from which the core is exposed. As a result, the life as a cutting tool can be extended. Since this cutting tool uses the hard material mentioned above, it is excellent in thermal shock resistance.
[本発明の実施形態の詳細]
本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Details of the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.
〔硬質材料〕
実施形態に係る硬質材料は、図1にその一例を示すように、硬質相10の粉末を結合相20で結合した焼結体で構成される。
[Hard material]
The hard material which concerns on embodiment is comprised with the sintered compact which couple | bonded the powder of the hard phase 10 with the
《硬質相》
硬質相10は、コア11の外周をシェル12で覆ったコアシェル構造を有する。コア11は、コアシェル構造の硬質相の中心部を構成し、十分な硬度を備えることで、主に硬質材料の耐摩耗性の向上に寄与する機能を有する。シェル12は、コア11の外周を覆い、硬質材料の靱性を確保すると共に、硬質材料中に高熱伝導率の熱伝導パスを形成することで、主に硬質材料の耐欠損性及び耐熱衝撃性の向上に寄与する機能を有する。
《Hard phase》
The hard phase 10 has a core-shell structure in which the outer periphery of the
(コア)
コアの材質は、Wを除く周期表4,5,6族元素及びSiから選択される一つ以上の元素を含有する炭化物、窒化物、及び炭窒化物の少なくとも一種である。具体的には、TiC,TiN,TiCNなどが挙げられる。これらTi系化合物をコアの材質に選択することで、シェルを構成するWCとの線膨張係数差を比較的小さくでき、シェルの形成過程や硬質材料の焼結過程における熱履歴でシェルに亀裂が生じたり、シェルが部分的に剥がれたりすることを抑制し易い。また、WCに比べて硬度の高い材料でコアを構成することができる。なお、硬質相のコアは、全ての硬質相のコアを同じ材質で構成しても良いし、異なる材質からなるコアの硬質相が混在していても良い。
(core)
The material of the core is at least one of carbides, nitrides, and carbonitrides containing one or more elements selected from Group 4, 5 and 6 elements of the periodic table excluding W and Si. Specifically, TiC, TiN, TiCN, etc. are mentioned. By selecting these Ti-based compounds as the core material, the difference in linear expansion coefficient from the WC constituting the shell can be made relatively small, and cracks can occur in the shell due to the thermal history during the shell formation process and the hard material sintering process. It is easy to suppress the occurrence or partial peeling of the shell. Further, the core can be made of a material having higher hardness than WC. The hard phase core may be composed of the same material for all the hard phase cores, or may include a mixture of hard phases made of different materials.
コアの平均粒径は、0.5μm以上であることが挙げられる。硬質相の粒径が小さいと、粒界が多くなるため、硬質材料の熱伝導率が低下する。そのため、コアの平均粒径は0.5μm以上であることで、硬質材料の熱伝導率の向上効果が得られ易い。また、このようなサイズのコア粒子は製造し易い。特に、硬質材料の高熱伝導化を考慮すると、この平均粒径は1.5μm以上、さらには2μm以上であることが挙げられる。一方、コアの平均粒径の上限は7μm程度である。コアの平均粒径が7μm以下であれば、高強度の硬質材料が得られ易いからである。この平均粒径は、焼結後の硬質材料に対して切断面を平面研削後に鏡面研磨して、走査型電子顕微鏡(Scanning Electron Microscope:SEM)で写真撮影を行い、フルマンの式を用いて算出した値である。なお、本実施形態の硬質材料におけるコアの平均粒径(焼結後の平均粒径)は、後述するように粉砕メディアを用いない混合方法を経て製造されるため、原料粉末におけるコア粒子の平均粒径がほぼ維持されている。 The average particle diameter of the core is 0.5 μm or more. If the particle size of the hard phase is small, the grain boundaries increase, and the thermal conductivity of the hard material decreases. Therefore, when the average particle size of the core is 0.5 μm or more, the effect of improving the thermal conductivity of the hard material is easily obtained. Moreover, the core particle of such a size is easy to manufacture. In particular, in consideration of increasing the thermal conductivity of the hard material, the average particle diameter is 1.5 μm or more, and further 2 μm or more. On the other hand, the upper limit of the average particle diameter of the core is about 7 μm. This is because if the average particle size of the core is 7 μm or less, a high-strength hard material can be easily obtained. This average particle size is calculated using the Fullman equation by taking a photograph with a scanning electron microscope (SEM) by polishing the cut surface of the hard material after sintering and then mirror polishing the surface. It is the value. In addition, since the average particle diameter (average particle diameter after sintering) in the hard material of the present embodiment is manufactured through a mixing method that does not use pulverization media as described later, the average of the core particles in the raw material powder The particle size is almost maintained.
(シェル)
シェルがWCからなることにより、硬質材料中に優れた熱伝導率を有するWC骨格のネットワークを形成し易く、硬質材料の熱伝導率を高めることができる。また、シェルがWCであることにより、鉄族金属との濡れ性に優れるため、結合相原料として鉄族金属を用いると焼結性が向上して緻密な焼結体を得ることができ、耐欠損性に優れた硬質材料とできる。
(shell)
When the shell is made of WC, it is easy to form a WC skeleton network having excellent thermal conductivity in the hard material, and the thermal conductivity of the hard material can be increased. In addition, since the shell is WC, the wettability with the iron group metal is excellent. Therefore, when the iron group metal is used as the binder phase material, the sinterability is improved and a dense sintered body can be obtained. It can be a hard material with excellent chipping properties.
