JP2015062951A - Tube expansion method for heat-transfer tube made of aluminum or aluminum alloy - Google Patents

Tube expansion method for heat-transfer tube made of aluminum or aluminum alloy Download PDF

Info

Publication number
JP2015062951A
JP2015062951A JP2013270230A JP2013270230A JP2015062951A JP 2015062951 A JP2015062951 A JP 2015062951A JP 2013270230 A JP2013270230 A JP 2013270230A JP 2013270230 A JP2013270230 A JP 2013270230A JP 2015062951 A JP2015062951 A JP 2015062951A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
transfer element
heat
expansion plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013270230A
Other languages
Japanese (ja)
Other versions
JP6288581B2 (en
Inventor
宗尚 高橋
Munehisa Takahashi
宗尚 高橋
淑夫 久米
Yoshio Kume
淑夫 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2013270230A priority Critical patent/JP6288581B2/en
Publication of JP2015062951A publication Critical patent/JP2015062951A/en
Application granted granted Critical
Publication of JP6288581B2 publication Critical patent/JP6288581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tube expansion method for a heat-transfer tube.SOLUTION: This invention relates to the tube expansion method for a heat-transfer tube, for forming a heat-transfer tube by forcibly inserting a tube expansion plug into the inside of a raw heat-transfer tube made of aluminum or aluminum alloy thereby expanding the outer diameter of the raw heat-transfer tube, the tube expansion plug including a head part having an outer diameter larger than the inner diameter of the raw heat-transfer tube. A tube expansion plug which is composed of a shank and the head part formed at this shank tip, and in which the shank and the head part are formed from a hard metal with a hardness of HRA85 -95 and diamond-like carbon film with a 0.5 -3.0 μm thickness is formed on the outer peripheral surface of the head part, is used as the tube expansion plug. A lubrication oil is used which has a flash point of 100°C or less and a kinetic viscosity of 1.0 mm/S(at 40°C) or more is used as the lubrication oil that lubricates between the raw heat-transfer tube and the tube expansion plug.

Description

本発明は、拡管用プラグを用いたアルミニウムまたはアルミニウム合金製伝熱管の拡管方法に関する。   The present invention relates to a method for expanding a heat transfer tube made of aluminum or aluminum alloy using a plug for expanding tubes.

チューブ、フィンを主体とするクーラー用室内機などの熱交換器は、フィンをアルミニウムから構成し、チューブを銅製ヘアピンパイプで構成する構造が従来から用いられている。ところが、近年、銅資源の枯渇などの背景から、更なる低コスト化、熱交換性能の向上、リサイクル性の追求などがなされ、チューブも含めて熱交換器全体をアルミニウムから構成するオールアルミニウム熱交換器が検討されている。   2. Description of the Related Art Conventionally, a heat exchanger such as a cooler indoor unit mainly composed of tubes and fins has a structure in which fins are made of aluminum and tubes are made of copper hairpin pipes. However, in recent years, due to the depletion of copper resources, etc., further cost reduction, improvement of heat exchange performance, pursuit of recyclability, etc. have been made, and all-aluminum heat exchange in which the entire heat exchanger including tubes is made of aluminum A vessel is being considered.

チューブとフィンからなる熱交換器の一例として、図8、図9に示すように、冷媒を通過させるチューブとして熱伝導性と加工性に優れた銅または銅合金からなる伝熱管100を蛇行させて設け、この伝熱管100の周囲に複数のアルミニウム合金製フィン材101を平行に配設した構造が知られている。伝熱管100は、平行に配設したフィン材101を貫通するように設けた複数の透孔を通過するように設けられている。
図8に示す熱交換器の構造において伝熱管100は、フィン材101を直線状に貫通する複数のU字状の主管100Aと、隣接する主管100Aの隣り合う端部開口どうしをU字形のエルボ管100Bで図9に示すように接続してなる。また、フィン材101を貫通している伝熱管100の一方の端部側に冷媒の入口部106が形成され、伝熱管100の他方の端部側に冷媒の出口部107が形成されることで図8に示す熱交換器105が構成されている。
As an example of a heat exchanger composed of tubes and fins, as shown in FIGS. 8 and 9, a heat transfer tube 100 made of copper or a copper alloy having excellent thermal conductivity and workability is meandered as a tube through which a refrigerant passes. There is known a structure in which a plurality of aluminum alloy fin materials 101 are arranged in parallel around the heat transfer tube 100. The heat transfer tube 100 is provided so as to pass through a plurality of through holes provided so as to penetrate the fin material 101 arranged in parallel.
In the heat exchanger structure shown in FIG. 8, the heat transfer tube 100 includes a plurality of U-shaped main tubes 100 </ b> A that linearly penetrate the fin material 101, and adjacent end openings of the adjacent main tubes 100 </ b> A. The tube 100B is connected as shown in FIG. Further, the refrigerant inlet portion 106 is formed on one end side of the heat transfer tube 100 penetrating the fin material 101, and the refrigerant outlet portion 107 is formed on the other end portion side of the heat transfer tube 100. A heat exchanger 105 shown in FIG. 8 is configured.

図8に示す構造の熱交換器105を製造するには、平行に配置された複数のフィン材101を直線状に貫通する透孔をフィン材101に予め複数箇所形成しておき、これらの透孔にこれら透孔より若干小さな外径の伝熱素管を挿通しておく。次に、図10に示すように球状のヘッド部110をロッド部111の先端側に有する拡管プラグ112を用い、この拡管プラグ112を伝熱素管103内に強制的に挿入し、伝熱素管103を押し広げるように塑性変形させて拡管することで伝熱管100を形成する。この拡管処理によって径が増大した伝熱管100はフィン材101の透孔を内側から押し広げるようにフィン材101に密着するのでフィン材101と伝熱管100を相互固定することができる。   In order to manufacture the heat exchanger 105 having the structure shown in FIG. 8, a plurality of through holes are formed in advance in the fin material 101 so as to linearly penetrate the plurality of fin materials 101 arranged in parallel. A heat transfer element tube having an outer diameter slightly smaller than these through holes is inserted into the holes. Next, as shown in FIG. 10, a tube expansion plug 112 having a spherical head portion 110 on the distal end side of the rod portion 111 is used, and this tube expansion plug 112 is forcibly inserted into the heat transfer element tube 103, The heat transfer tube 100 is formed by plastically deforming and expanding the tube 103 so as to expand it. Since the heat transfer tube 100 whose diameter has been increased by the tube expansion process is in close contact with the fin material 101 so as to push the through hole of the fin material 101 from the inside, the fin material 101 and the heat transfer tube 100 can be fixed to each other.

この種の拡管技術の一例として、軸部の先端部に球形状の本体部を備えた拡管治具であり、本体部の外周表面にダイヤモンドライクカーボン処理による表面処理層を有し、金属管の拡管時に用いる潤滑油として動粘度0.5〜11cSt(at40℃)の潤滑油を用いる技術が知られている(特許文献1参照)。   As an example of this type of tube expansion technique, a tube expansion jig having a spherical main body at the tip of a shaft portion, having a surface treatment layer by diamond-like carbon treatment on the outer peripheral surface of the main body, A technique using a lubricating oil having a kinematic viscosity of 0.5 to 11 cSt (at 40 ° C.) is known as a lubricating oil used at the time of pipe expansion (see Patent Document 1).

特開2008−093713号公報JP 2008-093713 A

特許文献1に記載の技術によれば、硬質かつ潤滑性を有する表面処理層を拡管治具の表面に形成した構造と潤滑油の選択により、拡管時の抵抗を低減している。これにより、金属管拡管時に発生する摩耗粉の生成を抑え、摩耗粉の拡管治具への凝着を防止し、金属管内面が荒れるなどの不具合を解消できる。
しなしながら、上述したような拡管プラグ112による拡管工程は、従来の銅あるいは銅合金製の伝熱素管103を用い、これを拡管して伝熱管100にするのであるならば、加工上問題を生じるおそれは低かったが、アルミニウムあるいはアルミニウム合金製の伝熱管を用いる場合、以下に説明する課題が新たに発生することがわかった。
According to the technique described in Patent Document 1, the resistance at the time of pipe expansion is reduced by selecting a structure and a lubricating oil in which a hard and lubricated surface treatment layer is formed on the surface of the pipe expansion jig. Thereby, generation | occurrence | production of the abrasion powder which generate | occur | produces at the time of metal pipe expansion is suppressed, adhesion to the pipe expansion jig of abrasion powder is prevented, and malfunctions, such as a metal pipe inner surface roughening, can be eliminated.
However, if the tube expansion process using the tube expansion plug 112 as described above uses the conventional heat transfer element tube 103 made of copper or copper alloy and expands the tube to the heat transfer tube 100, there is a problem in processing. However, when using a heat transfer tube made of aluminum or an aluminum alloy, it has been found that a problem described below newly occurs.

