JP2015061492A - Constant measurement apparatus and constant measurement method of induction motor - Google Patents

Constant measurement apparatus and constant measurement method of induction motor Download PDF

Info

Publication number
JP2015061492A
JP2015061492A JP2013195807A JP2013195807A JP2015061492A JP 2015061492 A JP2015061492 A JP 2015061492A JP 2013195807 A JP2013195807 A JP 2013195807A JP 2013195807 A JP2013195807 A JP 2013195807A JP 2015061492 A JP2015061492 A JP 2015061492A
Authority
JP
Japan
Prior art keywords
motor
induction motor
voltage
current
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013195807A
Other languages
Japanese (ja)
Other versions
JP6194718B2 (en
Inventor
洋一郎 中島
Yoichiro Nakajima
洋一郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2013195807A priority Critical patent/JP6194718B2/en
Priority to CN201410408850.5A priority patent/CN104459536B/en
Publication of JP2015061492A publication Critical patent/JP2015061492A/en
Application granted granted Critical
Publication of JP6194718B2 publication Critical patent/JP6194718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a constant measurement apparatus and a constant measurement method which allow for operation of the motor constants, that have been measured in no-load test, based on the directly measurable measurement results.SOLUTION: A constant measurement apparatus of induction motor includes a tuning voltage command value calculation unit 17 for applying a voltage from an inverter circuit 13 to an induction motor 1 by outputting three-phase voltage command signals Vu*, Vv*, Vw* to a PWM gate signal generator 16, a U phase current detector 14 for detecting a current flowing through the induction motor 1, and a motor constant calculation unit 20a for calculating the motor constants (primary resistance, secondary resistance and leakage inductance) by using the voltage Vu and the current value iu. The motor constant calculation unit 20a calculates one constant of the motor, i.e., an exciting current I, by using the motor constants (primary resistance, secondary resistance and leakage inductance) that can be calculated using the voltage Vu and the current value iu, and the motor information accepted.

Description

本発明は、拘束試験で誘導電動機のモータ定数を測定する誘導電動機の定数測定装置及び定数測定方法に関する。   The present invention relates to an induction motor constant measuring apparatus and a constant measuring method for measuring a motor constant of an induction motor in a restraint test.

誘導電動機を高性能に制御する場合、磁束とトルクを個別に制御するベクトル制御が使用される。特に最近は、速度(PG)センサ等による誘導電動機の速度検出を行わずに制御を行う、センサレスベクトル制御の市場ニーズが高まっている。センサレスベクトル制御を精度よく行う場合、制御対象となる誘導電動機の複数のモータ定数を把握する必要がある。従って、使用する誘導電動機が不特定となる汎用インバータでは、様々な誘導電動機が使用されても、常に精度の高いベクトル制御を行うことができるよう、誘導電動機のモータ定数を自動で測定するオートチューニング機能を有している。   When controlling an induction motor with high performance, vector control for controlling magnetic flux and torque individually is used. Recently, market needs for sensorless vector control, in which control is performed without detecting the speed of an induction motor using a speed (PG) sensor or the like, are increasing. When performing sensorless vector control with high accuracy, it is necessary to grasp a plurality of motor constants of an induction motor to be controlled. Therefore, in general-purpose inverters that do not specify the induction motor to be used, auto-tuning that automatically measures the motor constant of the induction motor so that highly accurate vector control can always be performed even when various induction motors are used. It has a function.

例えば、特許文献1には、交流電動機を定常状態で運転し、この時の1次角周波数指令を積分した位相と交流電動機の電流検出値から、電動機電流ベクトル有効パワー分電流と、無効パワー分電流を演算し、1次角周波数指令値及び1次電圧指令値と、有効パワー分電流及び無効パワー分電流に基づいて、電動機の1次自己インダクタンスを演算することが示されている。   For example, in Patent Document 1, an AC motor is operated in a steady state, and a motor current vector effective power component and a reactive power component are calculated from a phase obtained by integrating the primary angular frequency command at this time and a current detection value of the AC motor. It is shown that the current is calculated and the primary self-inductance of the motor is calculated based on the primary angular frequency command value and the primary voltage command value, and the active power component current and the reactive power component current.

誘導電動機のモータ定数のオートチューニング(自動測定)は、JEC−37(電気学会電気規格調査会標準規格)に示され、拘束試験及び無負荷試験に基づいた処理を行うことで実現している。拘束試験において、直流電圧を印加することで一次抵抗が測定でき、単相交流電圧を印加することで二次抵抗と漏れインダクタンスが測定でき、また、無負荷試験において励磁電流と自己インダクタンス及び相互インダクタンスが測定できることが知られている。   Auto-tuning (automatic measurement) of the motor constant of the induction motor is shown in JEC-37 (Electrical Society Electrical Standards Committee Standards Standard), and is realized by performing processing based on a restraint test and a no-load test. In restraint tests, primary resistance can be measured by applying a DC voltage, secondary resistance and leakage inductance can be measured by applying a single-phase AC voltage, and excitation current, self-inductance, and mutual inductance can be measured in a no-load test. It is known that can be measured.

ここで、無負荷試験は基本的に何も負荷がつながっていない状態で実施する必要があるが、実際に誘導電動機が使用される機器では、誘導電動機単体を切り離すことが困難であり、誘導電動機を回転させないでモータ定数の測定を行わなければならないことが多い。そこで、誘導電動機1のモータ定数を測定する従来の定数測定装置10では、図7に示すように、誘導電動機1を回転させないと直接計測できないモータ定数である励磁電流と自己インダクタンス及び相互インダクタンスについて、誘導電動機1の容量毎に予め記憶されたモータデータテーブル19を設け、直接測定可能なモータ定数のみ更新を行っていた。   Here, the no-load test must basically be performed in a state where no load is connected. However, it is difficult to separate the induction motor alone in an apparatus where the induction motor is actually used. In many cases, the motor constant must be measured without rotating the motor. Therefore, in the conventional constant measuring apparatus 10 that measures the motor constant of the induction motor 1, as shown in FIG. 7, the excitation current, the self-inductance, and the mutual inductance, which are motor constants that cannot be directly measured unless the induction motor 1 is rotated, A motor data table 19 stored in advance for each capacity of the induction motor 1 is provided, and only motor constants that can be directly measured are updated.

従来の定数測定装置10は、図7を参照すると、整流回路11と、平滑回路12と、インバータ回路13と、U相電流検出器14と、W相電流検出器15と、PWMゲート信号生成器16と、チューニング電圧指令値演算器17と、電流実効値演算器18と、モータデータテーブル19と、モータ定数演算器20とを備えている。なお、整流回路11は、ダイオードによって、平滑回路12は、コンデンサによって、インバータ回路13は、パワースイッチング素子によってそれぞれ実現される。また、PWMゲート信号生成器16、チューニング電圧指令値演算器17、電流実効値演算器18及びモータ定数演算器20は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等で構成されたコンピュータと、ROM,RAM等に格納されたプログラムとによって実現される。さらに、モータデータテーブル19は、フラッシュメモリ等の記憶手段である。   Referring to FIG. 7, the conventional constant measuring apparatus 10 includes a rectifier circuit 11, a smoothing circuit 12, an inverter circuit 13, a U-phase current detector 14, a W-phase current detector 15, and a PWM gate signal generator. 16, a tuning voltage command value calculator 17, a current effective value calculator 18, a motor data table 19, and a motor constant calculator 20. The rectifier circuit 11 is realized by a diode, the smoothing circuit 12 is realized by a capacitor, and the inverter circuit 13 is realized by a power switching element. The PWM gate signal generator 16, the tuning voltage command value calculator 17, the current effective value calculator 18 and the motor constant calculator 20 are a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory). ) Etc., and a program stored in a ROM, a RAM, or the like. Furthermore, the motor data table 19 is a storage means such as a flash memory.

商用三相交流電源2から供給された交流電圧は、整流回路11によって直流電圧に変換され、変換された直流電圧は、平滑回路12によって平滑化される。そして、平滑回路12によって平滑化された直流電圧は、インバータ回路13に供給され、インバータ回路13によって誘導電動機1を直流励磁や交流励磁する。   The AC voltage supplied from the commercial three-phase AC power supply 2 is converted into a DC voltage by the rectifier circuit 11, and the converted DC voltage is smoothed by the smoothing circuit 12. The DC voltage smoothed by the smoothing circuit 12 is supplied to the inverter circuit 13, and the induction motor 1 is DC excited or AC excited by the inverter circuit 13.

チューニング電圧指令値演算器17は、拘束試験においてオートチューニングが指示されると、三相電圧指令信号Vu* 、Vv* 、Vw*をPWMゲート信号生成器16に出力することで、誘導電動機1のU相とV相とW相とを一括にした端子間に、インバータ回路13から直流電圧と単相交流電圧とを順次印加する。モータ定数演算器20は、三相電圧指令信号Vu*、Vv*、Vw*と、U相電流検出器14によって検出されたU相電流Iuと、W相電流検出器15によって検出されたW相電流Iwとに基づいて、直流電圧印加時に、一次抵抗を演算すると共に、単相交流電圧印加時に、二次抵抗と漏れインダクタンスとを演算する。そして、モータ定数演算器20は、励磁電流と自己インダクタンス及び相互インダクタンスについては、図示しない入力手段によって誘導電動機1の容量の入力を受け付け、受け付けた容量に基づいてモータデータテーブル19に予め記憶されているモータ定数を特定するように構成されている。   The tuning voltage command value calculator 17 outputs the three-phase voltage command signals Vu *, Vv * and Vw * to the PWM gate signal generator 16 when auto-tuning is instructed in the restraint test. A DC voltage and a single-phase AC voltage are sequentially applied from the inverter circuit 13 between terminals in which the U phase, the V phase, and the W phase are collected. The motor constant calculator 20 includes three-phase voltage command signals Vu *, Vv *, Vw *, a U-phase current Iu detected by the U-phase current detector 14, and a W-phase detected by the W-phase current detector 15. Based on the current Iw, the primary resistance is calculated when a DC voltage is applied, and the secondary resistance and the leakage inductance are calculated when a single-phase AC voltage is applied. The motor constant calculator 20 receives the input of the capacity of the induction motor 1 by an input means (not shown) for the excitation current, the self-inductance, and the mutual inductance, and is stored in advance in the motor data table 19 based on the received capacity. The motor constant is specified.

特開2011−199024号JP2011-199024

しかしながら、従来技術では、励磁電流と自己インダクタンス及び相互インダクタンスとを直接測定できないため、誤差が大きく、センサレスベクトル制御でトルクの誤差が大きくなってしまうという問題点があった。また、従来技術では、駆動する誘導電動機1に対応する類似のモータ定数を予め記憶させたモータデータテーブル19を用意しなければならず、誘導電動機1が特殊モータ等でモータデータテーブル19に類似のモータ定数が記憶されていない場合には、駆動する誘導電動機1のモータ定数を特定することができず、センサレスベクトル制御での駆動ができないという問題点があった。   However, the prior art cannot directly measure the excitation current, the self-inductance, and the mutual inductance, so that there is a large error, and there is a problem that a torque error is increased in sensorless vector control. In the prior art, a motor data table 19 in which similar motor constants corresponding to the induction motor 1 to be driven must be stored in advance, and the induction motor 1 is a special motor or the like and is similar to the motor data table 19. When the motor constant is not stored, the motor constant of the induction motor 1 to be driven cannot be specified, and there is a problem that the sensorless vector control cannot be performed.

本発明の目的は、上記問題点に鑑み、従来技術の問題を解決し、無負荷試験で測定していたモータ定数を、拘束試験で直接測定可能な測定結果に基づいて演算することができる誘導電動機の定数測定装置及び定数測定方法を提供することにある。   In view of the above problems, the object of the present invention is to solve the problems of the prior art and calculate the motor constant measured in the no-load test based on the measurement result that can be directly measured in the restraint test. An object of the present invention is to provide a constant measuring apparatus and a constant measuring method for an electric motor.

本発明の誘導電動機の定数測定装置は、軸を回転させない拘束試験によって、三相交流電源で駆動する誘導電動機のセンサレスベクトル制御に用いる複数のモータ定数を測定する誘導電動機の定数測定装置であって、前記誘導電動機に電圧を印加する電圧印加手段と、前記誘導電動機に流れる電流を検出する電流検出手段と、前記電圧印加手段によって前記誘導電動機に印加する電圧値と前記電流検出手段によって検出した電流値とを用いて前記モータ定数を演算するモータ定数演算手段とを具備し、前記モータ定数演算手段は、前記電圧値と前記電流値とを用いて直接演算可能な前記モータ定数と、受け付けたモータ情報とを用いて前記モータ定数の一つである励磁電流を演算することを特徴とする。
さらに、本発明の誘導電動機の定数測定装置において、前記モータ定数演算手段は、前記誘導電動機の有効電力と皮相電力から力率を演算し、当該力率から前記励磁電流を演算するようにしても良い。
さらに、本発明の誘導電動機の定数測定装置において、前記モータ定数演算手段は、演算した前記力率を予め設定された上限と下限との範囲に収めるリミット処理を行うようにしても良い。
さらに、本発明の誘導電動機の定数測定装置において、前記モータ定数演算手段は、前記モータ情報として前記誘導電動機の定格電圧、定格電流及び容量を受け付けるようにしても良い。
また、本発明の誘導電動機の定数測定方法は、軸を回転させない拘束試験によって、三相交流電源で駆動する誘導電動機のセンサレスベクトル制御に用いる複数のモータ定数を測定する誘導電動機の定数測定方法であって、電圧印加手段によって前記誘導電動機に直流電圧を印加すると共に、電流検出手段によって前記誘導電動機に流れる電流を検出し、モータ定数演算手段によって、前記誘導電動機に印加する電圧値と前記誘導電動機に流れる電流値とを用いて一次抵抗を演算する一次抵抗演算処理工程と、前記電圧印加手段によって前記誘導電動機に交流電圧を印加すると共に、前記電流検出手段によって前記誘導電動機に流れる電流を検出し、前記モータ定数演算手段によって、有効電力と前記誘導電動機に流れる電流値と前記一次抵抗とから二次抵抗を演算する二次抵抗演算処理工程と、前記電圧印加手段によって前記誘導電動機に交流電圧を印加すると共に、前記電流検出手段によって前記誘導電動機に流れる電流を検出し、前記モータ定数演算手段によって、前記電動機のそれぞれの入力に一括で交流電圧を印加し、前記誘導電動機に流れる電流値と印加した交流電圧の周波数とから漏れインダクタンスを演算する漏れインダクタンス演算処理工程と、モータ情報として前記誘導電動機の定格電圧、定格電流及び容量を受け付け、前記モータ定数演算手段によって、前記モータ情報と前記一次抵抗と前記二次抵抗とから演算できる前記誘導電動機の有効電力と皮相電力とから力率を演算し、当該力率から励磁電流を演算する励磁電流演算処理工程と、前記モータ情報として前記誘導電動機の定格周波数を受け付け、前記モータ定数演算手段によって、前記励磁電流と前記モータ情報と前記一次抵抗とから一次インダクタンスを演算する一次インダクタンス演算処理工程と、前記モータ定数演算手段によって、前記一次インダクタンスと前記漏れインダクタンスとから相互インダクタンスを演算する相互インダクタンス演算処理工程とを備えることを特徴とする。
An induction motor constant measuring apparatus according to the present invention is an induction motor constant measuring apparatus that measures a plurality of motor constants used for sensorless vector control of an induction motor driven by a three-phase AC power source by a restraint test without rotating a shaft. A voltage application means for applying a voltage to the induction motor; a current detection means for detecting a current flowing through the induction motor; a voltage value applied to the induction motor by the voltage application means; and a current detected by the current detection means Motor constant calculation means for calculating the motor constant using a value, and the motor constant calculation means includes the motor constant that can be directly calculated using the voltage value and the current value, and the received motor. The excitation current which is one of the motor constants is calculated using the information.
Further, in the constant measuring apparatus for an induction motor according to the present invention, the motor constant calculating means calculates a power factor from the effective power and apparent power of the induction motor, and calculates the excitation current from the power factor. good.
Furthermore, in the constant measuring apparatus for an induction motor according to the present invention, the motor constant calculating means may perform a limit process for keeping the calculated power factor in a range between a preset upper limit and lower limit.
Furthermore, in the constant measuring apparatus for an induction motor according to the present invention, the motor constant calculating means may receive a rated voltage, a rated current and a capacity of the induction motor as the motor information.
In addition, the induction motor constant measuring method of the present invention is an induction motor constant measuring method for measuring a plurality of motor constants used for sensorless vector control of an induction motor driven by a three-phase AC power source by a restraint test without rotating the shaft. The voltage application means applies a DC voltage to the induction motor, the current detection means detects the current flowing through the induction motor, and the motor constant calculation means applies the voltage value applied to the induction motor and the induction motor. A primary resistance calculation processing step of calculating a primary resistance using a current value flowing through the current, and an AC voltage is applied to the induction motor by the voltage application means, and a current flowing to the induction motor is detected by the current detection means. The active constant, the current value flowing through the induction motor, and the primary resistance are calculated by the motor constant calculation means. A secondary resistance calculation processing step of calculating a secondary resistance from the above, applying an AC voltage to the induction motor by the voltage application means, detecting a current flowing through the induction motor by the current detection means, and detecting the motor constant As a motor information, a leakage inductance calculation processing step of calculating a leakage inductance from a current value flowing through the induction motor and a frequency of the applied AC voltage by collectively applying an AC voltage to each input of the motor by a calculation means. The power factor from the effective power and apparent power of the induction motor that can receive the rated voltage, rated current, and capacity of the induction motor and that can be calculated from the motor information, the primary resistance, and the secondary resistance by the motor constant calculation means. Excitation current calculation processing step of calculating the excitation current from the power factor, and the motor information Receiving a rated frequency of the induction motor, a primary inductance calculation processing step of calculating a primary inductance from the excitation current, the motor information, and the primary resistance by the motor constant calculation means, and the motor constant calculation means, And a mutual inductance calculation processing step of calculating a mutual inductance from the primary inductance and the leakage inductance.

本発明によれば、無負荷試験で測定していたモータ定数である励磁電流Iを、モータデータテーブルに頼らずに、拘束試験で直接測定可能な測定結果に基づいて演算することができるため、精度の高い誘導電動機の定数計測が可能になり、センサレスベクトル制御を高精度に行うことができる。 According to the present invention, the excitation current I 0 , which is a motor constant measured in the no-load test, can be calculated based on the measurement result that can be directly measured in the constraint test without relying on the motor data table. Therefore, it is possible to measure the constants of the induction motor with high accuracy, and to perform sensorless vector control with high accuracy.

本発明に係る誘導電動機の定数測定装置の実施の形態の構成を示す回路構成図である。It is a circuit block diagram which shows the structure of embodiment of the constant measuring apparatus of the induction motor which concerns on this invention. 図1に示すモータ定数演算器の演算動作を示すフローチャートである。It is a flowchart which shows the calculation operation | movement of the motor constant calculator shown in FIG. 図1に示す誘導電動機に直流電圧を印加した時の等価回路図である。FIG. 2 is an equivalent circuit diagram when a DC voltage is applied to the induction motor shown in FIG. 1. 図1に示す誘導電動機に単相交流電圧を印加した時の等価回路図である。FIG. 2 is an equivalent circuit diagram when a single-phase AC voltage is applied to the induction motor shown in FIG. 1. 図1に示す誘導電動機の定格負荷時における電流ベクトル図である。FIG. 2 is a current vector diagram at the rated load of the induction motor shown in FIG. 1. 図1に示す誘導電動機の無負荷運転時における等価回路図である。It is an equivalent circuit diagram at the time of no-load operation of the induction motor shown in FIG. 従来の定数測定装置の実施の形態の構成を示す回路構成図である。It is a circuit block diagram which shows the structure of embodiment of the conventional constant measuring apparatus.

次に、本発明の実施の形態を、図面を参照して具体的に説明する。なお、各図において、同一の構成には、同一の符号を付して一部説明を省略している。   Next, embodiments of the present invention will be specifically described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and a part of the description is omitted.

本実施の形態の定数測定装置10aは、図1を参照すると、モータデータテーブル19が設けられておらず、モータ定数演算器20aにおいて、従来は無負荷試験で測定していたモータ定数(励磁電流と自己インダクタンス及び相互インダクタンス)を、拘束試験で直接測定可能な測定結果に基づいて演算するように構成されている。   Referring to FIG. 1, the constant measurement device 10a of the present embodiment is not provided with the motor data table 19, and the motor constant calculator 20a is conventionally provided with a motor constant (excitation current) measured in a no-load test. And self-inductance and mutual inductance) are calculated based on measurement results that can be directly measured by a constraint test.

以下、本実施の形態の定数測定装置10aにおけるオートチューニング動作について図2乃至図6を参照して詳細に説明する。
チューニング電圧指令値演算器17は、拘束試験においてオートチューニングが指示されると、三相電圧指令信号Vu* 、Vv* 、Vw*をPWMゲート信号生成器16に出力することで、誘導電動機1のU相と、V相とW相とを一括にした端子間に、インバータ回路13から直流電圧を印加する直流電圧印加処理を実行すると共に、モータ定数演算器20は、誘導電動機1に印加される電圧Vuと、誘導電動機1を流れる電流iuの平均値を演算する電圧・電流平均値演算処理を実行する(ステップ101)。ステップ101において、チューニング電圧指令値演算器17には、電流実効値演算器18で演算された電流実効値Iがフィードバックされ、誘導電動機1に流れる電流が大きすぎないよう、印加電圧(三相電圧指令信号Vu* 、Vv* 、Vw*)の大きさを調整する。
Hereinafter, the auto-tuning operation in the constant measuring apparatus 10a of the present embodiment will be described in detail with reference to FIGS.
The tuning voltage command value calculator 17 outputs the three-phase voltage command signals Vu *, Vv * and Vw * to the PWM gate signal generator 16 when auto-tuning is instructed in the restraint test. A DC voltage application process for applying a DC voltage from the inverter circuit 13 is performed between terminals in which the U phase, the V phase, and the W phase are combined, and the motor constant calculator 20 is applied to the induction motor 1. A voltage / current average value calculation process for calculating the average value of the voltage Vu and the current iu flowing through the induction motor 1 is executed (step 101). In step 101, the tuning voltage command value calculator 17 is fed back with the effective current value I calculated by the effective current value calculator 18 so that the current flowing through the induction motor 1 is not too large. The magnitude of the command signals Vu *, Vv *, Vw *) is adjusted.

図3は、ステップ101における直流電圧印加時の誘導電動機1の等価回路であり、モータ定数演算器20は、ステップ101で平均を演算した電圧Vumと電流iumとを用いて、一次抵抗Rを下式〔数1〕によって演算する一次抵抗演算処理を実行する(ステップ102)。なお、一次抵抗Rの演算に用いる電圧Vumと電流iumとに、定常状態における一定期間での平均値を用いることで、検出精度を高めている。 Figure 3 is an equivalent circuit of the induction motor 1 at the time of DC voltage application in step 101, the motor constant calculator 20 uses the voltage Vum and current ium computed average in step 101, a primary resistance R 1 The primary resistance calculation process calculated by the following equation [Equation 1] is executed (step 102). Note that the voltage Vum and current ium used for the operation of the primary resistance R 1, by using the average value in a certain period in the steady state, to enhance the detection accuracy.

Figure 2015061492
Figure 2015061492

次に、チューニング電圧指令値演算器17は、三相電圧指令信号Vu* 、Vv* 、Vw*をPWMゲート信号生成器16に出力することで、誘導電動機1のU相と、V相とW相とを一括にした端子間に、インバータ回路13から単相交流電圧を印加する単相交流電圧印加処理を実行すると共に、モータ定数演算器20は、有効電力Pmと無効電力Qmとを演算する有効電力・無効電力演算処理を実行する(ステップ103)。ステップ103においても、直流電圧印加時と同様に、チューニング電圧指令値演算器17には、電流実効値演算器18で演算された電流実効値Iがフィードバックされ、誘導電動機1に流れる電流が大きすぎないよう、印加電圧(三相電圧指令信号Vu* 、Vv* 、Vw*)の大きさを調整する。   Next, the tuning voltage command value calculator 17 outputs the three-phase voltage command signals Vu *, Vv * and Vw * to the PWM gate signal generator 16, so that the U phase, V phase and W of the induction motor 1 are output. A single-phase AC voltage application process for applying a single-phase AC voltage from the inverter circuit 13 is performed between the terminals whose phases are integrated, and the motor constant calculator 20 calculates the active power Pm and the reactive power Qm. The active power / reactive power calculation process is executed (step 103). In step 103 as well, when the DC voltage is applied, the current effective value I calculated by the current effective value calculator 18 is fed back to the tuning voltage command value calculator 17, and the current flowing through the induction motor 1 is too large. The magnitude of the applied voltage (three-phase voltage command signals Vu *, Vv *, Vw *) is adjusted so as not to be present.

図4は、ステップ103における単相交流電圧印加時の誘導電動機1の等価回路である。モータ定数演算器20は、単相交流印加時の電圧指令値Vu*(実効値)を√2倍し、位相θによるsinθを乗じて瞬時電圧値とした上で、瞬時電流とを乗じて下式〔数2〕による積分処理により有効電力Pmを演算する。また、モータ定数演算器20は、単相交流印加時の電圧指令値Vu*(実効値)を√2倍し、位相θによるcosθを乗じて瞬時電圧値とした上で、瞬時電流とを乗じて下式〔数2〕による積分処理により無効電力Qmを演算する。   FIG. 4 is an equivalent circuit of the induction motor 1 when the single-phase AC voltage is applied in step 103. The motor constant calculator 20 multiplies the voltage command value Vu * (effective value) at the time of applying a single-phase AC by √2, multiplies it by sin θ by the phase θ, and then multiplies it by the instantaneous current. The active power Pm is calculated by integration processing according to the equation [Equation 2]. Further, the motor constant calculator 20 multiplies the voltage command value Vu * (effective value) at the time of applying the single-phase alternating current by √2, multiplies cos θ by the phase θ to obtain an instantaneous voltage value, and then multiplies the instantaneous current. Then, the reactive power Qm is calculated by integration processing according to the following equation [Equation 2].

Figure 2015061492
Figure 2015061492

次に、モータ定数演算器20は、二次抵抗Rと漏れインダクタンスlとを演算する二次抵抗・漏れインダクタンス演算処理を実行する(ステップ104)。モータ定数演算器20は、上式〔数1〕で求めた一次抵抗Rと、U相平均電流iumと、上式〔数2〕で求めた有効電力Pmとを用いて、下式〔数3〕によって二次抵抗Rを演算する。 Next, the motor constant calculator 20 performs a secondary resistance-leakage inductance calculation process for calculating the inductance l 1 leakage and secondary resistance R 2 (step 104). The motor constant calculator 20 uses the primary resistance R 1 obtained by the above equation [Equation 1], the U-phase average current ium, and the active power Pm obtained by the above equation [Equation 2], and by 3] computing a secondary resistance R 2.

Figure 2015061492
Figure 2015061492

また、モータ定数演算器20は、単相交流印加時の周波数fと、U相平均電流iumと、上式〔数2〕で無効電力Qmとを用いて、下式〔数4〕によって漏れインダクタンスlを演算する。 In addition, the motor constant calculator 20 uses the frequency f when the single-phase alternating current is applied, the U-phase average current ium, the reactive power Qm in the above equation [Equation 2], and the leakage inductance by the equation [Equation 4]. l 1 is calculated.

Figure 2015061492
Figure 2015061492

次に、モータ定数演算器20は、励磁電流Iを演算する励磁電流演算処理を実行する(ステップ105)。励磁電流Iは、拘束試験において測定できる測定結果から直接導くことができない。そこで、モータ定数演算器20は、図示しない入力手段から誘導電動機1の定格銘板等に記載されている既知のモータ情報(ユーザが容易に把握可能な数値)の入力を受け付け、受け付けた定数を用いて励磁電流Iの演算を行う。 Next, the motor constant calculator 20 executes excitation current calculation processing for calculating the excitation current I0 (step 105). The excitation current I 0 cannot be directly derived from the measurement result that can be measured in the constraint test. Therefore, the motor constant calculator 20 receives input of known motor information (numerical values that can be easily grasped by the user) described on the rating nameplate of the induction motor 1 from an input means (not shown), and uses the received constants. performing the calculation of the excitation current I 0 Te.

図5は、誘導電動機1の定格負荷時における電流ベクトル図を示している。ベクトル制御中は、常に一定の励磁電流Iを流すため、定格出力時の電流ベクトルIは励磁電流Iとなす角(90°−θm)の関係となる。ここでθmは定格負荷時における誘導電動機1の力率角である。また電流ベクトルIの大きさは、大抵、誘導電動機1の定格電流であることから比較的容易に把握可能であり、力率角θmが分かれば励磁電流Iを演算することができる。ここで力率角θmは、力率cosθmとして誘導電動機1の定格出力時の有効電力Pと皮相電力Wとを用いて、下式〔数5〕によって演算できる。なお、皮相電力Wは、定格電圧Vnと、定格電流Inとを用いて、下式〔数5〕によって演算できる。 FIG. 5 shows a current vector diagram of the induction motor 1 at the rated load. During vector control, because it is always supplying a constant excitation current I 0, the current vector I n at the rated output is related corner (90 ° -θm) formed by the excitation current I 0. Here, θm is the power factor angle of the induction motor 1 at the rated load. The magnitude of the current vector I n are usually relatively easily grasped because it is the rated current of the induction motor 1 can be power factor angle θm is calculates the excitation current I 0 Knowing. Here, the power factor angle θm can be calculated by the following equation [Equation 5] using the effective power P and the apparent power W at the rated output of the induction motor 1 as the power factor cos θm. The apparent power W can be calculated by the following equation [Equation 5] using the rated voltage Vn and the rated current In.

Figure 2015061492
Figure 2015061492

また、有効電力Pは、誘導電動機1の容量Pmotと、誘導電動機1の効率ηと下式〔数6〕によって演算できる。   Further, the active power P can be calculated by the capacity Pmot of the induction motor 1, the efficiency η of the induction motor 1, and the following equation [Equation 6].

Figure 2015061492
Figure 2015061492

ここで、誘導電動機1の定格電圧Vn、定格電流In及び容量Pmotは、誘導電動機1の定格銘板等に記載されている既知のモータ情報(ユーザが容易に把握可能な数値)であり、図示しない入力手段によって受け付けることが可能であるが、効率ηは把握が難しい値である。   Here, the rated voltage Vn, the rated current In, and the capacity Pmot of the induction motor 1 are known motor information (numerical values that can be easily grasped by the user) described on the rating nameplate of the induction motor 1, and are not illustrated. Although it can be accepted by the input means, the efficiency η is a value that is difficult to grasp.

効率ηは、誘導電動機1の損失を電気損失Welossと機械損失Wmlossとに分けると、下式〔数7〕によって表される。   The efficiency η is expressed by the following equation [Equation 7] when the loss of the induction motor 1 is divided into an electric loss Weloss and a mechanical loss Wmloss.

Figure 2015061492
Figure 2015061492

ここで、電気損失Welossは、上式〔数1〕で求めた一次抵抗Rと、上式〔数3〕で求めた二次抵抗Rと、定格電流Inとによって、下式〔数8〕によって演算できる。 Here, the electrical loss Weloss is expressed by the following equation [Equation 8] by the primary resistance R 1 obtained by the above equation [Equation 1], the secondary resistance R 2 obtained by the equation [Equation 3], and the rated current In. ] Can be calculated.

Figure 2015061492
Figure 2015061492

また、機械損失Wmlossは、直接測定が困難であるが、容量Pmotに対する割合として設定する。容量Pmot毎に代表的な誘導電動機1の機械損失Wmlossを把握しておくことにより、受け付けた容量Pmotにより機械損失Wmlossを設定する。   The mechanical loss Wmloss is difficult to measure directly, but is set as a ratio to the capacity Pmot. By grasping the mechanical loss Wmloss of the representative induction motor 1 for each capacity Pmot, the mechanical loss Wmloss is set by the received capacity Pmot.

従って、モータ定数演算器20は、誘導電動機1の定格銘板等に記載されている既知の定数(容易に把握可能な定数)として、誘導電動機1の定格電圧Vn、定格電流In及び容量Pmotを図示しない入力手段によって受け付け、受け付けた誘導電動機1の定格電圧Vn、定格電流In及び容量Pmotと、上式〔数1〕で求めた一次抵抗Rと、上式〔数3〕で求めた二次抵抗Rとを用いて、上式〔数5〕によって力率cosθmを演算する。 Therefore, the motor constant calculator 20 shows the rated voltage Vn, the rated current In, and the capacity Pmot of the induction motor 1 as known constants (constants that can be easily grasped) described on the rating nameplate of the induction motor 1 and the like. The rated voltage Vn, the rated current In and the capacity Pmot of the induction motor 1 received and received by the input means, the primary resistance R 1 obtained by the above equation [Equation 1], and the secondary obtained by the above equation [Equation 3]. The power factor cos θm is calculated by the above equation [Formula 5] using the resistor R 2 .

そして、モータ定数演算器20は、上式〔数5〕によって演算した力率cosθmに対して上限と下限においてリミット処理を行う。力率cosθmの上限については「1」に近い値が有りえないことから、0.95を上限値として設定されている。また、力率cosθmの下限については比較的力率の良くないモータを参考に、「0.65」に設定されている。なお、この力率の上限値と下限値とは任意の値を設定可能とする。   Then, the motor constant calculator 20 performs limit processing at the upper limit and the lower limit on the power factor cos θm calculated by the above equation [Equation 5]. As the upper limit of the power factor cos θm cannot be a value close to “1”, 0.95 is set as the upper limit. The lower limit of the power factor cos θm is set to “0.65” with reference to a motor having a relatively poor power factor. In addition, arbitrary values can be set as the upper limit value and the lower limit value of the power factor.

さらに、モータ定数演算器20は、リミット処理後の力率cosθmと、定格電流Inとを用いて、下式〔数9〕によって励磁電流Iを演算する。 Further, the motor constant calculator 20 calculates the excitation current I 0 by the following equation [Equation 9] using the power factor cos θm after the limit processing and the rated current In.

Figure 2015061492
Figure 2015061492

次に、モータ定数演算器20は、自己インダクタンスL1と、相互インダクタンスLmとを演算するインダクタンス(自己・相互)演算処理を実行する(ステップ106)。モータ定数演算器20は、図7に示す無負荷運転時の誘導電動機1の等価回路から、上式〔数9〕で求めた励磁電流Iと、定格電圧Vnと、定格周波数fnと、上式〔数1〕で求めた一次抵抗Rとを用いて、下式〔数10〕によって一次インダクタンスLを演算する。なお、定格周波数fnは、誘導電動機1の定格銘板等に記載されている既知の定数(容易に把握可能な定数)として、図示しない入力手段によって受け付ける。また、二次インダクタンスLは一次インダクタンスLとほぼ変わらないことから、下式〔数10〕で求めた一次インダクタンスLの値をそのまま使用することができる。 Next, the motor constant calculator 20 executes an inductance (self / mutual) calculation process for calculating the self-inductance L1 and the mutual inductance Lm (step 106). The motor constant calculator 20 has an excitation current I 0 , a rated voltage Vn, a rated frequency fn, and an upper value obtained from the equivalent circuit of the induction motor 1 during no-load operation shown in FIG. The primary inductance L 1 is calculated by the following equation [Equation 10] using the primary resistance R 1 obtained by the equation [Equation 1]. The rated frequency fn is received by an input means (not shown) as a known constant (a constant that can be easily grasped) described on the rating nameplate of the induction motor 1. The secondary inductance L 2 from the almost unchanged the primary inductance L 1, can be used as the value of the primary inductance L 1 determined by the following equation [Equation 10].

Figure 2015061492
Figure 2015061492

そして、モータ定数演算器20は、上式〔数10〕で求めた一次インダクタンスLと、上式〔数4〕で求めた漏れインダクタンスlとを用いて、下式〔数11〕によって相互インダクタンスLmを演算し、オートチューニング処理を終了する。 The motor constant calculator 20 uses the primary inductance L 1 obtained by the above equation [Equation 10] and the leakage inductance l 1 obtained by the above equation [Equation 4] to obtain a mutual equation by the following equation [Equation 11]. The inductance Lm is calculated and the auto-tuning process is terminated.

Figure 2015061492
Figure 2015061492

以上説明したように、本実施の形態は、軸を回転させない拘束試験によって、三相交流電源で駆動する誘導電動機1のセンサレスベクトル制御に用いる複数のモータ定数を測定する誘導電動機1の定数測定装置10aであって、三相電圧指令信号Vu* 、Vv* 、Vw*をPWMゲート信号生成器16に出力することで、誘導電動機1にインバータ回路13から電圧を印加するチューニング電圧指令値演算器17と、誘導電動機1に流れる電流を検出するU相電流検出器14と、電圧Vuと電流値iuとを用いてモータ定数(一次抵抗、二次抵抗及び漏れインダクタンス)を演算するモータ定数演算器20とを具備し、モータ定数演算器20は、電圧Vuと電流値iuとを用いて直接演算可能なモータ定数(一次抵抗、二次抵抗及び漏れインダクタンス)と、受け付けたモータ情報とを用いてモータ定数の一つである励磁電流Iを演算するように構成されている。
この構成により、無負荷試験で測定していたモータ定数である励磁電流Iを、モータデータテーブルに頼らずに、拘束試験で直接測定可能な測定結果に基づいて演算することができるため、精度の高い誘導電動機の定数計測が可能になり、センサレスベクトル制御を高精度に行うことができる。
As described above, the present embodiment is a constant measuring device for induction motor 1 that measures a plurality of motor constants used for sensorless vector control of induction motor 1 driven by a three-phase AC power source by a restraint test that does not rotate the shaft. The tuning voltage command value calculator 17 applies a voltage from the inverter circuit 13 to the induction motor 1 by outputting the three-phase voltage command signals Vu *, Vv *, Vw * to the PWM gate signal generator 16. A U-phase current detector 14 for detecting the current flowing through the induction motor 1 and a motor constant calculator 20 for calculating motor constants (primary resistance, secondary resistance and leakage inductance) using the voltage Vu and the current value iu. The motor constant calculator 20 is a motor constant (primary resistance, secondary resistance and leakage inductor) that can be directly calculated using the voltage Vu and the current value iu. Scan) and is configured to calculate the excitation current I 0 which is one of the motor constant by using the motor information received.
Since this arrangement, the excitation current I 0 is a motor constant was measured at no-load test, without resorting to motor data table can be calculated based on the direct measurable measurement results restraint test, precision The constant measurement of a high induction motor can be performed, and sensorless vector control can be performed with high accuracy.

さらに、本実施の形態によれば、モータ定数演算器20は、誘導電動機1の有効電力Pと皮相電力Wから力率cosθmを演算し、力率cosθmから励磁電流Iを演算するように構成されている。
この構成により、励磁電流Iを拘束試験で直接測定可能な測定結果に基づいて演算することができる。
Further, according to the present embodiment, the motor constant calculator 20 is configured to calculate the power factor cos θm from the effective power P and the apparent power W of the induction motor 1 and to calculate the excitation current I 0 from the power factor cos θm. Has been.
With this configuration, the excitation current I 0 can be calculated based on a measurement result that can be directly measured by a constraint test.

さらに、本実施の形態によれば、モータ定数演算器20は、演算した力率cosθmを予め設定された上限と下限との範囲と収めるリミット処理を行うように構成されている。
この構成により、力率cosθmを適正な範囲に収めることができる。なお、上限と下限とは任意の値を設定可能とする。
Furthermore, according to the present embodiment, the motor constant calculator 20 is configured to perform a limit process that keeps the calculated power factor cos θm within a preset upper and lower limits.
With this configuration, the power factor cos θm can be within an appropriate range. Note that any value can be set for the upper limit and the lower limit.

さらに、本実施の形態によれば、モータ定数演算器20は、モータ情報として誘導電動機1の定格電圧Vn、定格電流In及び容量Pmotを受け付けるように構成されている。
この構成により、誘導電動機1の定格銘板等に記載されている既知の定数(容易に把握可能な定数)である誘導電動機1の定格電圧Vn、定格電流In及び容量Pmotを受け付けるだけで、励磁電流Iを拘束試験で直接測定可能な測定結果に基づいて演算することができる。
Furthermore, according to the present embodiment, the motor constant calculator 20 is configured to receive the rated voltage Vn, the rated current In, and the capacity Pmot of the induction motor 1 as motor information.
With this configuration, the excitation current can be obtained only by receiving the rated voltage Vn, the rated current In, and the capacity Pmot of the induction motor 1, which are known constants (constants that can be easily grasped) described on the rating nameplate of the induction motor 1. I 0 can be calculated based on a measurement result that can be directly measured by a constraint test.

なお、本発明が上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変更され得ることは明らかである。また、上記構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等にすることができる。なお、各図において、同一構成要素には同一符号を付している。   Note that the present invention is not limited to the above-described embodiments, and it is obvious that the embodiments can be appropriately changed within the scope of the technical idea of the present invention. In addition, the number, position, shape, and the like of the constituent members are not limited to the above-described embodiment, and can be set to a number, position, shape, and the like that are suitable for implementing the present invention. In each figure, the same numerals are given to the same component.

1 誘導電動機
2 商用三相交流電源
10、10a 定数測定装置
11 整流回路
12 平滑回路
13 インバータ回路
14 U相電流検出器
15 W相電流検出器
16 PWMゲート信号生成器
17 チューニング電圧指令値演算器
18 電流実効値演算器
19 モータデータテーブル
20、20a モータ定数演算器
DESCRIPTION OF SYMBOLS 1 Induction motor 2 Commercial three-phase alternating current power supply 10, 10a Constant measuring device 11 Rectifier circuit 12 Smoothing circuit 13 Inverter circuit 14 U-phase current detector 15 W-phase current detector 16 PWM gate signal generator 17 Tuning voltage command value calculator 18 Current effective value calculator 19 Motor data table 20, 20a Motor constant calculator

Claims (5)

軸を回転させない拘束試験によって、三相交流電源で駆動する誘導電動機のセンサレスベクトル制御に用いる複数のモータ定数を測定する誘導電動機の定数測定装置であって、
前記誘導電動機に電圧を印加する電圧印加手段と、
前記誘導電動機に流れる電流を検出する電流検出手段と、
前記電圧印加手段によって前記誘導電動機に印加する電圧値と前記電流検出手段によって検出した電流値とを用いて前記モータ定数を演算するモータ定数演算手段とを具備し、
前記モータ定数演算手段は、前記電圧値と前記電流値とを用いて直接演算可能な前記モータ定数と、受け付けたモータ情報とを用いて前記モータ定数の一つである励磁電流を演算することを特徴とする誘導電動機の定数測定装置。
An induction motor constant measuring device that measures a plurality of motor constants used for sensorless vector control of an induction motor driven by a three-phase AC power source by a constraint test that does not rotate the shaft,
Voltage applying means for applying a voltage to the induction motor;
Current detecting means for detecting a current flowing through the induction motor;
Motor constant calculation means for calculating the motor constant using the voltage value applied to the induction motor by the voltage application means and the current value detected by the current detection means,
The motor constant calculating means calculates an excitation current that is one of the motor constants using the motor constant that can be directly calculated using the voltage value and the current value, and the received motor information. A characteristic constant measuring device for induction motors.
前記モータ定数演算手段は、前記誘導電動機の有効電力と皮相電力から力率を演算し、当該力率から前記励磁電流を演算することを特徴とする請求項1記載の誘導電動機の定数測定装置。   The induction motor constant measuring apparatus according to claim 1, wherein the motor constant calculation means calculates a power factor from the effective power and apparent power of the induction motor and calculates the excitation current from the power factor. 前記モータ定数演算手段は、演算した前記力率を予め設定された上限と下限との範囲に収めるリミット処理を行うことを特徴とする請求項1又は2記載の誘導電動機の定数測定装置。   The induction motor constant measuring apparatus according to claim 1, wherein the motor constant calculating means performs a limit process for keeping the calculated power factor in a range between a preset upper limit and a lower limit. 前記モータ定数演算手段は、前記モータ情報として前記誘導電動機の定格電圧、定格電流及び容量を受け付けることを特徴とする請求項1乃至3のいずれかに記載の誘導電動機の定数測定装置。   4. The induction motor constant measuring apparatus according to claim 1, wherein the motor constant calculating means receives a rated voltage, a rated current and a capacity of the induction motor as the motor information. 軸を回転させない拘束試験によって、三相交流電源で駆動する誘導電動機のセンサレスベクトル制御に用いる複数のモータ定数を測定する誘導電動機の定数測定方法であって、
電圧印加手段によって前記誘導電動機に直流電圧を印加すると共に、電流検出手段によって前記誘導電動機に流れる電流を検出し、モータ定数演算手段によって、前記誘導電動機に印加する電圧値と前記誘導電動機に流れる電流値とを用いて一次抵抗を演算する一次抵抗演算処理工程と、
前記電圧印加手段によって前記誘導電動機に交流電圧を印加すると共に、前記電流検出手段によって前記誘導電動機に流れる電流を検出し、前記モータ定数演算手段によって、有効電力と前記誘導電動機に流れる電流値と前記一次抵抗とから二次抵抗を演算する二次抵抗演算処理工程と、
前記電圧印加手段によって前記誘導電動機に交流電圧を印加すると共に、前記電流検出手段によって前記誘導電動機に流れる電流を検出し、前記モータ定数演算手段によって、前記電動機のそれぞれの入力に一括で交流電圧を印加し、前記誘導電動機に流れる電流値と印加した交流電圧の周波数とから漏れインダクタンスを演算する漏れインダクタンス演算処理工程と、
モータ情報として前記誘導電動機の定格電圧、定格電流及び容量を受け付け、前記モータ定数演算手段によって、前記モータ情報と前記一次抵抗と前記二次抵抗とから演算できる前記誘導電動機の有効電力と皮相電力とから力率を演算し、当該力率から励磁電流を演算する励磁電流演算処理工程と、
前記モータ情報として前記誘導電動機の定格周波数を受け付け、前記モータ定数演算手段によって、前記励磁電流と前記モータ情報と前記一次抵抗とから一次インダクタンスを演算する一次インダクタンス演算処理工程と、
前記モータ定数演算手段によって、前記一次インダクタンスと前記漏れインダクタンスとから相互インダクタンスを演算する相互インダクタンス演算処理工程とを備えることを特徴とする誘導電動機の定数測定方法。
An induction motor constant measuring method for measuring a plurality of motor constants used for sensorless vector control of an induction motor driven by a three-phase AC power source by a constraint test without rotating a shaft,
A DC voltage is applied to the induction motor by the voltage application means, a current flowing through the induction motor is detected by the current detection means, and a voltage value applied to the induction motor and a current flowing through the induction motor are detected by the motor constant calculation means. A primary resistance calculation processing step of calculating a primary resistance using a value;
An AC voltage is applied to the induction motor by the voltage application unit, a current flowing through the induction motor is detected by the current detection unit, and an active power and a current value flowing through the induction motor are detected by the motor constant calculation unit. A secondary resistance calculation processing step of calculating a secondary resistance from the primary resistance;
An AC voltage is applied to the induction motor by the voltage application means, a current flowing through the induction motor is detected by the current detection means, and an AC voltage is collectively applied to each input of the motor by the motor constant calculation means. A leakage inductance calculation processing step of calculating a leakage inductance from the value of a current flowing through the induction motor and the frequency of the applied AC voltage;
The rated voltage, rated current, and capacity of the induction motor are received as motor information, and the effective power and apparent power of the induction motor that can be calculated from the motor information, the primary resistance, and the secondary resistance by the motor constant calculation means. An excitation current calculation processing step of calculating a power factor from the power factor and calculating an excitation current from the power factor;
A primary inductance calculation processing step of receiving a rated frequency of the induction motor as the motor information, and calculating a primary inductance from the excitation current, the motor information, and the primary resistance by the motor constant calculation means;
An induction motor constant measuring method comprising: a mutual inductance calculation processing step of calculating a mutual inductance from the primary inductance and the leakage inductance by the motor constant calculation means.
JP2013195807A 2013-09-20 2013-09-20 Constant measuring apparatus and constant measuring method for induction motor Active JP6194718B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013195807A JP6194718B2 (en) 2013-09-20 2013-09-20 Constant measuring apparatus and constant measuring method for induction motor
CN201410408850.5A CN104459536B (en) 2013-09-20 2014-08-19 The constant measuring apparatus and constant measuring method of induction conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195807A JP6194718B2 (en) 2013-09-20 2013-09-20 Constant measuring apparatus and constant measuring method for induction motor

Publications (2)

Publication Number Publication Date
JP2015061492A true JP2015061492A (en) 2015-03-30
JP6194718B2 JP6194718B2 (en) 2017-09-13

Family

ID=52818607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195807A Active JP6194718B2 (en) 2013-09-20 2013-09-20 Constant measuring apparatus and constant measuring method for induction motor

Country Status (2)

Country Link
JP (1) JP6194718B2 (en)
CN (1) CN104459536B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827162A (en) * 2016-05-06 2016-08-03 江苏科技大学 Apparatus and method for determining the phase sequence of three-phase winding of brushless direct current motor
CN105846735A (en) * 2016-05-06 2016-08-10 江苏科技大学 Brushless DC motor Hall phase sequence detection method and detection device
CN105974213A (en) * 2016-05-06 2016-09-28 江苏科技大学 Method and apparatus for detecting Hall phase sequence of brushless direct current motor
CN105974212A (en) * 2016-05-06 2016-09-28 江苏科技大学 Method and apparatus for determining phase sequence of three-phase windings of PMSM
CN106908724A (en) * 2017-03-02 2017-06-30 国家电网公司 A kind of large-scale phase modifier scene no-load characteristic measurement method
KR102065884B1 (en) * 2019-07-02 2020-01-13 한전케이피에스 주식회사 Device and method for testing of Low-voltage motor no-load
CN111239603A (en) * 2020-01-15 2020-06-05 沈阳工业大学 Device and method for testing inductance of permanent magnet synchronous reluctance motor for electric vehicle
WO2021176761A1 (en) * 2020-03-03 2021-09-10 株式会社日立製作所 Device monitoring device and device monitoring method
JP7446358B2 (en) 2022-04-04 2024-03-08 三菱電機株式会社 AC rotating electric machine control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261394A (en) * 1990-03-08 1991-11-21 Alex Denshi Kogyo Kk Apparatus and method for control of motor
US7423401B2 (en) * 2004-07-21 2008-09-09 Mitsubishi Denki Kabushiki Kaisha AC rotary machine constant measuring apparatus for measuring constants of stationary AC rotary machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3092839B2 (en) * 1994-04-26 2000-09-25 東洋電機製造株式会社 Inverter device with constant measurement setting function
JP4816838B2 (en) * 2000-07-13 2011-11-16 株式会社安川電機 Vector control device for induction motor
JP2002199798A (en) * 2000-12-22 2002-07-12 Yaskawa Electric Corp Measuring method for motor constant of induction motor
JP2003339198A (en) * 2002-05-20 2003-11-28 Yaskawa Electric Corp Method for measuring motor constant of induction motor
JP4475375B2 (en) * 2002-10-25 2010-06-09 株式会社安川電機 Induction motor drive
JP4411899B2 (en) * 2003-08-05 2010-02-10 富士電機システムズ株式会社 Induction motor control method
KR20100001889A (en) * 2008-06-27 2010-01-06 엘에스산전 주식회사 Inverter control device and multi level inverter control device
JP5942094B2 (en) * 2010-10-08 2016-06-29 パナソニックIpマネジメント株式会社 Motor constant calculation method and motor constant calculation device for PM motor
CN102393507B (en) * 2011-09-01 2014-01-29 北京配天大富精密机械有限公司 Motor parameter detection method and motor parameter detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261394A (en) * 1990-03-08 1991-11-21 Alex Denshi Kogyo Kk Apparatus and method for control of motor
US7423401B2 (en) * 2004-07-21 2008-09-09 Mitsubishi Denki Kabushiki Kaisha AC rotary machine constant measuring apparatus for measuring constants of stationary AC rotary machine
JP4540674B2 (en) * 2004-07-21 2010-09-08 三菱電機株式会社 AC rotating machine constant measurement device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827162A (en) * 2016-05-06 2016-08-03 江苏科技大学 Apparatus and method for determining the phase sequence of three-phase winding of brushless direct current motor
CN105846735A (en) * 2016-05-06 2016-08-10 江苏科技大学 Brushless DC motor Hall phase sequence detection method and detection device
CN105974213A (en) * 2016-05-06 2016-09-28 江苏科技大学 Method and apparatus for detecting Hall phase sequence of brushless direct current motor
CN105974212A (en) * 2016-05-06 2016-09-28 江苏科技大学 Method and apparatus for determining phase sequence of three-phase windings of PMSM
CN106908724A (en) * 2017-03-02 2017-06-30 国家电网公司 A kind of large-scale phase modifier scene no-load characteristic measurement method
KR102065884B1 (en) * 2019-07-02 2020-01-13 한전케이피에스 주식회사 Device and method for testing of Low-voltage motor no-load
CN111239603A (en) * 2020-01-15 2020-06-05 沈阳工业大学 Device and method for testing inductance of permanent magnet synchronous reluctance motor for electric vehicle
CN111239603B (en) * 2020-01-15 2022-02-08 沈阳工业大学 Device and method for testing inductance of permanent magnet synchronous reluctance motor for electric vehicle
WO2021176761A1 (en) * 2020-03-03 2021-09-10 株式会社日立製作所 Device monitoring device and device monitoring method
JP7446358B2 (en) 2022-04-04 2024-03-08 三菱電機株式会社 AC rotating electric machine control device

Also Published As

Publication number Publication date
CN104459536A (en) 2015-03-25
CN104459536B (en) 2017-07-14
JP6194718B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6194718B2 (en) Constant measuring apparatus and constant measuring method for induction motor
Dutta et al. A comparative analysis of two test methods of measuring $ d $-and $ q $-axes inductances of interior permanent-magnet machine
Aarniovuori et al. Analysis of 37-kW converter-fed induction motor losses
TWI462434B (en) Apparatus for controlling rotary machinery and method for measuring the inductance of rotary machinery
JP2002022813A (en) Measuring method for motor constant of induction motor
Stankovic et al. A novel method for measuring induction machine magnetizing inductance
JP4540674B2 (en) AC rotating machine constant measurement device
CN105556816B (en) The control method of power inverter and power inverter
US9680402B2 (en) Driver circuit and method for single-phase and three-phase induction motors
JP5333411B2 (en) Vector control device for induction motor
JP5510577B2 (en) Vector control device for induction motor
Boglietti et al. Influence of the sinusoidal supply frequency on the induction motor stray load losses
TWI409486B (en) Measurement of motor parameters
Zhang et al. Loss characteristic analysis of small and medium-sized induction motors fed by PWM inverter based on the experiment measurements
Aminu et al. Converter-fed induction motor efficiency measurement under variable frequency/load points: An extension of the IEC/TS 60034-2-3
JP3092839B2 (en) Inverter device with constant measurement setting function
Urbanski Position estimation for PMSM drive equipped with the motor choke
JP2850096B2 (en) Inverter control method with constant measurement setting function
Yamamoto et al. Torque estimation of a variable speed induction motor without torque and rotational speed meters
JP2015144500A (en) Controller of permanent magnet synchronous motor
JP4475375B2 (en) Induction motor drive
JP3849857B2 (en) AC motor resistance measurement method
JP2002199798A (en) Measuring method for motor constant of induction motor
JP2006025548A (en) Control device for generator, and method for setting control operation constant of the control device
JP3329672B2 (en) Induction motor constant measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6194718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250