シェルの平均厚みは、0.01μm以上2μm以下程度であることが挙げられる。平均厚みが0.01μm以上であればシェルを熱伝導パスとして硬質材料を高熱伝導化する効果が得られ易く、2μm以下であればシェルに亀裂が生じ難く、やはり硬質材料を高熱伝導化する効果が得られ易い。硬質材料の高熱伝導化の効果を顕著にするには、シェルの平均厚みは0.02μm以上、特に0.04μm以上であることが挙げられる。シェルの亀裂をより確実に抑制するには、シェルの平均厚みは1.5μm以下、特に0.3μm以下であることが挙げられる。この平均厚みの測定は、硬質材料の切削面を集束イオンビーム(Focused Ion Beam:FIB)加工して、透過型電子顕微鏡(Transmission Electron Microscope:TEM)で写真撮影を行い、複数の硬質相粒子における10点以上の測定点のシェルの厚みを平均することにより行う。 The average thickness of the shell is about 0.01 μm or more and 2 μm or less. If the average thickness is 0.01 μm or more, the effect of increasing the thermal conductivity of the hard material by using the shell as a heat conduction path is easily obtained, and if it is 2 μm or less, the shell is difficult to crack, and the effect of increasing the thermal conductivity of the hard material Is easy to obtain. In order to make the effect of increasing the thermal conductivity of the hard material noticeable, the average thickness of the shell is 0.02 μm or more, particularly 0.04 μm or more. In order to suppress cracks in the shell more reliably, the average thickness of the shell is 1.5 μm or less, particularly 0.3 μm or less. This average thickness is measured by processing a focused ion beam (FIB) on a cutting surface of a hard material, taking a photograph with a transmission electron microscope (TEM), and taking a plurality of hard phase particles. This is done by averaging the thickness of the shell at 10 or more measurement points.
また、WCで構成されるシェルの平均厚みをコアの平均粒径との比率で示すと、コアの平均粒径の3%未満であることが好ましい。これは、前記比率を3%未満とすることで前述の理由により硬質材料の高熱伝導化の効果が大きくなるためである。 Moreover, it is preferable that it is less than 3% of the average particle diameter of a core when the average thickness of the shell comprised by WC is shown by the ratio with the average particle diameter of a core. This is because when the ratio is less than 3%, the effect of increasing the thermal conductivity of the hard material is increased for the above-described reason.
つまり、シェルの亀裂抑制のために好ましい条件としては、コアシェル構造の複合粒子に占めるコアの体積含有率をシェルの体積含有率よりも大きくすることが挙げられる。コアのサイズに応じて、一定比率未満の厚みのシェルが形成されていれば、シェルの亀裂発生を抑制し易い。 That is, a preferable condition for suppressing cracks in the shell is to make the volume content of the core in the composite particles having the core-shell structure larger than the volume content of the shell. If a shell having a thickness less than a certain ratio is formed according to the size of the core, it is easy to suppress the occurrence of cracks in the shell.
《結合相》
結合相20は、硬質相の粒子を結合する材料で、鉄族金属とV及びCrとを含む。鉄族金属としては、CoとNiの少なくとも一方が硬質相と濡れ性が高く好ましい。結合相がCoを主体とすると特に焼結性が向上し、焼結体を緻密とし易く、強度、破壊靭性を向上できる。一方、Niは耐食性に優れる。
<< Binder Phase >>
The
結合相20にV及びCrを含有することで、硬質材料の焼結過程において生成される液相に、WCが溶解することを抑制することができる。よって、コア11の外周をWCのシェル12でより確実に覆ったコアシェル構造の硬質相10を結合相20で結合した焼結体とできる。具体的には、硬質相の断面におけるコアの周囲長の30%超、好ましくは50%以上、さらに70%以上、特に全周に亘って、シェルが被覆された硬質相とできる。
By containing V and Cr in the
硬質相の組成やシェルの被覆厚み、及び焼結温度などの条件によっては、焼結過程において、WCが結合相の液相中に溶解してしまい、コアシェル構造を十分に維持できず、コア11がシェル12から露出することがある。よって、シェルによる熱伝導パスを形成できず、硬質材料の熱伝導率の低下を招き易くなる。結合相にVが含有されることで、焼結過程において、液相へ溶解したWCが液相中で再析出することを抑制できる。結合相にCrが含有されることで、焼結過程において、WCの結合相への溶解度を低下させることができる。
Depending on conditions such as the composition of the hard phase, the coating thickness of the shell, and the sintering temperature, WC is dissolved in the liquid phase of the binder phase in the sintering process, and the core-shell structure cannot be sufficiently maintained. May be exposed from the
Vの含有量は、結合相全体に対して1質量%以上10質量%以下であることが挙げられる。Vの含有量が1質量%以上であることで、上記WCの溶解・再析出を抑制でき、コアの外周に覆われたWCを維持し易く、さらに2質量%以上、特に5質量%以上であることが挙げられる。Vの含有量は多いほどWC被覆の維持に効果的であるが、多過ぎるとVが析出し易く脆化の原因となるため、10質量%以下、さらに5質量%以下であることが挙げられる。 The V content may be 1% by mass or more and 10% by mass or less based on the entire binder phase. When the V content is 1% by mass or more, dissolution / reprecipitation of the WC can be suppressed, and it is easy to maintain the WC covered by the outer periphery of the core, and further 2% by mass or more, particularly 5% by mass or more. There are some. The greater the V content, the more effective the maintenance of the WC coating. However, if too much V is likely to precipitate and cause embrittlement, the content is 10% by mass or less, and further 5% by mass or less. .
Crの含有量は、結合相全体に対して2質量%以上15質量%以下であることが挙げられる。Crの含有量が2質量%以上であることで、上記WCの結合相への溶解度を低下でき、コアの外周に覆われたWCを維持し易く、さらに5質量%以上、特に10質量%以上であることが挙げられる。Crの含有量は多いほどWC被覆の維持に効果的であるが、多過ぎるとCrが析出し易く脆化の原因となるため、15質量%以下、さらに10質量%以下であることが挙げられる。 The Cr content is 2% by mass or more and 15% by mass or less with respect to the entire binder phase. When the Cr content is 2% by mass or more, the solubility of the WC in the binder phase can be reduced, and it is easy to maintain the WC covered by the outer periphery of the core, and further 5% by mass or more, particularly 10% by mass or more. It is mentioned that. The higher the Cr content, the more effective the maintenance of the WC coating. However, if too much Cr is likely to precipitate and cause embrittlement, it is 15% by mass or less, and further 10% by mass or less. .