アルミニウムあるいはアルミニウム合金製の伝熱管は、銅あるいは銅合金製の伝熱管に比べ、拡管の際に拡管プラグ112にアルミニウムの凝着が発生し易く、拡管荷重が増大するので拡管プラグ112の破損あるいは伝熱管そのものの破損を引き起こす問題があった。拡管荷重が増大する原因の1つは、拡管プラグに対し銅よりもアルミニウムの方が親和性が高いことに起因している。   Compared to copper or copper alloy heat transfer tubes, aluminum or aluminum alloy heat transfer tubes are more likely to cause adhesion of aluminum to the expanded plug 112 during expansion, resulting in increased tube expansion load. There was a problem that caused damage to the heat transfer tube itself. One of the reasons why the tube expansion load increases is due to the fact that aluminum has a higher affinity for the tube expansion plug than copper.

また、熱交換器に適用される伝熱管は、近年では、図11に断面構造を示す伝熱管120のように内面壁に管の長さ方向に延在する複数の溝121を備えた溝付き管が多用されている。従来、この種の溝付き伝熱管120を銅あるいは銅合金から構成した場合に拡管プラグ112により拡管する技術はある程度確立しているが、溝付き伝熱管120をアルミニウムあるいはアルミニウム合金から構成した場合、拡管時に溝121が潰されて変形する問題を生じるおそれがあった。   Further, in recent years, a heat transfer tube applied to a heat exchanger has a groove provided with a plurality of grooves 121 extending in the length direction of the tube on the inner wall like a heat transfer tube 120 having a cross-sectional structure shown in FIG. Tubes are frequently used. Conventionally, when this type of grooved heat transfer tube 120 is made of copper or a copper alloy, a technique for expanding the tube with the tube expansion plug 112 is established to some extent, but when the grooved heat transfer tube 120 is made of aluminum or an aluminum alloy, There is a possibility that the groove 121 may be crushed and deformed during tube expansion.

溝付き伝熱管120において溝121が潰れるか変形すると、熱交換効率が低下するので、熱交換器としての性能が低下するおそれがある。
このため、アルミニウムあるいはアルミニウム合金製の伝熱管を用い、その伝熱管が溝付きタイプであったとしても、溝の形を崩すことなくできるだけ円滑に拡管できる技術の提供が望まれている。
If the groove 121 is crushed or deformed in the heat transfer tube 120 with the groove, the heat exchange efficiency is lowered, so that the performance as a heat exchanger may be lowered.
For this reason, even if a heat transfer tube made of aluminum or an aluminum alloy is used and the heat transfer tube is a grooved type, it is desired to provide a technique capable of expanding the tube as smoothly as possible without breaking the shape of the groove.

本発明は上述の事情に鑑みなされたもので、アルミニウムあるいはアルミニウム合金製の伝熱管を拡管して熱交換器を構成する場合に好適な拡管プラグを用いて行う伝熱管の拡管方法であり、拡管時の抵抗を低く抑制し、伝熱管内面の溝の変形を抑制しつつ拡管できる方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and is a method of expanding a heat transfer tube using a tube expansion plug suitable for expanding a heat transfer tube made of aluminum or an aluminum alloy to constitute a heat exchanger. An object of the present invention is to provide a method capable of expanding the tube while suppressing the resistance at the time and suppressing the deformation of the groove on the inner surface of the heat transfer tube.

上記の課題を解決するため、本発明は以下の構成を採用した。
本発明に係る伝熱管の拡管方法は、アルミニウムあるいはアルミニウム合金からなる伝熱素管の内側に該伝熱素管の内径より大きい外径を有するヘッド部を備えた拡管プラグを強制的に挿入して前記伝熱素管の外径を拡張させて伝熱管を形成する伝熱管の拡管方法であって、前記拡管プラグとして、軸部とこの軸部先端側に形成されたヘッド部を有し、前記ヘッド部を硬度HRA85〜95の超硬合金から形成し、前記ヘッド部の外周表面に厚さ0.5〜3.0μmのダイヤモンドライクカーボン皮膜を形成してなる拡管プラグを用い、前記伝熱素管と前記拡管プラグとの間を潤滑する潤滑油として、引火点100℃以下、動粘度1.0mm/S(at40℃)以上の潤滑油を用いることを特徴とする。
In order to solve the above problems, the present invention employs the following configuration.
In the heat transfer tube expansion method according to the present invention, a tube expansion plug having a head portion having an outer diameter larger than the inner diameter of the heat transfer element tube is forcibly inserted inside the heat transfer element tube made of aluminum or an aluminum alloy. A heat transfer tube expansion method for forming a heat transfer tube by expanding the outer diameter of the heat transfer element tube, the tube expansion plug having a shaft portion and a head portion formed on the distal end side of the shaft portion, Using the tube expansion plug formed by forming the head portion from a cemented carbide having a hardness of HRA 85 to 95 and forming a diamond-like carbon film having a thickness of 0.5 to 3.0 μm on the outer peripheral surface of the head portion, the heat transfer As a lubricating oil for lubricating between the raw pipe and the pipe expansion plug, a lubricating oil having a flash point of 100 ° C. or lower and a kinematic viscosity of 1.0 mm 2 / S (at 40 ° C.) or higher is used.

本発明において、前記ダイヤモンドライクカーボン皮膜として、硬さが20GPa〜70GPaの範囲であり、臨界剥離荷重が30N以上のダイヤモンドライクカーボン皮膜を用いることができる。
本発明において、表面粗さRaを0.1μm以下としたダイヤモンドライクカーボン皮膜を用いることができる。
本発明において、アルミニウムあるいはアルミニウム合金製のフィン材を複数配列してなるフィン集合体を貫通するように複数の伝熱素管を配置し、これらの伝熱素管を前記拡管プラグにより拡管して伝熱管とすることでこれらの伝熱管をフィン集合体と接合することを特徴とする方法でも良い。
本発明において、前記伝熱素管として、管内面の周方向に間隔をあけて管の長さ方向に延在された複数の溝を有する溝付き伝熱素管を用いることができる。
本発明において、前記伝熱素管として、管内面の周方向に間隔をあけて管の長さ方向に延在された複数の螺旋溝を有する螺旋溝付き伝熱素管を用いることができる。
In the present invention, a diamond-like carbon film having a hardness of 20 GPa to 70 GPa and a critical peel load of 30 N or more can be used as the diamond-like carbon film.
In the present invention, a diamond-like carbon film having a surface roughness Ra of 0.1 μm or less can be used.
In the present invention, a plurality of heat transfer element tubes are arranged so as to penetrate a fin assembly formed by arranging a plurality of fin materials made of aluminum or aluminum alloy, and these heat transfer element tubes are expanded by the tube expansion plug. A method characterized by joining these heat transfer tubes to the fin assembly by using heat transfer tubes may be used.
In the present invention, as the heat transfer element tube, a grooved heat transfer element tube having a plurality of grooves extending in the length direction of the tube at intervals in the circumferential direction of the inner surface of the tube can be used.
In the present invention, as the heat transfer element tube, a heat transfer element tube with a spiral groove having a plurality of spiral grooves extending in the length direction of the tube at intervals in the circumferential direction of the inner surface of the tube can be used.

本発明によれば、硬度HRA85〜95であって適度な硬さ範囲の超硬合金からなるヘッド部に良好な密着性で付着したダイヤモンドライクカーボン皮膜を備えた拡管プラグを用いてアルミニウムあるいはアルミニウム合金製の伝熱管を拡管するので、ヘッド部表面へのアルミニウムの凝着を防止しながら、低い抵抗で伝熱素管の拡管を行うことができる。このため、拡管後に内面の性状が良好な伝熱管を得ることができる。
また、低い拡管抵抗で従来よりも円滑に伝熱管を拡管できることから、拡管後の伝熱管の外径を均一化することができる。従って、伝熱管とフィン材を組み合わせて熱交換器を構成する場合、伝熱管とフィン材を精度良く結合することができ、伝熱管とフィン材との熱伝導性に優れ、熱交換特性の良好な熱交換器を提供できる。
According to the present invention, aluminum or an aluminum alloy is used by using a tube expansion plug having a diamond-like carbon film having a hardness of HRA85 to 95 and having a good adhesion to a head portion made of a cemented carbide having an appropriate hardness range. Since the manufactured heat transfer tube is expanded, the heat transfer element tube can be expanded with low resistance while preventing the adhesion of aluminum to the surface of the head portion. For this reason, it is possible to obtain a heat transfer tube having a good inner surface property after tube expansion.
Moreover, since the heat transfer tube can be expanded more smoothly than before with a low tube expansion resistance, the outer diameter of the heat transfer tube after the expansion can be made uniform. Therefore, when a heat exchanger is configured by combining a heat transfer tube and a fin material, the heat transfer tube and the fin material can be combined with high accuracy, and the heat transfer between the heat transfer tube and the fin material is excellent, and the heat exchange characteristics are good. A simple heat exchanger.

また、アルミニウムあるいはアルミニウム合金製の伝熱素管の内面側に複数の溝を備えた溝付き伝熱素管を拡管する場合、拡管プラグのヘッド部が拡管時に内面側の溝を押圧し、溝を変形させ、溝を潰すおそれがあるが、前記構成の拡管プラグを用いて拡管するならば、溝の変形を抑え、溝形状の整った伝熱管を得ることができる。
特に、内面側に複数の螺旋溝を備えた螺旋溝付き伝熱素管を拡管する場合、拡管プラグのヘッド部が拡管時に内面側の螺旋溝を押圧し、螺旋溝を変形させ、螺旋溝を潰すおそれがあるが、前記構成の拡管プラグを用いて拡管するならば、螺旋溝に変形を生じていない螺旋溝形状の整った伝熱管を得ることができる。
Also, when expanding a grooved heat transfer element tube having a plurality of grooves on the inner surface side of an aluminum or aluminum alloy heat transfer element tube, the head portion of the tube expansion plug presses the groove on the inner surface side when expanding the tube, and the groove However, if the pipe is expanded using the pipe expansion plug having the above-described configuration, the deformation of the groove can be suppressed and a heat transfer tube having a uniform groove shape can be obtained.
In particular, when expanding a heat transfer element tube with a spiral groove having a plurality of spiral grooves on the inner surface side, the head portion of the tube expansion plug presses the spiral groove on the inner surface side when expanding the tube, deforms the spiral groove, Although there is a possibility of crushing, if the tube is expanded using the tube expansion plug having the above-described configuration, a heat transfer tube having a spiral groove shape in which the spiral groove is not deformed can be obtained.

本発明の実施に用いる拡管プラグの第1実施形態を示す斜視図。The perspective view which shows 1st Embodiment of the pipe expansion plug used for implementation of this invention. 同拡管プラグにより拡管される伝熱素管の一例を示す横断面図。The cross-sectional view which shows an example of the heat exchanger element pipe expanded by the same expansion plug. 同拡管プラグにより伝熱素管を拡管して熱交換器を組み立てる状態を説明するための斜視図。The perspective view for demonstrating the state which expands a heat exchanger element tube with the tube expansion plug, and assembles a heat exchanger. 同拡管プラグにより伝熱素管を拡管して伝熱管に加工する拡管動作を示す部分断面図。The fragmentary sectional view which shows the pipe expansion operation | movement which expands a heat-transfer elementary tube with the tube expansion plug, and processes it into a heat-transfer tube. 螺旋溝が形成された伝熱管の一例を示す断面図。Sectional drawing which shows an example of the heat exchanger tube in which the spiral groove was formed. 図1に示す拡管プラグにより拡管された伝熱管の部分断面図。The fragmentary sectional view of the heat exchanger tube expanded by the tube expansion plug shown in FIG. 従来の拡管プラグにより拡管された伝熱管の部分断面図。The fragmentary sectional view of the heat exchanger tube expanded by the conventional tube expansion plug. 一般的な熱交換器の一例を示す構成図。The block diagram which shows an example of a general heat exchanger. 図8に示す熱交換器の部分斜視図。The fragmentary perspective view of the heat exchanger shown in FIG. 伝熱管を拡管プラグで拡管している状態を示す断面図。Sectional drawing which shows the state which has expanded the heat exchanger tube with the pipe expansion plug. 従来の伝熱管の一例を示す横断面図。The cross-sectional view which shows an example of the conventional heat exchanger tube.

本発明に係る拡管プラグの一実施形態について以下に説明する。
図1は本発明に係る一実施形態の拡管プラグを示すもので、この実施形態の拡管プラグ1は、軸部2とその先端側に一体形成されたヘッド部3とからなる。軸部2の後端側にはねじ軸2aが形成されている。ヘッド部3は樽型をなして軸部2より若干径が大きくなるように膨出形成され、先端側に平坦面3aを有し、ヘッド部3の長さ方向中央部側に最大径部3bが形状されている。このヘッド部3の最大径部3bが後述する伝熱素管を拡管して伝熱管とする場合の伝熱管の径を規定する。
One embodiment of the tube expansion plug according to the present invention will be described below.
FIG. 1 shows a tube expansion plug according to an embodiment of the present invention. The tube expansion plug 1 according to this embodiment includes a shaft portion 2 and a head portion 3 integrally formed on the tip end side thereof. A screw shaft 2 a is formed on the rear end side of the shaft portion 2. The head portion 3 is formed in a barrel shape so as to be slightly larger in diameter than the shaft portion 2, has a flat surface 3 a on the tip side, and has a maximum diameter portion 3 b on the center side in the longitudinal direction of the head portion 3. Is shaped. The maximum diameter portion 3b of the head portion 3 defines the diameter of the heat transfer tube when a heat transfer element tube which will be described later is expanded into a heat transfer tube.

本実施形態の拡管プラグ1において、軸部2は、強度の高い鋼材、例えば、JIS規定SCM435で示されるクロムモリブデン鋼からなる。
本実施形態の拡管プラグ1において、ヘッド部3はHRA85以上HRA95以下の超硬合金から一体形成されている。HRAはロックウエル硬さの一種であり、先端半径0.2mm、かつ、先端角120゜のダイヤモンド円錐圧子をスケールとして用い、試験荷重600N、基本荷重100Nで測定される値である。まず、試験面に基本荷重を付加し、次いで試験荷重を足した合成荷重を加え、塑性変形させ、その後負荷を基準荷重に戻し、この際の基準面の永久窪みの深さを読み取り、この値から硬さを算出する方法で得られる硬さの指標である。
ヘッド部3は軸部2に対しカシメ加工により結合されているか、銀ろう等を用いたろう付け手段により結合されている。
In the pipe expansion plug 1 of the present embodiment, the shaft portion 2 is made of a steel material having high strength, for example, chromium molybdenum steel indicated by JIS regulation SCM435.
In the pipe expansion plug 1 of this embodiment, the head part 3 is integrally formed from a cemented carbide of HRA85 or more and HRA95 or less. HRA is a kind of Rockwell hardness, and is a value measured at a test load of 600 N and a basic load of 100 N using a diamond conical indenter with a tip radius of 0.2 mm and a tip angle of 120 ° as a scale. First, add a basic load to the test surface, then add a composite load with the test load added, plastically deform, then return the load to the reference load, read the depth of the permanent depression on the reference surface at this time, this value It is an index of hardness obtained by a method of calculating hardness from
The head portion 3 is coupled to the shaft portion 2 by caulking, or is coupled by brazing means using silver brazing or the like.

ヘッド部3を構成する超硬合金の硬さがHRA85未満であると、後述するダイヤモンドライクカーボン皮膜5の密着性が低下する。
ヘッド部3を構成する超硬合金の硬さがHRA95を超えると、超硬合金のじん性が低下し、拡管プラグによる加工ができなくなる。
When the hardness of the cemented carbide constituting the head portion 3 is less than HRA85, the adhesion of the diamond-like carbon film 5 described later is lowered.
When the hardness of the cemented carbide constituting the head portion 3 exceeds HRA95, the toughness of the cemented carbide is lowered, and processing using a pipe expansion plug becomes impossible.

上述の条件を満たす超硬合金として、周期律表IVa、Va、VIa族元素の炭化物をFe、Co、Niなどの鉄系金属で焼結した超硬合金を用いることができる。一例として、WC−Co系合金、WC−TiC−Co系合金、WC−Ta−Co系合金、WC−TiC−Ta−Co系合金、WC−Ni系合金、WC−Ni−Cr系合金などを適宜用いることができる。
より具体的な一例としてWC粒子にCoを5〜17質量%添加した超硬合金においてHRC85〜95の範囲を得ることができるので、本実施形態の拡管プラグ1の構成材料に適用することができる。
より具体的に例えば、上述の超硬合金としてJISV10、V20、V30、V40、V50、V60などで規定されている種類の超硬合金を利用することができる。
As the cemented carbide satisfying the above-described conditions, a cemented carbide obtained by sintering carbides of Group IVa, Va, and VIa group elements with an iron-based metal such as Fe, Co, or Ni can be used. For example, WC-Co alloy, WC-TiC-Co alloy, WC-Ta-Co alloy, WC-TiC-Ta-Co alloy, WC-Ni alloy, WC-Ni-Cr alloy, etc. It can be used as appropriate.
As a more specific example, since the range of HRC 85 to 95 can be obtained in a cemented carbide obtained by adding 5 to 17 mass% of Co to WC particles, it can be applied to the constituent material of the tube expansion plug 1 of this embodiment. .
More specifically, for example, a cemented carbide of the type defined by JISV10, V20, V30, V40, V50, V60, etc. can be used as the above-mentioned cemented carbide.

本実施形態の拡管プラグ1においてヘッド部2の外周面全面にダイヤモンドライクカーボン皮膜5が形成されている。このダイヤモンドライクカーボン皮膜5の膜厚は、0.5μm以上3.0μm以下の範囲であることが好ましい。
ダイヤモンドライクカーボン皮膜5の膜厚が0.5μm未満であると、アルミニウムの凝集抑制効果が低下し、拡管時に拡管プラグ1に対するアルミニウムの凝着が生じ易くなる。また、ダイヤモンドライクカーボン皮膜5の膜厚が3.0μmを超えるようであると、ダイヤモンドライクカーボン皮膜5の膜剥がれを生じ易くなる。
ダイヤモンドライクカーボン皮膜5の硬さについては、20GPa以上70GPa以下であることが好ましい。ダイヤモンドライクカーボン皮膜5の硬さが20GPa未満では耐摩耗性が低下して拡管プラグ1の寿命が短くなり、70GPaを超える硬さでは成膜自体が困難となる。
In the tube expansion plug 1 of this embodiment, a diamond-like carbon film 5 is formed on the entire outer peripheral surface of the head portion 2. The film thickness of the diamond-like carbon film 5 is preferably in the range of 0.5 μm to 3.0 μm.
When the film thickness of the diamond-like carbon film 5 is less than 0.5 μm, the effect of suppressing the aggregation of aluminum is lowered, and the adhesion of aluminum to the tube expansion plug 1 is likely to occur during tube expansion. Further, when the film thickness of the diamond-like carbon film 5 exceeds 3.0 μm, the diamond-like carbon film 5 is likely to be peeled off.
The hardness of the diamond-like carbon film 5 is preferably 20 GPa or more and 70 GPa or less. When the hardness of the diamond-like carbon film 5 is less than 20 GPa, the wear resistance is reduced and the life of the tube expansion plug 1 is shortened, and when the hardness is more than 70 GPa, the film formation itself is difficult.

また、ダイヤモンドライクカーボン皮膜5の臨界剥離荷重は、5N以上であることが好ましい。ダイヤモンドライクカーボン皮膜5の臨界剥離荷重が5N未満では、皮膜の剥離が起こり易くなり、拡管プラグ1の寿命が短くなる。また、ダイヤモンドライクカーボン皮膜5の臨界膜厚荷重が30N以上であれば、より長い距離の拡管を施してもアルミニウムの凝着を生じ難い。   Further, the critical peel load of the diamond-like carbon film 5 is preferably 5N or more. When the critical peel load of the diamond-like carbon film 5 is less than 5N, the film is easily peeled and the life of the tube expansion plug 1 is shortened. Further, when the critical film thickness load of the diamond-like carbon film 5 is 30 N or more, it is difficult for aluminum to adhere even if the tube is expanded for a longer distance.

拡管プラグ1とともに拡管時に用いる潤滑油は、特に図示はしていないが、引火点100℃以下、動粘度1.0mm/S(at40℃)以上の潤滑油を用いることが好ましい。
この条件に用いることができる潤滑油として例示するならば、ダフニーパンチオイル AF−2A(出光興産製:動粘度1.37mm/S)を挙げることができる。
Although the lubricating oil used at the time of pipe expansion together with the pipe expansion plug 1 is not particularly illustrated, it is preferable to use a lubricating oil having a flash point of 100 ° C. or lower and a kinematic viscosity of 1.0 mm 2 / S (at 40 ° C.) or higher.
If it illustrates as a lubricating oil which can be used for this condition, Daphne punch oil AF-2A (made by Idemitsu Kosan: kinematic viscosity 1.37mm < 2 > / S) can be mentioned.

図2はアルミニウムあるいはアルミニウム合金からなる円管状の伝熱素管10の断面構造を示し、この伝熱素管10は、前記構成の拡管プラグ1を用いて拡管する場合に適用することができる。このような断面形状の伝熱素管10は例えばアルミニウムあるいはアルミニウム合金を押出加工することで得ることができる。
この例の伝熱素管10は、ルームエアコン用熱交換器の伝熱管に適用する場合、例えば、直径5〜10mm程度の外径の管本体11の内部に複数の突条型の放熱フィン12が形成されてなる。
放熱フィン12は、それぞれ管本体11の内周面から管本体11の中心に向いて突出形成され、管本体11の内面の長さ方向全長に渡り延在するように、管本体11の内周面の周方向に所定の間隔で複数隣接形成されている。
FIG. 2 shows a cross-sectional structure of a tubular heat transfer element tube 10 made of aluminum or an aluminum alloy, and this heat transfer element tube 10 can be applied when the tube is expanded using the tube expansion plug 1 having the above-described configuration. The heat transfer element tube 10 having such a cross-sectional shape can be obtained, for example, by extruding aluminum or an aluminum alloy.
When the heat transfer element tube 10 of this example is applied to a heat transfer tube of a heat exchanger for a room air conditioner, for example, a plurality of protrusion-shaped heat radiation fins 12 are provided inside a tube body 11 having an outer diameter of about 5 to 10 mm. Is formed.
The radiating fins 12 are formed so as to protrude from the inner peripheral surface of the pipe main body 11 toward the center of the pipe main body 11 and extend over the entire length in the length direction of the inner surface of the pipe main body 11. A plurality of adjacent portions are formed at predetermined intervals in the circumferential direction of the surface.

放熱フィン12は、管本体11の横断面において、管本体11の中心に向く平坦な頂平部12aとこの頂平部12aを挟むように延在する傾斜部12b、12bとを有する横断面視等脚台形状に形成されている。これらの放熱フィン12は、管本体11の内周面の周方向に所定の間隔で複数形成されているので、管本体11の内周面に沿って隣接する放熱フィン12、12の間にフィン溝14が形成されている。放熱フィン12の高さは例えば0.05〜0.35mm程度、管本体11の底肉厚(フィン溝14に対応する部分の肉厚)は0.3〜0.8mm程度とされる。   In the cross section of the tube main body 11, the radiation fin 12 has a flat top flat portion 12a facing the center of the tube main body 11 and inclined portions 12b and 12b extending so as to sandwich the top flat portion 12a. It is formed in the shape of an isosceles trapezoid. Since a plurality of these radiating fins 12 are formed at predetermined intervals in the circumferential direction of the inner peripheral surface of the tube main body 11, the fins are disposed between the radiating fins 12, 12 adjacent along the inner peripheral surface of the tube main body 11. A groove 14 is formed. The height of the radiation fin 12 is, for example, about 0.05 to 0.35 mm, and the bottom wall thickness of the tube body 11 (the wall thickness corresponding to the fin groove 14) is about 0.3 to 0.8 mm.

前記管本体11は、アルミニウムあるいはアルミニウム合金からなる。管本体11を構成するアルミニウム合金に特に制限はなく、JISで規定される1050、1100、1200等の純アルミニウム系、あるいは、これらにMnを添加した3003に代表される3000系のアルミニウム合金等を適用することができる。勿論、これら以外にJISに規定されている5000系〜7000系のアルミニウム合金のいずれかを用いて管本体11を構成しても良いのは勿論である。   The tube body 11 is made of aluminum or an aluminum alloy. There are no particular restrictions on the aluminum alloy that constitutes the tube body 11, and pure aluminum such as 1050, 1100, and 1200 defined by JIS, or a 3000 series aluminum alloy represented by 3003 in which Mn is added to these, etc. Can be applied. Of course, in addition to these, the tube main body 11 may be configured by using any of 5000 series to 7000 series aluminum alloys defined in JIS.

図2に示す構造の管本体11を用いて熱交換器を構成するには、図3に示すようにアルミニウムあるいはアルミニウム合金製のフィン材15を複数重ねてフィン集合体16を構成し、このフィン集合体16に対し管本体11をU字状に曲げたヘアピンパイプ17の状態で接合する。
各フィン材15においてヘアピンパイプ17を挿通する予定位置に透孔を複数形成しておき、複数のフィン材15を平行に配置した場合、これらの透孔が一直線状に並ぶようにした上で図3に示すようにヘアピンパイプ17を必要本数フィン集合体16の透孔に挿通する。この挿通作業の場合、各ヘアピンパイプ17の開口部17aはフィン集合体16の一側に揃えておく。
なお、拡管プラグ1のねじ軸2aの部分に対し、嵌合自在なねじ穴を有する図示略の延長ロッドをねじ接合して拡管プラグ1の長さを調整しておく。これにより、拡管プラグ1の長さを調整し、ヘアピンパイプ17の全長に渡り、拡管できるように調整しておく。
In order to configure a heat exchanger using the tube body 11 having the structure shown in FIG. 2, a fin assembly 16 is formed by stacking a plurality of aluminum or aluminum alloy fin materials 15 as shown in FIG. The tube body 11 is joined to the assembly 16 in the state of a hairpin pipe 17 bent in a U shape.
When a plurality of through holes are formed at the positions where the hairpin pipes 17 are inserted in the fin materials 15 and the plurality of fin materials 15 are arranged in parallel, the through holes are arranged in a straight line. As shown in FIG. 3, the hairpin pipe 17 is inserted through the through holes of the required number of fin assemblies 16. In the case of this insertion work, the opening 17a of each hairpin pipe 17 is arranged on one side of the fin assembly 16.
The length of the tube expansion plug 1 is adjusted by screwing an unillustrated extension rod having a screw hole that can be fitted to the threaded shaft 2a of the tube expansion plug 1. In this way, the length of the tube expansion plug 1 is adjusted so that the tube can be expanded over the entire length of the hairpin pipe 17.

この状態において各ヘアピンパイプ17の開口部17aから拡管プラグ1のヘッド部5を強制的に押し込むと、図4に示すように拡管プラグ1のヘッド部5が内径Dであった伝熱素管10を押し広げるように塑性変形させるので内径dの伝熱管18に拡管することができる。内径dとなった伝熱管18はフィン材15の透孔を押し広げるようにフィン材15に結合するので、ヘアピンパイプ17をフィン材15に機械的に強く接合することができる。   In this state, when the head portion 5 of the tube expansion plug 1 is forcibly pushed through the opening 17a of each hairpin pipe 17, the heat transfer element tube 10 in which the head portion 5 of the tube expansion plug 1 has an inner diameter D as shown in FIG. Can be expanded to the heat transfer tube 18 having an inner diameter d. Since the heat transfer tube 18 having the inner diameter d is coupled to the fin material 15 so as to expand the through hole of the fin material 15, the hairpin pipe 17 can be mechanically strongly joined to the fin material 15.

以上説明した拡管処理を行う場合、伝熱素管10の内面に当接してこれを押し広げるヘッド部5の表面に潤滑性が良好で硬いダイヤモンドライクカーボン皮膜5を形成しているので、伝熱素管10の内周面に当接して拡管する場合の変形抵抗の上昇をできるだけ抑制できる。また、拡管プラグ1は伝熱素管10の内面に形成されている複数の放熱フィン12に当接しつつ放熱フィン12を含めて伝熱素管10を拡管するので、拡管時に放熱フィン12が潰れるおそれを有し、変形するおそれを有するが、ヘッド部5の表面にダイヤモンドライクカーボン皮膜5を形成しているので、放熱フィン12の潰れや変形を極力少なくしながら目的の径の伝熱管18に拡管できる。   When the tube expansion process described above is performed, since the diamond-like carbon film 5 having good lubricity and hardness is formed on the surface of the head portion 5 that contacts and pushes the inner surface of the heat transfer element tube 10, the heat transfer It is possible to suppress as much as possible an increase in deformation resistance when the pipe 10 is expanded in contact with the inner peripheral surface of the raw pipe 10. Further, since the tube expansion plug 1 expands the heat transfer element tube 10 including the heat radiation fins 12 in contact with a plurality of heat radiation fins 12 formed on the inner surface of the heat transfer element tube 10, the heat radiation fins 12 are crushed during expansion. Although the diamond-like carbon film 5 is formed on the surface of the head portion 5, the heat transfer tube 18 having a desired diameter can be formed while minimizing crushing and deformation of the radiating fins 12. Can be expanded.

拡管プラグ1において軸部2とヘッド部3をHRA85〜95の超硬合金から形成し、ダイヤモンドライクカーボン皮膜5を良好な密着性でヘッド部3に備えているので、伝熱素管10がアルミニウムの凝着を起こしやすいアルミニウムあるいはアルミニウム合金製であったとしても抑制した拡管抵抗で拡管処理ができる。このため、放熱フィン12の変形を抑制し、形の整った放熱フィン12を備えた伝熱管18を製造できる。
また、放熱フィン12の変形を抑制しつつ拡管できることにより、得られる伝熱管18の外径を均一になるように拡管できるので、フィン材15と伝熱管18の接合時の密着強度を高めることができる。このため、伝熱管18とフィン材15との熱伝導性を良好として優れた熱交換性能を維持することができる。
Since the shaft portion 2 and the head portion 3 of the tube expansion plug 1 are made of a cemented carbide of HRA85 to 95 and the diamond-like carbon film 5 is provided on the head portion 3 with good adhesion, the heat transfer element tube 10 is made of aluminum. Even if it is made of aluminum or an aluminum alloy that easily causes adhesion, tube expansion can be performed with suppressed tube expansion resistance. Therefore, it is possible to manufacture the heat transfer tube 18 including the heat radiation fins 12 which are well-formed while suppressing the deformation of the heat radiation fins 12.
Moreover, since it can be expanded so that the outer diameter of the obtained heat transfer tube 18 can be made uniform by being able to expand the tube while suppressing the deformation of the radiating fin 12, the adhesion strength at the time of joining the fin material 15 and the heat transfer tube 18 can be increased. it can. For this reason, it is possible to maintain excellent heat exchange performance with good thermal conductivity between the heat transfer tube 18 and the fin material 15.

拡管プラグ1において、厚さ0.5〜3.0μmのダイヤモンドライクカーボン皮膜を被覆していることにより、拡管時の膜剥がれを抑制し、アルミニウム凝着のおそれを無くすることができるので、放熱フィン12の変形を抑制し、形の整った放熱フィン12を備えた伝熱管18を製造できる。
拡管プラグ1において、ダイヤモンドライクカーボン皮膜5の硬さが20〜70GPaの範囲であるならば、多数の伝熱素管10を拡管加工したとしても、耐摩耗性の低下が少ないので拡管プラグ1として寿命を長くすることができる。
ダイヤモンドライクカーボン皮膜5の表面粗さRaを小さい値とした方が拡管荷重を少なくすることが可能となり、拡管する上で望ましく、内面フィン高さ減少率を小さくすることができる。例えば、ダイヤモンドライクカーボン皮膜5の表面粗さRaを0.1μm以下とすることが好ましく、0.05μm以下とすることがより好ましい。表面粗さRaの調整は、ダイヤモンドライクカーボン皮膜を成膜する際の条件の最適化により調整することができる。
Since the pipe-like plug 1 is coated with a diamond-like carbon film having a thickness of 0.5 to 3.0 μm, it is possible to suppress film peeling at the time of pipe expansion and eliminate the risk of aluminum adhesion. It is possible to manufacture the heat transfer tube 18 provided with the heat radiation fins 12 with the shape being suppressed by suppressing deformation of the fins 12.
If the hardness of the diamond-like carbon film 5 is in the range of 20 to 70 GPa in the tube expansion plug 1, even if a large number of heat transfer elementary tubes 10 are expanded, the wear resistance is less deteriorated. The lifetime can be extended.
If the surface roughness Ra of the diamond-like carbon film 5 is set to a small value, the tube expansion load can be reduced, which is desirable for tube expansion, and the inner fin height reduction rate can be reduced. For example, the surface roughness Ra of the diamond-like carbon film 5 is preferably 0.1 μm or less, and more preferably 0.05 μm or less. The surface roughness Ra can be adjusted by optimizing the conditions for forming the diamond-like carbon film.

前記拡管処理の際に用いる潤滑油として引火点100℃以下、動粘度1.0mm/S(at40℃)以上の潤滑油を用いているので、ヘッド部3の表面にダイヤモンドライクカーボン皮膜5を用いた点と相俟って拡管時の抵抗をより低く抑えることが可能となる。このため、放熱フィン12の潰れや変形を極力少なくしながら目的の径の伝熱管18に拡管できる。 Since a lubricating oil having a flash point of 100 ° C. or lower and a kinematic viscosity of 1.0 mm 2 / S (at 40 ° C.) or higher is used as the lubricating oil used in the tube expansion treatment, the diamond-like carbon film 5 is formed on the surface of the head portion 3. In combination with the points used, the resistance during tube expansion can be further reduced. For this reason, it can be expanded to the heat transfer tube 18 of the target diameter while minimizing the collapse and deformation of the radiating fins 12.

図5は本発明に適用するアルミニウムまたはアルミニウム合金製の伝熱管の縦断面構造を示し、この例の伝熱管20は、先の実施形態の伝熱管18と同様、管本体21の内周に突条型の放熱フィン22が形成されている点、隣接する放熱フィン間にフィン溝23が形成されている点、管本体21が先の形態の構造と同等範囲の外径、肉厚、放熱フィン高さなどを満たす点については同等構造とされている。   FIG. 5 shows a longitudinal cross-sectional structure of a heat transfer tube made of aluminum or an aluminum alloy applied to the present invention, and the heat transfer tube 20 of this example projects on the inner periphery of the tube main body 21 like the heat transfer tube 18 of the previous embodiment. The point that the strip-shaped heat radiation fin 22 is formed, the point that the fin groove 23 is formed between the adjacent heat radiation fins, the outer diameter, the wall thickness, and the heat radiation fin in which the tube main body 21 is in the same range as the structure of the previous form. The points that satisfy the height are equivalent.

この実施形態の伝熱管20において、先の第1実施形態と異なる点は、放熱フィン22が伝熱管20の内周面に沿ってその長さ方向に螺旋を描くように形成されている点である。
管本体21の内部に形成されている複数の放熱フィン22は全ての放熱フィン22が同じピッチで螺旋状に形成されていて、放熱フィン22の間に形成されているフィン溝23についても管本体21の内部において所定のピッチで螺旋を描くように、即ち螺旋溝状に形成されている。
本実施形態の放熱フィン22を備えた伝熱管20であっても、先の第1実施形態の伝熱管18と同様に拡管プラグ1により拡管することができる。
In the heat transfer tube 20 of this embodiment, the point different from the first embodiment is that the radiating fins 22 are formed so as to draw a spiral in the length direction along the inner peripheral surface of the heat transfer tube 20. is there.
The plurality of radiating fins 22 formed inside the tube main body 21 are all formed in a spiral shape with the same pitch, and the fin groove 23 formed between the radiating fins 22 is also the tube main body. 21 is formed in a spiral groove shape so as to draw a spiral at a predetermined pitch.
Even the heat transfer tube 20 provided with the radiation fins 22 of the present embodiment can be expanded by the tube expansion plug 1 in the same manner as the heat transfer tube 18 of the first embodiment.

この実施形態のように放熱フィン22を管本体21の長さ方向に螺旋状になるように形成することで、螺旋溝型のフィン溝23についても管本体21の長さ方向に螺旋状に形成されるので、管本体21を冷媒が流れる際、冷媒との熱交換効率を良好にすることができる。   By forming the radiating fins 22 in a spiral shape in the length direction of the tube body 21 as in this embodiment, the spiral groove-type fin grooves 23 are also formed in a spiral shape in the length direction of the tube body 21. Therefore, when the refrigerant flows through the tube body 21, the heat exchange efficiency with the refrigerant can be improved.

次に、放熱フィン22の形状については、拡管時の加工に耐えるように構成することが好ましい。例えば、管本体21の内部には3次元的に形状付与された放熱フィン22が形成されているが、このような3次元形状を有した放熱フィン22を備えた管本体21を拡管プラグ1により拡管する場合、放熱フィン22が螺旋状に配置されていると、拡管プラグ1が放熱フィン22をそれらの捻り方向に沿って倒しつつ拡管してしまうことがある。
この点において先に説明したダイヤモンドライクカーボン皮膜5を備えた拡管プラグ1であるならば、放熱フィン22を倒したり、螺旋溝状のフィン溝23を潰したりすることを抑制しつつ拡管処理ができる。
なお、更に放熱フィン23の変形を防止する目的で、拡管プラグ1が放熱フィン22を倒すと想定される方向と反対側に予め放熱フィン22を傾斜させておくなどの工夫をすることが好ましい。このように予め放熱フィン22を傾斜させておくことで、拡管プラグによる拡管後においても放熱フィン22が潰れていない、目的の構造を提供できる。
Next, about the shape of the radiation fin 22, it is preferable to comprise so that it may endure the process at the time of pipe expansion. For example, the heat radiation fins 22 that are three-dimensionally shaped are formed inside the tube main body 21, and the tube main body 21 including the heat radiation fins 22 having such a three-dimensional shape is formed by the tube expansion plug 1. In the case of expanding the pipe, if the radiating fins 22 are arranged in a spiral shape, the pipe expanding plug 1 may expand the pipes while tilting the radiating fins 22 along their twisting direction.
In this respect, if the tube expansion plug 1 is provided with the diamond-like carbon film 5 described above, the tube expansion process can be performed while suppressing the radiating fins 22 from being collapsed or the spiral groove-like fin grooves 23 from being crushed. .
In addition, for the purpose of further preventing the deformation of the radiating fins 23, it is preferable to devise a method such as inclining the radiating fins 22 in advance in the direction opposite to the direction in which the tube expansion plug 1 is assumed to tilt the radiating fins 22. By inclining the radiating fins 22 in advance in this way, it is possible to provide a target structure in which the radiating fins 22 are not crushed even after the pipe expansion by the pipe expansion plug.

図1に示す形状であり、ヘッド部長さ7.3mm、ヘッド部最大径5.9mm、軸部長さ36.3mm、軸部外径5.5mm、ねじ軸部長さ10mm、ヘッド部がVM40相当の超硬合金(HRA90)からなり、軸部がJIS規定SCM435からなる拡管プラグを用いて拡管を行った。この拡管プラグにおいてヘッド部の外表面には厚さ1.0μm、硬さ30GPaのダイヤモンドライクカーボン皮膜を形成した。
拡管用の伝熱素管として、外径7.0mm、底肉厚0.5mm、放熱フィン(幅0.15mm、内面フィン高さ0.3mm)を内周に45個有する伝熱素管を前記拡管プラグ(最大外径φ5.9mm、プラグ前面R=10mm)で拡管した。この伝熱素管は、JIS3003合金からなる。
前記構成の拡管プラグにより前記構成の伝熱素管を拡管することにより、前記伝熱素管を外径10mmの伝熱管に拡管した。
The shape shown in FIG. 1 is that the head portion length is 7.3 mm, the head portion maximum diameter is 5.9 mm, the shaft portion length is 36.3 mm, the shaft portion outer diameter is 5.5 mm, the screw shaft length is 10 mm, and the head portion is equivalent to VM40. Tube expansion was performed using a tube expansion plug made of a cemented carbide (HRA90) and having a shaft portion made of JIS SCM435. In this tube expansion plug, a diamond-like carbon film having a thickness of 1.0 μm and a hardness of 30 GPa was formed on the outer surface of the head portion.
As a heat transfer element tube for expansion, a heat transfer element tube having an outer diameter of 7.0 mm, a bottom wall thickness of 0.5 mm, and 45 heat dissipating fins (width 0.15 mm, inner fin height 0.3 mm) on the inner periphery is provided. The tube was expanded with the tube expansion plug (maximum outer diameter φ5.9 mm, plug front surface R = 10 mm). This heat transfer element tube is made of JIS3003 alloy.
The heat transfer element tube was expanded to a heat transfer pipe having an outer diameter of 10 mm by expanding the heat transfer element tube having the structure described above with the tube expansion plug having the structure described above.

拡管の際、伝熱素管を潤滑油(ダフニーパンチオイルAF−2A:出光興産製:動粘度1.37mm/S)に浸漬後、直ちに拡管した。
拡管の結果、拡管荷重299N、図6に示すように変形やつぶれの少ない内面性状に優れた放熱フィンを有する伝熱管を得ることができた。この伝熱管の拡管率は6.0%、放熱フィン高さ減少率は10%になっている。放熱フィン高さ減少率とは、拡管する前の伝熱素管の状態の放熱フィン高さと、拡管後の図6に示す伝熱管30の放熱フィン31の高さHを比較し、高さの減少した割合を示す。
内面フィン高さ減少率とは、{(拡管前フィン高さ−拡管後フィン高さ)/拡管前フィン高さ}}×100の式で計算される値を示す。なお、これら個々の高さは、CCDカメラを用いた各管の断面撮像の結果を用いて算出できる。
When expanding the pipe, the heat transfer element pipe was immediately expanded after being immersed in a lubricating oil (Daphney punch oil AF-2A: manufactured by Idemitsu Kosan Co., Ltd .: kinematic viscosity 1.37 mm 2 / S).
As a result of the tube expansion, a heat transfer tube having a tube expansion load of 299 N and a heat dissipating fin excellent in inner surface properties with less deformation and crushing as shown in FIG. 6 was obtained. The expansion ratio of this heat transfer tube is 6.0%, and the reduction rate of the radiating fin height is 10%. The rate of reduction of the radiating fin height is a comparison between the radiating fin height in the state of the heat transfer element tube before the expansion and the height H of the radiating fin 31 of the heat transfer tube 30 shown in FIG. Indicates the rate of decrease.
The inner fin height reduction rate indicates a value calculated by the formula {(fin height before tube expansion−fin height after tube expansion) / fin height before tube expansion}} × 100. These individual heights can be calculated using the results of cross-sectional imaging of each tube using a CCD camera.

前記拡管プラグにおいて、構成材料と各部の寸法を同等にした拡管プラグであって、ヘッド部の表面にダイヤモンドライクカーボン皮膜を形成していない拡管プラグを用意し、上記実施例と同等条件にて伝熱素管を拡管して伝熱管を製造した。
この場合、拡管荷重は600Nであり、図7に示す断面形状の伝熱管33が製造された。この伝熱管の放熱フィン高さ減少率は25%であり、拡管率は5.36%であった。
得られた伝熱管33の断面は図7に示すように放熱フィン35がいびつに変形した形状となった。これは、拡管荷重が600Nと極めて高く、拡管荷重が高いために放熱フィン35に拡管プラグから作用する力が大きく作用し、放熱フィン35が変形したものと推定できる。
In the tube expansion plug, a tube expansion plug in which the dimensions of the constituent materials and the respective parts are made equal, in which a diamond-like carbon film is not formed on the surface of the head portion, is prepared and transmitted under the same conditions as in the above embodiment. A heat transfer tube was manufactured by expanding the heat element tube.
In this case, the tube expansion load was 600 N, and the heat transfer tube 33 having the cross-sectional shape shown in FIG. 7 was manufactured. This heat transfer tube had a radiation fin height reduction rate of 25% and a tube expansion rate of 5.36%.
As shown in FIG. 7, the cross section of the obtained heat transfer tube 33 has a shape in which the heat radiating fins 35 are deformed. It can be estimated that this is because the tube expansion load is as extremely high as 600 N, and the tube expansion load is high, so that a large force is applied to the radiation fin 35 from the tube expansion plug, and the radiation fin 35 is deformed.

以下に、拡管プラグを構成する超硬合金硬さ(HRA)とダイヤモンドライクカーボン皮膜の膜厚(μm)、硬さ(GPa)、潤滑油引火点(℃)、拡管用潤滑油の動粘度(mm/S)を変更して上記と同等の拡管試験を行った結果を表1、表2に示す。超硬合金は、超硬工具協会規格(CIS019D)に相当する表1、表2に示す各超硬合金を用い、各超硬合金製のヘッド部を構成して拡管プラグを構成した。各拡管プラグの軸部やヘッド部の長さ、外径等の大きさは上述の例のものと同等である。また、各拡管プラグのDLC膜について、表面粗さを測定した結果を表1、表2に併記した。 The following is the hardness of the cemented carbide (HRA) and the diamond-like carbon film (μm), hardness (GPa), lubricant flash point (° C), and kinematic viscosity ( Tables 1 and 2 show the results of a tube expansion test equivalent to the above by changing (mm 2 / S). As the cemented carbide, each cemented carbide shown in Table 1 and Table 2 corresponding to the cemented carbide tool association standard (CIS019D) was used, and each cemented carbide head portion was constructed to constitute a tube expansion plug. The sizes of the shaft portion and head portion of each tube expansion plug, the outer diameter, and the like are the same as those in the above example. The results of measuring the surface roughness of the DLC film of each tube expansion plug are also shown in Tables 1 and 2.

表1、表2に拡管荷重(N)、内面フィン高さ減少率(%)、拡管率(%)、アルミ凝集状態、拡管プラグ寿命(距離2000m、5000m)、油乾燥性を示す。
表1、表2の評価項目において、内面フィン高さ減少率は、上述の計算式に従う拡管試験前後における高さ減少率(分母は拡管前のフィン高さ)を示す。拡管率は、拡管試験前後における外径拡管率(分母は拡管前)を示し、アルミ凝集条体は、拡管後拡管プラグの外観を観察し、拡管プラグ周方向に凝着が無い場合を○印、凝着範囲が1/2程度生じていた場合を△印、1/2を超える凝着範囲であった場合を×印で示した。拡管プラグ寿命は、各拡管距離後に拡管プラグを外観観察し、ダイヤモンドライクカーボン皮膜の摩滅によってアルミ凝着状態に変化が見られないことを評価し、凝着無しの場合を◎印、周方向1/4以下を○印、周方向1/3以下を△印、周方向1/2以下を▲印、周方向1/2を超える場合を×印で示した。油乾燥性とは、シャーレに1gの潤滑油を採取し、140℃×2分加熱後の重量が加熱前の5%以下の場合を○印、10%以下の場合を△印、10%超えの場合を×印で示した。
Tables 1 and 2 show tube expansion load (N), inner fin height reduction rate (%), tube expansion rate (%), aluminum aggregation state, tube expansion plug life (distance 2000 m, 5000 m), and oil drying properties.
In the evaluation items in Tables 1 and 2, the inner fin height reduction rate indicates the height reduction rate before and after the pipe expansion test according to the above-described calculation formula (the denominator is the fin height before pipe expansion). The pipe expansion ratio indicates the outer diameter pipe expansion ratio before and after the pipe expansion test (the denominator is before pipe expansion). For the aluminum aggregate strip, the appearance of the pipe expansion plug is observed after pipe expansion, and there is no adhesion in the circumferential direction of the pipe expansion plug. A case where the adhesion range was about ½ was indicated by Δ, and a case where the adhesion range was more than ½ was indicated by a cross. Expanded plug life is determined by observing the appearance of the expanded plug after each expansion distance and evaluating that no change is observed in the aluminum adhesion due to wear of the diamond-like carbon film. / 4 or less is indicated by ◯, circumferential direction 1/3 or less is indicated by Δ, circumferential direction ½ or less is indicated by ▲, and the case where it exceeds 1/2 in the circumferential direction is indicated by ×. Oil-drying means that 1 g of lubricating oil is sampled in a petri dish and the weight after heating at 140 ° C. for 2 minutes is 5% or less before heating. The case of is indicated by a cross.

Figure 2015062951
Figure 2015062951

Figure 2015062951
Figure 2015062951

表1に示すNo.1〜13、17〜28の試料の試験結果から、超硬合金硬さHRA85〜95、DLC膜厚0.5〜3.0μm、拡管潤滑油動粘度を1.0mm以上とすることで、拡管荷重が低く(200〜300N)、内面フィン高さ減少率が小さく(7〜13%)、拡管率に優れ、アルミニウムの凝集が発生し難く、拡管プラグ寿命の長い状態を得ることができるとわかる。
なお、No.1〜13、17〜28の試料の試験結果において、臨界剥離荷重30N以上のNo.9〜13、17〜28の試料は拡管プラグ寿命が特に優れていることが判る。
From the test results of the samples Nos. 1 to 13 and 17 to 28 shown in Table 1, the cemented carbide hardness HRA 85 to 95, the DLC film thickness 0.5 to 3.0 μm, and the kinematic viscosity of the expanded lubricating oil 1.0 mm 2 With the above, the tube expansion load is low (200 to 300 N), the inner fin height reduction rate is small (7 to 13%), the tube expansion rate is excellent, aluminum agglomeration hardly occurs, and the tube expansion plug life is long. It can be seen that can be obtained.
In addition, in the test result of the sample of No. 1-13, 17-28, it turns out that the sample of No. 9-13, 17-28 of 30 N or more of critical peeling loads is especially excellent in a pipe expansion plug lifetime.

これらの試料に対し、超硬合金硬さがHRA83のNo.29の試料(比較例)は拡管プラグとしての寿命が短くなった。超硬合金硬さがHRA96のNo.30の試料(比較例)は超硬合金部分が脆くなり、拡管プラグによる加工ができなかった。ダイヤモンドライクカーボン皮膜の膜厚が3.5μmのNo.32の試料(比較例)は皮膜自体が厚すぎるために拡管プラグのヘッド部分に成膜できなかった。No.33の試料(比較例)は潤滑油動粘度が低い試料であり潤滑性が不十分となり、アルミニウム凝集状態が悪化した。No.34の試料(比較例)は潤滑油引火点が高く、粘度が高い試料であり、油乾燥性が不十分になった。拡管加工後に乾燥処理を施して拡管油の残留分が少ないことが有利であるので、140℃×2分の加熱により残油分5%以下であることが望ましい。
また、試料1〜16のダイヤモンドライクカーボン皮膜においてその表面粗さRaの測定結果比較から、Raを0.1μm以下とした方が、拡管荷重削減の面で望ましく、0.05μm以下とした方が、拡管荷重を削減した上に、内面フィン高さ減少率を少なくできる上でより望ましいことがわかる。
Compared to these samples, the No. 29 sample (comparative example) with a cemented carbide hardness of HRA83 had a shorter life as a tube expansion plug. In the sample No. 30 (comparative example) in which the hardness of the cemented carbide is HRA96, the cemented carbide portion became brittle and could not be processed by the tube expansion plug. No. 32 sample (comparative example) with a diamond-like carbon film thickness of 3.5 μm could not be formed on the head portion of the tube expansion plug because the film itself was too thick. The sample of No. 33 (comparative example) was a sample having a low lubricating oil kinematic viscosity, and the lubricity was insufficient, and the aluminum aggregation state deteriorated. The sample No. 34 (comparative example) was a sample having a high lubricating oil flash point and a high viscosity, and the oil drying property was insufficient. Since it is advantageous to apply a drying process after the pipe expansion process to reduce the residual amount of the pipe expansion oil, it is desirable that the residual oil content is 5% or less by heating at 140 ° C. for 2 minutes.
Further, from the comparison of the measurement results of the surface roughness Ra in the diamond-like carbon films of Samples 1 to 16, Ra is preferably 0.1 μm or less from the viewpoint of reducing the tube expansion load, and is preferably 0.05 μm or less. It can be seen that it is more desirable to reduce the pipe expansion load and reduce the inner fin height reduction rate.

1…拡管プラグ、2…軸部、2a…ねじ軸部、3…ヘッド部、5…ダイヤモンドライクカーボン皮膜、10…伝熱素管、11…管本体、12…放熱フィン、14…フィン溝、15…フィン材、16…フィン集合体、17…ヘアピンパイプ、17a…開口部、18…伝熱管。   DESCRIPTION OF SYMBOLS 1 ... Tube expansion plug, 2 ... Shaft part, 2a ... Screw shaft part, 3 ... Head part, 5 ... Diamond-like carbon film, 10 ... Heat-transfer elementary tube, 11 ... Pipe body, 12 ... Radiation fin, 14 ... Fin groove, 15 ... Fin material, 16 ... Fin assembly, 17 ... Hairpin pipe, 17a ... Opening, 18 ... Heat transfer tube.

Claims (6)

アルミニウムあるいはアルミニウム合金からなる伝熱素管の内側に該伝熱素管の内径より大きい外径を有するヘッド部を備えた拡管プラグを強制的に挿入して前記伝熱素管の外径を拡張させて伝熱管を形成する伝熱管の拡管方法であって、
前記拡管プラグとして、軸部とこの軸部先端側に形成されたヘッド部を有し、前記ヘッド部を硬度HRA85〜95の超硬合金から形成し、前記ヘッド部の外周表面に厚さ0.5〜3.0μmのダイヤモンドライクカーボン皮膜を被覆してなる拡管プラグを用い、
前記伝熱素管と前記拡管プラグとの間を潤滑する潤滑油として、引火点100℃以下、動粘度1.0mm/S(at40℃)以上の潤滑油を用いることを特徴とする伝熱管の拡管方法。
An expansion plug having a head portion having an outer diameter larger than the inner diameter of the heat transfer element tube is forcibly inserted inside the heat transfer element tube made of aluminum or an aluminum alloy to expand the outer diameter of the heat transfer element tube. A heat transfer tube expansion method for forming a heat transfer tube,
The tube expansion plug has a shaft portion and a head portion formed on the distal end side of the shaft portion. The head portion is formed of a cemented carbide having a hardness of HRA85 to 95, and has a thickness of 0. Using a tube expansion plug coated with a diamond-like carbon film of 5 to 3.0 μm,
A heat transfer tube characterized by using a lubricating oil having a flash point of 100 ° C. or lower and a kinematic viscosity of 1.0 mm 2 / S (at 40 ° C.) or higher as a lubricating oil for lubricating between the heat transfer element tube and the tube expansion plug. Tube expansion method.
前記ダイヤモンドライクカーボン皮膜として、硬さが20GPa〜70GPaの範囲であり、臨界剥離荷重が30N以上のダイヤモンドライクカーボン皮膜を用いることを特徴とする請求項1に記載の伝熱管の拡管方法。   The method of expanding a heat transfer tube according to claim 1, wherein the diamond-like carbon film is a diamond-like carbon film having a hardness in a range of 20 GPa to 70 GPa and a critical peeling load of 30 N or more. 表面粗さRaを0.1μm以下としたダイヤモンドライクカーボン皮膜を用いることを特徴とする請求項1または2に記載の伝熱管の拡管方法。   The method of expanding a heat transfer tube according to claim 1 or 2, wherein a diamond-like carbon film having a surface roughness Ra of 0.1 µm or less is used. アルミニウムあるいはアルミニウム合金製のフィン材を複数配列してなるフィン集合体を貫通するように複数の伝熱素管を配置し、これらの伝熱素管を前記拡管プラグにより拡管して伝熱管とすることでこれらの伝熱管をフィン集合体と接合することを特徴とする請求項1〜3のいずれか一項に記載の伝熱管の拡管方法。   A plurality of heat transfer element tubes are arranged so as to pass through a fin assembly formed by arranging a plurality of fin materials made of aluminum or aluminum alloy, and these heat transfer element tubes are expanded by the expansion plug to form heat transfer tubes. The heat transfer tube expansion method according to any one of claims 1 to 3, wherein the heat transfer tubes are joined to the fin assembly. 前記伝熱素管として、管内面の周方向に間隔をあけて管の長さ方向に延在された複数の溝を有する溝付き伝熱素管を用いることを特徴とする請求項1〜4のいずれか一項に記載の伝熱管の拡管方法。   5. A grooved heat transfer element tube having a plurality of grooves extending in the length direction of the tube at intervals in the circumferential direction of the inner surface of the tube is used as the heat transfer element tube. The expansion method of the heat exchanger tube as described in any one of these. 前記伝熱素管として、管内面の周方向に間隔をあけて管の長さ方向に延在された複数の螺旋溝を有する螺旋溝付き伝熱素管を用いることを特徴とする請求項1〜5のいずれか一項に記載の伝熱管の拡管方法。   2. The heat transfer element tube having a spiral groove having a plurality of spiral grooves extending in the length direction of the tube at intervals in the circumferential direction of the inner surface of the tube is used as the heat transfer element tube. The tube expansion method of the heat exchanger tube as described in any one of -5.
JP2013270230A 2013-08-29 2013-12-26 Method of expanding aluminum or aluminum alloy heat transfer tubes Expired - Fee Related JP6288581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013270230A JP6288581B2 (en) 2013-08-29 2013-12-26 Method of expanding aluminum or aluminum alloy heat transfer tubes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013178132 2013-08-29
JP2013178132 2013-08-29
JP2013270230A JP6288581B2 (en) 2013-08-29 2013-12-26 Method of expanding aluminum or aluminum alloy heat transfer tubes

Publications (2)

Publication Number Publication Date
JP2015062951A true JP2015062951A (en) 2015-04-09
JP6288581B2 JP6288581B2 (en) 2018-03-07

Family

ID=52831308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013270230A Expired - Fee Related JP6288581B2 (en) 2013-08-29 2013-12-26 Method of expanding aluminum or aluminum alloy heat transfer tubes

Country Status (1)

Country Link
JP (1) JP6288581B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570841A (en) * 2022-02-28 2022-06-03 北京热力众达换热设备有限公司 Water pressure transmission expansion method and device for heat exchanger
WO2022184473A1 (en) * 2021-03-01 2022-09-09 Hydro Extruded Solutions As Expandable pipe and system for installation of expandable pipes in heat exchangers
US11440072B2 (en) 2019-03-28 2022-09-13 Carrier Corporation Tube bending mandrel and system using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288502A (en) * 2004-03-31 2005-10-20 Kobelco & Materials Copper Tube Inc Tube expanding tool and method for expanding tube using the same
JP2006257335A (en) * 2005-03-18 2006-09-28 Sumitomo Light Metal Ind Ltd Lubricant oil for correcting aluminium plate and aluminium plate-correcting method
JP2008093713A (en) * 2006-10-13 2008-04-24 Sumitomo Light Metal Ind Ltd Metal tube expanding method, expanding tool used therefor, and lubricating oil used therefor
WO2012043492A1 (en) * 2010-09-27 2012-04-05 古河スカイ株式会社 Aluminum-alloy-made heat-transfer pipe with inner-surface grooves
JP2012067900A (en) * 2010-09-27 2012-04-05 Ntn Corp Rolling bearing
JP2013096651A (en) * 2011-11-01 2013-05-20 Hitachi Cable Ltd Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288502A (en) * 2004-03-31 2005-10-20 Kobelco & Materials Copper Tube Inc Tube expanding tool and method for expanding tube using the same
JP2006257335A (en) * 2005-03-18 2006-09-28 Sumitomo Light Metal Ind Ltd Lubricant oil for correcting aluminium plate and aluminium plate-correcting method
JP2008093713A (en) * 2006-10-13 2008-04-24 Sumitomo Light Metal Ind Ltd Metal tube expanding method, expanding tool used therefor, and lubricating oil used therefor
WO2012043492A1 (en) * 2010-09-27 2012-04-05 古河スカイ株式会社 Aluminum-alloy-made heat-transfer pipe with inner-surface grooves
JP2012067900A (en) * 2010-09-27 2012-04-05 Ntn Corp Rolling bearing
JP2013096651A (en) * 2011-11-01 2013-05-20 Hitachi Cable Ltd Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440072B2 (en) 2019-03-28 2022-09-13 Carrier Corporation Tube bending mandrel and system using the same
WO2022184473A1 (en) * 2021-03-01 2022-09-09 Hydro Extruded Solutions As Expandable pipe and system for installation of expandable pipes in heat exchangers
CN114570841A (en) * 2022-02-28 2022-06-03 北京热力众达换热设备有限公司 Water pressure transmission expansion method and device for heat exchanger
CN114570841B (en) * 2022-02-28 2023-08-22 北京热力众达换热设备有限公司 Hydraulic transmission expansion method for heat exchanger

Also Published As

Publication number Publication date
JP6288581B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
JP4738401B2 (en) Air conditioner
JP4759226B2 (en) Tube expansion tool and tube expansion method using the same
JP6288581B2 (en) Method of expanding aluminum or aluminum alloy heat transfer tubes
US20130192804A1 (en) Double pipe for heat exchanger
US9566672B2 (en) Method of manufacturing a heat exchanger
CA2672098C (en) Micro-channel tubes and apparatus and method for forming micro-channel tubes
JP2007271123A (en) Inner face-grooved heat transfer tube
US11480394B2 (en) Heat pipes having wick structures with variable permeability
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
EP2738506A2 (en) Heat exchanger and method of manufacturing the same
WO2014147788A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
JP4550451B2 (en) Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube
CN102954721B (en) Heat pipe manufacturing method and jig for manufacturing heat pipe
JP2015150566A (en) Tube expansion plug
JP6238063B2 (en) Expansion plug
US11498104B2 (en) Extrusion apparatus and method for manufacturing aluminum capillary tube using same
EP2959251B1 (en) Tube structures for heat exchanger
WO2014010387A1 (en) Tube expansion plug
JP5006155B2 (en) Heat transfer tube
JP6521424B2 (en) Expansion pipe and design method for expansion pipe
WO2014010366A1 (en) Tube expansion plug
JP2013096651A (en) Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same
JP2001280877A (en) Heat transfer tube for heat exchanger and fin-tube type heat exchanger
JP5882615B2 (en) Aluminum alloy inner surface grooved tube for air conditioner, air conditioner including the grooved tube, aluminum alloy inner surface grooved tube manufacturing method, and air conditioner aluminum inner surface grooved tube manufacturing method
CN102918349B (en) The septal fossula barrel that Squeezing ground is good

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180126

R150 Certificate of patent or registration of utility model

Ref document number: 6288581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees