JP2015060935A - Thermoelectric generator - Google Patents
Thermoelectric generator Download PDFInfo
- Publication number
- JP2015060935A JP2015060935A JP2013193365A JP2013193365A JP2015060935A JP 2015060935 A JP2015060935 A JP 2015060935A JP 2013193365 A JP2013193365 A JP 2013193365A JP 2013193365 A JP2013193365 A JP 2013193365A JP 2015060935 A JP2015060935 A JP 2015060935A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- conversion module
- series
- parallel
- temperature difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 299
- 238000010248 power generation Methods 0.000 claims description 52
- 238000009429 electrical wiring Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 description 19
- 238000009826 distribution Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229930091051 Arenine Natural products 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001291 heusler alloy Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、温度差により発電する熱電変換モジュールを備えた熱電発電装置に関する。 The present invention relates to a thermoelectric power generation apparatus including a thermoelectric conversion module that generates power based on a temperature difference.
熱電発電装置は、熱電変換モジュールの両面に温度差をつけることで生じる電力を取り出す、非化石燃料による環境に優しい発電機である。工場排水や温泉などの熱源からエネルギを回収し、独立電源として現場の照明や機器へ電力供給しており、停電時に備えたバックアップ電源への蓄電を行なったりする用途に用いることができる。従来技術の一例として特許文献1に示される熱電発電装置を、図21〜図26を用いて説明する。 The thermoelectric generator is an environmentally friendly generator using non-fossil fuel that extracts electric power generated by making a temperature difference between both surfaces of the thermoelectric conversion module. Energy is recovered from heat sources such as factory wastewater and hot springs, and power is supplied to on-site lighting and equipment as an independent power source, which can be used for power storage in a backup power source in case of a power failure. A thermoelectric power generation device disclosed in Patent Document 1 as an example of the prior art will be described with reference to FIGS.
図21に示す熱電発電装置1は高温熱流体を流す直方体型の高温チャンバ11Aと低温チャンバ11Bとを交互に複数台配置し、熱電変換モジュール収納部(スロット)12に収納される熱電変換モジュール(図21には図示せず)を隣接するチャンバ間にそれぞれ挟んだ構造を有する。高温チャンバ11Aと低温チャンバ11Bを合わせてチャンバ11と称する。図21中の矢印は熱電発電装置1内を流れる熱流体の流れの向きを示している。図21に示したように、高温チャンバ11A内を高温熱流体が流れる方向と、低温チャンバ11B内を低温熱流体が流れる方向とは、対向流を成している。各チャンバ11の片方の端部には、熱流体を取り込むための配管が設けられ、当該チャンバ11のもう片方の端部には、熱流体を排出するための配管が設けられる。隣接するチャンバ11内の熱流体の流れが対向流を構成していることから、熱電変換モジュール13の両面の温度差が熱流体の供給側から排出側まで長手方向で極力均一になるようにすることができ、発電性能を向上させることができる。複数の熱電変換モジュール13は電気的に直列接続または並列接続されている。制御装置3は、得られる電力の蓄電及び直流交流変換を行うための制御盤である。この制御装置3は、蓄電装置としてのバッテリや、バッテリに対する電力の充放電の制御を行うチャージコントローラ、直流から交流への変換を行うインバータ等を備えている。制御装置3の出力は、例えばテレビ装置4、照明機器5、表示装置6等の負荷に供給される。 The thermoelectric power generator 1 shown in FIG. 21 has a plurality of rectangular parallelepiped high temperature chambers 11A and low temperature chambers 11B through which a high-temperature thermal fluid flows, and a thermoelectric conversion module ( 21 (not shown in FIG. 21) is sandwiched between adjacent chambers. The high temperature chamber 11A and the low temperature chamber 11B are collectively referred to as a chamber 11. The arrows in FIG. 21 indicate the direction of the flow of the thermal fluid flowing through the thermoelectric generator 1. As shown in FIG. 21, the direction in which the high temperature thermal fluid flows in the high temperature chamber 11A and the direction in which the low temperature thermal fluid flows in the low temperature chamber 11B form an opposing flow. A pipe for taking in the thermal fluid is provided at one end of each chamber 11, and a pipe for discharging the thermal fluid is provided at the other end of the chamber 11. Since the flow of the thermal fluid in the adjacent chambers 11 constitutes a counter flow, the temperature difference between both surfaces of the thermoelectric conversion module 13 is made as uniform as possible in the longitudinal direction from the supply side to the discharge side of the thermal fluid. Power generation performance can be improved. The plurality of thermoelectric conversion modules 13 are electrically connected in series or in parallel. The control device 3 is a control panel for performing storage of electric power obtained and DC / AC conversion. The control device 3 includes a battery as a power storage device, a charge controller that controls charging / discharging of electric power to the battery, an inverter that performs conversion from direct current to alternating current, and the like. The output of the control device 3 is supplied to loads such as the television device 4, the illumination device 5, and the display device 6, for example.
図22は、高温チャンバ11Aと低温チャンバ11Bとの間に設けられる複数の熱電変換モジュールの配置の一例を示す図である。図22に示されるように、高温チャンバ11A及び低温チャンバ11Bの壁面には、複数の熱電変換モジュール13が所定の間隔で貼り付けられている。熱電変換モジュール13は配線14により、例えばチャンバ長手方向へ電気的に直列接続される。 FIG. 22 is a diagram illustrating an example of an arrangement of a plurality of thermoelectric conversion modules provided between the high temperature chamber 11A and the low temperature chamber 11B. As shown in FIG. 22, a plurality of thermoelectric conversion modules 13 are attached to the wall surfaces of the high temperature chamber 11A and the low temperature chamber 11B at predetermined intervals. The thermoelectric conversion module 13 is electrically connected in series, for example, in the longitudinal direction of the chamber by the wiring 14.
図23は、1つの熱電変換モジュール13の詳細な断面形状を示す図である。熱電変換モジュール13は、例えば一辺が1mm以上の直方体ないし立方体形状をしたP型半導体素子(熱電変換材料)22aとN型半導体素子(熱電変換材料)22bとが、第1の電極(導電体)20aもしくは第2の電極(導電体)20bを介して直列に接続された構造を有する。第1の電極20aは第1の絶縁板(アルミナ等)21aで覆われており、第2の電極20bは第2の絶縁板(アルミナ等)21bで覆われている。熱電変換モジュールの材料として、例えばBiTe系もしくはFe2VAl系のホイスラー合金が使用される。熱電変換材料間の接合や熱電変換材料と絶縁板との接合には、例えばはんだ材が使用される。また、直列接続構造の両端部にある2つの電極には、図示しない配線もしくはリード線を接続するための電極取出し口23a,23bが設けられている。このような構成において、熱電変換モジュール13の第1の絶縁板21aの表面が熱源からの熱により高温となり、第2の絶縁板21bの表面が配管11bを流れる媒体などにより低温になると、熱電変換モジュール13の両面において温度差を生じ、双方の流体が熱交換する過程で半導体素子群21,22において熱電変換が起こり、発電が行なわれるようになっている。 FIG. 23 is a diagram showing a detailed cross-sectional shape of one thermoelectric conversion module 13. The thermoelectric conversion module 13 includes a P-type semiconductor element (thermoelectric conversion material) 22a and an N-type semiconductor element (thermoelectric conversion material) 22b having a rectangular parallelepiped or cubic shape with sides of 1 mm or more, for example, as a first electrode (conductor). It has the structure connected in series via 20a or the 2nd electrode (conductor) 20b. The first electrode 20a is covered with a first insulating plate (alumina or the like) 21a, and the second electrode 20b is covered with a second insulating plate (alumina or the like) 21b. As a material of the thermoelectric conversion module, for example, a BiTe-based or Fe2VAl-based Heusler alloy is used. For example, a solder material is used for joining between the thermoelectric conversion materials and joining the thermoelectric conversion material and the insulating plate. Further, two electrodes at both ends of the series connection structure are provided with electrode outlets 23a and 23b for connecting wirings or lead wires (not shown). In such a configuration, when the surface of the first insulating plate 21a of the thermoelectric conversion module 13 becomes high temperature due to heat from the heat source and the surface of the second insulating plate 21b becomes low temperature due to a medium flowing through the pipe 11b, the thermoelectric conversion is performed. A temperature difference is generated on both surfaces of the module 13, and thermoelectric conversion occurs in the semiconductor element groups 21 and 22 in the process of heat exchange between both fluids, thereby generating power.
高温チャンバ11A及び低温チャンバ11Bは図24のように配置され、後述する複数の締め付け用治具50(図24には図示せず)が取り付けられている。当該締め付け用治具50によって、高温チャンバ11Aと低温チャンバ11Bとが熱電変換モジュール13を両側から圧接し、密着状態が保たれる。図24に示すように高熱伝導性材料15を挟み込むことにより、熱電変換モジュール13とチャンバ11A、11Bとの密着性を高めて、接触熱抵抗を低減させることもできる。高温チャンバ11A及び低温チャンバ11Bは、例えば、炭素鋼、ステンレス、チタン、銅、アルミなどの金属から成る。一般的な熱流体は、高温熱流体としてはお湯、低温熱流体としては水であるが、これに限られるものではない。 The high temperature chamber 11A and the low temperature chamber 11B are arranged as shown in FIG. 24, and a plurality of fastening jigs 50 (not shown in FIG. 24) to be described later are attached. The high temperature chamber 11 </ b> A and the low temperature chamber 11 </ b> B press the thermoelectric conversion module 13 from both sides by the tightening jig 50, and the close contact state is maintained. As shown in FIG. 24, by interposing the high thermal conductivity material 15, the adhesion between the thermoelectric conversion module 13 and the chambers 11 </ b> A and 11 </ b> B can be improved, and the contact thermal resistance can be reduced. The high temperature chamber 11A and the low temperature chamber 11B are made of a metal such as carbon steel, stainless steel, titanium, copper, or aluminum, for example. A general thermal fluid is hot water as a high-temperature thermal fluid and water as a low-temperature thermal fluid, but is not limited thereto.
次に図25〜図27を参照して、熱電変換装置1の詳細な構成について説明する。図25は熱電発電装置1の全体構成を示す斜視図である。また、図26は熱電発電装置1を熱流体の流れ方向に垂直な方向から水平に見た時の構成を示す図である。図27は熱電発電装置1を上側から見た時の構成を示す図である。なお、各図においては、図面を見易いものとするため、幾つかの要素(配線など)の図示を省略している部分がある。熱電発電装置1は、前述した高温チャンバ11A、低温チャンバ11B、熱電変換モジュール収納部(スロット)12、熱電変換モジュール13、配線14を備えるほか、シャーシ10、高温供給用配管31A、低温供給用配管31B、高温供給用ヘッダ32A、低温供給用ヘッダ32B、高温供給用配管接合部33A、低温供給用配管接合部33B、高温供給用ヘッダ接合部34A、低温供給用ヘッダ接合部34B、高温供給用配管41A、低温排出用配管41B、高温排出用ヘッダ42A、低温排出用ヘッダ42B、高温排出用配管整合部43A、低温排出用配管接合部43B、高温排出用ヘッダ接合部44A、低温排出用ヘッダ接合部44B、締め付け用治具50などを備えている。そのほか、図示はされていないが、各チャンバにはチャンバ内に滞留する空気を抜くための空気抜き弁や、装置停止時にチャンバ内の液体や混入した不要物を抜くためのドレン弁などが備えられている。図25〜図27の例では、高温チャンバ11A、低温チャンバ11Bはそれぞれ4個で、チャンバ11は計9個である。また隣接するチャンバ1組が挟んでいる熱電モジュール13は、チャンバ1組に対して、チャンバ長手方向に17個、上下方向に2個で合計34個である。各部品の詳細な説明は、特許文献1の「発明を実施するための形態」の欄に記述されている。 Next, with reference to FIGS. 25-27, the detailed structure of the thermoelectric conversion apparatus 1 is demonstrated. FIG. 25 is a perspective view showing the overall configuration of the thermoelectric generator 1. Moreover, FIG. 26 is a figure which shows a structure when the thermoelectric generator 1 is seen horizontally from the direction perpendicular | vertical to the flow direction of a thermal fluid. FIG. 27 is a diagram showing a configuration when the thermoelectric generator 1 is viewed from above. In each drawing, some elements (such as wiring) are not shown in order to make the drawing easy to see. The thermoelectric generator 1 includes the above-described high temperature chamber 11A, low temperature chamber 11B, thermoelectric conversion module housing (slot) 12, thermoelectric conversion module 13, and wiring 14, as well as the chassis 10, the high temperature supply pipe 31A, and the low temperature supply pipe. 31B, high temperature supply header 32A, low temperature supply header 32B, high temperature supply pipe joint 33A, low temperature supply pipe joint 33B, high temperature supply header joint 34A, low temperature supply header joint 34B, high temperature supply pipe 41A, low temperature discharge pipe 41B, high temperature discharge header 42A, low temperature discharge header 42B, high temperature discharge pipe alignment section 43A, low temperature discharge pipe joint section 43B, high temperature discharge header joint section 44A, low temperature discharge header joint section 44B, a fastening jig 50, and the like. In addition, although not shown in the drawings, each chamber is provided with an air vent valve for extracting air staying in the chamber, a drain valve for extracting liquid in the chamber and unnecessary unnecessary substances when the apparatus is stopped, and the like. Yes. In the example of FIGS. 25 to 27, there are four high temperature chambers 11A and four low temperature chambers 11B, and a total of nine chambers 11. The number of thermoelectric modules 13 sandwiched between one set of adjacent chambers is 17 in the chamber longitudinal direction and 2 in the vertical direction, for a total of 34 sets. A detailed description of each component is described in the column “Mode for Carrying Out the Invention” of Patent Document 1.
さて、締め付け用治具50によって、高温チャンバ11Aと低温チャンバ11Bとが熱電変換モジュール13を両側から圧接し、密着状態が保たれ、接触熱抵抗が低減され伝熱量が増える。締め付け用治具50は、隣接する2つのチャンバの熱電変換モジュール13に対する締め付け圧を調節可能にする物であり、金具51のほか、金具51同士を引き寄せて締め付けるためのネジ機構、即ちボルト52、53、バネ54や、ナット、座金などを用いて実現される。金具51は、各チャンバの上面と下面の双方に、チャンバ長手方向に一定の間隔をおいて、溶接等により複数取り付けられる。この金具51は、3つの開口部を有する。ボルト52は、9個のチャンバのチャンバ長手方向の位置ずれを補正するものであり、チャンバ幅方向に配列される9個の金具51の中央に位置する開口部の全てに通される。ボルト53やバネ54は、隣接する2つのチャンバの間の熱電変換モジュール13を適度な締め付け圧で締め付けるとともに、当該熱電変換モジュール13に対する締め付け圧を調節可能とするものである。ボルト53は、隣接する2つのチャンバの各金具51の両端に位置する2つの開口部の内の一方の開口部を通され、さらにバネ54に通される。 Now, the high temperature chamber 11A and the low temperature chamber 11B are pressed against the thermoelectric conversion module 13 from both sides by the tightening jig 50, and the contact state is maintained, the contact thermal resistance is reduced, and the amount of heat transfer is increased. The fastening jig 50 is a member that can adjust the fastening pressure to the thermoelectric conversion modules 13 of two adjacent chambers. In addition to the metal fitting 51, a screw mechanism for pulling the metal fittings 51 together to tighten them, that is, a bolt 52, 53, a spring 54, a nut, a washer, and the like. A plurality of metal fittings 51 are attached to both the upper surface and the lower surface of each chamber by welding or the like at regular intervals in the chamber longitudinal direction. The metal fitting 51 has three openings. The bolt 52 corrects the positional deviation of the nine chambers in the chamber longitudinal direction, and is passed through all the openings located at the center of the nine metal fittings 51 arranged in the chamber width direction. The bolts 53 and the springs 54 tighten the thermoelectric conversion module 13 between the two adjacent chambers with an appropriate tightening pressure, and can adjust the tightening pressure for the thermoelectric conversion module 13. The bolt 53 is passed through one of the two openings located at both ends of the metal fittings 51 of the two adjacent chambers, and is further passed through the spring 54.
前述の熱電発電装置1には以下のような課題がある。 The aforementioned thermoelectric generator 1 has the following problems.
熱電変換モジュール13とチャンバ11とを密着させようとする締め付け圧は、チャンバ長手方向にばらつきが生じ、締め付け治具50の近くでは大きく、締め付け治具50と隣の締め付け治具50との中間位置では小さくなる。締め付け圧がある程度の値に達するまでは、締め付け圧が大きいほど、接触熱抵抗は小さくなる。それにより、熱電変換モジュール13の内、高温チャンバ11Aに接している面はより高温になり、低温チャンバ11Bに接している面はより低温になるため、両面の温度差はより大きくなり発電量は増加する。よって、締め付け圧にばらつきがあると、発電量にもばらつきが生じる。図25〜図27では、熱電変換モジュール13を挟んで隣接する1組のチャンバ11について、締め付け箇所はチャンバ長手方向に4箇所であり、チャンバ長手方向に17個である熱電変換モジュール13の発電量にばらつきが生じる。なお図25〜図27における締め付け箇所はチャンバ上下方向に2箇所であるが、隣接するチャンバ1組が挟んでいる熱電変換モジュール13は、チャンバ1組について上下方向に2個なので、上下に並ぶ熱電変換モジュール13の締め付け圧は等しくなり発電量のばらつきはない。ただし、チャンバ1組に対して上下方向に例えば3個あれば、上下方向に3個である熱電変換モジュール13についても発電量にばらつきが生じる。 The clamping pressure for bringing the thermoelectric conversion module 13 and the chamber 11 into close contact with each other varies in the longitudinal direction of the chamber, is large near the clamping jig 50, and is an intermediate position between the clamping jig 50 and the adjacent clamping jig 50. Then it gets smaller. Until the clamping pressure reaches a certain value, the higher the clamping pressure, the smaller the contact thermal resistance. As a result, the surface of the thermoelectric conversion module 13 that is in contact with the high temperature chamber 11A is hotter, and the surface of the thermoelectric conversion module 13 that is in contact with the low temperature chamber 11B is lower in temperature. To increase. Therefore, if the tightening pressure varies, the power generation amount also varies. In FIG. 25 to FIG. 27, with respect to a pair of chambers 11 that are adjacent to each other with the thermoelectric conversion module 13 interposed therebetween, there are four tightening locations in the chamber longitudinal direction, and 17 power generation amounts of the thermoelectric conversion module 13 in the chamber longitudinal direction. Variation occurs. 25 to 27, there are two tightening points in the vertical direction of the chamber, but since there are two thermoelectric conversion modules 13 in the vertical direction for one set of adjacent chambers, the thermoelectric elements arranged in the vertical direction are arranged. The tightening pressure of the conversion module 13 is equal and there is no variation in the amount of power generation. However, if there are, for example, three in the vertical direction with respect to one set of chambers, the amount of power generation also varies for the three thermoelectric conversion modules 13 in the vertical direction.
熱電変換モジュール13は図28のように電流の増大に対して電圧が直線的に低下するという特性を持つので、電流と電圧の積である電力出力は、電流に対して上に凸の放物線になるため、適当な電流値において、取り出せる電力出力は最大値になる。ここでは、熱電変換モジュール13における両端温度差の大きい条件と、小さい条件の2つの場合を示しているが、両端温度差大での電流電圧特性38における電流値I1の時、両端温度差大での電流電力特性40における電力は最大になる。この時、電圧値はV1であり電力値はV1×I1である。また、両端温度差小での電流電圧特性39における電流値I2の時、両端温度差小での電流電力特性45における電力は最大になる。この時、電圧値はV2であり電力値はV2×I2である。両端温度差が大きいほど、同一電流値に対する電圧が大きく電力出力も大きく、また取り出せる最大電力出力も大きい。仮に1個のみで発電するとなると最大発電量、即ち取り出すことのできる最大電力負荷の時は、電流は前記電流値になるのだが、熱電変換モジュール13を直列に配線接続した場合、どの熱電変換モジュール13にも同じ値の電流が流れる。熱電変換モジュール13にばらつきがある場合、モジュール別に前記電流値が異なるので、直列接続時に流れる電流値からずれる。例えば図28におけるI1,I2からずれる。そのため、各々の熱電変換モジュール13にて最大電力出力が実現できない。このようにばらつきのある熱電変換モジュール13が複数ある場合に取り出せる最大電力出力値は、熱電変換モジュール13それぞれが実現できる最大電力出力の合計値よりも小さくなり、直列に配線接続した熱電変換モジュール13の合計の発電量は、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。 Since the thermoelectric conversion module 13 has a characteristic that the voltage decreases linearly as the current increases as shown in FIG. 28, the power output that is the product of the current and the voltage is a parabola that is convex upward with respect to the current. Therefore, at an appropriate current value, the power output that can be extracted becomes the maximum value. Here, two cases of a condition where the temperature difference at both ends in the thermoelectric conversion module 13 is large and a condition where the temperature difference is small are shown, but when the current value I1 in the current-voltage characteristic 38 is large at both ends, the temperature difference at both ends is large. The power in the current-power characteristic 40 of the current becomes the maximum. At this time, the voltage value is V1 and the power value is V1 × I1. Further, when the current value I2 in the current-voltage characteristic 39 when the temperature difference between both ends is small, the power in the current-power characteristic 45 when the temperature difference between both ends is small becomes maximum. At this time, the voltage value is V2 and the power value is V2 × I2. The greater the temperature difference at both ends, the greater the voltage for the same current value, the greater the power output, and the greater the maximum power output that can be extracted. If only one unit generates power, the maximum power generation amount, that is, the maximum power load that can be taken out, the current will be the current value, but when the thermoelectric conversion module 13 is connected in series, which thermoelectric conversion module 13 also has the same current. When the thermoelectric conversion module 13 has variations, the current value differs from module to module, and thus deviates from the current value that flows during serial connection. For example, it deviates from I1 and I2 in FIG. Therefore, the maximum power output cannot be realized in each thermoelectric conversion module 13. Thus, when there are a plurality of thermoelectric conversion modules 13 having variations, the maximum power output value that can be taken out is smaller than the total value of the maximum power outputs that can be realized by each thermoelectric conversion module 13, and the thermoelectric conversion modules 13 that are wired in series are connected. The total power generation amount is sufficiently smaller than the simple total value of the power generation capacity of the thermoelectric conversion module 13.
また、図28の横軸と縦軸を入れ替えて図29にように表示すると熱電変換モジュール13は電圧の増大に対して電流が直線的に低下し、電流と電圧の積である電力出力は、電流に対して上に凸の放物線になるため、適当な電圧値において、取り出せる電力出力は最大値になる。ここでは、熱電変換モジュール13における両端温度差の大きい条件と、小さい条件の2つの場合を示しているが、両端温度差大での電流電圧特性38における電圧値V1の時、両端温度差大での電圧電力特性46は最大になる。この時、電流値はI1であり電力値はV1×I1である。また、両端温度差小での電流電圧特性39における電流値V2の時、両端温度差小での電圧電力特性47は最大になる。この時、電流値はI2であり電力値はV2×I2である。温度差が大きいほど、同一電圧値に対する電流が大きく電力出力も大きく、また取り出せる最大電力出力も大きい。仮に1個のみで発電するとなると最大発電量、即ち取り出すことのできる最大電力負荷の時は、電圧は前記電圧値になるのだが、熱電変換モジュール13を並列に配線接続した場合、どの熱電変換モジュール13でも同じ値の電圧になる。熱電変換モジュール13にばらつきがある場合、モジュール別に前記電圧値が異なるので、並列接続時にかかる電圧値からずれる。例えば図29におけるV1,V2からずれる。そのため、各々の熱電変換モジュール13にて最大電力出力が実現できない。このようにばらつきのある熱電変換モジュール13が複数ある場合に取り出せる最大電力出力値は、熱電変換モジュール13それぞれが実現できる最大電力出力の合計値よりも小さくなり、並列に配線接続した熱電変換モジュール13の合計の発電量は、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。 In addition, when the horizontal axis and the vertical axis in FIG. 28 are interchanged and displayed as shown in FIG. 29, the thermoelectric conversion module 13 has a current that decreases linearly as the voltage increases, and the power output that is the product of the current and voltage is Since it is a parabola convex upward with respect to the current, the power output that can be taken out becomes a maximum value at an appropriate voltage value. Here, two cases of a condition where the temperature difference at both ends in the thermoelectric conversion module 13 is large and a condition where the temperature difference is small are shown. When the voltage value V1 in the current-voltage characteristic 38 is large at both ends, the temperature difference at both ends is large. The voltage-power characteristic 46 of the maximum is maximum. At this time, the current value is I1 and the power value is V1 × I1. Further, when the current value V2 in the current-voltage characteristic 39 when the temperature difference between both ends is small, the voltage power characteristic 47 when the temperature difference between both ends is small becomes maximum. At this time, the current value is I2, and the power value is V2 × I2. The greater the temperature difference, the greater the current for the same voltage value, the greater the power output, and the greater the maximum power output that can be extracted. If only one unit generates power, the maximum power generation amount, that is, the maximum power load that can be taken out, the voltage will be the voltage value, but when the thermoelectric conversion module 13 is wired in parallel, which thermoelectric conversion module 13 also has the same value of voltage. When the thermoelectric conversion module 13 has variations, the voltage value differs from module to module, and thus deviates from the voltage value applied in parallel connection. For example, it deviates from V1 and V2 in FIG. Therefore, the maximum power output cannot be realized in each thermoelectric conversion module 13. In this way, the maximum power output value that can be taken out when there are a plurality of thermoelectric conversion modules 13 with variations is smaller than the total value of the maximum power outputs that can be realized by each of the thermoelectric conversion modules 13, and the thermoelectric conversion modules 13 that are wired in parallel are connected. The total power generation amount is sufficiently smaller than the simple total value of the power generation capacity of the thermoelectric conversion module 13.
そこで、電気配線が直列並列どちらの場合であっても、全ての熱電変換モジュール13において締め付け圧を均等に強くしたいが、締め付け用治具50を大量に設けることになる上、仮に上下方向に3個以上並べるとなるとこの3個を均等にすることはできない。 Therefore, it is desired to increase the tightening pressure evenly in all thermoelectric conversion modules 13 regardless of whether the electrical wiring is in series or in parallel. However, a large amount of tightening jigs 50 are provided, and temporarily 3 in the vertical direction. If three or more are arranged, these three cannot be made equal.
熱電変換モジュール13の締め付け圧のムラ以外の原因でも、熱電変換モジュール13の両端温度差にムラが発生することがある。例えば、高温熱流体または低温熱流体の流れが偏流だった時や、高温熱流体や低温熱流体が土砂や気体を含む水であれば、そのために、チャンバ11の底部に土砂が堆積したり、チャンバ11の天井部に気体が滞留した時などである。この場合も締め付け圧のムラがある場合と同様の課題が起きる。 Even for causes other than unevenness in the tightening pressure of the thermoelectric conversion module 13, unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 may occur. For example, when the flow of the high-temperature heat fluid or the low-temperature heat fluid is uneven, or when the high-temperature heat fluid or the low-temperature heat fluid is water containing earth or sand or gas, sediment is deposited on the bottom of the chamber 11, For example, when the gas stays in the ceiling of the chamber 11. In this case, the same problem as in the case where there is uneven tightening pressure occurs.
また、熱電変換モジュール13の各々の発電性能に、製造上の原因などによって充分にバラツキがある場合がある。発電性能の低い熱電変換モジュール13では、同じ両端温度差という条件下にて、同じ電流値においては電圧値が小さくて発電能力が小さくなり、また、同じ電圧値においては電流値が小さくて発電能力が小さくなる。発電性能の高い熱電変換モジュール13と発電性能の低い熱電変換モジュール13の差が充分にある時は、両者の関係は、締め付け圧の大きい熱電変換モジュール13と締め付け圧の小さい熱電変換モジュール13との関係と同じである。よって、この場合も、締め付け圧のムラがある場合と同様の課題が起きる。 In addition, the power generation performance of each of the thermoelectric conversion modules 13 may vary sufficiently due to manufacturing reasons. In the thermoelectric conversion module 13 with low power generation performance, under the same temperature difference at both ends, the voltage value is small and the power generation capacity is small at the same current value, and the current value is small and the power generation capacity at the same voltage value. Becomes smaller. When there is a sufficient difference between the thermoelectric conversion module 13 with high power generation performance and the thermoelectric conversion module 13 with low power generation performance, the relationship between the thermoelectric conversion module 13 with a large clamping pressure and the thermoelectric conversion module 13 with a small clamping pressure is Same as relationship. Therefore, also in this case, the same problem as in the case where there is uneven tightening pressure occurs.
なお、熱電発電装置1においては、熱電変換モジュール13は、互いに温度が異なる流体を流す高温チャンバ11Aと低温チャンバ11Bとで挟まれている構成に限らない。温熱源と冷熱源により熱電変換モジュール13に両端温度差を生じさせる構成であればよく、どのような形態であっても同様の課題が起きる。 In the thermoelectric generator 1, the thermoelectric conversion module 13 is not limited to the configuration sandwiched between the high temperature chamber 11A and the low temperature chamber 11B through which fluids having different temperatures flow. Any configuration that causes a temperature difference between both ends of the thermoelectric conversion module 13 by the heat source and the cold source may be used, and the same problem occurs in any form.
本発明は上記実情に鑑みてなされたものであり、熱電変換モジュールの締め付け圧にムラがある条件下などにて、できるだけ多くの発電量を発生させることが可能な熱電発電装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a thermoelectric power generator capable of generating as much power generation as possible under conditions such as uneven clamping pressure of a thermoelectric conversion module. Objective.
一実施形態による熱電発電装置は、両面の温度差により発電する3個以上の熱電変換モジュールと、温熱源と冷熱源により前記熱電変換モジュールの両面に温度差を生じさせる構成を具備する熱電変換装置において、熱電変換モジュールがそれぞれ単独で発生する電流値の大小に応じてその大きさ別に各熱電変換モジュールを分類し、同じ分類に属する熱電変換モジュール同士を直列に接続して直列接続部分を構成するように電気的に配線したことを特徴とする。 A thermoelectric power generation device according to an embodiment includes three or more thermoelectric conversion modules that generate power based on a temperature difference between both surfaces, and a configuration in which a temperature difference is generated on both surfaces of the thermoelectric conversion module by a heat source and a cold heat source. , Each thermoelectric conversion module is classified according to the magnitude of the current value generated independently by each thermoelectric conversion module, and the thermoelectric conversion modules belonging to the same classification are connected in series to form a serial connection portion. It is characterized by being electrically wired as described above.
本発明によれば、熱電変換モジュールの締め付け圧にムラがある条件下などにて、できるだけ多くの発電量を発生させることができる。 According to the present invention, it is possible to generate as much power generation as possible under conditions where the clamping pressure of the thermoelectric conversion module is uneven.
以下、図面を参照して、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
<第1の実施形態> (請求項1に対応)
第1の実施形態を、図1〜図5を用いて説明する。ここでは、従来技術と同じ要素には同じ符号を付し、重複する説明を省略する。以下、従来技術と異なる部分のみ説明する。
First Embodiment (Corresponding to Claim 1)
A first embodiment will be described with reference to FIGS. Here, the same elements as those in the prior art are denoted by the same reference numerals, and redundant description is omitted. Only the parts different from the prior art will be described below.
図1は第1の実施形態の熱電発電装置1における熱電変換モジュール13の位置を示す説明図である。なお、図1は、後述する第2〜第7の実施形態においても使用する。図1のように高温チャンバ11Aの両側に1個ずつ低温チャンバ11Bを配置し、高温チャンバ11Aと低温チャンバ11Bとの間に熱電変換モジュール13を挟む構成を例とする。図2,図3それぞれにチャンバ11側面における熱電変換モジュール13の配置と、チャンバ上側から見た熱電変換モジュール13の様子を示す。このように熱電変換モジュール13をチャンバ長手方向に4個で、上下方向には1個とすると、挟み込みが2箇所ならば合計8個となる。この8個の熱電変換モジュール13を区別するために、図1のようにチャンバ11による挟み込み位置8をA,Bと表記し、チャンバ長手方向の位置7を位置1,2,・・・と表記するという規則を設定して、8個の熱電変換モジュール13をA1〜A4,B1〜B4というように表記する。熱電変換モジュール13のチャンバ長手方向位置に関する締め付け位置9が図2,図3に示す3箇所であるとする。図2では、第1のチャンバ16の上側から下側へ圧力がかけられているかのような図示になっているが、図3のように熱電変換モジュール13の伝熱面(図2では正方形)に垂直な方向(紙面に垂直な方向)に締め付け圧力がかかる。 Drawing 1 is an explanatory view showing the position of thermoelectric conversion module 13 in thermoelectric power generator 1 of a 1st embodiment. FIG. 1 is also used in second to seventh embodiments described later. As an example, FIG. 1 shows a configuration in which one low temperature chamber 11B is arranged on each side of the high temperature chamber 11A, and the thermoelectric conversion module 13 is sandwiched between the high temperature chamber 11A and the low temperature chamber 11B. 2 and 3 show the arrangement of the thermoelectric conversion module 13 on the side surface of the chamber 11 and the state of the thermoelectric conversion module 13 as viewed from above the chamber. As described above, assuming that four thermoelectric conversion modules 13 are provided in the longitudinal direction of the chamber and one is provided in the vertical direction, the total number of the thermoelectric conversion modules 13 is eight if there are two sandwiches. In order to distinguish the eight thermoelectric conversion modules 13, the sandwiching position 8 by the chamber 11 is denoted as A and B, and the position 7 in the chamber longitudinal direction is denoted as positions 1, 2,. The eight thermoelectric conversion modules 13 are expressed as A1 to A4 and B1 to B4. Assume that the fastening positions 9 relating to the longitudinal position of the thermoelectric conversion module 13 are the three places shown in FIGS. In FIG. 2, the pressure is shown as if pressure is applied from the upper side to the lower side of the first chamber 16, but the heat transfer surface of the thermoelectric conversion module 13 (square in FIG. 2) as shown in FIG. 3. Tightening pressure is applied in a direction perpendicular to the direction (direction perpendicular to the paper surface).
さて、従来の電気配線は、構成上、最も接続しやすいので図4のようにA1〜A4、B1〜B4それぞれを直列に接続することが多い。A1〜A4,B1〜B4のように表記している記号は熱電変換モジュール13に相当し、記号間を結ぶ線は電気の配線14に相当する。図4ではA1〜A4を第1の電力負荷19に接続し、B1〜B4を第2の電力負荷24に接続している。 Now, since conventional electrical wiring is most easily connected due to its configuration, A1 to A4 and B1 to B4 are often connected in series as shown in FIG. Symbols expressed as A1 to A4 and B1 to B4 correspond to the thermoelectric conversion module 13, and a line connecting the symbols corresponds to the electrical wiring 14. In FIG. 4, A 1 to A 4 are connected to the first power load 19, and B 1 to B 4 are connected to the second power load 24.
ここで、図2,図3の締め付け位置9によると締め付け圧力はA1、B1、A4、B4の4個にて同じぐらいであり、またA2、B2、A3、B3の4個にて同じぐらいである。そして、A1、B1、A4、B4の4個における締め付け圧力は、熱電変換モジュール13からずれた場所にて締め付けているA2、B2、A3、B3の4個における締め付け圧力より大きくなる。そのため、熱電変換モジュール13の伝熱面と第1のチャンバ16側面との接触熱抵抗に差が発生し、A1、B1、A4、B4の4個における熱電変換モジュール13の両端温度差は、第1のチャンバ16側面により強く接触しているA2、B2、A3、B3の4個における両端温度差より大きくなる。それでいながら直列に配線接続したA1〜A4を流れる電流は同じ電流値になるので、[発明が解決しようとする課題]にて説明したように各々の熱電変換モジュール13にて、取り出せる最大電力出力が実現できず、合計の最大電力出力値は、熱電変換モジュール13それぞれの最大電力出力の合計値よりも小さい。B1〜B4も同様である。そのため、直列に配線接続したA1〜A4の合計発電量と、B1〜B4の合計発電量それぞれは、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。当然、A1〜A4,B1〜B4の8個の合計電力出力も、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。 Here, according to the tightening position 9 in FIGS. 2 and 3, the tightening pressure is the same for the four A1, B1, A4, and B4, and the same for the four A2, B2, A3, and B3. is there. Then, the tightening pressures at the four points A1, B1, A4, and B4 are larger than the tightening pressures at the four points A2, B2, A3, and B3 that are tightened at a location shifted from the thermoelectric conversion module 13. Therefore, a difference occurs in the contact thermal resistance between the heat transfer surface of the thermoelectric conversion module 13 and the side surface of the first chamber 16, and the temperature difference between both ends of the thermoelectric conversion module 13 in four of A1, B1, A4, and B4 is the first. It becomes larger than the temperature difference between both ends of four of A2, B2, A3, and B3 that are in closer contact with the side surface of one chamber 16. Nevertheless, since the currents flowing through A1 to A4 connected in series are the same, the maximum power output that can be taken out by each thermoelectric conversion module 13 as described in [Problems to be Solved by the Invention] Cannot be realized, and the total maximum power output value is smaller than the total value of the maximum power outputs of the thermoelectric conversion modules 13. The same applies to B1 to B4. Therefore, the total power generation amount of A1 to A4 connected in series and the total power generation amount of B1 to B4 are sufficiently smaller than the simple total value of the power generation capability of the thermoelectric conversion module 13. Naturally, the total power output of eight of A1 to A4 and B1 to B4 is also sufficiently smaller than the simple total value of the power generation capacity of the thermoelectric conversion module 13.
上述に対して、第1の実施形態では図5のように配線接続する。即ち、両端温度差がほぼ同じである熱電変換モジュール13であるA1、B1、B4、A4を直列に配線接続した後、第1の電力負荷19に接続し、また別に両端温度差がほぼ同じである熱電変換モジュール13であるB2、A2、A3、B3を直列に配線接続した後、第2の電力負荷24に接続する。 In contrast to the above, in the first embodiment, wiring connection is made as shown in FIG. That is, A1, B1, B4, and A4, which are thermoelectric conversion modules 13 having substantially the same temperature difference at both ends, are connected in series and then connected to the first power load 19, and the temperature differences at both ends are substantially the same. B2, A2, A3, and B3, which are certain thermoelectric conversion modules 13, are connected in series and then connected to the second power load 24.
このように接続すると、A1、B1、B4、A4は両端温度差が同じなので、最大電力出力を実現する電流値が同じなのだが、直列接続している4個は同じ電流値になるので、A1、B1、B4、A4の4個とも最大電力出力を実現する電流値となる。各々の熱電変換モジュール13の電圧値は、最大電力出力を実現する電圧値であり、4個合わせた電圧値は、最大電力出力を実現する電流値における電圧値の4倍となる。4個の合計電力出力は、4個における現状の両端温度差における最大値が実現できる。同様にB2、A2、A3、B3は両端温度差が同じなので、その両端温度差においての最大電力出力を実現する電流値が同じなのだが、直列接続している4個は同じ電流値になるので、B2、A2、A3、B3の4個ともその両端温度差においての最大電力出力を実現する電流値となり、この4個においても合計電力出力はこの4個における現状の両端温度差における最大値が実現できる。当然、A1〜A4,B1〜B4の8個が取り出せる合計電力出力も最大になる。 When connected in this way, A1, B1, B4, and A4 have the same temperature difference at both ends, so the current values that achieve the maximum power output are the same, but the four connected in series have the same current value. , B1, B4, and A4 all have current values that achieve the maximum power output. The voltage value of each thermoelectric conversion module 13 is a voltage value that realizes the maximum power output, and the combined voltage value is four times the voltage value in the current value that realizes the maximum power output. The four total power outputs can realize the maximum value of the current temperature difference between the two ends. Similarly, since B2, A2, A3, and B3 have the same temperature difference at both ends, the current values that realize the maximum power output at the temperature difference at both ends are the same, but the four connected in series have the same current value. , B2, A2, A3, and B3 all have current values that realize the maximum power output at the temperature difference between both ends, and the total power output of these four is also the maximum value at the current temperature difference at both ends of the four. realizable. Naturally, the total power output from which eight of A1 to A4 and B1 to B4 can be extracted is also maximized.
仮にA1〜A4,B1〜B4の8個が図28に該当するとしたならば、A1、B1、A4、B4の4個の特性は、両端温度差大での電流電圧特性38と両端温度差大での電流電力特性40であり、A2、B2、A3、B3の4個の特性は、両端温度差小での電流電圧特性39と両端温度差小での電流電力特性45である。そして第1の実施形態では、A1、B1、A4、B4の電流と電圧はそれぞれI1、V1となり、A2、B2、A3、B3の電流と電圧はそれぞれI2、V2となることができるので、8個各々が、取り出せる最大電力を実現できる。合計値は4×(V1×I1+V2×I2)である。 If eight of A1 to A4 and B1 to B4 correspond to FIG. 28, the four characteristics of A1, B1, A4, and B4 have a current-voltage characteristic 38 with a large temperature difference at both ends and a large temperature difference between both ends. The four characteristics A2, B2, A3, and B3 are a current-voltage characteristic 39 with a small temperature difference at both ends and a current-power characteristic 45 with a small temperature difference at both ends. In the first embodiment, the currents and voltages of A1, B1, A4, and B4 can be I1 and V1, respectively, and the currents and voltages of A2, B2, A3, and B3 can be I2 and V2, respectively. Each can achieve the maximum power that can be extracted. The total value is 4 × (V1 × I1 + V2 × I2).
このように第1の実施形態によれば、図5のように配線接続することにより、第1の電力負荷19、第2の電力負荷24どちらも、取り出せる電力は最大になる。 As described above, according to the first embodiment, the power that can be taken out by both the first power load 19 and the second power load 24 is maximized by wiring connection as shown in FIG.
なお、上述した例は、熱電変換モジュール13の配置や締め付け圧力分布についての一例にすぎず、配線接続のし方は上述した例に限らない。即ち、熱電変換モジュール13各々が置かれている条件下にて、各々が単独で発生する電流値の大小に応じてその大きさ別に各熱電変換モジュール13を分類し、同じ分類に属する熱電変換モジュール13同士(即ち、電流値の近い熱電変換モジュール13同士)を直列に接続して直列接続部分を構成するように電気的に配線するということである。 In addition, the example mentioned above is only an example about arrangement | positioning of the thermoelectric conversion module 13, and fastening pressure distribution, and how to perform wiring connection is not restricted to the example mentioned above. That is, under the condition in which each thermoelectric conversion module 13 is placed, each thermoelectric conversion module 13 is classified according to the magnitude of the current value generated individually, and the thermoelectric conversion modules belonging to the same classification 13 (that is, thermoelectric conversion modules 13 having current values close to each other) are connected in series and electrically wired so as to form a serial connection portion.
また、熱電変換モジュール13の締め付け圧のムラ以外の原因で熱電変換モジュール13の両端温度差にムラが発生する場合や、熱電変換モジュール13各々の発電性能に、充分にバラツキがある場合に、この技術を適用しても、熱電変換モジュール13の締め付け圧のムラがある場合と同様の効果がある。 In addition, when there is unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 due to reasons other than uneven tightening pressure of the thermoelectric conversion module 13, or when the power generation performance of each thermoelectric conversion module 13 varies sufficiently, this Even if the technology is applied, the same effect as that in the case where the clamping pressure of the thermoelectric conversion module 13 is uneven is obtained.
<第2の実施形態> (請求項1に対応)
第2の実施形態を、図1,図6〜図8を用いて説明する。ここでは、従来技術及び第1の実施形態と共通する要素には同一の符号を付し、重複する説明を省略する。
Second Embodiment (Corresponding to Claim 1)
A second embodiment will be described with reference to FIGS. 1 and 6 to 8. Here, the same reference numerals are given to elements common to the prior art and the first embodiment, and a duplicate description is omitted.
図6にチャンバ11側面における熱電変換モジュール13の配置を示す。このように熱電変換モジュール13をチャンバ長手方向に8個で、上下方向に2個とすると、挟み込みが2箇所なので合計32個となる。この32個の熱電変換モジュール13を区別するために、図1のようにチャンバ挟み込み位置をA,Bとし、チャンバ長手方向の位置を1,2,・・・という規則に加えて、チャンバ挟み込み位置を示すアルファベットをチャンバ上下方向について上なら大文字、下なら小文字として表記する。熱電変換モジュール13のチャンバ長手方向位置に関する締め付け位置9が図6の4箇所であるとする。図6では、第2のチャンバ17の上側から下側へ圧力がかけられているかのような図示になっているが、第1の実施形態と同様に熱電変換モジュール13の伝熱面(図6では正方形)に垂直な方向(紙面に垂直な方向)に締め付け圧力がかかる。 FIG. 6 shows the arrangement of the thermoelectric conversion module 13 on the side surface of the chamber 11. In this way, if the thermoelectric conversion modules 13 are eight in the chamber longitudinal direction and two in the vertical direction, the number of sandwiches is two, so the total is 32. In order to distinguish the 32 thermoelectric conversion modules 13, in addition to the rule that the chamber sandwiching position is A, B and the chamber longitudinal position is 1, 2,. In the upper and lower direction of the chamber, the alphabet indicating “” is written as an upper case letter, and below the lower case letter as a lower case letter. It is assumed that the tightening positions 9 related to the position in the chamber longitudinal direction of the thermoelectric conversion module 13 are the four positions in FIG. In FIG. 6, the pressure is illustrated as if pressure is applied from the upper side to the lower side of the second chamber 17, but the heat transfer surface of the thermoelectric conversion module 13 (FIG. 6) as in the first embodiment. Tightening pressure is applied in the direction perpendicular to the square.
さて、従来の電気配線は、構成上、最も接続しやすいので図7のようにA1〜A8,a1〜a8,B1〜B8,b1〜b8それぞれを直列に接続することが多い。そして図7では、直列接続したA1〜A8と直接接続したa1〜a8を並列に接続した後、第3の電力負荷25に接続し、同様に、直列接続したB1〜B8と直接接続したb1〜b8を並列に接続した後、第4の電力負荷26に接続している。 Since conventional electric wiring is most easily connected in configuration, A1 to A8, a1 to a8, B1 to B8, and b1 to b8 are often connected in series as shown in FIG. In FIG. 7, a1 to A8 connected in series and a1 to a8 directly connected to each other are connected in parallel, and then connected to the third power load 25. Similarly, b1 to b1 connected directly to B1 to B8 connected in series are connected. After b8 is connected in parallel, it is connected to the fourth power load 26.
ここで、図6の締め付け位置9によると締め付け圧力は、例えば上下に並ぶA1とa1は同じであり、上側に位置してかつ締め付け位置9が熱電変換モジュール13の対称中心線から同じ距離だけずれているA1,A3,A6,A8は同じである。同様に上側に位置している物において、A2とA7は同じでA4とA5は同じだが、この4個は締め付け位置9から充分に離れているのでほぼ同じとして扱ってよい。このように考えると締め付け圧力は、A1,a1,B1,b1,A3,a3,B3,b3,A6,a6,B6,b6,A8,a8,B8,b8の8個にて同じぐらいであり、またA2,a2,B2,b2,A4,a4,B4,b4,A5,a5,B5,b5,A7,a7,B7,b7の8個にて同じぐらいである。そして、A1,a1,B1,b1,A3,a3,B3,b3,A6,a6,B6,b6,A8,a8,B8,b8の8個における締め付け圧力は、熱電変換モジュール13の対称中心線からずれた場所にて締め付けているA2,a2,B2,b2,A4,a4,B4,b4,A5,a5,B5,b5,A7,a7,B7,b7の8個における締め付け圧力より大きくなる。そのため接触熱抵抗に差が発生し、A1,a1,B1,b1,A3,a3,B3,b3,A6,a6,B6,b6,A8,a8,B8,b8の8個における熱電変換モジュール13の両端温度差は、A2,a2,B2,b2,A4,a4,B4,b4,A5,a5,B5,b5,A7,a7,B7,b7の8個における両端温度差より大きくなる。それでいながら直列に配線接続したA1〜A8を流れる電流は同じ電流値になるので、第1の実施形態と同様に直列に配線接続したA1〜A8の合計発電量は、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。またa1〜a8,B1〜B8,b1〜b8においても同様である。熱電変換モジュール13各々の電圧値は、両端温度差によって定められる電流電圧特性において、流れている電流値に対応する電圧値であり、直列する8個の合計電圧は前記電圧値の単純和であるが、図6のように長手方向に同じ締め付け圧力分布なので、A1〜A8,a1〜a8,B1〜B8,b1〜b8とで同じ電圧値になる。よって、A1〜A8とa1〜a8を並列接続することにより、電流、電圧、電力は変化しない。B1〜B8とb1〜b8を並列接続することでも同様である。 Here, according to the tightening position 9 in FIG. 6, for example, the tightening pressures A1 and a1 arranged in the vertical direction are the same, and the tightening position 9 is shifted from the symmetrical center line of the thermoelectric conversion module 13 by the same distance. A1, A3, A6, and A8 are the same. Similarly, in the object located on the upper side, A2 and A7 are the same and A4 and A5 are the same, but these four are sufficiently separated from the tightening position 9 and may be treated as almost the same. When considered in this way, the tightening pressure is about the same for eight of A1, a1, B1, b1, A3, a3, B3, b3, A6, a6, B6, b6, A8, a8, B8, b8, The same is true for eight of A2, a2, B2, b2, A4, a4, B4, b4, A5, a5, B5, b5, A7, a7, B7, b7. The clamping pressures at eight of A1, a1, B1, b1, A3, a3, B3, b3, A6, a6, B6, b6, A8, a8, B8, b8 are from the symmetrical center line of the thermoelectric conversion module 13. The tightening pressure is greater than the eight tightening pressures A2, a2, B2, b2, A4, a4, B4, b4, A5, a5, B5, b5, A7, a7, B7, and b7 that are tightened at the shifted positions. Therefore, a difference occurs in the contact thermal resistance, and the thermoelectric conversion module 13 in eight of A1, a1, B1, b1, A3, a3, B3, b3, A6, a6, B6, b6, A8, a8, B8, b8. The temperature difference at both ends is larger than the temperature difference at both ends of eight of A2, a2, B2, b2, A4, a4, B4, b4, A5, a5, B5, b5, A7, a7, B7, b7. Nevertheless, since the currents flowing through A1 to A8 connected in series have the same current value, the total power generation amount of A1 to A8 connected in series as in the first embodiment is the power generation of the thermoelectric conversion module 13. It is sufficiently smaller than the simple total value of the abilities. The same applies to a1 to a8, B1 to B8, and b1 to b8. The voltage value of each thermoelectric conversion module 13 is a voltage value corresponding to the flowing current value in the current-voltage characteristic determined by the temperature difference at both ends, and the eight total voltages in series are a simple sum of the voltage values. However, since the tightening pressure distribution is the same in the longitudinal direction as shown in FIG. 6, A1 to A8, a1 to a8, B1 to B8, and b1 to b8 have the same voltage value. Therefore, the current, voltage, and power do not change by connecting A1 to A8 and a1 to a8 in parallel. The same applies to B1-B8 and b1-b8 connected in parallel.
上述に対して、第2の実施形態では図8のように配線接続する。即ち、両端温度差がほぼ同じである熱電変換モジュール13であるA1,a1,B1,b1,b3,B3,a3,A3を直列に接続し、A8,a8,B8,b8,b6,B6,a6,A6を直列に接続し、その2組を並列に接続してから第3の電力負荷25に接続する。また別に両端温度差がほぼ同じである熱電変換モジュール13であるb4,B4,a4,A4,A2,a2,B2,b2を直列に接続し、b5,B5,a5,A5,A7,a7,B7,b7を直列に接続し、その2組を並列に接続してから第4の電力負荷26に接続する。 In contrast to the above, in the second embodiment, wiring connection is made as shown in FIG. That is, A1, a1, B1, b1, b3, B3, a3, and A3, which are thermoelectric conversion modules 13 having substantially the same temperature difference at both ends, are connected in series, and A8, a8, B8, b8, b6, B6, a6. , A6 are connected in series, and the two sets are connected in parallel and then connected to the third power load 25. In addition, b4, B4, a4, A4, A2, a2, B2, b2 which are thermoelectric conversion modules 13 having substantially the same temperature difference at both ends are connected in series, and b5, B5, a5, A5, A7, a7, B7. , B7 are connected in series, and the two sets are connected in parallel and then connected to the fourth power load 26.
このように接続すると、A1,a1,B1,b1,b3,B3,a3,A3は両端温度差が同じなので、最大電力出力を実現する電流値が同じなのだが、直列接続している8個は同じ電流値になるので、A1,a1,B1,b1,b3,B3,a3,A3の8個とも最大電力出力を実現する電流値となる。熱電変換モジュール13各々の電圧値は、最大電力出力を実現する電圧値であり、8個合わせた電圧値は、最大電力出力を実現する電流値における電圧値の8倍となる。8個の合計電力出力は、8個における現状の両端温度差における最大値が実現できる。同様にA8,a8,B8,b8,b6,B6,a6,A6は8個ともその両端温度差においての最大電力出力を実現する電流値となり、この8個においても合計電力出力はこの8個における現状の両端温度差における最大値が実現できる。A8,a8,B8,b8,b6,B6,a6,A6においても8個合わせた電圧値は、最大電力出力を実現する電流値における電圧値の8倍なので、A1,a1,B1,b1,b3,B3,a3,A3における8個合わせた電圧値と等しくなるので、A8,a8,B8,b8,b6,B6,a6,A6を直列にした8個とA1,a1,B1,b1,b3,B3,a3,A3を直列にした8個を並列にした場合、どちらの8個も電圧値は変化しない。即ち、並列にしても、どちらの8個も取り出せる最大電力出力を実現し、16個各々が最大電力出力を実現できる。同様に、b4,B4,a4,A4,A2,a2,B2,b2を直列にした8個とb5,B5,a5,A5,A7,a7,B7,b7を直列にした8個を並列にしても、16個各々が最大電力出力を実現する。当然、A1〜b8の32個の合計電力出力も最大になる。 If connected in this way, A1, a1, B1, b1, b3, B3, a3, and A3 have the same temperature difference at both ends, so the current value that achieves the maximum power output is the same, but the eight connected in series are Since the current values are the same, all of A1, a1, B1, b1, b3, B3, a3, and A3 are current values that realize the maximum power output. The voltage value of each thermoelectric conversion module 13 is a voltage value that realizes the maximum power output, and the combined voltage value of eight is eight times the voltage value in the current value that realizes the maximum power output. The total power output of 8 can realize the maximum value of the current temperature difference between the 8 ends. Similarly, all of A8, a8, B8, b8, b6, B6, a6, and A6 have current values that realize the maximum power output at the temperature difference between both ends. The maximum value of the current temperature difference at both ends can be realized. In A8, a8, B8, b8, b6, B6, a6, and A6, the combined voltage value is eight times the voltage value at the current value that achieves the maximum power output, so A1, a1, B1, b1, b3 , B3, a3, A3 are equal to the combined voltage value of eight, A8, a8, B8, b8, b6, B6, a6, A6 are connected in series with A1, a1, B1, b1, b3 When eight B3, a3, and A3 in series are arranged in parallel, the voltage value of any of the eight does not change. In other words, even if they are arranged in parallel, the maximum power output from which any of the eight can be extracted is realized, and each of the 16 can realize the maximum power output. Similarly, 8 pieces of b4, B4, a4, A4, A2, a2, B2, b2 in series and 8 pieces of b5, B5, a5, A5, A7, a7, B7, b7 in series are arranged in parallel. Also, each of 16 achieves maximum power output. Naturally, the total power output of 32 of A1 to b8 is also maximized.
このように第2の実施形態によれば、図8のように配線接続することにより、第3の電力負荷25、第4の電力負荷26どちらも、取り出せる電力は最大になる。 As described above, according to the second embodiment, the power that can be taken out by both the third power load 25 and the fourth power load 26 is maximized by wiring connection as shown in FIG.
なお、上述した例は、熱電変換モジュール13の配置や締め付け圧力分布についての一例にすぎず、配線接続のし方は上述した例に限らない。即ち、熱電変換モジュール13各々が置かれている条件下にて、各々が単独で発生する電流値の大小に応じてその大きさ別に各熱電変換モジュール13を分類し、同じ分類に属する熱電変換モジュール13同士(即ち、電流値の近い熱電変換モジュール13同士)を直列に接続して直列接続部分を構成し、合計電圧の近い直列接続部分同士を並列に接続するように電気的に配線するということである。この場合、並列にする直列接続部分は2つであるとは限らない。また、直列接続部分という単位1つが、1個の熱電変換モジュール13であってもよい。 In addition, the example mentioned above is only an example about arrangement | positioning of the thermoelectric conversion module 13, and fastening pressure distribution, and how to perform wiring connection is not restricted to the example mentioned above. That is, under the condition in which each thermoelectric conversion module 13 is placed, each thermoelectric conversion module 13 is classified according to the magnitude of the current value generated individually, and the thermoelectric conversion modules belonging to the same classification 13 (that is, thermoelectric conversion modules 13 having close current values) are connected in series to form a serial connection portion, and the serial connection portions having a total voltage close to each other are electrically connected in parallel. It is. In this case, there are not necessarily two serially connected portions in parallel. In addition, one thermoelectric conversion module 13 may be used as one unit called a serial connection portion.
また、熱電変換モジュール13の締め付け圧のムラ以外の原因で熱電変換モジュール13の両端温度差にムラが発生する場合や、熱電変換モジュール13各々の発電性能に、充分にバラツキがある場合に、この技術を適用しても、熱電変換モジュール13の締め付け圧のムラがある場合と同様の効果がある。 In addition, when there is unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 due to reasons other than uneven tightening pressure of the thermoelectric conversion module 13, or when the power generation performance of each thermoelectric conversion module 13 varies sufficiently, this Even if the technology is applied, the same effect as that in the case where the clamping pressure of the thermoelectric conversion module 13 is uneven is obtained.
<第3の実施形態> (請求項2に対応)
第3の実施形態を、図1,図9〜図11を用いて説明する。ここでは、従来技術及び第1,第2の実施形態と共通する要素には同一の符号を付し、重複する説明を省略する。
Third Embodiment (Corresponding to Claim 2)
A third embodiment will be described with reference to FIGS. 1 and 9 to 11. Here, the same code | symbol is attached | subjected to the element which is common in a prior art and 1st, 2nd embodiment, and the overlapping description is abbreviate | omitted.
図9にチャンバ11側面における熱電変換モジュール13の配置を示す。このように熱電変換モジュール13をチャンバ長手方向に19個で、上下方向に1個とすると、挟み込みが2箇所ならば合計39個となる。熱電変換モジュール13のチャンバ長手方向位置に関する締め付け位置9が図9の9箇所であるとする。図9では、第3のチャンバ18の上側から下側へ圧力がかけられているかのような図示になっているが、第1,第2の実施形態と同様に熱電変換モジュール13の伝熱面(図9では正方形)に垂直な方向(紙面に垂直な方向)に締め付け圧力がかかる。 FIG. 9 shows the arrangement of the thermoelectric conversion module 13 on the side surface of the chamber 11. As described above, when the number of thermoelectric conversion modules 13 is 19 in the longitudinal direction of the chamber and 1 in the vertical direction, the number of the sandwiched parts is 39 in total. It is assumed that the tightening positions 9 with respect to the position in the chamber longitudinal direction of the thermoelectric conversion module 13 are nine places in FIG. In FIG. 9, the pressure is applied as if pressure is applied from the upper side to the lower side of the third chamber 18, but the heat transfer surface of the thermoelectric conversion module 13 is the same as in the first and second embodiments. Tightening pressure is applied in a direction perpendicular to (square in FIG. 9) (direction perpendicular to the paper surface).
さて、従来の電気配線は、構成上、最も接続しやすいので図10のようにA1〜A19、B1〜B19それぞれを直列に接続することが多い。そして図10では、直列接続したA1〜A19と直列接続したB1〜B19を並列に接続した後、第5の電力負荷27に接続している。 Now, since conventional electrical wiring is most easily connected due to its configuration, A1-A19 and B1-B19 are often connected in series as shown in FIG. In FIG. 10, B1 to B19 connected in series with A1 to A19 connected in series are connected in parallel, and then connected to the fifth power load 27.
ここで、図9の締め付け位置9によると締め付け圧力は、左から奇数番目と偶数番目とで異なり、A1,B1,A3,B3,A5,B5,A7,B7,A9,B9,A11,B11,A13,B13,A15,B15,A17,B17,A19,B19の20個にて同じぐらいであり、またA2,B2,A4,B4,A6,B6,A8,B8,A10,B10,A12,B12,A14,B14,A16,B16,A18,B18の18個にて同じぐらいである。そして、A1,B1,A3,B3,A5,B5,A7,B7,A9,B9,A11,B11,A13,B13,A15,B15,A17,B17,A19,B19の20個における締め付け圧力は、A2,B2,A4,B4,A6,B6,A8,B8,A10,B10,A12,B12,A14,B14,A16,B16,A18,B18の18個における締め付け圧力より大きくなる。そのため接触熱抵抗に差が発生し、A1,B1,A3,B3,A5,B5,A7,B7,A9,B9,A11,B11,A13,B13,A15,B15,A17,B17,A19,B19の20個における熱電変換モジュール13の両端温度差は、A2,B2,A4,B4,A6,B6,A8,B8,A10,B10,A12,B12,A14,B14,A16,B16,A18,B18の18個における両端温度差より大きくなる。それでいながら直列に配線接続したA1〜A19を流れる電流は同じ電流値になるので、第1,第2の実施形態と同様に直列に配線接続したA1〜A19の合計発電量は、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。B1〜B19においても同様である。熱電変換モジュール13各々の電圧値は、両端温度差によって定められる電流電圧特性において、流れている電流値に対応する電圧値であり、直列する19個の合計電圧は前記電圧値の単純和であるが、図9のように長手方向に同じ締め付け圧力分布なので、A1〜A19,B1〜B19とで同じ電圧値になる。よって、A1〜A19とB1〜B19を並列接続することにより、電流、電圧、電力は変化しない。 Here, according to the tightening position 9 in FIG. 9, the tightening pressures are different from odd-numbered and even-numbered from the left, and A1, B1, A3, B3, A5, B5, A7, B7, A9, B9, A11, B11, A13, B13, A15, B15, A17, B17, A19, B19 are about the same, and A2, B2, A4, B4, A6, B6, A8, B8, A10, B10, A12, B12, It is about the same with 18 pieces of A14, B14, A16, B16, A18, and B18. The tightening pressure at 20 of A1, B1, A3, B3, A5, B5, A7, B7, A9, B9, A11, B11, A13, B13, A15, B15, A17, B17, A19, B19 is A2. , B2, A4, B4, A6, B6, A8, B8, A10, B10, A12, B12, A14, B14, A16, B16, A18, B18. Therefore, a difference occurs in the contact thermal resistance, and A1, B1, A3, B3, A5, B5, A7, B7, A9, B9, A11, B11, A13, B13, A15, B15, A17, B17, A19, B19 The temperature difference between both ends of the 20 thermoelectric conversion modules 13 is 18 of A2, B2, A4, B4, A6, B6, A8, B8, A10, B10, A12, B12, A14, B14, A16, B16, A18, B18. It becomes larger than the temperature difference at both ends of the piece. Nevertheless, since the currents flowing through A1 to A19 connected in series have the same current value, the total power generation amount of A1 to A19 connected in series as in the first and second embodiments is the thermoelectric conversion module. It is sufficiently smaller than the simple total value of 13 power generation capacities. The same applies to B1 to B19. The voltage value of each thermoelectric conversion module 13 is a voltage value corresponding to the flowing current value in the current-voltage characteristic determined by the temperature difference between both ends, and the 19 total voltages in series are a simple sum of the voltage values. However, since the tightening pressure distribution is the same in the longitudinal direction as shown in FIG. 9, the same voltage value is obtained for A1 to A19 and B1 to B19. Therefore, current, voltage, and power do not change by connecting A1 to A19 and B1 to B19 in parallel.
上述に対して、第3の実施形態では図11のように配線接続する。即ち、両端温度差がほぼ同じである熱電変換モジュール13であるA1,B1,B3,A3,A5,B5,B7,A7,A9,B9,B11,A11,A13,B13,B15,A15,A17,B17,B19,A19の20個を直列に接続し、A2,B2,B4,A4,A6,B6,B8,A8,A10,B10,B12,A12,A14,B14,B16,A16,A18,B18の18個を直列に接続し、その2組を並列に接続してから第5の電力負荷27に接続する。 In contrast to the above, in the third embodiment, wiring connection is made as shown in FIG. That is, A1, B1, B3, A3, A5, B5, B7, A7, A9, B9, B11, A11, A13, B13, B15, A15, A17, which are thermoelectric conversion modules 13 having the same temperature difference at both ends. 20 pieces of B17, B19, A19 are connected in series, and A2, B2, B4, A4, A6, B6, B8, A8, A10, B10, B12, A12, A14, B14, B16, A16, A18, B18 18 pieces are connected in series, and the two sets are connected in parallel and then connected to the fifth power load 27.
このように接続すると、第2の実施形態と同様に、前記20個において同じ電流値になり合計電圧値は1個分の20倍になり、前記18個において同じ電流値になり合計電圧、値は1個分の18倍になる。 When connected in this way, as in the second embodiment, the 20 currents have the same current value, and the total voltage value is 20 times that of one, and the 18 currents have the same current value. Is 18 times the size of one.
ここで、前記20個と前記18個を並列にせず1組ずつ第5の電力負荷27に接続する場合を考える。この時、第3の実施形態では両端温度差の違いによって電圧値が以下のようになっているとする。即ち、20個直列している熱電変換モジュール13の1個分の電圧が、18個直列している熱電変換モジュール13の1個分の電圧(V3とする)の、0.9倍即ち0.9×V3であるとする。この場合、前記20個を直列した合計電圧と前記18個を直列した合計電圧はどちらも18×V3となるので、前記20個と前記18個を並列にしてもどちらの直列接続部分も合計電圧値は変化しない。即ち、前記20個と前記18個を並列にすると、直列接続部分の1個ずつにおいて、取り出せる最大電力出力を実現し、38個各々が最大電力出力を実現できる。当然、A1〜B19の38個の合計電力出力も最大になる。 Here, let us consider a case in which the 20 pieces and the 18 pieces are not connected in parallel but are connected to the fifth power load 27 one by one. At this time, in the third embodiment, it is assumed that the voltage value is as follows due to the difference in temperature difference between both ends. That is, the voltage for one of the 20 thermoelectric conversion modules 13 in series is 0.9 times the voltage of one thermoelectric conversion module 13 in series (V3), that is, 0. It is assumed that it is 9 × V3. In this case, the total voltage obtained by serially connecting the 20 pieces and the total voltage obtained by serially connecting the 18 pieces are 18 × V3. The value does not change. That is, when the 20 pieces and the 18 pieces are arranged in parallel, the maximum power output that can be taken out is realized in each of the serially connected portions, and each of the 38 pieces can realize the maximum power output. Naturally, the total power output of 38 A1 to B19 is also maximized.
このように第3の実施形態によれば、図11のように配線接続することにより、第5の電力負荷27の取り出せる電力は最大になる。 As described above, according to the third embodiment, the power that can be taken out by the fifth power load 27 is maximized by wiring connection as shown in FIG.
但し、第3の実施形態では20個と18個の直列を作ってから並列にしたが、電圧の比などによって、直列する個数の組合せを調節することになる。仮に直列接続部分の合計電圧が異なる場合、並列にするとどちらの直列接続部分も合計電圧が等しくなるため、どちらの直列接続部分も最大電力出力を実現する電圧値からずれ、38個の合計電力出力は小さくなる。 However, in the third embodiment, 20 and 18 series are made in parallel, but the combination of the numbers in series is adjusted according to the voltage ratio or the like. If the total voltages of the series connection parts are different, since the total voltage of both series connection parts becomes equal when paralleled, both series connection parts deviate from the voltage value that achieves the maximum power output, and 38 total power outputs. Becomes smaller.
なお、上述した例は、熱電変換モジュール13の配置や締め付け圧力分布についての一例にすぎず、配線接続のし方は上述した例に限らない。即ち、熱電変換モジュール13がそれぞれ単独で発生する電流値の大小に応じてその大きさ別に各熱電変換モジュール13を分類し、同じ分類に属する熱電変換モジュール13同士(即ち、電流値の近い熱電変換モジュール13同士)を直列に接続して直列接続部分を構成し、その際、前記直列接続部分がそれぞれ発生する電圧値の差が小さくなるように直列接続する熱電変換モジュール13の個数を調節し、熱電変換モジュール13に未使用の物があれば、前記分類の手続きからやり直して、直列接続部分を製作した後、前記直列接続部分の全てを並列に接続するように電気的に配線するということである。この場合、並列にする直列接続部分は2つであるとは限らない。また、直列接続部分という単位1つが、1個の熱電変換モジュール13であってもよい。 In addition, the example mentioned above is only an example about arrangement | positioning of the thermoelectric conversion module 13, and fastening pressure distribution, and how to perform wiring connection is not restricted to the example mentioned above. That is, each thermoelectric conversion module 13 is classified according to the magnitude of the current value generated independently by each thermoelectric conversion module 13, and the thermoelectric conversion modules 13 belonging to the same classification (that is, thermoelectric conversions having close current values). Modules 13) are connected in series to form a serial connection portion, and at that time, the number of thermoelectric conversion modules 13 connected in series is adjusted so that a difference in voltage value generated between the serial connection portions is reduced, If there is an unused thing in the thermoelectric conversion module 13, the procedure of the classification is repeated, and after the serial connection portion is manufactured, the entire serial connection portion is electrically wired so as to be connected in parallel. is there. In this case, there are not necessarily two serially connected portions in parallel. In addition, one thermoelectric conversion module 13 may be used as one unit called a serial connection portion.
また、熱電変換モジュール13の締め付け圧のムラ以外の原因で熱電変換モジュール13の両端温度差にムラが発生する場合や、熱電変換モジュール13各々の発電性能に、充分にバラツキがある場合に、この技術を適用しても、熱電変換モジュール13の締め付け圧のムラがある場合と同様の効果がある。 In addition, when there is unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 due to reasons other than uneven tightening pressure of the thermoelectric conversion module 13, or when the power generation performance of each thermoelectric conversion module 13 varies sufficiently, this Even if the technology is applied, the same effect as that in the case where the clamping pressure of the thermoelectric conversion module 13 is uneven is obtained.
<第4の実施形態> (請求項2に対応)
第4の実施形態を、図1〜図3,図12,図13を用いて説明する。ここでは、従来技術及び第1〜第3の実施形態と共通する要素には同一の符号を付し、重複する説明を省略する。
<Fourth Embodiment> (Corresponding to Claim 2)
A fourth embodiment will be described with reference to FIGS. 1 to 3, 12, and 13. Here, the same code | symbol is attached | subjected to the element which is common in a prior art and 1st-3rd embodiment, and the overlapping description is abbreviate | omitted.
熱電変換モジュール13の配置は、第1の実施形態と同様に図2,図3に示す配置とする。また、第1のチャンバ16と熱電変換モジュール13の伝熱面(図2では正方形)との接触面において、少なくとも一方の平面度が悪く、締め付け圧力分布を加味した接触熱抵抗は、A1,B2,B4ではより小さく、図12中で(劣)という表記が付いているA2,A3,A4,B1,B3ではより大きいとする。この時、熱電変換モジュール13のチャンバ長手方向位置に関する締め付け位置9が図2,図3と同じでも異なっていてもよい。 The arrangement of the thermoelectric conversion module 13 is the arrangement shown in FIGS. 2 and 3 as in the first embodiment. Further, at the contact surface between the first chamber 16 and the heat transfer surface (the square in FIG. 2) of the thermoelectric conversion module 13, at least one of the flatnesses is poor, and the contact thermal resistance considering the tightening pressure distribution is A1, B2. , B4 is smaller, and A2, A3, A4, B1, and B3 marked (inferior) in FIG. 12 are larger. At this time, the tightening position 9 regarding the position in the chamber longitudinal direction of the thermoelectric conversion module 13 may be the same as or different from those in FIGS.
さて、従来の電気配線は、構成上、最も接続しやすいので図12のようにA1〜A4、B1〜B4それぞれを直列に接続することが多い。そして図12では、直列接続したA1〜A4と直列接続したB1〜B4を並列に接続した後、第6の電力負荷28に接続している。 Now, since conventional electrical wiring is most easily connected due to its configuration, A1-A4 and B1-B4 are often connected in series as shown in FIG. In FIG. 12, B1 to B4 connected in series with A1 to A4 connected in series are connected in parallel and then connected to the sixth power load 28.
ここで、接触熱抵抗の差のため、A1,B2,B4の3個における熱電変換モジュール13の両端温度差は、A2,A3,A4,B1,B3の5個における両端温度差より大きくなる。それでいながら直列に配線接続したA1〜A4を流れる電流は同じ電流値になるので、第1〜第3の実施形態と同様に直列に配線接続したA1〜A4の合計発電量は、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。B1〜B4においても同様である。熱電変換モジュール13各々の電圧値は、両端温度差によって定められる電流電圧特性において、流れている電流値に対応する電圧値であり、直列する4個の合計電圧は前記電圧値の単純和であり、前記4個ずつを並列にせず1組ずつ第6の電力負荷28に接続してみると、直列接続部分の合計電圧は異なる。この直列接続部分2組を並列にするとどちらの直列接続部分も合計電圧が等しくなるため、どちらの直列接続部分も最大電力出力を実現する電圧値からずれ、2組の直列接続部分はどちらも、さらに合計電力出力が小さくなる。当然、A1〜A4,B1〜B4の8個から取り出せる合計電力出力は小さくなる。 Here, due to the difference in contact thermal resistance, the temperature difference between both ends of the thermoelectric conversion module 13 in three of A1, B2, and B4 is larger than the temperature difference between both ends of five of A2, A3, A4, B1, and B3. Nevertheless, since the currents flowing through A1 to A4 wired in series have the same current value, the total power generation amount of A1 to A4 wired in series as in the first to third embodiments is the thermoelectric conversion module. It is sufficiently smaller than the simple total value of 13 power generation capacities. The same applies to B1 to B4. The voltage value of each thermoelectric conversion module 13 is a voltage value corresponding to the flowing current value in the current-voltage characteristic determined by the temperature difference between both ends, and the total voltage of the four in series is a simple sum of the voltage values. When the four pieces are connected in parallel to the sixth power load 28 without being parallel, the total voltage of the series connection portion is different. When two series connection parts are paralleled, the total voltage is equal in both series connection parts. Therefore, both series connection parts deviate from the voltage value that realizes the maximum power output. Furthermore, the total power output is reduced. Naturally, the total power output that can be extracted from eight of A1 to A4 and B1 to B4 is small.
上述に対して、第4の実施形態では図13のように配線接続する。即ち、両端温度差がほぼ同じである熱電変換モジュール13であるA1,B2,B4の3個を直列に接続し、B1,B3,A2,A3,A4の5個を直列に接続し、その2組を並列に接続してから第6の電力負荷28に接続する。 In contrast to the above, in the fourth embodiment, wiring connection is made as shown in FIG. That is, three thermoelectric conversion modules A1, B2, and B4 having the same temperature difference at both ends are connected in series, and five of B1, B3, A2, A3, and A4 are connected in series. The sets are connected in parallel and then connected to the sixth power load 28.
このように接続すると、第2,第3の実施形態と同様に、前記3個において同じ電流値になり合計電圧値は1個分の3倍になり、前記5個において同じ電流値になり合計電圧値は1個分の5倍になる。 When connected in this way, as in the second and third embodiments, the three currents have the same current value, and the total voltage value is three times that of one, and the five currents have the same current value. The voltage value is five times that of one.
ここで、前記3個と前記5個を並列にせず1組ずつ第6の電力負荷28に接続する場合を考える。この時、第4の実施形態では両端温度差の違いによって電圧値が以下のようになっているとする。即ち、5個直列している熱電変換モジュール13の1個分の電圧が、3個直列している熱電変換モジュール13の1個分の電圧(V4とする)の、0.6倍即ち0.6×V4であるとする。図13中の該当する熱電変換モジュール13には、位置表示記号の後に<0.6>という表記を付けている。この場合、前記5個を直列した合計電圧と前記3個を直列した合計電圧はどちらも3×V4となるので、前記3個と前記5個を並列にしてもどちらの直列接続部分も合計電圧値は変化しない。即ち、前記3個と前記5個を並列にすると、直列接続部分の1個ずつにおいて、取り出せる最大電力出力を実現し、8個各々が最大電力出力を実現できる。当然、A1〜A4,B1〜B4の8個の合計電力出力も最大になる。 Here, consider a case where the three and the five are connected in parallel to the sixth power load 28 without being parallel. At this time, in the fourth embodiment, it is assumed that the voltage value is as follows due to the difference in temperature difference between both ends. That is, the voltage for one of the five thermoelectric conversion modules 13 in series is 0.6 times the voltage for one thermoelectric conversion module 13 in series (referred to as V4). Assume 6 × V4. The corresponding thermoelectric conversion module 13 in FIG. 13 is labeled <0.6> after the position display symbol. In this case, the total voltage obtained by serially connecting the five and the total voltage obtained by serially connecting the three is 3 × V4. The value does not change. That is, when the three and the five are arranged in parallel, the maximum power output that can be taken out is realized in each of the serially connected portions, and each of the eight can realize the maximum power output. Naturally, the total power output of eight of A1 to A4 and B1 to B4 is also maximized.
このように第4の実施形態によれば、図13のように配線接続することにより、第6の電力負荷28の取り出せる電力は最大になる。 Thus, according to the fourth embodiment, the power that can be taken out by the sixth power load 28 is maximized by wiring connection as shown in FIG.
但し、第4の実施形態では3個と5個の直列を作ってから並列にしたが、1個分が発生する電圧の比によって、直列する個数の組合せを調節することになる。仮に直列接続部分の合計電圧が異なる場合、並列にするとどちらの直列接続部分も合計電圧が等しくなるため、どちらの直列接続部分も最大電力出力を実現する電圧値からずれ、8個の合計電力出力は小さくなる。 However, in the fourth embodiment, three and five series are formed and then paralleled, but the combination of the number of series is adjusted according to the ratio of the voltages generated by one. If the total voltage of the series connected parts is different, the total voltage of both series connected parts becomes equal when paralleled. Therefore, both series connected parts deviate from the voltage value that achieves the maximum power output, and 8 total power outputs Becomes smaller.
なお、上述した例は、熱電変換モジュール13の配置や締め付け圧力分布についての一例にすぎず、配線接続のし方は上述した例に限らない。即ち、熱電変換モジュール13がそれぞれ単独で発生する電流値の大小に応じてその大きさ別に各熱電変換モジュール13を分類し、同じ分類に属する熱電変換モジュール13同士(即ち、電流値の近い熱電変換モジュール13同士)を直列に接続して直列接続部分を構成し、その際、前記直列接続部分がそれぞれ発生する電圧値の差が小さくなるように直列接続する熱電変換モジュール13の個数を調節し、熱電変換モジュール13に未使用の物があれば、前記分類の手続きからやり直して、直列接続部分を製作した後、前記直列接続部分の全てを並列に接続するように電気的に配線するということである。この場合、並列にする直列接続部分は2つであるとは限らない。また、直列接続部分という単位1つが、1個の熱電変換モジュール13であってもよい。 In addition, the example mentioned above is only an example about arrangement | positioning of the thermoelectric conversion module 13, and fastening pressure distribution, and how to perform wiring connection is not restricted to the example mentioned above. That is, each thermoelectric conversion module 13 is classified according to the magnitude of the current value generated independently by each thermoelectric conversion module 13, and the thermoelectric conversion modules 13 belonging to the same classification (that is, thermoelectric conversions having close current values). Modules 13) are connected in series to form a serial connection portion, and at that time, the number of thermoelectric conversion modules 13 connected in series is adjusted so that a difference in voltage value generated between the serial connection portions is reduced, If there is an unused thing in the thermoelectric conversion module 13, the procedure of the classification is repeated, and after the serial connection portion is manufactured, the entire serial connection portion is electrically wired so as to be connected in parallel. is there. In this case, there are not necessarily two serially connected portions in parallel. In addition, one thermoelectric conversion module 13 may be used as one unit called a serial connection portion.
また、熱電変換モジュール13の締め付け圧のムラ以外の原因で熱電変換モジュール13の両端温度差にムラが発生する場合や、熱電変換モジュール13各々の発電性能に、充分にバラツキがある場合に、この技術を適用しても、熱電変換モジュール13の締め付け圧のムラがある場合と同様の効果がある。 In addition, when there is unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 due to reasons other than uneven tightening pressure of the thermoelectric conversion module 13, or when the power generation performance of each thermoelectric conversion module 13 varies sufficiently, this Even if the technology is applied, the same effect as that in the case where the clamping pressure of the thermoelectric conversion module 13 is uneven is obtained.
<第5の実施形態> (請求項3に対応)
第5の実施形態を、図1〜図3,図14,図15を用いて説明する。ここでは、従来技術及び第1〜第4の実施形態と共通する要素には同一の符号を付し、重複する説明を省略する。
<Fifth Embodiment> (Corresponding to Claim 3)
A fifth embodiment will be described with reference to FIGS. 1 to 3, 14, and 15. Here, the same code | symbol is attached | subjected to the element which is common in a prior art and 1st-4th embodiment, and the overlapping description is abbreviate | omitted.
第1,第4の実施形態と同様に、熱電変換モジュール13の配置は図2,図3に示す配置とし、熱電変換モジュール13のチャンバ長手方向位置に関する締め付け位置9が図2,図3に示す3箇所であるとする。 As in the first and fourth embodiments, the thermoelectric conversion module 13 is arranged as shown in FIGS. 2 and 3, and the tightening position 9 with respect to the longitudinal position of the thermoelectric conversion module 13 is shown in FIGS. Assume that there are three locations.
さて、従来の電気配線は、構成上、接続しやすいので図14のようにA1〜A4,B1〜B4それぞれを並列に接続することも多い。図14ではA1〜A4を第7の電力負荷29に接続し、B1〜B4を第8の電力負荷30に接続している。 Now, since the conventional electrical wiring is easy to connect in terms of configuration, A1 to A4 and B1 to B4 are often connected in parallel as shown in FIG. In FIG. 14, A1 to A4 are connected to the seventh power load 29, and B1 to B4 are connected to the eighth power load 30.
ここで、図2,図3の締め付け位置9によると締め付け圧力はA1,B1,A4,B4の4個にて同じぐらいであり、またA2,B2,A3,B3の4個にて同じぐらいである。そして、A1,B1,A4,B4の4個における締め付け圧力は、熱電変換モジュール13からずれた場所にて締め付けているA2,B2,A3,B3の4個における締め付け圧力より大きくなる。そのため、熱電変換モジュール13の伝熱面と第1のチャンバ16側面との接触熱抵抗に差が発生し、A1,B1,A4,B4の4個における熱電変換モジュール13の両端温度差は、第1のチャンバ16側面により強く接触しているA2,B2,A3,B3の4個における両端温度差より大きくなる。それでいながら並列に配線接続したA1〜A4にかかる電圧は同じ電圧値になるので、[発明が解決しようとする課題]にて説明したように各々の熱電変換モジュール13にて、取り出せる最大電力出力が実現できず、合計の最大電力出力値は、熱電変換モジュール13それぞれの最大電力出力の合計値よりも小さい。B1〜B4も同様である。そのため、並列に配線接続したA1〜A4の合計発電量と、B1〜B4の合計発電量それぞれは、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。当然、A1〜A4,B1〜B4の8個の合計電力出力も、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。 Here, according to the tightening position 9 in FIGS. 2 and 3, the tightening pressure is the same for four of A1, B1, A4 and B4, and is the same for four of A2, B2, A3 and B3. is there. The tightening pressures at the four points A1, B1, A4, and B4 are larger than the tightening pressures at the four points A2, B2, A3, and B3 that are tightened at a location shifted from the thermoelectric conversion module 13. Therefore, a difference occurs in the contact thermal resistance between the heat transfer surface of the thermoelectric conversion module 13 and the side surface of the first chamber 16, and the temperature difference between both ends of the thermoelectric conversion module 13 in four of A 1, B 1, A 4 and B 4 is It becomes larger than the temperature difference at both ends of four of A2, B2, A3, and B3 that are in closer contact with the side surface of one chamber 16. Nevertheless, since the voltages applied to A1 to A4 connected in parallel are the same voltage value, as described in [Problems to be Solved by the Invention], each thermoelectric conversion module 13 can extract the maximum power output. Cannot be realized, and the total maximum power output value is smaller than the total value of the maximum power outputs of the thermoelectric conversion modules 13. The same applies to B1 to B4. Therefore, the total power generation amount of A1 to A4 wired in parallel and the total power generation amount of B1 to B4 are sufficiently smaller than the simple total value of the power generation capability of the thermoelectric conversion module 13. Naturally, the total power output of eight of A1 to A4 and B1 to B4 is also sufficiently smaller than the simple total value of the power generation capacity of the thermoelectric conversion module 13.
上述に対して、第5の実施形態では図15のように配線接続する。即ち、両端温度差がほぼ同じである熱電変換モジュール13であるA1,B1,A4,B4を並列に配線接続した後、第7の電力負荷29に接続し、また別に両端温度差がほぼ同じである熱電変換モジュール13であるA2,B2,A3,B3を並列に配線接続した後、第4の電力負荷30に接続する。A1,B1,A4,B4は両端温度差が同じなので、最大電力出力を実現する電圧値が同じなのだが、並列接続している4個は同じ電圧値になるので、A1,B1,A4,B4の4個とも最大電力出力を実現する電流値となる。各々の熱電変換モジュール13の電流値は、最大電力出力を実現する電流値であり、4個合わせた電流値は、最大電力出力を実現する電圧値における電流値の4倍となる。4個の合計電力出力は、4個における現状の両端温度差における最大値が実現できる。同様にA2,B2,A3,B3は両端温度差が同じなので、その両端温度差においての最大電力出力を実現する電圧値が同じなのだが、並列接続している4個は同じ電圧値になるので、A2,B2,A3,B3の4個ともその両端温度差においての最大電力出力を実現する電圧値となり、この4個においても合計電力出力はこの4個における現状の両端温度差における最大値が実現できる。当然、A1〜A4,B1〜B4の8個が取り出せる合計電力出力も最大になる。仮にA1〜A4,B1〜B4の8個が図29に該当するとしたならば、A1,B1,A4,B4の4個の特性は、両端温度差大での電流電圧特性38と両端温度差大での電圧電力特性46であり、A2,B2,A3,B3の4個の特性は、両端温度差小での電流電圧特性39と両端温度差小での電圧電力特性47である。そして第5の実施形態では、A1,B1,A4,B4の電流と電圧はそれぞれI1,V1となり、A2,B2,A3,B3の電流と電圧はそれぞれI2、V2となることができるので、8個各々が、取り出せる最大電力を実現でき、合計値は4×(V1×I1+V2×I2)である。 In contrast to the above, in the fifth embodiment, wiring connection is made as shown in FIG. That is, A1, B1, A4, and B4, which are thermoelectric conversion modules 13 having substantially the same temperature difference at both ends, are connected in parallel and then connected to the seventh power load 29. A thermoelectric conversion module 13, A 2, B 2, A 3, B 3 is connected in parallel and then connected to the fourth power load 30. Since A1, B1, A4, and B4 have the same temperature difference at both ends, the voltage values that achieve the maximum power output are the same, but the four that are connected in parallel have the same voltage value, so A1, B1, A4, and B4 The four current values are current values that achieve the maximum power output. The current value of each thermoelectric conversion module 13 is a current value that realizes the maximum power output, and the combined current value is four times the current value in the voltage value that realizes the maximum power output. The four total power outputs can realize the maximum value of the current temperature difference between the two ends. Similarly, A2, B2, A3, and B3 have the same temperature difference at both ends, so the voltage values that realize the maximum power output at the temperature difference at both ends are the same, but the four connected in parallel have the same voltage value. , A2, B2, A3, and B3 all have voltage values that achieve the maximum power output at the temperature difference between both ends, and the total power output of these four also has the maximum value at the current temperature difference at both ends of the four. realizable. Naturally, the total power output from which eight of A1 to A4 and B1 to B4 can be extracted is also maximized. If eight of A1 to A4 and B1 to B4 correspond to FIG. 29, the four characteristics of A1, B1, A4, and B4 have a current-voltage characteristic 38 with a large temperature difference at both ends and a large temperature difference between both ends. The four characteristics A2, B2, A3, and B3 are a current-voltage characteristic 39 with a small temperature difference at both ends and a voltage power characteristic 47 with a small temperature difference at both ends. In the fifth embodiment, the currents and voltages of A1, B1, A4, and B4 can be I1 and V1, respectively, and the currents and voltages of A2, B2, A3, and B3 can be I2 and V2, respectively. Each can achieve the maximum power that can be extracted, and the total value is 4 × (V1 × I1 + V2 × I2).
このように第5の実施形態によれば、図15のように配線接続することにより、第7の電力負荷29、第8の電力負荷30どちらも、取り出せる電力は最大になる。 As described above, according to the fifth embodiment, by connecting the wires as shown in FIG. 15, the power that can be extracted from both the seventh power load 29 and the eighth power load 30 is maximized.
なお、上述した例は、熱電変換モジュール13の配置や締め付け圧力分布についての一例にすぎず、配線接続のし方は上述した例に限らない。即ち、熱電変換モジュール13がそれぞれ単独で発生する電圧値の大小に応じてその大きさ別に各熱電変換モジュール13を分類し、同じ分類に属する熱電変換モジュール13同士(即ち、電圧値の近い熱電変換モジュール13同士)を並列に接続して並列接続部分を構成するように電気的に配線するということである。この場合、直列にする並列接続部分は2つであるとは限らない。また、並列接続部分という単位1つが、1個の熱電変換モジュール13や、複数個の熱電変換モジュール13の直列接続部分であってもよい。 In addition, the example mentioned above is only an example about arrangement | positioning of the thermoelectric conversion module 13, and fastening pressure distribution, and how to perform wiring connection is not restricted to the example mentioned above. That is, each thermoelectric conversion module 13 is classified according to the magnitude of the voltage value generated independently by each thermoelectric conversion module 13, and the thermoelectric conversion modules 13 belonging to the same classification (that is, thermoelectric conversions having close voltage values). That is, the modules 13 are connected in parallel to be electrically wired so as to form a parallel connection portion. In this case, there are not necessarily two parallel connection parts in series. One unit called a parallel connection part may be one thermoelectric conversion module 13 or a series connection part of a plurality of thermoelectric conversion modules 13.
また、熱電変換モジュール13の締め付け圧のムラ以外の原因で熱電変換モジュール13の両端温度差にムラが発生する場合や、熱電変換モジュール13各々の発電性能に、充分にバラツキがある場合に、この技術を適用しても、熱電変換モジュール13の締め付け圧のムラがある場合と同様の効果がある。 In addition, when there is unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 due to reasons other than uneven tightening pressure of the thermoelectric conversion module 13, or when the power generation performance of each thermoelectric conversion module 13 varies sufficiently, this Even if the technology is applied, the same effect as that in the case where the clamping pressure of the thermoelectric conversion module 13 is uneven is obtained.
<第6の実施形態> (請求項4に対応)
第6の実施形態を、図1,図9,図16,図17を用いて説明する。ここでは、従来技術及び第1〜第5の実施形態と共通する要素には同一の符号を付し、重複する説明を省略する。
<Sixth Embodiment> (Corresponding to Claim 4)
A sixth embodiment will be described with reference to FIGS. 1, 9, 16, and 17. Here, the same code | symbol is attached | subjected to the element which is common in a prior art and 1st-5th embodiment, and the overlapping description is abbreviate | omitted.
第3の実施形態と同様に、熱電変換モジュール13の配置は図9に示す配置とし、熱電変換モジュール13のチャンバ長手方向位置に関する締め付け位置9が図9に示す9箇所であるとする。 Similarly to the third embodiment, the thermoelectric conversion module 13 is arranged as shown in FIG. 9, and the tightening positions 9 with respect to the position in the chamber longitudinal direction of the thermoelectric conversion module 13 are nine places shown in FIG.
さて、従来の電気配線は、構成上、接続しやすいので図16のようにA1〜A19,B1〜B19それぞれを並列に接続することが多い。そして図16では、並列接続したA1〜A19と並列接続したB1〜B19を直列に接続した後、第9の電力負荷35に接続している。 Now, since conventional electric wiring is easy to connect in terms of configuration, A1 to A19 and B1 to B19 are often connected in parallel as shown in FIG. In FIG. 16, A1 to A19 connected in parallel and B1 to B19 connected in parallel are connected in series, and then connected to the ninth power load 35.
ここで、図9の締め付け位置9によると締め付け圧力は、左から奇数番目と偶数番目とで異なり、A1,B1,A3,B3,A5,B5,A7,B7,A9,B9,A11,B11,A13,B13,A15,B15,A17,B17,A19,B19の20個にて同じぐらいであり、またA2,B2,A4,B4,A6,B6,A8,B8,A10,B10,A12,B12,A14,B14,A16,B16,A18,B18の18個にて同じぐらいである。そして、A1,B1,A3,B3,A5,B5,A7,B7,A9,B9,A11,B11,A13,B13,A15,B15,A17,B17,A19,B19の20個における締め付け圧力は、A2,B2,A4,B4,A6,B6,A8,B8,A10,B10,A12,B12,A14,B14,A16,B16,A18,B18の18個における締め付け圧力より大きくなる。そのため接触熱抵抗に差が発生し、A1,B1,A3,B3,A5,B5,A7,B7,A9,B9,A11,B11,A13,B13,A15,B15,A17,B17,A19,B19の20個における熱電変換モジュール13の両端温度差は、A2,B2,A4,B4,A6,B6,A8,B8,A10,B10,A12,B12,A14,B14,A16,B16,A18,B18の18個における両端温度差より大きくなる。それでいながら並列に配線接続したA1〜A19を流れる電流は同じ電圧値になるので、第5の実施形態と同様に並列に配線接続したA1〜A19の合計発電量は、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。B1〜B19においても同様である。熱電変換モジュール13各々の電流値は、両端温度差によって定められる電流電圧特性において、かかっている電圧値に対応する電流値であり、並列する19個の合計電流は前記電流値の単純和であるが、図9のように長手方向に同じ締め付け圧力分布なので、A1〜A19,B1〜B19とで同じ電流値になる。よって、A1〜A19とB1〜B19を直列接続することにより、電流、電圧、電力は変化しない。 Here, according to the tightening position 9 in FIG. 9, the tightening pressures are different from odd-numbered and even-numbered from the left, and A1, B1, A3, B3, A5, B5, A7, B7, A9, B9, A11, B11, A13, B13, A15, B15, A17, B17, A19, B19 are about the same, and A2, B2, A4, B4, A6, B6, A8, B8, A10, B10, A12, B12, It is about the same with 18 pieces of A14, B14, A16, B16, A18, and B18. The tightening pressure at 20 of A1, B1, A3, B3, A5, B5, A7, B7, A9, B9, A11, B11, A13, B13, A15, B15, A17, B17, A19, B19 is A2. , B2, A4, B4, A6, B6, A8, B8, A10, B10, A12, B12, A14, B14, A16, B16, A18, B18. Therefore, a difference occurs in the contact thermal resistance, and A1, B1, A3, B3, A5, B5, A7, B7, A9, B9, A11, B11, A13, B13, A15, B15, A17, B17, A19, B19 The temperature difference between both ends of the 20 thermoelectric conversion modules 13 is 18 of A2, B2, A4, B4, A6, B6, A8, B8, A10, B10, A12, B12, A14, B14, A16, B16, A18, B18. It becomes larger than the temperature difference at both ends of the piece. Nevertheless, since the currents flowing through A1 to A19 wired in parallel have the same voltage value, the total power generation amount of A1 to A19 wired in parallel as in the fifth embodiment is the power generation of the thermoelectric conversion module 13. It is sufficiently smaller than the simple total value of the abilities. The same applies to B1 to B19. The current value of each thermoelectric conversion module 13 is a current value corresponding to the applied voltage value in the current-voltage characteristics determined by the temperature difference at both ends, and the 19 total currents in parallel are a simple sum of the current values. However, since the tightening pressure distribution is the same in the longitudinal direction as shown in FIG. 9, the same current value is obtained for A1 to A19 and B1 to B19. Therefore, the current, voltage, and power do not change by connecting A1 to A19 and B1 to B19 in series.
上述に対して、第6の実施形態では図17のように配線接続する。即ち、両端温度差がほぼ同じである熱電変換モジュール13であるA1,B1,A3,B3,A5,B5,A7,B7,A9,B9,A11,B11,A13,B13,A15,B15,A17,B17,A19,B19の20個を並列に接続し、A2,B2,A4,B4,A6,B6,A8,B8,A10,B10,A12,B12,A14,B14,A16,B16,A18,B18の18個を並列に接続し、その2組を直列に接続してから第9の電力負荷35に接続する。 In contrast to the above, in the sixth embodiment, wiring connection is made as shown in FIG. That is, A1, B1, A3, B3, A5, B5, A7, B7, A9, B9, A11, B11, A13, B13, A15, B15, A17, which are thermoelectric conversion modules 13 having the same temperature difference at both ends. 20 of B17, A19, B19 are connected in parallel, and A2, B2, A4, B4, A6, B6, A8, B8, A10, B10, A12, B12, A14, B14, A16, B16, A18, B18 Eighteen pieces are connected in parallel, and the two sets are connected in series and then connected to the ninth power load 35.
このように接続すると、第5の実施形態と同様に、前記20個において同じ電圧値になり合計電流値は1個分の20倍になり、前記18個において同じ電圧値になり合計電流値は1個分の18倍になる。 When connected in this way, as in the fifth embodiment, the same voltage value is obtained in the 20 pieces, and the total current value is 20 times that of one piece, and the same voltage value is obtained in the 18 pieces, and the total current value is 18 times as much as one.
ここで、前記20個と前記18個を直列にせず1組ずつ第9の電力負荷35に接続する場合を考える。この時、第6の実施形態では両端温度差の違いによって電流値が以下のようになっているとする。即ち、20個並列している熱電変換モジュール13の1個分の電流が、18個並列している熱電変換モジュール13の1個分の電流(I5とする)の、0.9倍即ち0.9×I5であるとする。この場合、前記20個を並列した合計電流と前記18個を並列した合計電流はどちらも18×I5となるので、前記20個と前記18個を直列にしてもどちらの並列接続部分も合計電流値は変化しない。即ち、前記20個と前記28個を直列にすると、並列接続部分の1個ずつにおいて、取り出せる最大電力出力を実現し、38個各々が最大電力出力を実現できる。当然、A1〜B19の38個の合計電力出力も最大になる。 Here, let us consider a case where the 20 pieces and the 18 pieces are not connected in series but connected to the ninth power load 35 one by one. At this time, in the sixth embodiment, it is assumed that the current value is as follows due to the difference in temperature difference between both ends. That is, the current for one of the 20 thermoelectric conversion modules 13 in parallel is 0.9 times the current for one thermoelectric conversion module 13 in parallel (referred to as I5), that is, 0. It is assumed that 9 × I5. In this case, since the total current obtained by paralleling the 20 pieces and the total current obtained by paralleling the 18 pieces are both 18 × I5, even if the 20 pieces and the 18 pieces are connected in series, both parallel connection portions have the total current. The value does not change. That is, when the 20 pieces and the 28 pieces are connected in series, the maximum power output that can be taken out is realized in each of the parallel connection portions, and each of the 38 pieces can realize the maximum power output. Naturally, the total power output of 38 A1 to B19 is also maximized.
このように第6の実施形態によれば、図17のように配線接続することにより、第9の電力負荷35の取り出せる電力は最大になる。 As described above, according to the sixth embodiment, the power that can be extracted from the ninth power load 35 is maximized by wiring connection as shown in FIG.
但し、第6の実施形態では20個と18個の並列を作ってから直列にしたが、電流の比などによって、並列する個数の組合せを調節することになる。仮に並列接続部分の合計電流が異なる場合、直列にするとどちらの並列接続部分も合計電流が等しくなるため、どちらの並列接続部分も最大電力出力を実現する電流値からずれ、38個の合計電力出力は小さくなる。 However, in the sixth embodiment, 20 and 18 parallels are made and then connected in series. However, the combination of the numbers to be paralleled is adjusted depending on the current ratio or the like. If the total currents of the parallel connection parts are different, since the total currents of both parallel connection parts become equal when they are connected in series, both parallel connection parts deviate from the current value that achieves the maximum power output, and 38 total power outputs Becomes smaller.
なお、上述した例は、熱電変換モジュール13の配置や締め付け圧力分布についての一例にすぎず、配線接続のし方は上述した例に限らない。即ち、熱電変換モジュール13がそれぞれ単独で発生する電圧値の大小に応じてその大きさ別に各熱電変換モジュール13を分類し、同じ分類に属する熱電変換モジュール13同士(即ち、電圧値の近い熱電変換モジュール13同士)を並列に接続して並列接続部分を構成し、その際、前記並列接続部分がそれぞれ発生する電流値の差が小さくなるように並列接続する熱電変換モジュール13の個数を調節し、熱電変換モジュール13に未使用の物があれば、前記分類の手続きからやり直して、並列接続部分を製作した後、並列接続部分の全てを直列に接続するように電気的に配線するということである。この場合、直列にする並列接続部分は2つであるとは限らない。また、並列接続部分という単位1つが、1個の熱電変換モジュール13や、複数個の熱電変換モジュール13の直列接続部分であってもよい。 In addition, the example mentioned above is only an example about arrangement | positioning of the thermoelectric conversion module 13, and fastening pressure distribution, and how to perform wiring connection is not restricted to the example mentioned above. That is, each thermoelectric conversion module 13 is classified according to the magnitude of the voltage value generated independently by each thermoelectric conversion module 13, and the thermoelectric conversion modules 13 belonging to the same classification (that is, thermoelectric conversions having close voltage values). The modules 13) are connected in parallel to form a parallel connection portion, and at that time, the number of thermoelectric conversion modules 13 connected in parallel is adjusted so that a difference in current value generated between the parallel connection portions is reduced, If there is an unused thing in the thermoelectric conversion module 13, the procedure of the classification is repeated, and after the parallel connection portion is manufactured, the entire parallel connection portion is electrically wired so as to be connected in series. . In this case, there are not necessarily two parallel connection parts in series. One unit called a parallel connection part may be one thermoelectric conversion module 13 or a series connection part of a plurality of thermoelectric conversion modules 13.
また、熱電変換モジュール13の締め付け圧のムラ以外の原因で熱電変換モジュール13の両端温度差にムラが発生する場合や、熱電変換モジュール13各々の発電性能に、充分にバラツキがある場合に、この技術を適用しても、熱電変換モジュール13の締め付け圧のムラがある場合と同様の効果がある。 In addition, when there is unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 due to reasons other than uneven tightening pressure of the thermoelectric conversion module 13, or when the power generation performance of each thermoelectric conversion module 13 varies sufficiently, this Even if the technology is applied, the same effect as that in the case where the clamping pressure of the thermoelectric conversion module 13 is uneven is obtained.
<第7の実施形態> (請求項4に対応)
第7の実施形態を、図1〜図3,図18,図19を用いて説明する。ここでは、従来技術及び第1〜第6の実施形態と共通する要素には同一の符号を付し、重複する説明を省略する。
<Seventh Embodiment> (Corresponding to Claim 4)
A seventh embodiment will be described with reference to FIGS. 1 to 3, 18, and 19. Here, the same code | symbol is attached | subjected to the element which is common in a prior art and 1st-6th embodiment, and the overlapping description is abbreviate | omitted.
熱電変換モジュール13の配置は、第1,第4の実施形態と同様に図2,図3に示す配置とする。また、第4の実施形態と同様に、第1のチャンバ16と熱電変換モジュール13の伝熱面(図2では正方形)との接触面において、少なくとも一方の平面度が悪く、締め付け圧力分布を加味した接触熱抵抗は、A1,B2,B4ではより小さく、図18で(劣)という表記が付いているA2,A3,A4,B1,B3ではより大きいとする。この時、熱電変換モジュール13のチャンバ長手方向位置に関する締め付け位置9が図2,図3と同じでも異なっていてもよい。 The thermoelectric conversion module 13 is arranged as shown in FIGS. 2 and 3 as in the first and fourth embodiments. Similarly to the fourth embodiment, at the contact surface between the first chamber 16 and the heat transfer surface of the thermoelectric conversion module 13 (square in FIG. 2), at least one of the flatness is poor and the tightening pressure distribution is taken into consideration. It is assumed that the contact thermal resistance is smaller in A1, B2, and B4, and larger in A2, A3, A4, B1, and B3, which are marked (inferior) in FIG. At this time, the tightening position 9 regarding the position in the chamber longitudinal direction of the thermoelectric conversion module 13 may be the same as or different from those in FIGS.
さて、従来の電気配線は、構成上、接続しやすいので図18のようにA1〜A4、B1〜B4それぞれを並列に接続することが多い。そして図18では、並列接続したA1〜A4と並列接続したB1〜B4を直列に接続した後、第10の電力負荷36に接続している。 Since conventional electrical wiring is easy to connect in terms of configuration, A1 to A4 and B1 to B4 are often connected in parallel as shown in FIG. In FIG. 18, A1 to A4 connected in parallel and B1 to B4 connected in parallel are connected in series and then connected to the tenth power load 36.
ここで、接触熱抵抗の差のため、A1,B2,B4の3個における熱電変換モジュール13の両端温度差は、A2,A3,A4,B1,B3の5個における両端温度差より大きくなる。それでいながら並列に配線接続したA1〜A4にかかる電圧は同じ電圧値になるので、第5,第6の実施形態と同様に並列に配線接続したA1〜A4の合計発電量は、熱電変換モジュール13の発電能力の単純合計値より充分に小さくなる。B1〜B4においても同様である。熱電変換モジュール13各々の電流値は、両端温度差によって定められる電流電圧特性において、かかっている電圧値に対応する電流値であり、並列する4個の合計電流は前記電流値の単純和であり、前記4個ずつを直列にせず1組ずつ第10の電力負荷36に接続してみると、並列接続部分の合計電圧は異なる。この並列接続部分2組を並列にするとどちらの並列接続部分も合計電流が等しくなるため、どちらの並列接続部分も最大電力出力を実現する電流値からずれ、2組の並列接続部分はどちらも、さらに合計電力出力が小さくなる。当然、A1〜A4,B1〜B4の8個から取り出せる合計電力出力は小さくなる。 Here, due to the difference in contact thermal resistance, the temperature difference between both ends of the thermoelectric conversion module 13 in three of A1, B2, and B4 is larger than the temperature difference between both ends of five of A2, A3, A4, B1, and B3. Nevertheless, since the voltages applied to A1 to A4 wired in parallel have the same voltage value, the total power generation amount of A1 to A4 wired in parallel as in the fifth and sixth embodiments is the thermoelectric conversion module. It is sufficiently smaller than the simple total value of 13 power generation capacities. The same applies to B1 to B4. The current value of each thermoelectric conversion module 13 is a current value corresponding to the applied voltage value in the current-voltage characteristics determined by the temperature difference between both ends, and the four total currents in parallel are a simple sum of the current values. When the four pieces are connected in series to the tenth power load 36 instead of in series, the total voltage of the parallel connection portions is different. When two parallel connection parts are paralleled, the total current becomes equal in both parallel connection parts. Therefore, both parallel connection parts deviate from the current value that achieves the maximum power output. Furthermore, the total power output is reduced. Naturally, the total power output that can be extracted from eight of A1 to A4 and B1 to B4 is small.
上述に対して、第7の実施形態では図19のように配線接続する。即ち、両端温度差がほぼ同じである熱電変換モジュール13であるA1,B2,B4の3個を並列に接続し、B1,B3,A2,A3,A4の5個を並列に接続し、その2組を直列に接続してから第10の電力負荷36に接続する。 In contrast to the above, in the seventh embodiment, wiring connection is made as shown in FIG. That is, three thermoelectric conversion modules A1, B2, and B4 having the same temperature difference at both ends are connected in parallel, and five of B1, B3, A2, A3, and A4 are connected in parallel. The sets are connected in series and then connected to the tenth power load 36.
このように接続すると、第5,第6の実施形態と同様に、前記3個において同じ電圧値になり合計電流値は1個分の3倍になり、前記5個において同じ電圧値になり合計電流値は1個分の5倍になる。 When connected in this way, as in the fifth and sixth embodiments, the three have the same voltage value and the total current value is three times that of one, and the five have the same voltage value and the total. The current value is five times that of one.
ここで、前記3個と前記5個を直列にせず1組ずつ第10の電力負荷36に接続する場合を考える。この時、第7の実施形態では両端温度差の違いによって電流値が以下のようになっているとする。即ち、5個並列している熱電変換モジュール13の1個分の電流が、3個並列している熱電変換モジュール13の1個分の電流(I6とする)の、0.6倍即ち0.6×I6であるとする。図19中の該当する熱電変換モジュール13には、位置表示記号の後に<0.6>という表記を付けている。この場合、前記5個を並列した合計電流と前記3個を並列した合計電流はどちらも3×I6となるので、前記3個と前記5個を直列にしてもどちらの並列接続部分も合計電流値は変化しない。即ち、前記3個と前記5個を直列にすると、並列接続部分の1個ずつにおいて、取り出せる最大電力出力を実現し、8個各々が最大電力出力を実現できる。当然、A1〜A4,B1〜B4の8個の合計電力出力も最大になる。 Here, let us consider a case where the three and the five are not connected in series but connected to the tenth power load 36 one by one. At this time, in the seventh embodiment, it is assumed that the current value is as follows due to the difference in temperature difference between both ends. That is, the current for one of the five thermoelectric conversion modules 13 in parallel is 0.6 times the current for one thermoelectric conversion module 13 in parallel (referred to as I6), that is, 0.1. Assume 6 × I6. The corresponding thermoelectric conversion module 13 in FIG. 19 is labeled <0.6> after the position display symbol. In this case, the total current obtained by paralleling the five and the total current obtained by paralleling the three are 3 × I6. Therefore, even if the three and the five are connected in series, both parallel connection portions have a total current. The value does not change. That is, when the three and the five are connected in series, the maximum power output that can be taken out is realized in each of the parallel connection portions, and each of the eight can realize the maximum power output. Naturally, the total power output of eight of A1 to A4 and B1 to B4 is also maximized.
このように第7の実施形態によれば、図19のように配線接続することにより、第10の電力負荷36の取り出せる電力は最大になる。 As described above, according to the seventh embodiment, the power that can be taken out by the tenth power load 36 is maximized by wiring connection as shown in FIG.
但し、第7の実施形態では3個と5個の並列を作ってから直列にしたが、1個分が発生する電流の比によって、並列する個数の組合せを調節することになる。仮に並列接続部分の合計電流が異なる場合、直列にするとどちらの並列接続部分も合計電流が等しくなるため、どちらの並列接続部分も最大電力出力を実現する電流値からずれ、8個の合計電力出力は小さくなる。 However, in the seventh embodiment, 3 and 5 parallels are made and then connected in series, but the combination of the number of parallels is adjusted according to the ratio of the current generated by one. If the total currents of the parallel connection parts are different, the total currents of both parallel connection parts become equal when they are connected in series, so that both parallel connection parts deviate from the current value that achieves the maximum power output, and the total power output of 8 Becomes smaller.
なお、上述した例は、熱電変換モジュール13の配置や締め付け圧力分布についての一例にすぎず、配線接続のし方は上述した例に限らない。即ち、熱電変換モジュール13がそれぞれ単独で発生する電流値の大小に応じてその大きさ別に各熱電変換モジュール13を分類し、同じ分類に属する熱電変換モジュール13同士(即ち、電流値の近い熱電変換モジュール13同士)を直列に接続して直列接続部分を構成し、その際、前記直列接続部分がそれぞれ発生する電圧値の差が小さくなるように直列接続する熱電変換モジュール13の個数を調節し、熱電変換モジュール13に未使用の物があれば、前記分類の手続きからやり直して、直列接続部分を製作した後、前記直列接続部分の全てを並列に接続するように電気的に配線するということである。この場合、直列にする並列接続部分は2つであるとは限らない。また、並列接続部分という単位1つが、1個の熱電変換モジュール13や、複数個の熱電変換モジュール13の直列接続部分であってもよい。 In addition, the example mentioned above is only an example about arrangement | positioning of the thermoelectric conversion module 13, and fastening pressure distribution, and how to perform wiring connection is not restricted to the example mentioned above. That is, each thermoelectric conversion module 13 is classified according to the magnitude of the current value generated independently by each thermoelectric conversion module 13, and the thermoelectric conversion modules 13 belonging to the same classification (that is, thermoelectric conversions having close current values). Modules 13) are connected in series to form a serial connection portion, and at that time, the number of thermoelectric conversion modules 13 connected in series is adjusted so that a difference in voltage value generated between the serial connection portions is reduced, If there is an unused thing in the thermoelectric conversion module 13, the procedure of the classification is repeated, and after the serial connection portion is manufactured, the entire serial connection portion is electrically wired so as to be connected in parallel. is there. In this case, there are not necessarily two parallel connection parts in series. One unit called a parallel connection part may be one thermoelectric conversion module 13 or a series connection part of a plurality of thermoelectric conversion modules 13.
また、熱電変換モジュール13の締め付け圧のムラ以外の原因で熱電変換モジュール13の両端温度差にムラが発生する場合や、熱電変換モジュール13各々の発電性能に、充分にバラツキがある場合に、この技術を適用しても、熱電変換モジュール13の締め付け圧のムラがある場合と同様の効果がある。 In addition, when there is unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 due to reasons other than uneven tightening pressure of the thermoelectric conversion module 13, or when the power generation performance of each thermoelectric conversion module 13 varies sufficiently, this Even if the technology is applied, the same effect as that in the case where the clamping pressure of the thermoelectric conversion module 13 is uneven is obtained.
<第8の実施形態> (請求項5,6に対応)
第8の実施形態を、図20を用いて説明する。ここでは、従来技術及び第1〜第7の実施形態と共通する要素には同一の符号を付し、重複する説明を省略する。
<Eighth Embodiment> (Corresponding to Claims 5 and 6)
The eighth embodiment will be described with reference to FIG. Here, the same code | symbol is attached | subjected to the element which is common in a prior art and 1st-7th embodiment, and the overlapping description is abbreviate | omitted.
図20では熱電変換モジュール13のそれぞれを丸で囲んだ数字で表記している。但し、本文中では丸括弧で括った数字で表記する。 In FIG. 20, each of the thermoelectric conversion modules 13 is indicated by a circled number. However, in the text, it is indicated by numbers enclosed in parentheses.
第1〜第7の実施形態では、複数組の直列接続部分をまとめて並列にしている、あるいは複数組の並列接続部分をまとめて直列にしているが、第8の実施形態では、直列接続部分、並列接続部分をどちらも複数にする。即ち、図20のように、「(1)と(2)」が、「(3)と(4)と(5)」がそれぞれの組合せ内にてほぼ同じ両端温度差であるものとして直列接続する。また、「(1)と(2)の直列接続部分」と「(3)と(4)と(5)の直列接続部分」とは電力出力が最高になる電圧がほぼ同じであるものとして、並列接続する。また、この並列接続部分と(6)とは電力出力が最高になる電流がほぼ同じであるものとして、直列接続する。同様に(1)〜(11)までを接続した後、第11の電力負荷37につなぐ。 In the first to seventh embodiments, a plurality of sets of series connection portions are collectively arranged in parallel, or a plurality of sets of parallel connection portions are arranged in series, but in the eighth embodiment, the series connection portions are combined. Both are connected in parallel. That is, as shown in FIG. 20, “(1) and (2)” is connected in series, assuming that “(3), (4) and (5)” are substantially the same temperature difference at both ends in each combination. To do. In addition, it is assumed that “(1) and (2) series connection portion” and “(3), (4) and (5) series connection portion” have substantially the same voltage at which the power output becomes the highest. Connect in parallel. Further, the parallel connection portion and (6) are connected in series assuming that the currents at which the power output is highest are substantially the same. Similarly, after connecting (1) to (11), it is connected to the eleventh power load 37.
11個の熱電変換モジュール13により取り出せる電力出力は最大になるが、第8の実施形態によれば、直列接続、並列接続どちらも複数にすることにより、最適化の自由度が上がっている。 Although the power output that can be taken out by the eleven thermoelectric conversion modules 13 is maximized, according to the eighth embodiment, the degree of freedom in optimization is increased by using a plurality of serial connections and parallel connections.
なお、上述した例は、熱電変換モジュール13の配置や締め付け圧力分布についての一例にすぎず、配線接続のし方は上述した例に限らない。即ち、並列接続した直列接続部分の内、少なくとも1つにて、熱電変換モジュールを並列に接続して構成される並列接続部分を含んでいてもよいし、あるいは、直列接続した並列接続部分の内、少なくとも1つにて、熱電変換モジュールを直列に接続している部分を含んでいてもよい。この場合、直列接続部分という単位1つが、1個の熱電変換モジュール13であってもよいし、並列接続部分という単位1つが、1個の熱電変換モジュール13や、複数個の熱電変換モジュール13の直列接続部分であってもよい。 In addition, the example mentioned above is only an example about arrangement | positioning of the thermoelectric conversion module 13, and fastening pressure distribution, and how to perform wiring connection is not restricted to the example mentioned above. That is, at least one of the serial connection portions connected in parallel may include a parallel connection portion configured by connecting the thermoelectric conversion modules in parallel, or may be included in the parallel connection portions connected in series. In addition, at least one portion may include a portion where the thermoelectric conversion modules are connected in series. In this case, one unit called a serial connection portion may be one thermoelectric conversion module 13, or one unit called a parallel connection portion may be one thermoelectric conversion module 13 or a plurality of thermoelectric conversion modules 13. It may be a serial connection part.
また、熱電変換モジュール13の締め付け圧のムラ以外の原因で熱電変換モジュール13の両端温度差にムラが発生する場合や、熱電変換モジュール13各々の発電性能に、充分にバラツキがある場合に、この技術を適用しても、熱電変換モジュール13の締め付け圧のムラがある場合と同様の効果がある。 In addition, when there is unevenness in the temperature difference between both ends of the thermoelectric conversion module 13 due to reasons other than uneven tightening pressure of the thermoelectric conversion module 13, or when the power generation performance of each thermoelectric conversion module 13 varies sufficiently, this Even if the technology is applied, the same effect as that in the case where the clamping pressure of the thermoelectric conversion module 13 is uneven is obtained.
以上詳述したように、各実施形態によれば、熱電変換モジュール13の締め付け圧にムラがある条件下などにて、できるだけ多くの発電量を発生させることができる。 As described in detail above, according to each embodiment, it is possible to generate as much power generation as possible under the condition that the clamping pressure of the thermoelectric conversion module 13 is uneven.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1…熱電発電装置、3…制御装置、4…テレビ装置、5…照明機器、6…表示機器、7…チャンバ長手方向の位置、8…チャンバによる挟み込み位置、9…締め付け位置、10…シャーシ、11…チャンバ、11A…高温チャンバ、11B…低温チャンバ、12…熱電変換モジュール収納部(スロット)、13…熱電変換モジュール、14…配線、15…高熱伝導材料、16…第1のチャンバ、17…第2のチャンバ、18…第3のチャンバ、19…第1の電力負荷、20a、20b…電極、21a、21b…絶縁板、22s、22b…半導体素子、23a、23b…電極取出し口、24…第2の電力負荷、25…第3の電力負荷、26…第4の電力負荷、27…第5の電力負荷、28…第6の電力負荷、29…第7の電力負荷、30…第8の電力負荷、31A…高温供給用配管、31B…低温供給用配管、32A…高温供給用ヘッダ、32B…低温供給用ヘッダ、33A…高温供給用配管接合部、33B…低温供給用配管接合部、34A…高温供給用ヘッダ接合部、34B…低温供給用ヘッダ接合部、35…第9の電力負荷、36…第10の電力負荷、37…第11の電力負荷、38…両端温度差大での電流電圧特性、39…両端温度差小での電流電圧特性、40…両端温度差大での電流電力特性、41A…高温排出用配管、41B…低温排出用配管、42A…高温排出用ヘッダ、42B…低温排出用ヘッダ、43A…高温排出用配管接合部、43B…低温排出用配管接合部、44A…高温排出用ヘッダ接合部、44B…低温排出用ヘッダ接合部、45…両端温度差小での電流電力特性、46…両端温度差大での電圧電力特性、47…両端温度差小での電圧電力特性、50…締め付け用治具、51…金具、52,53…ボルト、54…バネ。 DESCRIPTION OF SYMBOLS 1 ... Thermoelectric power generation device, 3 ... Control apparatus, 4 ... Television apparatus, 5 ... Illumination equipment, 6 ... Display equipment, 7 ... Position of a chamber longitudinal direction, 8 ... Position between clamping by a chamber, 9 ... Tightening position, 10 ... Chassis, DESCRIPTION OF SYMBOLS 11 ... Chamber, 11A ... High temperature chamber, 11B ... Low temperature chamber, 12 ... Thermoelectric conversion module accommodating part (slot), 13 ... Thermoelectric conversion module, 14 ... Wiring, 15 ... High heat conductive material, 16 ... 1st chamber, 17 ... 2nd chamber, 18 ... 3rd chamber, 19 ... 1st electric power load, 20a, 20b ... Electrode, 21a, 21b ... Insulating plate, 22s, 22b ... Semiconductor element, 23a, 23b ... Electrode extraction port, 24 ... 2nd power load, 25 ... 3rd power load, 26 ... 4th power load, 27 ... 5th power load, 28 ... 6th power load, 29 ... 7th power load, 30 ... 8th Power load, 31A ... High temperature supply pipe, 31B ... Low temperature supply pipe, 32A ... High temperature supply header, 32B ... Low temperature supply header, 33A ... High temperature supply pipe joint, 33B ... Low temperature supply pipe joint, 34A ... header junction for high temperature supply, 34B ... header junction for low temperature supply, 35 ... ninth power load, 36 ... tenth power load, 37 ... eleventh power load, 38 ... current at large temperature difference at both ends Voltage characteristics 39 ... Current voltage characteristics with small temperature difference at both ends, 40 ... Current power characteristics with large temperature difference at both ends, 41A ... High temperature discharge piping, 41B ... Low temperature discharge piping, 42A ... High temperature discharge header, 42B ... Low temperature discharge header, 43A ... High temperature discharge pipe joint, 43B ... Low temperature discharge pipe joint, 44A ... High temperature discharge header joint, 44B ... Low temperature discharge header joint, 45 ... Current with small temperature difference at both ends Electric Characteristics, voltage power characteristics at 46 ... across a temperature difference large, the voltage power characteristics at 47 ... across the temperature difference is small, 50 ... tightening jig 51 ... fitting, 52 ... bolt, 54 ... spring.
Claims (6)
熱電変換モジュールがそれぞれ単独で発生する電流値の大小に応じてその大きさ別に各熱電変換モジュールを分類し、同じ分類に属する熱電変換モジュール同士を直列に接続して直列接続部分を構成するように電気的に配線したことを特徴とする熱電発電装置。 In a thermoelectric conversion device comprising three or more thermoelectric conversion modules that generate power due to a temperature difference between both surfaces, and a configuration that causes a temperature difference between both surfaces of the thermoelectric conversion module by means of a heat source and a cold heat source,
Each thermoelectric conversion module is classified according to the magnitude of the current value generated by each thermoelectric conversion module, and the thermoelectric conversion modules belonging to the same classification are connected in series to form a serial connection portion. A thermoelectric generator characterized by electrical wiring.
熱電変換モジュールがそれぞれ単独で発生する電流値の大小に応じてその大きさ別に各熱電変換モジュールを分類し、同じ分類に属する熱電変換モジュール同士を直列に接続して直列接続部分を構成し、その際、前記直列接続部分がそれぞれ発生する電圧値の差が小さくなるように直列接続する前記熱電変換モジュールの個数を調節し、前記熱電変換モジュールに未使用の物があれば、前記分類の手続きからやり直して、直列接続部分を製作した後、前記直列接続部分の全てを並列に接続するように電気的に配線したことを特徴とする熱電発電装置。 In a thermoelectric conversion device comprising three or more thermoelectric conversion modules that generate power due to a temperature difference between both surfaces, and a configuration that causes a temperature difference between both surfaces of the thermoelectric conversion module by means of a heat source and a cold heat source,
Each thermoelectric conversion module is classified according to the magnitude of the current value generated independently by each thermoelectric conversion module, and the thermoelectric conversion modules belonging to the same classification are connected in series to form a serial connection part. At this time, the number of the thermoelectric conversion modules connected in series is adjusted so that the difference between the voltage values generated by the serial connection portions is reduced, and if there is an unused one in the thermoelectric conversion module, the procedure of the classification is performed. The thermoelectric power generator is characterized in that, after making a series connection part again, the whole series connection part is electrically wired so as to be connected in parallel.
熱電変換モジュールがそれぞれ単独で発生する電圧値の大小に応じてその大きさ別に各熱電変換モジュールを分類し、同じ分類に属する熱電変換モジュール同士を並列に接続して並列接続部分を構成するように電気的に配線したことを特徴とする熱電発電装置。 In a thermoelectric conversion device comprising three or more thermoelectric conversion modules that generate power due to a temperature difference between both surfaces, and a configuration that causes a temperature difference between both surfaces of the thermoelectric conversion module by means of a heat source and a cold heat source,
Each thermoelectric conversion module is classified according to the magnitude of the voltage value generated independently by each thermoelectric conversion module, and the thermoelectric conversion modules belonging to the same classification are connected in parallel to form a parallel connection part. A thermoelectric generator characterized by electrical wiring.
熱電変換モジュールがそれぞれ単独で発生する電圧値の大小に応じてその大きさ別に各熱電変換モジュールを分類し、同じ分類に属する熱電変換モジュール同士を並列に接続して並列接続部分を構成し、その際、前記並列接続部分がそれぞれ発生する電流値の差が小さくなるように並列接続する前記熱電変換モジュールの個数を調節し、前記熱電変換モジュールに未使用の物があれば、前記分類の手続きからやり直して、並列接続部分を製作した後、前記並列接続部分の全てを直列に接続するように電気的に配線したことを特徴とする熱電発電装置。 In a thermoelectric conversion device comprising three or more thermoelectric conversion modules that generate power due to a temperature difference between both surfaces, and a configuration that causes a temperature difference between both surfaces of the thermoelectric conversion module by means of a heat source and a cold heat source,
Each thermoelectric conversion module is classified according to the magnitude of the voltage value generated independently by each thermoelectric conversion module, and the thermoelectric conversion modules belonging to the same classification are connected in parallel to form a parallel connection part. At this time, the number of the thermoelectric conversion modules connected in parallel is adjusted so that the difference in the current value generated by each of the parallel connection portions is small, and if there is an unused one in the thermoelectric conversion module, the procedure of the classification is performed. The thermoelectric power generation apparatus is characterized in that, after performing again, a parallel connection portion is manufactured, and then the parallel connection portions are all electrically connected so as to be connected in series.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013193365A JP2015060935A (en) | 2013-09-18 | 2013-09-18 | Thermoelectric generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013193365A JP2015060935A (en) | 2013-09-18 | 2013-09-18 | Thermoelectric generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015060935A true JP2015060935A (en) | 2015-03-30 |
Family
ID=52818231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013193365A Pending JP2015060935A (en) | 2013-09-18 | 2013-09-18 | Thermoelectric generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015060935A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180076025A (en) * | 2016-12-27 | 2018-07-05 | 한국과학기술원 | Thermoelectric generator and thermoelectric generator system including harvesting module array for thermal energy harvesting and reconfiguration method for harvesting module array |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07335944A (en) * | 1994-06-06 | 1995-12-22 | Hitachi Ltd | Direct thermoelectric transducer and manufacture of its component element |
JPH1132492A (en) * | 1997-05-14 | 1999-02-02 | Nissan Motor Co Ltd | Thermoelectric generation device and its drive method |
JP2000286468A (en) * | 1999-03-31 | 2000-10-13 | Nhk Spring Co Ltd | Thermoelectric conversion module and thermoelectric conversion module block |
JP2005269713A (en) * | 2004-03-16 | 2005-09-29 | Toyota Motor Corp | Thermal power generator |
-
2013
- 2013-09-18 JP JP2013193365A patent/JP2015060935A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07335944A (en) * | 1994-06-06 | 1995-12-22 | Hitachi Ltd | Direct thermoelectric transducer and manufacture of its component element |
JPH1132492A (en) * | 1997-05-14 | 1999-02-02 | Nissan Motor Co Ltd | Thermoelectric generation device and its drive method |
JP2000286468A (en) * | 1999-03-31 | 2000-10-13 | Nhk Spring Co Ltd | Thermoelectric conversion module and thermoelectric conversion module block |
JP2005269713A (en) * | 2004-03-16 | 2005-09-29 | Toyota Motor Corp | Thermal power generator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180076025A (en) * | 2016-12-27 | 2018-07-05 | 한국과학기술원 | Thermoelectric generator and thermoelectric generator system including harvesting module array for thermal energy harvesting and reconfiguration method for harvesting module array |
KR101909792B1 (en) * | 2016-12-27 | 2018-10-18 | 한국과학기술원 | Thermoelectric generator and thermoelectric generator system including harvesting module array for thermal energy harvesting and reconfiguration method for harvesting module array |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10270119B2 (en) | Fuel cell stack arrangement | |
US8378205B2 (en) | Thermoelectric heat exchanger | |
JP2011181767A (en) | Thermoelectric power generation device and thermoelectric power generation system | |
US20130213449A1 (en) | Thermoelectric plate and frame exchanger | |
JP2012080761A (en) | Temperature difference power generation apparatus and thermoelectric conversion element frame | |
JP2011176131A (en) | Thermoelectric generator and thermoelectric power generation system | |
US9755132B2 (en) | Thermoelectric generation unit and thermoelectric generation system | |
US20150325768A1 (en) | Thermoelectric generator and production method for the same | |
JP6199627B2 (en) | Temperature difference generator | |
US20150228882A1 (en) | Thermal power generation unit and thermoelectric power generation system | |
JP2015012172A (en) | Thermoelectric power generation device | |
JP2015060935A (en) | Thermoelectric generator | |
JP6456160B2 (en) | Thermoelectric generator unit and thermoelectric generator system | |
WO2014177336A1 (en) | Solid oxide stack system with thermally matched stack integrated heat exchanger | |
US20150188018A1 (en) | Thermoelectric generator system | |
JP5191926B2 (en) | Thermoelectric generator | |
US9368708B2 (en) | Thermoelectric generation unit and thermoelectric generation system | |
JP6139348B2 (en) | Thermoelectric generator | |
US10873018B2 (en) | Thermoelectric generator system | |
JP6064804B2 (en) | Power converter | |
JP2015050306A (en) | Thermoelectric generator | |
JP6906250B2 (en) | Thermoelectric generator | |
JP2016178147A (en) | Thermoelectric power generation device | |
US20180277731A1 (en) | Electricity generating device and thermoelectric module | |
JP2016063075A (en) | Thermoelectric generation unit, thermoelectric generation system, and thermoelectric generation module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170117 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170829 |