VとCrの含有割合は、質量比でV:Cr=0.5:1.5〜1.5:0.5とすることが挙げられる。特に、Vの含有量が2質量%超5質量%以下であり、かつCrの含有量が2質量%以上10質量%以下である場合に、VとCrの含有割合が上記割合のときに、WCが結合相の液相中に溶解することを効果的に抑制することができる。さらにV:Cr=0.8:1.2〜1.2:0.8、特にV:Cr=1:1であることが挙げられる。 The content ratio of V and Cr may be V: Cr = 0.5: 1.5 to 1.5: 0.5 by mass ratio. In particular, when the V content is more than 2% by mass and 5% by mass or less, and the Cr content is 2% by mass or more and 10% by mass or less, when the content ratio of V and Cr is the above ratio, It can suppress effectively that WC melt | dissolves in the liquid phase of a binder phase. Furthermore, it is mentioned that V: Cr = 0.8: 1.2 to 1.2: 0.8, especially V: Cr = 1: 1.
結合相中のV及びCrの各含有量は、硬質材料(焼結体)に対して、電子線マイクロアナライザー(Electron Probe Micro Analyzer:EPMA)にて計測できる。 Each content of V and Cr in the binder phase can be measured with respect to a hard material (sintered body) with an electron probe microanalyzer (EPMA).
他に、結合相中にはW、Ru、Cなど、硬質相の構成元素が固溶していても構わない。特にW及びRuの少なくとも一種の固溶量が多いと結合相が固溶強化され、硬質材料の靭性を向上できて好ましい。 In addition, constituent elements of the hard phase such as W, Ru, and C may be dissolved in the binder phase. In particular, a large amount of at least one of W and Ru is preferable because the binder phase is strengthened by solid solution and the toughness of the hard material can be improved.
結合相は、硬質材料全体に対して3質量%以上20質量%以下含有することが挙げられる。結合相の含有量が多いほど硬質材料の靱性や焼結性が高くなる傾向があり、少ないと強度や靭性が低下する傾向にある。 The binder phase may be contained in an amount of 3% by mass or more and 20% by mass or less based on the entire hard material. As the binder phase content increases, the toughness and sinterability of the hard material tend to increase, and when the content is small, the strength and toughness tend to decrease.
《その他の硬質相》
硬質材料は、上述した実施形態の硬質相以外に、必要に応じて他の硬質相(第二硬質相)を含有しても良い。第二硬質相としては、周期表4,5,6族元素から選ばれる少なくとも一種の金属元素とC及びNの少なくとも一種の元素との化合物、即ち、上記金属元素の炭化物、窒化物、及び炭窒化物の少なくとも一種が利用できる。TaCとNbCの少なくとも一方を含むと鋼に対する耐反応性を向上でき、ZrC、ZrCN、及びZrNの少なくとも一種を含むと高温での硬質材料の強度を向上させることができる。
《Other hard phases》
The hard material may contain another hard phase (second hard phase) as necessary in addition to the hard phase of the above-described embodiment. As the second hard phase, a compound of at least one metal element selected from Group 4, 5, 6 elements of the periodic table and at least one element of C and N, that is, carbide, nitride, and carbon of the above metal element At least one kind of nitride can be used. When at least one of TaC and NbC is included, the resistance to steel can be improved, and when at least one of ZrC, ZrCN, and ZrN is included, the strength of the hard material at high temperature can be improved.
〔硬質材料の製造方法〕
本実施形態の硬質材料は、代表的には、原料粉末の準備→混合→成形→焼結という工程を経て製造される。
[Method of manufacturing hard material]
The hard material of this embodiment is typically manufactured through the steps of preparation of raw material powder → mixing → molding → sintering.
《準備工程》
準備工程では、硬質相粉末と、結合相粉末とを準備する。コアシェル構造の硬質相粉末を得るには、まずコアとなる粒子からなる粉末として、Wを除く4,5,6族元素及びSiから選択される一つ以上の元素を含有する炭化物、窒化物、及び炭窒化物の少なくとも一種で構成されるコア粉末を用意する。次に、用意したコア粉末の各粒子に、シェルとなるWCを被覆する。このシェルの形成には、CVD法、PVD法などの気相成長法の他、ゾルゲル法などの液相法を用いることができる。シェルの成膜を気相成長法により行うことで、緻密なシェルを比較的容易に形成することができる。
<< Preparation process >>
In the preparation step, a hard phase powder and a binder phase powder are prepared. In order to obtain a core-shell structured hard phase powder, first, as a powder composed of core particles, carbides, nitrides containing one or more elements selected from Group 4, 5, 6 elements except Si and Si, And a core powder composed of at least one kind of carbonitride. Next, each particle of the prepared core powder is coated with WC serving as a shell. For the formation of the shell, a liquid phase method such as a sol-gel method can be used in addition to a vapor phase growth method such as a CVD method and a PVD method. By forming the shell by a vapor deposition method, a dense shell can be formed relatively easily.
例えば、CVD法の場合には、コア粉末を容器に入れ、その容器を真空引き後に、容器を回転させながら所定のガスを容器内に導入して、所定の温度で保持することにより、コア粉末の各粒子の表面にWCのシェルを成膜する。容器を回転させることで、コア粉末の各粒子に満遍なくシェルを成膜することができる。容器に導入するガスとしては、原料ガスとしてタングステンのフッ化物(例えばWF6ガス)とメタン(CH4)若しくはアセトニトリル(CH3CN)が挙げられ、キャリアガスとして水素若しくはアルゴンガスが挙げられる。特に、CH3CNガスを用いると、脆性のW2Cよりも化学的に安定で高熱伝導率のWCを成膜し易く、中でも結晶性の高いWCを成膜できるため好ましい。成膜温度は700〜1100℃程度が好ましい。この温度範囲でWCを成膜すると、WCの結晶性が高くなり、WC中での結晶欠陥に伴うフォノンの散乱を抑制でき、シェルを高熱伝導率にできる。また、この温度範囲で成膜を行うと、コアとシェルとの密着性が高くなり、WCの剥がれや、それに伴う焼結工程でのWCのTi元素との固溶体化によるシェルの熱伝導率の低下が抑制できるため、好ましい。 For example, in the case of the CVD method, the core powder is put into a container, and after the container is evacuated, a predetermined gas is introduced into the container while rotating the container, and the core powder is held at a predetermined temperature. A WC shell is formed on the surface of each particle. By rotating the container, a shell can be uniformly formed on each particle of the core powder. Examples of the gas introduced into the container include tungsten fluoride (for example, WF 6 gas) and methane (CH 4 ) or acetonitrile (CH 3 CN) as a source gas, and hydrogen or argon gas as a carrier gas. In particular, it is preferable to use CH 3 CN gas because it is easier to form a WC that is chemically more stable and has a higher thermal conductivity than brittle W 2 C, and in particular, a WC with high crystallinity can be formed. The film forming temperature is preferably about 700 to 1100 ° C. When a WC film is formed in this temperature range, the crystallinity of the WC increases, phonon scattering accompanying crystal defects in the WC can be suppressed, and the shell can have high thermal conductivity. In addition, when the film is formed in this temperature range, the adhesion between the core and the shell becomes high, and the thermal conductivity of the shell due to the WC peeling and the solid solution of the WC with the Ti element in the sintering process is accompanied. Since a fall can be suppressed, it is preferable.
一方、PVD法の場合には、例えば次の方法が挙げられる。まず、コア粉末を容器に入れ、その容器を真空引き後に、容器を回転させながらタングステン製ターゲットを用いてタングステンをコア粉末にスパッタ蒸着する。次に、得られたタングステン被覆コア粉末を1700〜2000℃程度の温度で炭化してコア粉末の各粒子表面にWCを形成させる。 On the other hand, in the case of the PVD method, for example, the following method may be mentioned. First, core powder is put in a container, and after vacuuming the container, tungsten is sputter-deposited on the core powder using a tungsten target while rotating the container. Next, the obtained tungsten-coated core powder is carbonized at a temperature of about 1700 to 2000 ° C. to form WC on each particle surface of the core powder.
結合相粉末を得るには、鉄族金属を主成分とし、V及びCrの双方を均一分散した粉末を用意する。例えば、鉄族金属を主成分とする金属粉末と、V及びCrの双方を含有する炭化物粉末とを所定の組成比で配合し、これをボールミルにより粉砕混合することで、V及びCrを均一分散することが挙げられる。他に鉄族金属を主成分とする金属粉末にV及びCrを被覆したり、金属粉末にV及びCrを溶解した合金体を粉砕したり、といった手法を用いることもできる。 In order to obtain a binder phase powder, a powder containing iron group metal as a main component and uniformly dispersing both V and Cr is prepared. For example, a metal powder containing iron group metal as a main component and a carbide powder containing both V and Cr are blended at a predetermined composition ratio and pulverized and mixed with a ball mill to uniformly disperse V and Cr. To do. In addition, it is also possible to use a technique such as coating V and Cr on metal powder containing iron group metal as a main component, or pulverizing an alloy body in which V and Cr are dissolved in metal powder.
《混合工程》
上述した各原料粉末を、適宜な混合手段でできるだけ均一に混合して混合粉末とする。この混合工程においては、硬質相のコアシェル構造を損傷しないように原料粉末を混合することが重要である。つまり、この混合工程では、シェルに亀裂が生じたり、剥離が生じたりすることのないように混合手段を選択する。具体的には、例えば、原料粉末にエタノールやアセトンなどの有機溶媒を合わせてスラリーとし、このスラリーに超音波を照射しながら、粉砕メディアを用いることなく混合する。この混合方法によれば、原料粉末を実質的に粉砕することなく、かつシェルを損傷させることなく原料粉末を混合することができる。
《Mixing process》
Each raw material powder mentioned above is mixed as uniformly as possible by a suitable mixing means to obtain a mixed powder. In this mixing step, it is important to mix the raw material powder so as not to damage the core-shell structure of the hard phase. That is, in this mixing step, the mixing means is selected so that the shell does not crack or peel off. Specifically, for example, the raw material powder is mixed with an organic solvent such as ethanol or acetone to form a slurry, and the slurry is mixed without pulverizing media while being irradiated with ultrasonic waves. According to this mixing method, the raw material powder can be mixed without substantially pulverizing the raw material powder and without damaging the shell.
原料粉末を混合して混合粉末としたら、通常、この混合粉末にバインダを加え、スプレードライヤーなどの乾燥手段を用いて噴霧乾燥して造粒する。バインダとしては、パラフィンワックスやポリエチレングリコールなどが挙げられる。このバインダの含有量は、上記原料粉末とバインダの合計に対して、1質量%以上4質量%以下程度が挙げられる。 When the raw material powder is mixed to obtain a mixed powder, usually, a binder is added to the mixed powder, and the mixture is spray-dried using a drying means such as a spray dryer and granulated. Examples of the binder include paraffin wax and polyethylene glycol. As for content of this binder, about 1 mass% or more and 4 mass% or less are mentioned with respect to the sum total of the said raw material powder and a binder.
《成形工程》
混合工程で得られた混合粉末の成形は、混合粉末を金型に充填し、所定の圧力で所定の形状に成形する。成形方法としては、乾式加圧成形法、冷間静水圧成形法、射出成形法、押出成形法などが挙げられる。この成形時の圧力は、0.5ton/cm2(約50MPa)以上2.0ton/cm2(約200MPa)以下程度が好ましい。また、成形体の形状は、求められる製品の形状に応じて、過度に複雑形状とならないような適宜な形状を選択する。最終的な製品形状へは、必要に応じて、仮焼後もしくは焼結後に適宜な機械加工を行えばよい。
<Molding process>
Molding of the mixed powder obtained in the mixing step is performed by filling the mold with the mixed powder and molding it into a predetermined shape with a predetermined pressure. Examples of the molding method include a dry pressure molding method, a cold isostatic pressing method, an injection molding method, and an extrusion molding method. The molding pressure is preferably about 0.5 ton / cm 2 (about 50 MPa) or more and about 2.0 ton / cm 2 (about 200 MPa) or less. Moreover, the shape of a molded object selects the appropriate shape which does not become an excessively complicated shape according to the shape of the product calculated | required. The final product shape may be appropriately machined after calcination or sintering as necessary.
《焼結工程》
成形体の焼結は、液相の生じる温度域で成形体を所定時間保持して行うことが好適である。焼結温度は1300℃以上1600℃以下程度が挙げられる。焼結温度を高くし過ぎると、硬質相を構成する粒子が成長し易い。保持時間は0.5時間以上2.0時間以下程度、特に1.0時間以上1.5時間以下程度が好ましい。加熱時の雰囲気は、窒素,アルゴンなどの不活性ガス雰囲気又は真空(0.1Pa以上0.5Pa以下程度)とすることが好ましい。
<< Sintering process >>
It is preferable to perform the sintering of the compact by holding the compact for a predetermined time in a temperature range where a liquid phase is generated. As for sintering temperature, 1300 degreeC or more and about 1600 degrees C or less are mentioned. If the sintering temperature is too high, particles constituting the hard phase tend to grow. The holding time is preferably about 0.5 to 2.0 hours, particularly preferably about 1.0 to 1.5 hours. The atmosphere during heating is preferably an inert gas atmosphere such as nitrogen or argon or a vacuum (about 0.1 Pa or more and 0.5 Pa or less).
この焼結工程において、原料粉末の段階からシェルに亀裂や剥離などの損傷が実質的にない硬質粒子を用いているため、シェルがバリアとなって液相がコアに接触することを阻止し、コアと液相の間で構成元素同士の相互拡散が抑止される。また、結合相中にV及びCrの双方が均一分散されているため、液相中へのWCの溶解が抑制される。結合相中のCrによって、WCの結合相への溶解度を低下し、結合相中のVによって、WCが溶解したとしても、その溶解したWCが液相中やシェル上の溶解した場所以外で再析出することを抑制するため、大半の硬質相は、コアの外周がシェルで覆われた状態が維持される。硬質相の断面におけるコアの周囲長の30%超、好ましくは50%以上、さらに70%以上、特に全周に亘って、シェルが被覆された硬質相が、硬質相全体のうち、60%以上、さらに70%以上、特に80%以上存在することが好ましい。特に、硬質相全体のうち、硬質相の断面におけるコアの全周に亘ってWCのシェルが被覆された硬質粒子の個数の割合は、20%以上、さらに30%以上、特に50%以上であることが好ましい。また、硬質相全体のうち、硬質相の断面におけるコアの周囲長の70%以上がシェルから露出した硬質粒子の個数の割合は、40%以下、さらに30%以下、特に20%以下であることが好ましい。この割合は、SEMによる焼結体の断面の観察により行うことができる。その際、断面の視野中に100個前後の硬質粒子が含まれるようにSEM像を取得して観察を行う。 In this sintering process, since hard particles that are substantially free of damage such as cracking and peeling are used in the shell from the raw material powder stage, the shell serves as a barrier to prevent the liquid phase from contacting the core, Interdiffusion between constituent elements between the core and the liquid phase is suppressed. Moreover, since both V and Cr are uniformly dispersed in the binder phase, dissolution of WC in the liquid phase is suppressed. Cr in the binder phase reduces the solubility of WC in the binder phase, and even if WC is dissolved by V in the binder phase, the dissolved WC is re-recovered in places other than where it was dissolved in the liquid phase or on the shell. In order to suppress the precipitation, most of the hard phases are maintained in a state where the outer periphery of the core is covered with the shell. More than 30% of the circumference of the core in the cross section of the hard phase, preferably 50% or more, more than 70%, especially 60% or more of the hard phase covered by the shell over the entire circumference of the entire hard phase Further, it is preferably 70% or more, particularly preferably 80% or more. In particular, of the entire hard phase, the ratio of the number of hard particles covered with the WC shell over the entire circumference of the core in the cross section of the hard phase is 20% or more, further 30% or more, particularly 50% or more. It is preferable. Further, in the entire hard phase, the ratio of the number of hard particles in which 70% or more of the peripheral length of the core in the cross section of the hard phase is exposed from the shell is 40% or less, further 30% or less, particularly 20% or less. Is preferred. This ratio can be performed by observing the cross section of the sintered body by SEM. At that time, an SEM image is acquired and observed so that about 100 hard particles are included in the visual field of the cross section.
また、焼結工程において、焼結温度を所定の時間保持して加熱した成形体を冷却する際、真空、又はアルゴンといった不活性ガス雰囲気で冷却することが好ましい。 Further, in the sintering step, when the molded body heated by holding the sintering temperature for a predetermined time is cooled, it is preferably cooled in an inert gas atmosphere such as vacuum or argon.
〔切削工具〕
製造した硬質材料を用いた切削工具は、例えば図2に示すように、基材110と、基材110を覆う硬質被覆120とを備える。図2では、切削工具の上面がすくい面、左斜面が逃げ面で、両面の稜線部が切刃である。
〔Cutting tools〕
The manufactured cutting tool using the hard material includes, for example, as shown in FIG. 2, a
《切刃周辺領域》
実施形態の切削工具では、基材全体を上述した実施形態の硬質材料で構成し、基材110の全面を硬質被覆120で覆っている。但し、実施形態の硬質材料で構成する箇所は、少なくとも切削に関与する領域、つまり切刃とその近傍を含む切刃周辺領域であればよく、硬質被覆120の形成領域も同様である。切刃周辺領域は、逃げ面摩耗、クレータ摩耗が生じ易い領域や、切り屑が接触する領域をも含む。実施形態の硬質材料からなる基材110を切刃周辺領域に用いることで、耐摩耗性、耐熱衝撃性に加え、耐欠損性に優れた切削工具とすることができる。特に、基材110を構成する硬質材料では、コアがシェルに覆われて露出されていないため、次述する硬質被覆120がコアではなくシェルを構成するWC上に形成されることになり、硬質被覆120の基材110に対する密着性を高めることができる。これは、硬質被覆120が部分的に異なる材質(TiC、TiCN、WC)に対して形成されるのではなく、一様な材質(WC)に対して形成されるためであると考えられる。特に、硬質被覆120をPVD法で成膜した場合、硬質被覆120の構成材料の核がWC上に形成され易いことも、この密着力の向上に寄与していると考えられる。一方、切削工具では刃先処理を行うことがある。その場合、刃先処理領域はシェルが損傷し、コアが露出されることがある。但し、その場合でも、刃先処理領域でない逃げ面とすくい面の少なくとも一部では、コアが露出することなくシェルに覆われている。そのため、基材110の全被覆領域に亘ってシェルの損傷した硬質粒子の割合が高い場合に比べれば、硬質被覆120の基材110に対する密着性は十分に高い。
<Area around cutting edge>
In the cutting tool of the embodiment, the entire base material is made of the hard material of the above-described embodiment, and the entire surface of the
《硬質被覆》
この切削工具は、基材110の少なくとも切刃周辺領域に硬質被覆120を備えていることが好ましい。硬質被覆を設けることで、より高い耐摩耗性を得ることができる。
《Hard coating》
The cutting tool preferably includes a
硬質被覆120の材質は、周期表4,5,6族の金属,Al,Si及びBからなる群から選択される1種以上の元素と、炭素、窒素、酸素及び硼素からなる群から選択される1種以上の元素との化合物からなる化合物とすることが好ましい。具体例としては、TiCN,Al2O3,TiAlN,TiN,AlCrNなどが挙げられる。硬質被覆120の膜構造は、1層でも多層でもよい。硬質被覆120の合計厚さは1μm以上20μm以下程度が好ましい。硬質被覆120の形成方法は、熱CVD法などのCVD法、カソードアークイオンプレーティング法などのPVD法のいずれもが利用できる。
The material of the
なお、図2では硬質被覆120を有する切削工具を示しているが、この被覆がなく基材110だけで構成される切削工具であってもよい。
In addition, although the cutting tool which has the
〔試験例1〕
コア粉末として平均粒径3μmのTiC0.5N0.5粉末を準備し、その粉末をステンレス製容器に装入して真空引きした後、容器を回転させながら、1000℃に容器を加熱して、WF6ガスとCH3CN、H2、Arガスを流し、圧力6kPaの条件でTiC0.5N0.5粉末の各粒子(コア)に平均厚み0.08μmのWC(シェル)を被覆して硬質相粉末を作製した。この被覆粉末のシェルの平均厚みはコアの平均粒径の約2.7%であった。シェルの平均厚みはTEMにより測定できる。
[Test Example 1]
Prepare a TiC 0.5 N 0.5 powder with an average particle size of 3 μm as the core powder, charge the powder into a stainless steel container and evacuate it, then heat the container to 1000 ° C. while rotating the container. Then, WF 6 gas and CH 3 CN, H 2 , Ar gas are flown, and WC (shell) with an average thickness of 0.08 μm is applied to each particle (core) of TiC 0.5 N 0.5 powder under a pressure of 6 kPa. A hard phase powder was produced by coating. The average thickness of the shell of the coating powder was about 2.7% of the average particle diameter of the core. The average thickness of the shell can be measured by TEM.
結合相粉末として、Coを主成分とし、V及びCrの双方を均一分散した粉末を準備する。この結合相粉末は、Coを主成分とする金属粉末とV及びCrの双方を含有する炭化物粉末とを表1に記載の割合で配合し、これをボールミルにより粉砕混合して作製した。 As a binder phase powder, a powder containing Co as a main component and uniformly dispersing both V and Cr is prepared. This binder phase powder was prepared by blending a metal powder containing Co as a main component and a carbide powder containing both V and Cr in the proportions shown in Table 1, and pulverizing and mixing them with a ball mill.
上記硬質相粉末と結合相粉末とを85:15の質量比で配合し、硬質粒子のシェルを壊さないように混合した。具体的には、粉砕メディアを用いずに超音波を用いてエタノール中で原料粉末を混合した。 The hard phase powder and the binder phase powder were blended at a mass ratio of 85:15 and mixed so as not to break the shell of the hard particles. Specifically, the raw material powder was mixed in ethanol using ultrasonic waves without using a grinding medium.
これらの混合粉末を樟脳とエタノールを用いて造粒し、1ton/cm2(約98MPa)の圧力でプレス成型して成形体とする。 These mixed powders are granulated using camphor and ethanol, and press-molded at a pressure of 1 ton / cm 2 (about 98 MPa) to obtain a molded body.
最高温度1410℃、1時間保持の条件で真空下にて成形体を焼結して、焼結体を得た。焼結体の組成はほぼ原料粉末の配合組成と一致していることをEPMAにて確認できる。 The compact was sintered under vacuum at a maximum temperature of 1410 ° C. and held for 1 hour to obtain a sintered body. It can be confirmed by EPMA that the composition of the sintered body is almost the same as the composition of the raw material powder.
得られた焼結体(硬質材料)を切断し、切断面を鏡面仕上げ後、視野中に100個前後(この試験例では89個〜108個)の硬質粒子が含まれるように観察倍率5000倍でSEM像を取得して、WCの被覆状態を観察した。SEM像において、シェルであるWCは輝度の高い白色組織として、コアであるTiCNは輝度の低い黒色組織として観察することができる。なお、(Ti,W)CNなどの複合炭化物と、Coなどの結合相は、WCとTiCNの中間の輝度を有する組織として観察される。このように観察したWCとTiCNの分布状態から、TiCNの周囲を完全にWCが被覆している硬質相を「完全被覆」、TiCNの周囲長の70%以上がWC被覆から露出している硬質相を「無被覆」、その他の硬質相を「一部被覆」と分類し、これらの硬質相の個数を視野中の全硬質粒子から調べた。さらに、被覆状態の総合判定として、無被覆の硬質相が全体の50%以上を占める硬質材料を「C(不良)」、無被覆の硬質相が全体の10%未満である硬質材料を「A(優)」、その他の硬質材料を「B(良)」と判定した。その結果を表1に示す。 After cutting the obtained sintered body (hard material) and mirror-finishing the cut surface, the observation magnification is 5000 times so that about 100 hard particles (89 to 108 in this test example) are included in the visual field. The SEM image was acquired by observing the coated state of WC. In the SEM image, WC as a shell can be observed as a white structure with high luminance, and TiCN as a core can be observed as a black structure with low luminance. Note that a composite carbide such as (Ti, W) CN and a bonded phase such as Co are observed as a structure having a luminance intermediate between WC and TiCN. Based on the distribution of WC and TiCN observed in this way, the hard phase in which the WC is completely covered by WC is “completely coated”, and the hard phase in which 70% or more of the circumference of TiCN is exposed from the WC coating. The phases were classified as “uncoated” and the other hard phases were classified as “partially coated”, and the number of these hard phases was examined from all the hard particles in the field of view. Furthermore, as a comprehensive judgment of the covering state, a hard material in which the uncoated hard phase accounts for 50% or more of the whole is “C (defect)”, and a hard material in which the uncoated hard phase is less than 10% of the whole is “A”. (Excellent) ”and other hard materials were determined as“ B (good) ”. The results are shown in Table 1.
さらに、上記硬質材料を#200のダイヤモンド砥石で座面の平面研削を行い、刃先処理を行って、形状がSNGN120408(逃げ面、すくい面は研削加工なし)なる形状の基材とする。この基材をSEMやTEMで観察したところ、逃げ面、すくい面のうち、刃先処理が及んでいない領域はシェルに亀裂や剥離の生じたコアシェル構造の複合粒子が実質的に存在しなかった。さらに、この基材の表面に公知のPVD法でTiAlN膜(硬質被覆)を5μmの平均厚みに被覆して切削工具とした。 Further, the above-mentioned hard material is subjected to surface grinding of the bearing surface with a # 200 diamond grindstone and subjected to cutting edge processing to obtain a base material having a shape of SNGN120408 (the flank and rake face are not ground). When this base material was observed by SEM or TEM, the core-shell structured composite particles in which cracks and peeling occurred in the shell were substantially absent in the flank face and rake face area where the blade edge treatment was not performed. Furthermore, the surface of this base material was coated with a TiAlN film (hard coating) to an average thickness of 5 μm by a known PVD method to obtain a cutting tool.
この切削工具を用いて、切削速度200m/min、送り量0.2mm/rev、切り込み2.0mm、切削時間5分間、湿式の条件で、S50C製の溝なしの被削材をフライス切削試験し、切削工具の硬質材料(基材)に生じた亀裂本数を計測して耐熱衝撃性を評価した。亀裂本数は、基材表面(逃げ面及びすくい面)のSEMの組成像で観察して計測した。その結果を表1に示す。 Using this cutting tool, a milling cutting test was performed on an S50C grooveless work material at a cutting speed of 200 m / min, a feed rate of 0.2 mm / rev, a cutting depth of 2.0 mm, and a cutting time of 5 minutes under wet conditions. The thermal shock resistance was evaluated by measuring the number of cracks generated in the hard material (base material) of the cutting tool. The number of cracks was measured by observing the SEM composition image of the substrate surface (flank and rake face). The results are shown in Table 1.
表1に示すように、結合相にV及びCrの双方が含有された試料No.1〜試料No.16の硬質材料は、無被覆の硬質相の割合が全体の50%未満であり、安定してWC被覆を維持することができていることがわかる。中でも、Crの含有量が結合相全体に対して10質量%以上であり、かつVの含有量が結合相全体に対して2質量%以上である試料No.7,8,11,12,15,16の硬質材料は、無被覆の硬質相の割合が10%未満であり、WCによる熱伝導パスを安定して形成できると期待できる。特に、Crの含有量が結合相全体に対して10質量%以上であり、かつVの含有量が結合相全体に対して5質量%以上である試料No.11,12,15,16の硬質材料は、完全被覆の硬質相の割合が50%以上であり、安定してWC被覆を維持でき、熱伝導パスを安定して形成できると期待できる。 As shown in Table 1, sample Nos. 1 and 2 containing both V and Cr in the binder phase. 1 to Sample No. It can be seen that the 16 hard materials have a ratio of the uncoated hard phase of less than 50% of the total, and can stably maintain the WC coating. Among them, sample No. 1 in which the Cr content is 10% by mass or more with respect to the whole binder phase and the V content is 2% by mass or more with respect to the whole binder phase. The hard materials of 7, 8, 11, 12, 15, 16 have a ratio of uncoated hard phase of less than 10%, and it can be expected that a heat conduction path by WC can be stably formed. In particular, Sample No. No. 2 having a Cr content of 10% by mass or more with respect to the entire binder phase and a V content of 5% by mass or more with respect to the entire binder phase. The hard materials of 11, 12, 15, and 16 have a ratio of the hard phase of the complete coating of 50% or more, and it can be expected that the WC coating can be stably maintained and the heat conduction path can be stably formed.
また、表1の耐熱衝撃性の評価結果に示すように、結合相にV及びCrの双方が含有された試料No.1〜試料No.16の硬質材料は、結合相にV及びCrのどちらも含有していない試料No.101や、結合相にVのみもしくはCrのみを含有した試料No.102〜試料No.106に比較して、熱き裂本数が少なく、耐熱衝撃性に優れることがわかる。試料No.1〜試料No.16について、Vの含有量が結合相全体に対して5%超、あるいはCrの含有量が結合相全体に対して10質量%超である試料No.4,8,12〜16の硬質材料は、WC被覆の維持に優れるものの、熱き裂本数が微増する傾向にあることがわかる。これは、結合相中のV及びCrの含有量が増加したことで、Coが固溶硬化すると共に靱性が低下し、耐熱き裂性が若干低下したことによると考えられる。 In addition, as shown in the evaluation results of thermal shock resistance in Table 1, the sample No. 1 containing both V and Cr in the binder phase was used. 1 to Sample No. The hard material of No. 16 has a sample No. 1 containing neither V nor Cr in the binder phase. 101, sample No. 101 containing only V or Cr in the binder phase. 102-Sample No. It can be seen that the number of hot cracks is smaller than that of 106, and the thermal shock resistance is excellent. Sample No. 1 to Sample No. No. 16 in which the V content exceeds 5% with respect to the entire binder phase or the Cr content exceeds 10% by mass with respect to the entire binder phase. It can be seen that the hard materials of 4, 8, 12 to 16 are excellent in maintaining the WC coating but tend to slightly increase the number of hot cracks. This is considered to be due to the fact that the content of V and Cr in the binder phase is increased, so that Co is solid solution hardened, the toughness is lowered, and the thermal crack resistance is slightly lowered.
本発明の硬質材料は、従来の超硬合金の代替原料としての利用が期待される。特に、この硬質材料は、鋼と反応し難いことから、焼結体とした場合に、鋼加工用の切削工具として好適に利用することができる。 The hard material of the present invention is expected to be used as an alternative raw material for conventional cemented carbide. In particular, since this hard material does not easily react with steel, when it is made into a sintered body, it can be suitably used as a cutting tool for steel processing.
10 硬質相
11 コア 12 シェル
20 結合相
110 基材 120 硬質被覆
10
Claims (4)
前記硬質相は、
Wを除く周期表4,5,6族元素及びSiから選択される一つ以上の元素を含有する炭化物、窒化物、及び炭窒化物の少なくとも一種で構成されるコアと、
WCで構成されて、前記コアを覆うシェルとを有し、
前記結合相は、V及びCrの双方を含有する硬質材料。 A hard material comprising a hard phase and a binder phase mainly composed of an iron group metal,
The hard phase is
A core composed of at least one of carbides, nitrides, and carbonitrides containing one or more elements selected from periodic table 4, 5, 6 elements and Si, excluding W;
A shell made of WC and covering the core;
The binder phase is a hard material containing both V and Cr.
少なくとも前記切刃周辺領域は、
請求項1〜請求項3のいずれか1項に記載の硬質材料からなる基材と、
前記基材を覆う硬質被覆とを備え、
前記基材を構成する硬質材料は、前記逃げ面及びすくい面の少なくとも一部において前記コアが露出することなく前記シェルで覆われている切削工具。 A cutting tool comprising a cutting edge peripheral region including a cutting edge composed of ridges on both sides of the flank and rake face and the vicinity thereof,
At least the peripheral area of the cutting edge is
A substrate made of the hard material according to any one of claims 1 to 3,
A hard coating covering the substrate,
The hard material which comprises the said base material is the cutting tool with which the said core is covered with the said shell, without exposing in at least one part of the said flank and rake face.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013198831A JP5843171B2 (en) | 2013-09-25 | 2013-09-25 | Hard materials and cutting tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013198831A JP5843171B2 (en) | 2013-09-25 | 2013-09-25 | Hard materials and cutting tools |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015062980A true JP2015062980A (en) | 2015-04-09 |
JP5843171B2 JP5843171B2 (en) | 2016-01-13 |
Family
ID=52831326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013198831A Active JP5843171B2 (en) | 2013-09-25 | 2013-09-25 | Hard materials and cutting tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5843171B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017030082A (en) * | 2015-07-30 | 2017-02-09 | 三菱マテリアル株式会社 | Cubic crystal boron nitride sintered body cutting tool excellent in defect resistance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001525888A (en) * | 1997-05-13 | 2001-12-11 | トス、リチャード・エドモンド | Tough-coated hard powder and its sintered product |
JP2008133489A (en) * | 2006-11-27 | 2008-06-12 | Kyocera Corp | Hard metal and manufacturing method therefor |
JP2013014792A (en) * | 2011-06-30 | 2013-01-24 | Sumitomo Electric Ind Ltd | Hard material as well as manufacturing method thereof, and cutting tool |
-
2013
- 2013-09-25 JP JP2013198831A patent/JP5843171B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001525888A (en) * | 1997-05-13 | 2001-12-11 | トス、リチャード・エドモンド | Tough-coated hard powder and its sintered product |
JP2011168891A (en) * | 1997-05-13 | 2011-09-01 | Richard Edmund Toth | Tough-coated hard powder and sintered product thereof |
JP2008133489A (en) * | 2006-11-27 | 2008-06-12 | Kyocera Corp | Hard metal and manufacturing method therefor |
JP2013014792A (en) * | 2011-06-30 | 2013-01-24 | Sumitomo Electric Ind Ltd | Hard material as well as manufacturing method thereof, and cutting tool |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017030082A (en) * | 2015-07-30 | 2017-02-09 | 三菱マテリアル株式会社 | Cubic crystal boron nitride sintered body cutting tool excellent in defect resistance |
Also Published As
Publication number | Publication date |
---|---|
JP5843171B2 (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4690475B2 (en) | Cermet and coated cermet tools | |
JP5716577B2 (en) | Hard material, manufacturing method thereof, and cutting tool | |
EP2980046B1 (en) | Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body | |
JP5807851B1 (en) | Cermets and cutting tools | |
JP2016107396A (en) | Surface-coated cutting tool with excellent chipping resistance and wear resistance | |
JP5652113B2 (en) | WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting | |
JP2010234519A (en) | Cermet and coated cermet | |
JP5971472B2 (en) | Hard material, manufacturing method of hard material, cutting tool and friction stir welding tool | |
JP5971616B2 (en) | Hard material, manufacturing method of hard material, cutting tool and friction stir welding tool | |
JP2011235410A (en) | Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy | |
US11530467B2 (en) | Cemented carbide and cutting tool containing the same as substrate | |
JP2009090395A (en) | Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting | |
JP5843171B2 (en) | Hard materials and cutting tools | |
JP6443207B2 (en) | Cemented carbide and cutting tools | |
JP5906813B2 (en) | Hard materials and cutting tools | |
JP2014233767A (en) | Cubic boron nitride sinter body cutting tool excellent in crack resistance | |
JP2012041595A (en) | Cermet | |
JP2013108152A (en) | Hard particle and manufacturing method thereof | |
JP2014221942A (en) | Hard particles, hard material, cutting tool, method of producing hard particles | |
JP2016064470A (en) | Surface coat cutting tool excellent in chipping resistance and wear resistance | |
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool | |
JP4756445B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP4711059B2 (en) | Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials | |
JP4310693B2 (en) | Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP3972776B2 (en) | Slow-away surface-coated cemented carbide cutting tip that exhibits excellent chipping resistance in high-speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5843171 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |