JP2015059718A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2015059718A
JP2015059718A JP2013194304A JP2013194304A JP2015059718A JP 2015059718 A JP2015059718 A JP 2015059718A JP 2013194304 A JP2013194304 A JP 2013194304A JP 2013194304 A JP2013194304 A JP 2013194304A JP 2015059718 A JP2015059718 A JP 2015059718A
Authority
JP
Japan
Prior art keywords
heat exchanger
side heat
usage
stage compressor
operation mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013194304A
Other languages
Japanese (ja)
Other versions
JP5751299B2 (en
Inventor
西村 忠史
Tadashi Nishimura
忠史 西村
松井 伸樹
Nobuki Matsui
伸樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2013194304A priority Critical patent/JP5751299B2/en
Priority to CN201480051053.4A priority patent/CN105556219A/en
Priority to EP14846460.5A priority patent/EP3048386A4/en
Priority to PCT/JP2014/074210 priority patent/WO2015041166A1/en
Publication of JP2015059718A publication Critical patent/JP2015059718A/en
Application granted granted Critical
Publication of JP5751299B2 publication Critical patent/JP5751299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating device that improves operating efficiency.SOLUTION: A refrigerating device comprises a heat source side unit 50, utilization side units 21 and 22, and four-way valves 55 and 56. A low-stage compressor 51a and a high-stage compressor 51c are connected in series via an intermediate-pressure pipe 51b. The four-way valves 55 and 56 switch a first state and a second state. The first state is a state where an intermediate-pressure refrigerant flows to a heat source side heat exchanger 53 after being discharged from the low-stage compressor 51a and flowing to the intermediate-pressure pipe 51b. The second state is a state where the intermediate-pressure refrigerant flows to a utilization side heat exchanger 22a.

Description

本発明は、冷凍装置に関する。   The present invention relates to a refrigeration apparatus.

従来の冷凍装置として、熱源側ユニットと、複数台の利用側ユニットとを備えた、冷暖房同時運転が可能な空気調和装置が存在する。例えば、特許文献1(特開2003−130492号公報)には、冷房主体(暖房小容量)運転、全室冷房運転、暖房主体(冷房小容量)運転、および全室暖房運転が可能な空気調和機が開示されている。   As a conventional refrigeration apparatus, there is an air conditioner that includes a heat source side unit and a plurality of usage side units and can be operated simultaneously with air conditioning. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-130492) discloses air conditioning capable of cooling main (small heating capacity) operation, all-room cooling operation, heating main (cooling small capacity) operation, and all-room heating operation. A machine is disclosed.

従来の冷暖房同時運転が可能な冷凍装置において、圧縮機が1つだけの場合には、高圧および低圧のそれぞれの圧力値は1つとなり、外気温度によっては冷凍装置が過剰な高低差圧で運転されているという状況になる。このように必要以上に大きい高低差圧をつけて運転を行うことは、省エネルギーの要請に反することになる。   In a conventional refrigeration system capable of simultaneous cooling and heating, when there is only one compressor, each of the high pressure and low pressure values becomes one, and the refrigeration system operates at an excessively high or low differential pressure depending on the outside air temperature. It will be the situation that has been. It is contrary to the request | requirement of energy saving to operate | move by applying the high and low differential pressure larger than necessary in this way.

これに対し、上述の特許文献1(特開2003−130492号公報)に記載の空気調和機では、インバータ圧縮機と、それとは別に並列に配置されている定速圧縮機との吐出圧力を、別々に設定できるようにしている。そして、冷房運転の冷凍サイクルで使用する定速圧縮機と、暖房運転の冷凍サイクルで使用するインバータ圧縮機との各吐出圧力を、各運転での効率が高くなるように設定している。   On the other hand, in the air conditioner described in Patent Document 1 (Japanese Patent Laid-Open No. 2003-130492) described above, the discharge pressure of the inverter compressor and the constant speed compressor arranged in parallel separately from the inverter compressor, It can be set separately. And each discharge pressure of the constant speed compressor used in the refrigerating cycle of air_conditionaing | cooling operation and the inverter compressor used in the refrigerating cycle of heating operation is set so that the efficiency in each operation may become high.

しかし、さらに別の冷凍サイクルの構成を備えた冷凍装置であって、運転効率の良い冷凍装置が求められている。   However, there is a demand for a refrigeration apparatus having a further refrigeration cycle configuration and having high operating efficiency.

本発明の課題は、運転効率が向上する冷凍装置を提供することにある。   An object of the present invention is to provide a refrigeration apparatus with improved operating efficiency.

本発明の第1観点に係る冷凍装置は、熱源側ユニットと、第1利用側ユニットと、第2利用側ユニットと、切換機構とを備えている。熱源側ユニットは、低段圧縮機および高段圧縮機を含む圧縮機構と、熱源側熱交換器と、熱源側膨張機構と、を有する。第1利用側ユニットは、第1利用側熱交換器と、第1利用側膨張機構と、を有する。第2利用側ユニットは、第2利用側熱交換器と、第2利用側膨張機構と、を有する。切換機構は、圧縮機構から熱源側熱交換器、第1利用側熱交換器および第2利用側熱交換器へと流れる冷媒の経路を切り換える。そして、低段圧縮機と高段圧縮機とは、中間圧配管を介して直列に結ばれている。切換機構は、第1状態と第2状態とが切り換わる機構である。第1状態は、低段圧縮機から吐出されて中間圧配管に流れた中間圧冷媒が、熱源側熱交換器へと流れる状態である。第2状態は、中間圧冷媒が、第1利用側熱交換器あるいは第2利用側熱交換器へと流れる状態である。   The refrigeration apparatus according to the first aspect of the present invention includes a heat source side unit, a first usage side unit, a second usage side unit, and a switching mechanism. The heat source side unit has a compression mechanism including a low stage compressor and a high stage compressor, a heat source side heat exchanger, and a heat source side expansion mechanism. The first usage-side unit includes a first usage-side heat exchanger and a first usage-side expansion mechanism. The second usage side unit includes a second usage side heat exchanger and a second usage side expansion mechanism. The switching mechanism switches the path of the refrigerant flowing from the compression mechanism to the heat source side heat exchanger, the first usage side heat exchanger, and the second usage side heat exchanger. The low-stage compressor and the high-stage compressor are connected in series via an intermediate pressure pipe. The switching mechanism is a mechanism that switches between the first state and the second state. The first state is a state where the intermediate pressure refrigerant discharged from the low stage compressor and flowing to the intermediate pressure pipe flows to the heat source side heat exchanger. The second state is a state in which the intermediate pressure refrigerant flows to the first usage side heat exchanger or the second usage side heat exchanger.

ここでは、低段圧縮機と高段圧縮機とを直列に結ぶ構成を採った上で、低段圧縮機から吐出されて中間圧配管に流れた中間圧冷媒が、第1状態においては熱源側熱交換器へと流れ、第2状態においては第1利用側熱交換器あるいは第2利用側熱交換器へと流れるように冷媒回路を構成している。この本発明に係る冷凍装置によれば、例えば、外気温度が低く熱源側熱交換器で高圧冷媒を必要としない場合に、切換機構を第1状態にして運転効率を向上させることができる。また、例えば、外気温度が高いときに第1利用側熱交換器を蒸発器として機能させつつ第2利用側熱交換器を小さな熱負荷に対して放熱器として機能させる必要がある場合に、切換機構を第2状態にして中間圧冷媒を第2利用側熱交換器に送ることで冷凍装置の運転効率を向上させることができる。   Here, the intermediate-pressure refrigerant discharged from the low-stage compressor and flowing into the intermediate-pressure pipe after the configuration in which the low-stage compressor and the high-stage compressor are connected in series is the heat source side in the first state. The refrigerant circuit is configured to flow to the heat exchanger and to flow to the first usage side heat exchanger or the second usage side heat exchanger in the second state. According to the refrigeration apparatus according to the present invention, for example, when the outside air temperature is low and the high-pressure refrigerant is not required in the heat source side heat exchanger, the switching mechanism can be set to the first state to improve the operation efficiency. Also, for example, when the outside temperature is high, the first usage side heat exchanger functions as an evaporator, and the second usage side heat exchanger needs to function as a radiator for a small heat load. The operating efficiency of the refrigeration apparatus can be improved by setting the mechanism to the second state and sending the intermediate pressure refrigerant to the second use side heat exchanger.

本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、切換機構を制御する制御部をさらに備えている。制御部は、第1利用側熱交換器が蒸発器として機能し且つ第2利用側熱交換器が放熱器として機能する中間圧利用運転モードを有している。この中間圧利用運転モードにおいて、制御部は、低段圧縮機から吐出されて中間圧配管に流れた中間圧冷媒が、熱源側熱交換器、第1利用側熱交換器、あるいは第2利用側熱交換器へと直接流れるように、切換機構を制御する。   The refrigeration apparatus according to the second aspect of the present invention is the refrigeration apparatus according to the first aspect, further comprising a control unit that controls the switching mechanism. The control unit has an intermediate pressure use operation mode in which the first use side heat exchanger functions as an evaporator and the second use side heat exchanger functions as a radiator. In this intermediate pressure use operation mode, the control unit is configured such that the intermediate pressure refrigerant discharged from the low-stage compressor and flowing into the intermediate pressure pipe is the heat source side heat exchanger, the first use side heat exchanger, or the second use side. The switching mechanism is controlled to flow directly to the heat exchanger.

ここでは、運転モードとして中間圧利用運転モードが設けられているため、従来から利用されている高段圧縮機から吐出された高圧冷媒だけではなく中間圧冷媒を積極的に利用して冷凍装置の運転効率を向上させることが可能になる。   Here, since the intermediate pressure use operation mode is provided as the operation mode, not only the high-pressure refrigerant discharged from the conventionally used high-stage compressor but also the intermediate-pressure refrigerant is positively used. Driving efficiency can be improved.

本発明の第3観点に係る冷凍装置は、第1観点に係る冷凍装置であって、切換機構を制御する制御部をさらに備えている。制御部は、第1混在運転モードおよび第2混在運転モードを有している。第1混在運転モードおよび第2混在運転モードでは、第1利用側熱交換器が蒸発器として機能し、且つ、第2利用側熱交換器が放熱器として機能する。制御部は、第1混在運転モードにおいて、低段圧縮機から吐出されて中間圧配管に流れた中間圧冷媒が、第2利用側熱交換器へと流れるように、切換機構を制御する。また、制御部は、第2混在運転モードにおいて、高段圧縮機から吐出された高圧冷媒が、第2利用側熱交換器へと流れるように、切換機構を制御する。   The refrigeration apparatus according to the third aspect of the present invention is the refrigeration apparatus according to the first aspect, further comprising a control unit that controls the switching mechanism. The control unit has a first mixed operation mode and a second mixed operation mode. In the first mixed operation mode and the second mixed operation mode, the first usage-side heat exchanger functions as an evaporator, and the second usage-side heat exchanger functions as a radiator. In the first mixed operation mode, the control unit controls the switching mechanism so that the intermediate pressure refrigerant discharged from the low-stage compressor and flowing to the intermediate pressure pipe flows to the second usage-side heat exchanger. Moreover, a control part controls a switching mechanism so that the high pressure refrigerant | coolant discharged from the high stage compressor may flow into a 2nd utilization side heat exchanger in 2nd mixed operation mode.

ここでは、蒸発器として利用側熱交換器が機能する利用側ユニットと、放熱器として利用側熱交換器が機能する利用側ユニットとが混在する運転モードとして、第1混在運転モードと第2混在運転モードとが設けられている。そして、第2利用側熱交換器に対して、第1混在運転モードでは中間圧冷媒が流れ、第2混在運転モードでは高圧冷媒が流れる。このように、この冷凍装置では、利用側熱交換器に対し高圧冷媒を流す選択に加えて、利用側熱交換器に対し中間圧冷媒を流す選択が可能になっており、利用側ユニットの設置空間の熱負荷が小さい場合に中間圧冷媒を使って冷凍装置全体の運転効率を向上させることが可能になる。   Here, the first mixed operation mode and the second mixture are used as an operation mode in which the use side unit in which the use side heat exchanger functions as an evaporator and the use side unit in which the use side heat exchanger functions as a radiator are mixed. An operation mode is provided. And with respect to the 2nd utilization side heat exchanger, an intermediate pressure refrigerant flows in the 1st mixed operation mode, and a high pressure refrigerant flows in the 2nd mixed operation mode. As described above, in this refrigeration apparatus, in addition to the selection of flowing the high-pressure refrigerant to the usage-side heat exchanger, the selection of flowing the intermediate-pressure refrigerant to the usage-side heat exchanger is possible. When the heat load of the space is small, it is possible to improve the operation efficiency of the entire refrigeration apparatus using the intermediate pressure refrigerant.

本発明の第4観点に係る冷凍装置は、第3観点に係る冷凍装置であって、制御部は、第1混在運転モードにおいて、中間圧冷媒が第2利用側熱交換器へと流れるように、且つ、高段圧縮機から吐出された高圧冷媒が熱源側熱交換器へと流れるように、切換機構を制御する。   A refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to the third aspect, wherein the control unit causes the intermediate pressure refrigerant to flow to the second usage-side heat exchanger in the first mixed operation mode. In addition, the switching mechanism is controlled so that the high-pressure refrigerant discharged from the high-stage compressor flows to the heat source side heat exchanger.

この冷凍装置の第1混在運転モードでは、高圧冷媒を熱源側熱交換器に流して放熱させる一方、中間圧冷媒を第2利用側熱交換器に流して放熱させることにより第2利用側ユニットで暖房を行わせる。これらの熱交換器で放熱した後の冷媒は、第1利用側熱交換器に流れて蒸発することになる。この第1混在運転モードを、例えば外気温度が高く第2利用側ユニットの暖房の熱負荷が小さい場合に選択するように制御ロジックを構成すれば、冷凍装置の運転効率が向上する。   In the first mixed operation mode of the refrigeration apparatus, the high-pressure refrigerant flows through the heat source side heat exchanger to dissipate heat, while the intermediate pressure refrigerant flows through the second use side heat exchanger to dissipate heat. Turn on heating. The refrigerant after radiating heat in these heat exchangers flows to the first usage side heat exchanger and evaporates. If the control logic is configured to select the first mixed operation mode when, for example, the outside air temperature is high and the heat load of the heating of the second usage-side unit is small, the operation efficiency of the refrigeration apparatus is improved.

本発明の第5観点に係る冷凍装置は、第3観点又は第4観点に係る冷凍装置であって、熱源側ユニットは、熱源側熱交換器に外気を送るための熱源側ファンと、外気温度を検出する外気温度センサとをさらに有している。そして、制御部は、第2混在運転モードにおいて、高圧冷媒が第2利用側熱交換器へと流れるように、且つ、中間圧冷媒が熱源側熱交換器へと流れるように、切換機構を制御し、外気温度に応じて熱源側ファンの回転数を変更して中間圧冷媒の圧力を調整する。   The refrigeration apparatus according to the fifth aspect of the present invention is the refrigeration apparatus according to the third aspect or the fourth aspect, wherein the heat source side unit includes a heat source side fan for sending outside air to the heat source side heat exchanger, and an outside air temperature. And an outside air temperature sensor. In the second mixed operation mode, the control unit controls the switching mechanism so that the high-pressure refrigerant flows to the second usage-side heat exchanger and the intermediate-pressure refrigerant flows to the heat source-side heat exchanger. Then, the pressure of the intermediate pressure refrigerant is adjusted by changing the rotation speed of the heat source side fan according to the outside air temperature.

ここでは、例えば外気温度が高くない場合で、蒸発器として機能する第1利用側熱交換器は低圧冷媒が必要で、放熱器として機能する第2利用側熱交換器は高圧冷媒が必要なときに、制御部が熱源側熱交換器へ中間圧冷媒を流す。これにより、高圧冷媒の圧力を無駄に下げて運転効率を落とすことなく、冷凍装置の運転効率を高く保つことができる。さらに、外気温度に合った圧力の冷媒が熱源側熱交換器に流れるように、ここでは外気温度に応じて熱源側ファンの回転数を変更する。このような制御を行うことによって、より運転効率を向上させることができる。具体的には、例えば、外気温度が低くなってきたときに、熱源側ファンの回転数を小さくして中間圧冷媒の圧力を上げるという制御を行うことが考えられる。   Here, for example, when the outside air temperature is not high, the first usage-side heat exchanger that functions as an evaporator needs a low-pressure refrigerant, and the second usage-side heat exchanger that functions as a radiator requires a high-pressure refrigerant. Then, the control unit causes the intermediate pressure refrigerant to flow to the heat source side heat exchanger. Thereby, the operating efficiency of the refrigeration apparatus can be kept high without unnecessarily lowering the pressure of the high-pressure refrigerant and reducing the operating efficiency. Further, the rotational speed of the heat source side fan is changed here according to the outside air temperature so that the refrigerant having a pressure matching the outside air temperature flows to the heat source side heat exchanger. By performing such control, driving efficiency can be further improved. Specifically, for example, when the outside air temperature becomes low, it is conceivable to perform a control of increasing the pressure of the intermediate pressure refrigerant by decreasing the rotation speed of the heat source side fan.

本発明の第6観点に係る冷凍装置は、第3観点から第5観点のいずれかに係る冷凍装置であって、制御部は、第1混在運転モードから第2混在運転モードへと切り換えるときに、一時的に低段圧縮機又は高段圧縮機を停止させ、切換機構によって冷媒の経路を切り換えた後に、低段圧縮機および高段圧縮機の両方が運転する状態に戻す。   A refrigeration apparatus according to a sixth aspect of the present invention is the refrigeration apparatus according to any one of the third to fifth aspects, wherein the control unit switches from the first mixed operation mode to the second mixed operation mode. The low-stage compressor or the high-stage compressor is temporarily stopped, the refrigerant path is switched by the switching mechanism, and then both the low-stage compressor and the high-stage compressor are returned to the operating state.

中間圧冷媒が第2利用側熱交換器へと流れる第1混在運転モードから、高圧冷媒が第2利用側熱交換器へと流れる第2混在運転モードへと切り換えるときには、切換機構の状態が変化して音が発生するが、ここでは、一時的に低段圧縮機又は高段圧縮機を停止させることで、その発生する音の大きさを抑制することができる。また、切換機構の周囲の圧力差が小さくなってから状態の切り換えを行うことで、確実に切換機構の状態が切り換わる。   When switching from the first mixed operation mode in which the intermediate pressure refrigerant flows to the second usage side heat exchanger to the second mixed operation mode in which the high pressure refrigerant flows to the second usage side heat exchanger, the state of the switching mechanism changes. However, here, the magnitude of the generated sound can be suppressed by temporarily stopping the low-stage compressor or the high-stage compressor. In addition, the state of the switching mechanism is surely switched by switching the state after the pressure difference around the switching mechanism becomes small.

本発明に係る冷凍装置によれば、中間圧冷媒を熱源側熱交換器へ流すことも利用側熱交換器に流すことも可能となり、熱負荷や外気温度に応じた適切な圧力の冷媒を各熱交換器に流すことができるようになるため、運転効率が向上する。   According to the refrigeration apparatus according to the present invention, it is possible to flow the intermediate pressure refrigerant to the heat source side heat exchanger and also to the utilization side heat exchanger, and each refrigerant having an appropriate pressure according to the heat load and the outside air temperature is supplied. Since it becomes possible to flow through the heat exchanger, the operation efficiency is improved.

本発明の一実施形態に係る冷凍装置である空気調和機の定常冷房状態を示す冷媒回路図。The refrigerant circuit figure which shows the steady cooling state of the air conditioner which is the freezing apparatus which concerns on one Embodiment of this invention. 空気調和機の制御ブロック図。The control block diagram of an air conditioner. 空気調和機の冷房状態から冷暖房混在・冷房主体状態(外気温度が中温・低温)への遷移状態を示す冷媒回路図。The refrigerant circuit diagram which shows the transition state from the air-conditioner's air-conditioning state to the air-conditioning mixed / air-cooling main state (the outside air temperature is medium / low temperature). 空気調和機の冷暖房混在・冷房主体状態(外気温度が中温・低温)を示す冷媒回路図。The refrigerant circuit diagram which shows the air conditioning mixed air-conditioning mixed / cooling main state (outside air temperature is medium temperature / low temperature). 空気調和機の冷暖房混在・冷房主体状態(外気温度が中温・低温)から冷暖房混在・暖房主体状態(外気温度が低温)への遷移状態を示す冷媒回路図。The refrigerant circuit diagram which shows the transition state from the air-conditioner mixed air-conditioning mixed / cooling main state (outside temperature is medium temperature / low temperature) to the mixed cooling / heating / heating main state (outside air temperature is low). 空気調和機の冷暖房混在・暖房主体状態(外気温度が低温)を示す冷媒回路図。The refrigerant circuit diagram which shows the air conditioning mixing / heating main state (outside temperature is low temperature) of an air conditioner. 空気調和機の冷暖房混在・冷房主体状態(外気温度が高温)を示す冷媒回路図。The refrigerant circuit diagram which shows the air conditioning mixing / cooling main state (air temperature is high) of an air conditioner. 空気調和機の冷暖房混在・冷房主体状態(外気温度が高温)から冷暖房混在・暖房主体状態(外気温度が高温)への遷移状態を示す冷媒回路図。The refrigerant circuit diagram which shows the transition state from the air-conditioner mixed air-conditioning mixed / cooling main state (the outside air temperature is high) to the cooling / heating mixed / heating main state (the outside air temperature is high). 空気調和機の冷暖房混在・暖房主体状態(外気温度が高温)を示す冷媒回路図。The refrigerant circuit figure which shows the air conditioning mixing / heating main state (outside temperature is high temperature) of an air conditioner. 空気調和機の冷暖房混在・暖房主体状態(外気温度が高温)から定常暖房状態への遷移状態を示す冷媒回路図。The refrigerant circuit diagram which shows the transition state from the air-conditioner mixed air-conditioning mixed / heating main state (the outside air temperature is high) to the steady heating state. 空気調和機の定常暖房状態を示す冷媒回路図。The refrigerant circuit figure which shows the steady heating state of an air conditioner. 空気調和機の冷暖房混在・冷房主体状態(外気温度が高温)から冷暖房混在・冷房主体状態(外気温度が中温・低温)への遷移状態を示す冷媒回路図。The refrigerant circuit diagram which shows the transition state from the air-conditioner mixed air-conditioning mixed / cooling main state (the outside air temperature is high) to the cooling / heating mixed / cooling main state (the outside air temperature is medium / low temperature). 空気調和機の冷暖房混在・暖房主体状態(外気温度が高温・中温)から冷暖房混在・暖房主体状態(外気温度が中低温)への遷移状態を示す冷媒回路図。The refrigerant circuit diagram which shows the transition state from the air-conditioner mixed air-conditioning mixed / heating main state (the outside air temperature is high / medium temperature) to the air-conditioning mixed / heating main state (the outside air temperature is medium / low temperature).

本発明の一実施形態に係る冷凍装置としての空気調和機について、以下、図面に基づいて説明する。   Hereinafter, an air conditioner as a refrigeration apparatus according to an embodiment of the present invention will be described with reference to the drawings.

(1)空気調和機の構成
図1は、空気調和機の冷媒回路の概略構成図である。空気調和機は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の屋内の冷暖房に使用される装置である。
(1) Configuration of Air Conditioner FIG. 1 is a schematic configuration diagram of a refrigerant circuit of an air conditioner. An air conditioner is an apparatus used for indoor air conditioning such as a building by performing a vapor compression refrigeration cycle operation.

空気調和機は、主として、1台の熱源側ユニット50と、複数(ここでは3台)の利用側ユニット21,22,23と、分岐ユニット31,32,33と、冷媒連絡管41,42,43と、を備えており、利用側ユニットごとに冷暖房を選択する冷暖房混在運転が可能となるように構成されている。すなわち、空気調和機の冷媒回路は、熱源側ユニット50と、利用側ユニット21,22,23と、分岐ユニット31,32,33と、冷媒連絡管41,42,43とが接続されることによって構成されている。冷媒連絡管41は、熱源側ユニット50から利用側ユニット21,22,23に延び、その途中で、第1の冷媒連絡管41a、第2の冷媒連絡管41bおよび第3の冷媒連絡管41cに分岐している。冷媒連絡管42は、熱源側ユニット50から利用側ユニット21,22,23に延び、その途中で、第1の冷媒連絡管42a、第2の冷媒連絡管42bおよび第3の冷媒連絡管42cに分岐している。冷媒連絡管43は、熱源側ユニット50から利用側ユニット21,22,23に延び、その途中で、第1の冷媒連絡管43a、第2の冷媒連絡管43bおよび第3の冷媒連絡管43cに分岐している。そして、冷媒回路には、R32冷媒が封入されている。   The air conditioner mainly includes one heat source side unit 50, a plurality (three in this case) of use side units 21, 22, 23, branch units 31, 32, 33, refrigerant communication tubes 41, 42, 43, and is configured such that an air-conditioning mixed operation in which air-conditioning is selected for each use-side unit is possible. That is, the refrigerant circuit of the air conditioner is configured by connecting the heat source side unit 50, the use side units 21, 22, 23, the branch units 31, 32, 33, and the refrigerant communication tubes 41, 42, 43. It is configured. The refrigerant communication pipe 41 extends from the heat source side unit 50 to the use side units 21, 22, and 23, and in the middle, the first refrigerant communication pipe 41a, the second refrigerant communication pipe 41b, and the third refrigerant communication pipe 41c. Branched. The refrigerant communication pipe 42 extends from the heat source side unit 50 to the use side units 21, 22, and 23, and in the middle thereof, is connected to the first refrigerant communication pipe 42a, the second refrigerant communication pipe 42b, and the third refrigerant communication pipe 42c. Branched. The refrigerant communication pipe 43 extends from the heat source side unit 50 to the use side units 21, 22, and 23. In the middle of the refrigerant communication pipe 43, the first refrigerant communication pipe 43a, the second refrigerant communication pipe 43b, and the third refrigerant communication pipe 43c are connected. Branched. And R32 refrigerant | coolant is enclosed with the refrigerant circuit.

また、図2に示すように、空気調和機は、熱源側ユニット50内の熱源側ユニット制御部および利用側ユニット21,22,23内の利用側ユニット制御部が電気的に結ばれて構成される制御部60によってコントロールされる。この制御部60には、熱源側ユニット50や利用側ユニット21,22,23の各センサ(外気温度センサ65を含む)からの検出値が入力される他、リモコンからの設定温度を含む操作内容が入力される。制御部60は、熱源側ユニット50、利用側ユニット21,22,23および分岐ユニット31,32,33の図2に示す各アクチュエータに作動指示を送る。制御部60が行う各種制御については、後に詳述する。   As shown in FIG. 2, the air conditioner is configured by electrically connecting a heat source side unit control unit in the heat source side unit 50 and a use side unit control unit in the use side units 21, 22, and 23. Controlled by the control unit 60. The control unit 60 is input with detection values from the sensors (including the outside air temperature sensor 65) of the heat source side unit 50 and the use side units 21, 22, and 23, and operation contents including a set temperature from the remote controller. Is entered. The control unit 60 sends an operation instruction to each actuator shown in FIG. 2 of the heat source side unit 50, the use side units 21, 22, 23 and the branch units 31, 32, 33. Various controls performed by the control unit 60 will be described in detail later.

(1−1)利用側ユニット
利用側ユニット21,22,23は、ビル等の屋内の天井に、埋め込みや吊り下げ等により設置されるか、あるいは、屋内の壁面に、壁掛け等により設置される。利用側ユニット21,22,23は、冷媒連絡管41,42,43および分岐ユニット31,32,33を介して熱源側ユニット50に接続されており、冷媒回路の一部を構成している。
(1-1) Usage-side units Usage-side units 21, 22, and 23 are installed on the indoor ceiling of a building or the like by embedding or hanging, or are installed on an indoor wall surface by wall hanging or the like. . The use side units 21, 22, and 23 are connected to the heat source side unit 50 via the refrigerant communication tubes 41, 42, and 43 and the branch units 31, 32, and 33, and constitute a part of the refrigerant circuit.

次に、利用側ユニット21,22,23の構成について説明する。第1の利用側ユニット21は、第1の利用側熱交換器21aと、第1の利用側膨張弁21bとを有している。第2の利用側ユニット22は、第2の利用側熱交換器22aと、第2の利用側膨張弁22bとを有している。第3の利用側ユニット23は、第3の利用側熱交換器23aと、第3の利用側膨張弁23bとを有している。利用側熱交換器21a,22a,23aは、冷媒と室内空気との熱交換を行うことで室内の空調負荷(熱負荷)を処理する熱交換器である。   Next, the configuration of the use side units 21, 22, and 23 will be described. The first usage-side unit 21 includes a first usage-side heat exchanger 21a and a first usage-side expansion valve 21b. The second usage-side unit 22 includes a second usage-side heat exchanger 22a and a second usage-side expansion valve 22b. The third usage-side unit 23 includes a third usage-side heat exchanger 23a and a third usage-side expansion valve 23b. The use-side heat exchangers 21a, 22a, and 23a are heat exchangers that process indoor air conditioning loads (heat loads) by exchanging heat between the refrigerant and room air.

なお、ここでは利用側ユニットが3台の空気調和機について説明するが、それよりも多くの利用側ユニットが1台の熱源側ユニットに接続されて1つの冷媒回路を構成している場合にも、本発明は適用できる。   In addition, although the use side unit demonstrates three air conditioners here, also when more use side units are connected to one heat source side unit, and comprise the one refrigerant circuit. The present invention is applicable.

(1−2)分岐ユニット
分岐ユニット31,32,33は、例えば、ビル等の屋内の利用側ユニット21,22,23の近傍に設置されており、冷媒連絡管41,42,43とともに、利用側ユニット21,22,23と熱源側ユニット50との間に介在しており、冷媒回路の一部を構成している。分岐ユニット31,32,33は、3台の利用側ユニット21,22,23に対して1つずつ設置されていてもよいし、冷房/暖房の切り換えタイミングが同じである複数の利用側ユニットが1つの分岐ユニットに接続されていてもよい。
(1-2) Branch unit Branch units 31, 32, and 33 are installed in the vicinity of indoor use side units 21, 22, and 23 such as buildings, and are used together with refrigerant communication tubes 41, 42, and 43. It is interposed between the side units 21, 22, 23 and the heat source side unit 50 and constitutes a part of the refrigerant circuit. The branch units 31, 32, and 33 may be installed one by one for the three usage-side units 21, 22, and 23, or a plurality of usage-side units that have the same cooling / heating switching timing may be provided. It may be connected to one branch unit.

分岐ユニット31,32,33は、主として、第1の分岐ユニット切換弁31a,32a,33aを含む第1の分岐路と、第2の分岐ユニット切換弁31b,32b,33bを含む第2の分岐路とを有している。第1の分岐ユニット切換弁31a,32a,33aは、第2の冷媒連絡管42と利用側熱交換器21a,22a,23aとの間の連通・非連通を切り換える電磁弁である。第2の分岐ユニット切換弁31b,32b,33bは、第3の冷媒連絡管43と利用側熱交換器21a,22a,23aとの間の連通・非連通を切り換える電磁弁である。   The branch units 31, 32 and 33 mainly include a first branch path including the first branch unit switching valves 31a, 32a and 33a and a second branch including the second branch unit switching valves 31b, 32b and 33b. Road. The first branch unit switching valves 31a, 32a, and 33a are electromagnetic valves that switch between communication and non-communication between the second refrigerant communication pipe 42 and the use-side heat exchangers 21a, 22a, and 23a. The second branch unit switching valves 31b, 32b, 33b are electromagnetic valves that switch between communication and non-communication between the third refrigerant communication pipe 43 and the use side heat exchangers 21a, 22a, 23a.

(1−3)熱源側ユニット
熱源側ユニット50は、ビル等の屋上あるいはビル等の周囲に設置されており、冷媒連絡管41,42,43および分岐ユニット31,32,33を介して利用側ユニット21,22,23に接続され、冷媒回路の一部を構成している。
(1-3) Heat source side unit The heat source side unit 50 is installed on the roof of a building or the like, or around the building, and is used on the usage side via the refrigerant communication pipes 41, 42, 43 and the branch units 31, 32, 33. It is connected to the units 21, 22, 23 and constitutes a part of the refrigerant circuit.

熱源側ユニット50は、主として、低段圧縮機51aおよび高段圧縮機51cを含む圧縮機構51と、熱源側熱交換器53と、熱源側膨張弁54と、切換機構を構成する2つの四路切換弁55,56と、熱源側ファン59とを有している。   The heat source side unit 50 is mainly composed of a compression mechanism 51 including a low stage compressor 51a and a high stage compressor 51c, a heat source side heat exchanger 53, a heat source side expansion valve 54, and two four paths constituting a switching mechanism. The switching valves 55 and 56 and the heat source side fan 59 are provided.

低段圧縮機51aと高段圧縮機51cとは、図1に示すように、中間圧配管51bを介して直列に結ばれている。低段圧縮機51aおよび高段圧縮機51cは、ロータリ式やスクロール式等の容積式の圧縮機であり、冷媒を吸入し、この吸入された冷媒を圧縮して吐出する。ここでは、低段圧縮機51aから中間圧配管51bに吐出された冷媒を、中間圧冷媒、高段圧縮機51cから第1の四路切換弁55側に吐出された冷媒を、高圧冷媒と称する。   As shown in FIG. 1, the low-stage compressor 51a and the high-stage compressor 51c are connected in series via an intermediate pressure pipe 51b. The low-stage compressor 51a and the high-stage compressor 51c are positive displacement compressors such as a rotary type and a scroll type, which suck in refrigerant and compress and discharge the sucked refrigerant. Here, the refrigerant discharged from the low stage compressor 51a to the intermediate pressure pipe 51b is referred to as intermediate pressure refrigerant, and the refrigerant discharged from the high stage compressor 51c to the first four-way switching valve 55 side is referred to as high pressure refrigerant. .

なお、低段圧縮機51aにも高段圧縮機51cにもバイパス回路が設けられている。低段圧縮機51aのバイパス回路には逆止弁57が、高段圧縮機51cのバイパス回路には逆止弁58が配備されている。これらのバイパス回路には、低段圧縮機51aおよび高段圧縮機51cの一方が停止したときに冷媒が流れる。例えば、図5に示す低段圧縮機51aが止まっている状態において逆止弁57を冷媒が通過し、図12に示す高段圧縮機51cが止まっている状態において逆止弁58を冷媒が通過する。   A bypass circuit is provided in both the low-stage compressor 51a and the high-stage compressor 51c. A check valve 57 is provided in the bypass circuit of the low-stage compressor 51a, and a check valve 58 is provided in the bypass circuit of the high-stage compressor 51c. The refrigerant flows through these bypass circuits when one of the low-stage compressor 51a and the high-stage compressor 51c is stopped. For example, the refrigerant passes through the check valve 57 when the low stage compressor 51a shown in FIG. 5 is stopped, and the refrigerant passes through the check valve 58 when the high stage compressor 51c shown in FIG. 12 is stopped. To do.

熱源側熱交換器53は、冷媒と室外空気(外気)との熱交換を行うことで冷媒の放熱器又は蒸発器として機能する熱交換器である。   The heat source side heat exchanger 53 is a heat exchanger that functions as a heat radiator or an evaporator of the refrigerant by exchanging heat between the refrigerant and the outdoor air (outside air).

熱源側膨張弁54は、熱源側ユニット50を流れる冷媒の減圧等を行う電動膨張弁であり、熱源側熱交換器53と第1の冷媒連絡管41との間に設けられている。   The heat source side expansion valve 54 is an electric expansion valve that performs decompression of the refrigerant flowing through the heat source side unit 50, and is provided between the heat source side heat exchanger 53 and the first refrigerant communication pipe 41.

第1の四路切換弁55は、熱源側熱交換器53を冷媒の放熱器として機能させる熱源側放熱状態と、熱源側熱交換器53を冷媒の蒸発器として機能させる熱源側蒸発状態とを切り換え可能な電動弁である。四路切換弁55の第1ポート71は高段圧縮機51cの吐出側に接続されており、第2ポート72は熱源側熱交換器53のガス側に接続されており、第3ポート73は第2の四路切換弁56の第3ポート83と接続されており、第4ポート74は第2の冷媒連絡管42と接続されている。第1の四路切換弁55は、第1ポート71と第2ポート72とを接続するとともに第3ポート73と第4ポート74とを接続する状態(熱源側放熱状態に対応;例えば図1の四路切換弁55の状態を参照)と、第2ポート72と第3ポート73とを接続するとともに第1ポート71と第4ポート74とを接続する状態(熱源側低温外気への放熱、あるいは、熱源側蒸発状態に対応;例えば、図4、図11の四路切換弁55の状態を参照)との切り換えを行うことが可能である。   The first four-way switching valve 55 has a heat source side heat dissipation state in which the heat source side heat exchanger 53 functions as a refrigerant radiator, and a heat source side evaporation state in which the heat source side heat exchanger 53 functions as a refrigerant evaporator. Switchable motorized valve. The first port 71 of the four-way switching valve 55 is connected to the discharge side of the high stage compressor 51c, the second port 72 is connected to the gas side of the heat source side heat exchanger 53, and the third port 73 is The second four-way switching valve 56 is connected to the third port 83, and the fourth port 74 is connected to the second refrigerant communication pipe 42. The first four-way switching valve 55 connects the first port 71 and the second port 72 and connects the third port 73 and the fourth port 74 (corresponding to the heat source side heat dissipation state; for example, FIG. (Refer to the state of the four-way switching valve 55), the second port 72 and the third port 73 are connected and the first port 71 and the fourth port 74 are connected (heat radiation to the heat source side low temperature outside air, or , Corresponding to the heat source side evaporation state; for example, it is possible to perform switching with the four-way switching valve 55 in FIGS. 4 and 11).

第2の四路切換弁56は、低段圧縮機51aと高段圧縮機51cとを結ぶ中間圧配管51bを第3の冷媒連絡管43と連通させる状態と、中間圧配管51bを第1の四路切換弁55の第3ポート73と連通させる状態とを切り換え可能な電動弁である。四路切換弁56の第1ポート81は第3の冷媒連絡管43に接続されており、第2ポート82は中間圧配管51bに接続されており、第3ポート83は第1の四路切換弁55の第3ポート73に接続されており、第4ポート84は低段圧縮機51aの吸入側に接続されている。   The second four-way switching valve 56 includes a state in which the intermediate pressure pipe 51b connecting the low stage compressor 51a and the high stage compressor 51c is communicated with the third refrigerant communication pipe 43, and the intermediate pressure pipe 51b in the first state. This is a motor-operated valve capable of switching between a state in which the four-way switching valve 55 communicates with the third port 73. The first port 81 of the four-way switching valve 56 is connected to the third refrigerant communication pipe 43, the second port 82 is connected to the intermediate pressure pipe 51b, and the third port 83 is the first four-way switching. It is connected to the third port 73 of the valve 55, and the fourth port 84 is connected to the suction side of the low-stage compressor 51a.

切換機構を構成する2つの四路切換弁55,56は、第1状態と第2状態とが切り換わる機構である。第1状態は、例えば図4に示すように、低段圧縮機51aから吐出されて中間圧配管51bに流れた中間圧冷媒が、熱源側熱交換器53へと流れる状態である。第2状態は、例えば図7に示すように、中間圧配管51bに吐出された中間圧冷媒が、利用側熱交換器21a,22a,23aのいずれか1つ或いは複数に流れる状態である。   The two four-way switching valves 55 and 56 constituting the switching mechanism are mechanisms that switch between the first state and the second state. For example, as shown in FIG. 4, the first state is a state in which the intermediate pressure refrigerant discharged from the low-stage compressor 51 a and flowing to the intermediate pressure pipe 51 b flows to the heat source side heat exchanger 53. For example, as shown in FIG. 7, the second state is a state in which the intermediate pressure refrigerant discharged to the intermediate pressure pipe 51b flows into any one or a plurality of use side heat exchangers 21a, 22a, and 23a.

なお、2つの四路切換弁55,56から構成されている切換機構は、四路切換弁によって構成される機構に限定されるものではなく、例えば、複数の電磁弁を組み合わせる等によって、上述と同様の冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。
(2)空気調和機の動作
本実施形態に係る空気調和機の運転モードとして、利用側ユニット21,22,23の全てを冷房する定常冷房運転モード60aと、各利用側ユニット21,22,23の空調負荷に応じて利用側ユニット21,22,23の全てを暖房する定常暖房運転モード60bと、冷暖房混在運転モード60cとを、制御部60は有している。冷暖房混在運転モード60cでは、利用側ユニット21,22,23の一部で冷房運転をしつつ、残りの一部あるいは全部で暖房運転をする。以下、空気調和機の3つの運転モードにおける動作について説明する。
Note that the switching mechanism configured by the two four-way switching valves 55 and 56 is not limited to the mechanism configured by the four-way switching valve, and for example, by combining a plurality of electromagnetic valves. It may be configured to have the same function of switching the direction of refrigerant flow.
(2) Operation of the air conditioner As the operation mode of the air conditioner according to the present embodiment, a steady cooling operation mode 60a for cooling all of the use side units 21, 22, 23, and the use side units 21, 22, 23. The control unit 60 has a steady heating operation mode 60b that heats all of the usage-side units 21, 22, and 23 in accordance with the air conditioning load and an air-conditioning mixed operation mode 60c. In the cooling / heating mixed operation mode 60c, a cooling operation is performed in a part of the use side units 21, 22, 23, and a heating operation is performed in the remaining part or all. Hereinafter, operations in the three operation modes of the air conditioner will be described.

(2−1)定常冷房運転モード
利用側ユニット21,22,23の全てを冷房する定常冷房運転モード60aにおいて、空気調和機の冷媒回路の各アクチュエータ(弁)は、図1に示されるような状態となる。高圧冷媒が流れ込む熱源側熱交換器53が冷媒の放熱器として機能し、熱源側膨張弁54は、冷媒を極力減圧しないように(例えば、全開状態になるように)開度調節される。分岐ユニット31,32,33においては、第1の分岐ユニット切換弁31a,32a,33aを閉めるとともに、第2の分岐ユニット切換弁31b,32b,33bを開けて、利用側熱交換器21a,22a,23aを冷媒の蒸発器として機能させる。利用側熱交換器21a,22a,23aで蒸発した冷媒は、第3の冷媒連絡管43および第2の四路切換弁56を通って、低段圧縮機51aに吸入される。なお、利用側膨張弁21b,22b,23bは、各利用側ユニット21,22,23の冷房負荷に応じて開度調節される。
(2-1) Steady Cooling Operation Mode In the steady cooling operation mode 60a for cooling all of the use side units 21, 22, 23, each actuator (valve) of the refrigerant circuit of the air conditioner is as shown in FIG. It becomes a state. The heat source side heat exchanger 53 into which the high-pressure refrigerant flows functions as a refrigerant radiator, and the opening degree of the heat source side expansion valve 54 is adjusted so that the refrigerant is not depressurized as much as possible (for example, fully opened). In the branch units 31, 32, and 33, the first branch unit switching valves 31a, 32a, and 33a are closed, and the second branch unit switching valves 31b, 32b, and 33b are opened, and the use side heat exchangers 21a and 22a are opened. , 23a function as a refrigerant evaporator. The refrigerant evaporated in the use side heat exchangers 21a, 22a, and 23a is sucked into the low-stage compressor 51a through the third refrigerant communication pipe 43 and the second four-way switching valve 56. In addition, the opening degree of the use side expansion valves 21b, 22b, and 23b is adjusted according to the cooling load of each use side unit 21, 22, and 23.

(2−2)定常暖房運転モード
利用側ユニット21,22,23の全てを暖房する定常暖房運転モード60bにおいて、空気調和機の冷媒回路の各アクチュエータ(弁)は、図11に示されるような状態とされる。高段圧縮機51cから吐出された高圧冷媒は、第1の四路切換弁55から第2の冷媒連絡管42へと流れ、分岐ユニット31,32,33から利用側ユニット21,22,23へと流れ込む。分岐ユニット31,32,33においては、第1の分岐ユニット切換弁31a,32a,33aを開けるとともに、第2の分岐ユニット切換弁31b,32b,33bを閉めて、利用側熱交換器21a,22a,23aを冷媒の放熱器として機能させる。利用側熱交換器21a,22a,23aにて凝縮した冷媒は、熱源側膨張弁54を経て熱源側熱交換器53に流れ、そこで蒸発した冷媒は第1および第2の四路切換弁55,56を経て低段圧縮機51aに吸入される。熱源側膨張弁54は、冷媒を減圧するように開度調節されている。利用側膨張弁21b,22b,23bは、各利用側ユニット21,22,23の暖房負荷に応じて開度調節される。
(2-2) Steady Heating Operation Mode In the steady heating operation mode 60b for heating all of the use side units 21, 22, and 23, each actuator (valve) of the refrigerant circuit of the air conditioner is as shown in FIG. State. The high-pressure refrigerant discharged from the high-stage compressor 51c flows from the first four-way switching valve 55 to the second refrigerant communication pipe 42, and from the branch units 31, 32, 33 to the use side units 21, 22, 23. And flow into. In the branch units 31, 32, and 33, the first branch unit switching valves 31a, 32a, and 33a are opened, and the second branch unit switching valves 31b, 32b, and 33b are closed, and the usage-side heat exchangers 21a and 22a are closed. , 23a function as a refrigerant radiator. The refrigerant condensed in the use side heat exchangers 21a, 22a, 23a flows to the heat source side heat exchanger 53 via the heat source side expansion valve 54, and the refrigerant evaporated there is a first and second four-way switching valve 55, 56 and sucked into the low-stage compressor 51a. The opening degree of the heat source side expansion valve 54 is adjusted so as to depressurize the refrigerant. The use side expansion valves 21b, 22b, and 23b are adjusted in opening according to the heating load of each use side unit 21, 22, and 23.

(2−3)冷暖房混在運転モード
利用側ユニット21,22,23の一部のユニットで冷房運転をしつつ残りの一部あるいは全部のユニットで暖房運転する冷暖房混在運転モード60cでは、利用側熱交換器21a,22a,23aの一部が蒸発器として機能し、他の一部(あるいは他の全部)が放熱器として機能するように、各アクチュエータ(弁)が制御される。熱源側ユニット50の熱源側熱交換器53は、利用側ユニット21,22,23の冷房負荷と暖房負荷とのバランスに応じて、放熱器あるいは蒸発器として機能することになる。熱源側膨張弁54は、熱源側熱交換器53が放熱器として機能する場合には、冷媒を極力減圧しないように開度調節され、熱源側熱交換器53が蒸発器として機能する場合には、冷媒を減圧するように開度調節される。分岐ユニット31,32,33においては、蒸発器として機能させる利用側ユニット21,22,23に対応する第1の分岐ユニット切換弁31a,32a,33aを閉め、第2の分岐ユニット切換弁31b,32b,33bを開ける。一方、放熱器として機能させる利用側ユニット21,22,23に対応する第1の分岐ユニット切換弁31a,32a,33aを開け、第2の分岐ユニット切換弁31b,32b,33bを閉める。
(2-3) Air-conditioning mixed operation mode In the air-conditioning mixed operation mode 60c in which the air-conditioning operation is performed with some of the use-side units 21, 22, and 23 while the air-conditioning operation is performed with the remaining part or all of the units. Each actuator (valve) is controlled so that a part of the exchangers 21a, 22a, and 23a function as an evaporator and the other part (or all the others) function as a radiator. The heat source side heat exchanger 53 of the heat source side unit 50 functions as a radiator or an evaporator according to the balance between the cooling load and the heating load of the use side units 21, 22, and 23. When the heat source side heat exchanger 53 functions as a radiator, the opening degree of the heat source side expansion valve 54 is adjusted so as not to depressurize the refrigerant as much as possible, and when the heat source side heat exchanger 53 functions as an evaporator. The opening degree is adjusted so as to depressurize the refrigerant. In the branch units 31, 32, and 33, the first branch unit switching valves 31a, 32a, and 33a corresponding to the use side units 21, 22, and 23 that function as an evaporator are closed, and the second branch unit switching valves 31b, Open 32b and 33b. On the other hand, the 1st branch unit switching valve 31a, 32a, 33a corresponding to the utilization side unit 21,22,23 made to function as a heat radiator is opened, and the 2nd branch unit switching valve 31b, 32b, 33b is closed.

制御部60は、この冷暖房混在運転モード60cの1つとして、中間圧利用運転モードを有している。この中間圧利用運転モードにおいて、制御部60は、低段圧縮機51aから吐出されて中間圧配管51bに流れた中間圧冷媒が、熱源側熱交換器53、あるいは、いずれか1つ或いは複数の利用側熱交換器21a,22a,23aへと直接流れるように、2つの四路切換弁55,56を制御する。   The controller 60 has an intermediate pressure use operation mode as one of the air-conditioning mixed operation mode 60c. In this intermediate pressure use operation mode, the control unit 60 causes the intermediate pressure refrigerant discharged from the low-stage compressor 51a and flowing to the intermediate pressure pipe 51b to be the heat source side heat exchanger 53, or any one or more of them. The two four-way switching valves 55 and 56 are controlled so as to flow directly to the use side heat exchangers 21a, 22a and 23a.

図7に示す空気調和機の冷媒回路は、第1および第3の利用側熱交換器21a,23aを蒸発器として機能させ、第2の利用側熱交換器22aを放熱器として機能させる、外気温度が高温であるときの冷房主体の中間圧利用運転モードを表している。このモード(以下、第1混在運転モードという。)では、中間圧配管51bに流れた中間圧冷媒が、第2の利用側熱交換器22aへと直接向かうように、四路切換弁55,56が制御される。   The refrigerant circuit of the air conditioner shown in FIG. 7 allows the first and third usage-side heat exchangers 21a and 23a to function as an evaporator and the second usage-side heat exchanger 22a to function as a radiator. This shows an intermediate pressure using operation mode mainly for cooling when the temperature is high. In this mode (hereinafter referred to as the first mixed operation mode), the four-way switching valves 55 and 56 are arranged so that the intermediate-pressure refrigerant that has flowed through the intermediate-pressure pipe 51b is directed directly to the second usage-side heat exchanger 22a. Is controlled.

また、図4に示す空気調和機の冷媒回路は、第1および第3の利用側熱交換器21a,23aを蒸発器として機能させ、第2の利用側熱交換器22aを放熱器として機能させる、外気温度が低温(あるいは中温)であるときの冷房主体の中間圧利用運転モードを表している。このモード(以下、第2混在運転モードという。)では、中間圧配管51bに流れた中間圧冷媒が、熱源側熱交換器53へと直接向かうように、四路切換弁55,56が制御される。   Further, the refrigerant circuit of the air conditioner shown in FIG. 4 causes the first and third usage-side heat exchangers 21a and 23a to function as an evaporator and the second usage-side heat exchanger 22a to function as a radiator. FIG. 6 shows an intermediate pressure using operation mode mainly for cooling when the outside air temperature is low (or medium). In this mode (hereinafter referred to as the second mixed operation mode), the four-way switching valves 55 and 56 are controlled so that the intermediate-pressure refrigerant that has flowed through the intermediate-pressure pipe 51 b is directed directly to the heat source side heat exchanger 53. The

すなわち、第1および第3の利用側熱交換器21a,23aを蒸発器として機能させ、第2の利用側熱交換器22aを放熱器として機能させる、同じ冷房主体の中間圧利用運転モードとして、互いに異なる第1混在運転モードと第2混在運転モードとを制御部60が有している。第1混在運転モードでは、外気温度が高温であり第1および第3の利用側ユニット21,23の負荷も大きいため、熱源側熱交換器53に高圧冷媒を送り、中間圧冷媒は第2の利用側熱交換器22aに送っている。第2混在運転モードでは、外気温度が高くなく第1および第3の利用側ユニット21,23の負荷も小さいため、熱源側熱交換器53に中間圧冷媒を送り、第2の利用側熱交換器22aには高圧冷媒を送っている。   That is, the first and third usage-side heat exchangers 21a and 23a function as an evaporator, and the second usage-side heat exchanger 22a functions as a radiator. The control unit 60 has a first mixed operation mode and a second mixed operation mode that are different from each other. In the first mixed operation mode, since the outside air temperature is high and the loads on the first and third usage-side units 21 and 23 are large, the high-pressure refrigerant is sent to the heat source side heat exchanger 53, and the intermediate-pressure refrigerant is the second pressure refrigerant. It is sent to the use side heat exchanger 22a. In the second mixed operation mode, since the outside air temperature is not high and the loads on the first and third usage-side units 21 and 23 are small, the intermediate-pressure refrigerant is sent to the heat source-side heat exchanger 53 and the second usage-side heat exchange is performed. A high-pressure refrigerant is sent to the vessel 22a.

(2−4)運転モードの遷移
次に、定常冷房運転モード60aから冷暖房混在運転モード60cへの遷移の一例、冷暖房混在運転モード60cから他の冷暖房混在運転モード60cへの遷移の例、冷暖房混在運転モード60cから定常暖房運転モード60bへの遷移の一例を示し、説明を行う。
(2-4) Transition of operation mode Next, an example of transition from the steady cooling operation mode 60a to the cooling / heating mixed operation mode 60c, an example of transition from the cooling / heating mixed operation mode 60c to another cooling / heating mixed operation mode 60c, and cooling / heating mixed An example of the transition from the operation mode 60c to the steady heating operation mode 60b will be shown and described.

(2−4−1)定常冷房運転モードから冷暖房混在運転モードへの遷移
上述した図1に示す定常冷房運転モード60aから、利用側ユニット22の設定が冷房から暖房に切り換わったことに伴って図4に示す冷暖房混在運転モード60cに移すときに、制御部60は、図3に示す冷媒回路の状態を経由させる。外気温度が下がってきて、利用側ユニット22の設定が冷房から暖房に切り換わると、制御部60は、高段圧縮機51cの回転数を落とし、第1の四路切換弁55の周囲の圧力差が小さくなってから第1の四路切換弁55の状態を切り換える。そして、図4に示す冷媒回路の状態になってから、徐々に高段圧縮機51cの回転数を上昇させて、その高段圧縮機51cの吐出冷媒を利用側ユニット22の利用側熱交換器22aへと送る。一方、上述のように、熱源側熱交換器53へは、低段圧縮機51aから吐出されて中間圧配管51bに流れた中間圧冷媒が送られる。
(2-4-1) Transition from the steady cooling operation mode to the mixed cooling and heating operation mode As the setting of the use side unit 22 is switched from the cooling to the heating from the steady cooling operation mode 60a shown in FIG. 1 described above. When shifting to the cooling / heating mixed operation mode 60c shown in FIG. 4, the control unit 60 passes the state of the refrigerant circuit shown in FIG. When the outside air temperature decreases and the setting of the use side unit 22 is switched from cooling to heating, the control unit 60 reduces the rotational speed of the high stage compressor 51c and the pressure around the first four-way switching valve 55. After the difference becomes small, the state of the first four-way selector valve 55 is switched. Then, after reaching the state of the refrigerant circuit shown in FIG. 4, the rotational speed of the high stage compressor 51 c is gradually increased, and the refrigerant discharged from the high stage compressor 51 c is used as the usage side heat exchanger of the usage side unit 22. Send to 22a. On the other hand, as described above, the intermediate pressure refrigerant discharged from the low stage compressor 51a and flowing to the intermediate pressure pipe 51b is sent to the heat source side heat exchanger 53.

なお、図4に示す、冷房主体の冷暖房混在運転モード60cにおいて、制御部60は、外気温度センサ65が検出した外気温度の値に応じて、熱源側ユニット50の熱源側ファン59の回転数を変更する。具体的には、外気温度が下がってきたときに、制御部60は、熱源側ファン59の回転数を小さくして中間圧冷媒の圧力を上げるファン制御を行う。   In the cooling / heating mixed operation mode 60c mainly shown in FIG. 4, the control unit 60 sets the rotation speed of the heat source side fan 59 of the heat source side unit 50 according to the value of the outside air temperature detected by the outside air temperature sensor 65. change. Specifically, when the outside air temperature is lowered, the control unit 60 performs fan control that increases the pressure of the intermediate pressure refrigerant by reducing the rotation speed of the heat source side fan 59.

(2−4−2)冷暖房混在運転モードにおける外気温度変化に伴う冷房主体から暖房主体への遷移
上述の図4に示す、外気温度が低温(あるいは中温)であるときの冷房主体の冷暖房混在運転モード60cから、利用側ユニット23の設定が冷房から暖房に切り換わったことに伴って図6に示す暖房主体の冷暖房混在運転モード60cに移すときに、制御部60は、図5に示す冷媒回路の状態を経由させる。ここでは、利用側ユニット23の利用側膨張弁23bおよび熱源側ユニット50の熱源側膨張弁54を閉止して、利用側熱交換器23aおよび熱源側熱交換器53に冷媒が流れない状態を作り、低段圧縮機51aを徐々に停止させ、第2の四路切換弁56の周囲の圧力差が小さくなってから第2の四路切換弁56の状態を切り換える。その後、図6に示す、外気温度が低いときの暖房主体の冷暖房混在運転モード60cの冷媒回路の状態で、低段圧縮機51aおよび高段圧縮機51cが駆動している状態になる。この図6に示す冷暖房混在運転モード60cでは、高段圧縮機51cから吐出された高圧冷媒が放熱器として機能する利用側熱交換器22a,23aへと直接流れ、それらの利用側熱交換器22a,23aで凝縮した冷媒が、第1の冷媒連絡管41を経て、第1の利用側ユニット21の蒸発器として機能する利用側熱交換器21aと、熱源側熱交換器53とに分岐して流れ込む。そして、第2の四路切換弁56の状態が切り換えられたことによって、熱源側熱交換器53で蒸発した冷媒が低段圧縮機51aに吸入される一方、利用側熱交換器21aで蒸発した冷媒は、第3の冷媒連絡管43および中間圧配管51bを経て、高段圧縮機51cに吸入される。
(2-4-2) Transition from a cooling main body to a heating main body accompanying a change in the outside air temperature in the cooling / heating mixed operation mode As shown in FIG. 4 described above, the cooling-main mixed cooling / heating operation when the outside air temperature is low (or medium temperature). From the mode 60c, when the setting of the use side unit 23 is switched from cooling to heating, the control unit 60 moves to the heating main cooling / heating mixed operation mode 60c shown in FIG. Let the state go through. Here, the utilization side expansion valve 23b of the utilization side unit 23 and the heat source side expansion valve 54 of the heat source side unit 50 are closed to create a state in which no refrigerant flows to the utilization side heat exchanger 23a and the heat source side heat exchanger 53. Then, the low-stage compressor 51a is gradually stopped, and the state of the second four-way selector valve 56 is switched after the pressure difference around the second four-way selector valve 56 becomes small. Thereafter, the low-stage compressor 51a and the high-stage compressor 51c are driven in the state of the refrigerant circuit in the heating / cooling / heating mixed operation mode 60c when the outside air temperature is low as shown in FIG. In the air-conditioning mixed operation mode 60c shown in FIG. 6, the high-pressure refrigerant discharged from the high-stage compressor 51c flows directly to the use side heat exchangers 22a and 23a functioning as radiators, and these use side heat exchangers 22a. , 23a branch through the first refrigerant communication pipe 41 into a use side heat exchanger 21a that functions as an evaporator of the first use side unit 21 and a heat source side heat exchanger 53. Flows in. Then, when the state of the second four-way switching valve 56 is switched, the refrigerant evaporated in the heat source side heat exchanger 53 is sucked into the low-stage compressor 51a and is evaporated in the use side heat exchanger 21a. The refrigerant is sucked into the high stage compressor 51c through the third refrigerant communication pipe 43 and the intermediate pressure pipe 51b.

(2−4−3)外気温度変化がないときの冷暖房混在運転モードにおける冷房主体から暖房主体への遷移
上述の図7に示す、外気温度が高いときの冷房主体の冷暖房混在運転モード60cから、利用側ユニット23の設定が冷房から暖房に切り換わったことに伴って、外気温度が高いときの暖房主体の冷暖房混在運転モード60c(図9)に移すときに、制御部60は、図8に示す冷媒回路の状態を経由させる。ここでは、利用側ユニット23の利用側膨張弁23bおよび熱源側ユニット50の熱源側膨張弁54を閉止して、利用側熱交換器23aおよび熱源側熱交換器53に冷媒が流れない状態を作り、高段圧縮機51cを徐々に停止させ、第1の四路切換弁55の周囲の圧力差が小さくなってから第1の四路切換弁55の状態を切り換える。その後、図9に示す、外気温度が高温あるいは中温のときの暖房主体の冷暖房混在運転モード60cの冷媒回路の状態で、低段圧縮機51aおよび高段圧縮機51cが駆動している状態になる。この図9に示す冷暖房混在運転モード60cでは、高段圧縮機51cから吐出された高圧冷媒が放熱器として機能する利用側熱交換器22a,23aへと直接流れ、それらの利用側熱交換器22a,23aで凝縮した冷媒が、第1の冷媒連絡管41を経て、第1の利用側ユニット21の蒸発器として機能する利用側熱交換器21aと、熱源側熱交換器53とに分岐して流れ込む。そして、利用側熱交換器21aで蒸発した冷媒が、第3の冷媒連絡管43を通って低段圧縮機51aに吸入される一方、熱源側熱交換器53で蒸発した冷媒は、両四路切換弁55,56および中間圧配管51bを経由して、高段圧縮機51cに吸入される。
(2-4-3) Transition from the cooling main body to the heating main body in the cooling / heating mixed operation mode when there is no outside air temperature change From the cooling main heating / cooling / heating mixed operation mode 60c when the outside air temperature is high, as shown in FIG. When the setting of the use side unit 23 is switched from cooling to heating, the control unit 60 changes to FIG. 8 when moving to the heating / cooling / heating mixed operation mode 60c (FIG. 9) when the outside air temperature is high. The state of the refrigerant circuit shown is routed. Here, the utilization side expansion valve 23b of the utilization side unit 23 and the heat source side expansion valve 54 of the heat source side unit 50 are closed to create a state in which no refrigerant flows to the utilization side heat exchanger 23a and the heat source side heat exchanger 53. The high stage compressor 51c is gradually stopped, and the state of the first four-way switching valve 55 is switched after the pressure difference around the first four-way switching valve 55 becomes small. Thereafter, the low-stage compressor 51a and the high-stage compressor 51c are driven in the state of the refrigerant circuit of the heating / cooling / heating mixed operation mode 60c when the outside air temperature is high or medium as shown in FIG. . In the air-conditioning mixed operation mode 60c shown in FIG. 9, the high-pressure refrigerant discharged from the high-stage compressor 51c flows directly to the usage-side heat exchangers 22a and 23a that function as radiators, and the usage-side heat exchanger 22a. , 23a branch through the first refrigerant communication pipe 41 into a use side heat exchanger 21a that functions as an evaporator of the first use side unit 21 and a heat source side heat exchanger 53. Flows in. The refrigerant evaporated in the use side heat exchanger 21a is sucked into the low stage compressor 51a through the third refrigerant communication pipe 43, while the refrigerant evaporated in the heat source side heat exchanger 53 The refrigerant is sucked into the high stage compressor 51c via the switching valves 55 and 56 and the intermediate pressure pipe 51b.

なお、図9に示す、暖房主体の冷暖房混在運転モード60cにおいて、外気温度が高いときには、制御部60は、熱源側ユニット50の熱源側ファン59の回転数を小さくして中間圧冷媒の圧力を下げるファン制御を行う。   In addition, in the heating / cooling mixed heating operation mode 60c shown in FIG. 9, when the outside air temperature is high, the control unit 60 reduces the rotation speed of the heat source side fan 59 of the heat source side unit 50 to reduce the pressure of the intermediate pressure refrigerant. Control the lowering fan.

(2−4−4)冷暖房混在運転モードから定常暖房運転モードへの遷移
上述の図9に示す、外気温度が高いときの暖房主体の冷暖房混在運転モード60cから、全ての利用側ユニット21,22,23が暖房を行う定常暖房運転モード60b(図11)に移すときには、制御部60は、図10に示す冷媒回路の状態を経由させる。利用側ユニット21の設定が冷房から暖房に切り換わると、制御部60は、低段圧縮機51aを徐々に停止させ、第2の四路切換弁56の周囲の圧力差が小さくなってから第2の四路切換弁56の状態を切り換える。そして、図11に示すように、制御部60は、第1の分岐ユニット切換弁31aを開け、第2の分岐ユニット切換弁31bを閉めて、高圧冷媒を全ての利用側熱交換器21a,22a,23aに流す。熱源側熱交換器53で蒸発した冷媒は、第2の四路切換弁56の状態が切り換わったことによって、低段圧縮機51aに吸入されるようになる。
(2-4-4) Transition from the heating / cooling mixed operation mode to the steady heating operation mode From the heating / cooling / heating mixed operation mode 60c when the outside air temperature is high as shown in FIG. , 23 shift to the steady heating operation mode 60b (FIG. 11) in which heating is performed, the control unit 60 passes the state of the refrigerant circuit shown in FIG. When the setting of the use side unit 21 is switched from cooling to heating, the control unit 60 gradually stops the low-stage compressor 51a, and after the pressure difference around the second four-way switching valve 56 becomes small, The state of the second four-way selector valve 56 is switched. And as shown in FIG. 11, the control part 60 opens the 1st branch unit switching valve 31a, closes the 2nd branch unit switching valve 31b, and makes high-pressure refrigerant | coolant all the use side heat exchangers 21a and 22a. , 23a. The refrigerant evaporated in the heat source side heat exchanger 53 is sucked into the low-stage compressor 51a when the state of the second four-way switching valve 56 is switched.

(2−4−5)外気温度変化に伴う冷房主体の冷暖房混在運転モードの遷移
上述の図7に示す、外気温度が高いときの冷房主体の冷暖房混在運転モード60cから、外気温度が下がってきて、上述の図4に示す、外気温度が低温(あるいは中温)であるときの冷房主体の冷暖房混在運転モード60cへと移すときに、制御部60は、図12に示す冷媒回路の状態を経由させる。外気温度が下がってくると、高圧冷媒の圧力が低下してくるため、制御部60は、高低差圧が確保できなくなってきた時点で、高段圧縮機51cを停止させる。そして、第1の四路切換弁55の周囲の圧力差が小さくなってから第1の四路切換弁55の状態を切り換える。この第1の四路切換弁55の状態の切換によって、低段圧縮機51aから吐出されて中間圧配管51bに流れた中間圧冷媒が利用側熱交換器22aへと流れている状態から、中間圧冷媒が熱源側熱交換器53へと流れる状態に切り換わる。
(2-4-5) Transition of the cooling-dominated mixed heating and cooling operation mode accompanying the outside air temperature change From the cooling-dominated mixed cooling and heating operation mode 60c when the outside air temperature is high as shown in FIG. 7 described above, the outside air temperature has decreased. When the control unit 60 shifts to the cooling / heating mixed operation mode 60c in which the outside air temperature is a low temperature (or medium temperature) shown in FIG. 4 described above, the control unit 60 passes the state of the refrigerant circuit shown in FIG. . When the outside air temperature decreases, the pressure of the high-pressure refrigerant decreases. Therefore, the control unit 60 stops the high-stage compressor 51c when the high-low differential pressure cannot be secured. The state of the first four-way switching valve 55 is switched after the pressure difference around the first four-way switching valve 55 becomes small. By switching the state of the first four-way switching valve 55, the intermediate-pressure refrigerant discharged from the low-stage compressor 51a and flowing into the intermediate-pressure pipe 51b flows from the state where the intermediate-pressure refrigerant flows into the use-side heat exchanger 22a. The pressure refrigerant is switched to a state where the refrigerant flows to the heat source side heat exchanger 53.

(2−4−6)外気温度変化に伴う暖房主体の冷暖房混在運転モードの遷移
上述の図9に示す、外気温度が高いときの暖房主体の冷暖房混在運転モード60cから、上述の図6に示す、外気温度が低いときの暖房主体の冷暖房混在運転モード60cへと移すときに、制御部60は、図13に示す冷媒回路の状態を経由させる。外気温度の低下に伴って中間圧冷媒の圧力が下がってくると、制御部60は、高低差圧が確保できなくなってきた時点で、低段圧縮機51aを停止させる。そして、第2の四路切換弁56の周囲の圧力差が小さくなってから第2の四路切換弁56の状態を切り換える。この第2の四路切換弁56の状態の切換によって、図6に示すように、利用側熱交換器21aで蒸発した冷媒が、中間圧配管51bに流れ込み、高段圧縮機51cに吸入されるようになる。このとき、低段圧縮機51aには、熱源側熱交換器53で蒸発した冷媒が吸入される。
(2-4-6) Transition of the heating-dominated mixed heating / cooling operation mode accompanying a change in the outside air temperature From the heating-dominated mixed heating / cooling operation mode 60c when the outside air temperature is high, as shown in FIG. 9, the above-described FIG. When shifting to the heating / cooling / heating mixed operation mode 60c when the outside air temperature is low, the control unit 60 passes the state of the refrigerant circuit shown in FIG. When the pressure of the intermediate pressure refrigerant decreases with a decrease in the outside air temperature, the control unit 60 stops the low-stage compressor 51a when it becomes impossible to ensure a high-low differential pressure. The state of the second four-way switching valve 56 is switched after the pressure difference around the second four-way switching valve 56 becomes small. By switching the state of the second four-way selector valve 56, as shown in FIG. 6, the refrigerant evaporated in the use side heat exchanger 21a flows into the intermediate pressure pipe 51b and is sucked into the high stage compressor 51c. It becomes like this. At this time, the refrigerant evaporated in the heat source side heat exchanger 53 is sucked into the low stage compressor 51a.

(3)空気調和機の特徴
(3−1)
この空気調和機では、低段圧縮機51aと高段圧縮機51cとを直列に結ぶ構成を採っている。その上で、低段圧縮機51aから吐出されて中間圧配管51bに流れた中間圧冷媒が、図4に示す第1状態においては熱源側熱交換器53へと流れ、図7に示す第2状態においては利用側熱交換器22aへと流れるように、冷媒回路を構成し、制御を行っている。この空気調和機によれば、外気温度が低く熱源側熱交換器53で高圧冷媒を必要としない場合に、四路切換弁55,56を図4に示す第1状態にして、空気調和機の運転効率を向上させることができる。また、図7に示すように、外気温度が高いときに、第1および第3の利用側熱交換器21a,23aを蒸発器として機能させつつ、第2の利用側熱交換器22aを小さな熱負荷に対して放熱器として機能させる必要がある場合に、四路切換弁55,56を図7に示す第2状態にして、中間圧冷媒を第2の利用側熱交換器22aに送ることで、空気調和機の運転効率を向上させることができる。
(3) Features of the air conditioner (3-1)
This air conditioner employs a configuration in which a low-stage compressor 51a and a high-stage compressor 51c are connected in series. In addition, the intermediate pressure refrigerant discharged from the low-stage compressor 51a and flowing to the intermediate pressure pipe 51b flows to the heat source side heat exchanger 53 in the first state shown in FIG. 4, and the second refrigerant shown in FIG. In the state, the refrigerant circuit is configured and controlled so as to flow to the use side heat exchanger 22a. According to this air conditioner, when the outside air temperature is low and the heat source side heat exchanger 53 does not require high-pressure refrigerant, the four-way switching valves 55 and 56 are set to the first state shown in FIG. Driving efficiency can be improved. Further, as shown in FIG. 7, when the outside air temperature is high, the second usage-side heat exchanger 22a is made to have a small amount of heat while the first and third usage-side heat exchangers 21a and 23a function as evaporators. When it is necessary to function as a radiator with respect to a load, the four-way switching valves 55 and 56 are set to the second state shown in FIG. The operating efficiency of the air conditioner can be improved.

(3−2)
空気調和機の制御部60は、冷暖房混在運転モード60cの1つとして、第1の利用側熱交換器21aが蒸発器として機能し且つ第2の利用側熱交換器22aが放熱器として機能する中間圧利用運転モードを有している(図4,図7を参照)。この中間圧利用運転モードにおいて、制御部60は、低段圧縮機51aから吐出されて中間圧配管51bに流れた中間圧冷媒が、熱源側熱交換器53、あるいは、利用側熱交換器22aへと直接流れるように、切換機構である四路切換弁55,56を制御している。このように、従来から利用されている高段圧縮機から吐出された高圧冷媒だけではなく、中間圧冷媒を積極的に利用することによって、無駄に高圧冷媒の圧力を下げるような運転をしなくて済むようになり、空気調和機の運転効率を向上させることができている。
(3-2)
As one of the air-conditioning mixed operation modes 60c, the control unit 60 of the air conditioner functions as the first usage-side heat exchanger 21a as an evaporator and the second usage-side heat exchanger 22a as a radiator. It has an intermediate pressure use operation mode (see FIGS. 4 and 7). In this intermediate pressure use operation mode, the control unit 60 causes the intermediate pressure refrigerant discharged from the low-stage compressor 51a and flowing to the intermediate pressure pipe 51b to the heat source side heat exchanger 53 or the use side heat exchanger 22a. The four-way switching valves 55 and 56 that are switching mechanisms are controlled so as to flow directly. In this way, not only the high-pressure refrigerant discharged from the conventionally used high-stage compressor but also the intermediate-pressure refrigerant is actively used so that the operation of reducing the pressure of the high-pressure refrigerant is not wasted. As a result, the operating efficiency of the air conditioner can be improved.

(3−3)
空気調和機の制御部60は、冷暖房混在運転モード60cとして、図7に示す第1混在運転モードや、図4に示す第2混在運転モードを有している。そして、第2の利用側熱交換器22aに対し、第1混在運転モードでは中間圧冷媒が流れ、第2混在運転モードでは高圧冷媒が流れるように、四路切換弁55,56を制御している。このように、この空気調和機では、利用側熱交換器22aに対し高圧冷媒を流す選択に加えて、利用側熱交換器22aに対し中間圧冷媒を流す選択が可能になっており、利用側ユニット22の設置空間の熱負荷が小さい場合に中間圧冷媒を使って空気調和機の運転効率を向上させることができている。
(3-3)
The control unit 60 of the air conditioner has a first mixed operation mode shown in FIG. 7 and a second mixed operation mode shown in FIG. 4 as the cooling / heating mixed operation mode 60c. Then, the four-way switching valves 55 and 56 are controlled so that the intermediate pressure refrigerant flows in the first mixed operation mode and the high pressure refrigerant flows in the second mixed operation mode with respect to the second usage-side heat exchanger 22a. Yes. Thus, in this air conditioner, in addition to the selection of flowing high-pressure refrigerant to the use-side heat exchanger 22a, it is possible to select selection of flowing intermediate-pressure refrigerant to the use-side heat exchanger 22a. When the heat load of the installation space of the unit 22 is small, the operation efficiency of the air conditioner can be improved by using the intermediate pressure refrigerant.

(3−4)
空気調和機の制御部60は、図7に示す第1混在運転モードにおいて、高段圧縮機51cから吐出された高圧冷媒を熱源側熱交換器53に流して放熱させる一方、低段圧縮機51aから吐出された中間圧冷媒の一部を第2の利用側熱交換器22aに流して放熱させることにより、第2の利用側ユニット22で暖房運転を行わせている。これらの熱源側熱交換器53および利用側熱交換器22aで放熱・凝縮した冷媒は、第1および第3の利用側熱交換器21a,23aに流れて蒸発する。この第1混在運転モードは、制御部60によって、外気温度が高く第2の利用側ユニット22の暖房の熱負荷が小さい場合に選択されており、空気調和機の運転効率が向上している。
(3-4)
In the first mixed operation mode shown in FIG. 7, the control unit 60 of the air conditioner flows the high-pressure refrigerant discharged from the high stage compressor 51c to the heat source side heat exchanger 53 to dissipate heat, while the low stage compressor 51a. A part of the intermediate pressure refrigerant discharged from the refrigerant flows through the second usage-side heat exchanger 22a to dissipate heat, so that the second usage-side unit 22 performs the heating operation. The refrigerant radiated and condensed in the heat source side heat exchanger 53 and the use side heat exchanger 22a flows into the first and third use side heat exchangers 21a and 23a and evaporates. The first mixed operation mode is selected by the control unit 60 when the outside air temperature is high and the heating heat load of the second usage-side unit 22 is small, and the operation efficiency of the air conditioner is improved.

(3−5)
空気調和機の制御部60は、図4に示す第2混在運転モードにおいて、高段圧縮機51cから吐出された高圧冷媒が第2の利用側熱交換器22aへと流れるように、且つ、低段圧縮機51aから吐出された中間圧冷媒の一部が熱源側熱交換器53へと流れるように、四路切換弁55,56を制御し、さらに、外気温度に応じて熱源側ファン59の回転数を変更して中間圧冷媒の圧力を調整している。具体的には、外気温度が下がってきたときに、制御部60が、熱源側ファン59の回転数を小さくして中間圧冷媒の圧力を上げるファン制御を行っている。これにより、空気調和機の運転効率が向上している。
(3-5)
In the second mixed operation mode shown in FIG. 4, the controller 60 of the air conditioner is configured so that the high-pressure refrigerant discharged from the high-stage compressor 51c flows to the second usage-side heat exchanger 22a and is low. The four-way switching valves 55 and 56 are controlled so that a part of the intermediate pressure refrigerant discharged from the stage compressor 51a flows to the heat source side heat exchanger 53, and further, the heat source side fan 59 is controlled according to the outside air temperature. The pressure of the intermediate pressure refrigerant is adjusted by changing the rotation speed. Specifically, when the outside air temperature decreases, the control unit 60 performs fan control that increases the pressure of the intermediate pressure refrigerant by reducing the rotation speed of the heat source side fan 59. Thereby, the operating efficiency of the air conditioner is improved.

(3−6)
空気調和機の制御部60は、図7に示す第1混在運転モードから、図4に示す第2混在運転モードに切り換えるときに、図12に示す冷媒回路の状態を経由させている。具体的には、切り換えの過程において高段圧縮機51cを一時的に停止させ、第1の四路切換弁55の周囲の圧力差が小さくなってから第1の四路切換弁55の状態を切り換えている。このように、一時的に高段圧縮機51cを停止させることで、四路切換弁55の状態切換に伴う騒音を抑制することができている。また、周囲の圧力差が小さくなってから状態の切り換えを行っているため、四路切換弁55の状態を確実に切り換えることができている。
(3-6)
When switching from the first mixed operation mode shown in FIG. 7 to the second mixed operation mode shown in FIG. 4, the control unit 60 of the air conditioner passes the state of the refrigerant circuit shown in FIG. 12. Specifically, the high stage compressor 51c is temporarily stopped in the switching process, and the state of the first four-way switching valve 55 is changed after the pressure difference around the first four-way switching valve 55 becomes small. Switching. Thus, the noise accompanying the state switching of the four-way switching valve 55 can be suppressed by temporarily stopping the high stage compressor 51c. Further, since the state is switched after the surrounding pressure difference becomes small, the state of the four-way switching valve 55 can be switched reliably.

21,22,23 利用側ユニット
21a,22a,23a 利用側熱交換器
21b,22b,23b 利用側膨張弁(利用側膨張機構)
50 熱源側ユニット
51 圧縮機構
51a 低段圧縮機
51b 中間圧配管
51c 高段圧縮機
53 熱源側熱交換器
54 熱源側膨張弁(熱源側膨張機構)
55,56 四路切換弁(切換機構)
59 熱源側ファン
60 制御部
60c 冷暖房混在運転モード
65 外気温度センサ
21, 22, 23 User side units 21a, 22a, 23a User side heat exchangers 21b, 22b, 23b User side expansion valves (user side expansion mechanism)
DESCRIPTION OF SYMBOLS 50 Heat source side unit 51 Compression mechanism 51a Low stage compressor 51b Intermediate pressure piping 51c High stage compressor 53 Heat source side heat exchanger 54 Heat source side expansion valve (Heat source side expansion mechanism)
55, 56 Four-way switching valve (switching mechanism)
59 Heat source side fan 60 Control unit 60c Air-conditioning mixed operation mode 65 Outside air temperature sensor

特開2003−130492号公報JP 2003-130492 A

Claims (6)

低段圧縮機(51a)および高段圧縮機(51c)を含む圧縮機構(51)と、熱源側熱交換器(53)と、熱源側膨張機構(54)とを有する、熱源側ユニット(50)と、
第1利用側熱交換器(21a)と、第1利用側膨張機構(21b)と、を有する第1利用側ユニット(21)と、
第2利用側熱交換器(22a)と、第2利用側膨張機構(22b)と、を有する第2利用側ユニット(22)と、
前記圧縮機構から前記熱源側熱交換器、前記第1利用側熱交換器および前記第2利用側熱交換器へと流れる冷媒の経路を切り換える、切換機構(55,56)と、
を備え、
前記低段圧縮機と前記高段圧縮機とは、中間圧配管(51b)を介して直列に結ばれており、
前記切換機構(55,56)は、前記低段圧縮機から吐出されて前記中間圧配管に流れた中間圧冷媒が前記熱源側熱交換器へと流れる第1状態と、前記中間圧冷媒が前記第1利用側熱交換器あるいは前記第2利用側熱交換器へと流れる第2状態と、が切り換わる、
冷凍装置。
A heat source side unit (50) having a compression mechanism (51) including a low stage compressor (51a) and a high stage compressor (51c), a heat source side heat exchanger (53), and a heat source side expansion mechanism (54). )When,
A first usage-side unit (21) having a first usage-side heat exchanger (21a) and a first usage-side expansion mechanism (21b);
A second usage side unit (22) having a second usage side heat exchanger (22a) and a second usage side expansion mechanism (22b);
A switching mechanism (55, 56) for switching a path of refrigerant flowing from the compression mechanism to the heat source side heat exchanger, the first usage side heat exchanger, and the second usage side heat exchanger;
With
The low-stage compressor and the high-stage compressor are connected in series via an intermediate pressure pipe (51b),
The switching mechanism (55, 56) includes a first state in which the intermediate pressure refrigerant discharged from the low-stage compressor and flowing to the intermediate pressure pipe flows to the heat source side heat exchanger, and the intermediate pressure refrigerant is The first usage side heat exchanger or the second state flowing to the second usage side heat exchanger switches.
Refrigeration equipment.
前記切換機構を制御する制御部(60)をさらに備え、
前記制御部は、
前記第1利用側熱交換器(21a)が蒸発器として機能し前記第2利用側熱交換器(22a)が放熱器として機能する中間圧利用運転モードを有し、
その中間圧利用運転モードにおいて、前記低段圧縮機(51a)から吐出されて前記中間圧配管(51b)に流れた中間圧冷媒が前記熱源側熱交換器(53)、前記第1利用側熱交換器(21a)、あるいは前記第2利用側熱交換器(22a)へと直接流れるように、前記切換機構(55,56)を制御する、
請求項1に記載の冷凍装置。
A control unit (60) for controlling the switching mechanism;
The controller is
The first usage side heat exchanger (21a) functions as an evaporator, and the second usage side heat exchanger (22a) has an intermediate pressure usage operation mode in which it functions as a radiator,
In the intermediate pressure use operation mode, the intermediate pressure refrigerant discharged from the low-stage compressor (51a) and flowing into the intermediate pressure pipe (51b) is converted into the heat source side heat exchanger (53) and the first use side heat. Controlling the switching mechanism (55, 56) so as to flow directly to the exchanger (21a) or the second use side heat exchanger (22a);
The refrigeration apparatus according to claim 1.
前記切換機構を制御する制御部(60)をさらに備え、
前記制御部は、
前記第1利用側熱交換器(21a)が蒸発器として機能し前記第2利用側熱交換器(22a)が放熱器として機能する第1混在運転モードおよび第2混在運転モードを有し、
前記第1混在運転モードにおいては、前記低段圧縮機(51a)から吐出されて前記中間圧配管(51b)に流れた中間圧冷媒が前記第2利用側熱交換器(22a)へと流れるように、前記切換機構(55,56)を制御し、
前記第2混在運転モードにおいては、前記高段圧縮機(51c)から吐出された高圧冷媒が前記第2利用側熱交換器(22a)へと流れるように、前記切換機構(55,56)を制御する、
請求項1に記載の冷凍装置。
A control unit (60) for controlling the switching mechanism;
The controller is
The first usage side heat exchanger (21a) functions as an evaporator, and the second usage side heat exchanger (22a) functions as a radiator, and has a first mixed operation mode and a second mixed operation mode,
In the first mixed operation mode, the intermediate pressure refrigerant discharged from the low-stage compressor (51a) and flowing to the intermediate pressure pipe (51b) flows to the second usage side heat exchanger (22a). And controlling the switching mechanism (55, 56),
In the second mixed operation mode, the switching mechanism (55, 56) is set so that the high-pressure refrigerant discharged from the high stage compressor (51c) flows to the second usage side heat exchanger (22a). Control,
The refrigeration apparatus according to claim 1.
前記制御部は、前記第1混在運転モードにおいて、前記中間圧冷媒が前記第2利用側熱交換器(22a)へと流れるように、且つ、前記高段圧縮機(51c)から吐出された高圧冷媒が前記熱源側熱交換器(53)へと流れるように、前記切換機構(55,56)を制御する、
請求項3に記載の冷凍装置。
In the first mixed operation mode, the control unit is configured such that the intermediate pressure refrigerant flows into the second usage side heat exchanger (22a) and is discharged from the high stage compressor (51c). Controlling the switching mechanism (55, 56) so that the refrigerant flows to the heat source side heat exchanger (53);
The refrigeration apparatus according to claim 3.
前記熱源側ユニット(50)は、前記熱源側熱交換器(53)に外気を送るための熱源側ファン(59)と、外気温度を検出する外気温度センサ(65)とをさらに有し、
前記制御部は、前記第2混在運転モードにおいて、前記高圧冷媒が前記第2利用側熱交換器(22a)へと流れるように、且つ、前記中間圧冷媒が前記熱源側熱交換器(53)へと流れるように、前記切換機構(55,56)を制御し、前記外気温度に応じて前記熱源側ファンの回転数を変更して前記中間圧冷媒の圧力を調整する、
請求項3又は4に記載の冷凍装置。
The heat source side unit (50) further includes a heat source side fan (59) for sending outside air to the heat source side heat exchanger (53), and an outside air temperature sensor (65) for detecting outside air temperature,
In the second mixed operation mode, the control unit is configured such that the high-pressure refrigerant flows to the second usage-side heat exchanger (22a) and the intermediate-pressure refrigerant is the heat source side heat exchanger (53). The switching mechanism (55, 56) is controlled so as to flow to the side, and the rotation speed of the heat source side fan is changed according to the outside air temperature to adjust the pressure of the intermediate pressure refrigerant.
The refrigeration apparatus according to claim 3 or 4.
前記制御部は、前記第1混在運転モードから前記第2混在運転モードへと切り換えるときに、一時的に低段圧縮機(51a)又は高段圧縮機(51c)を停止させ、前記切換機構(55,56)によって冷媒の経路を切り換えた後に、低段圧縮機(51a)および高段圧縮機(51c)の両方が運転する状態に戻す、
請求項3から5のいずれか1項に記載の冷凍装置。
When the control unit switches from the first mixed operation mode to the second mixed operation mode, the control unit temporarily stops the low-stage compressor (51a) or the high-stage compressor (51c), and the switching mechanism ( 55, 56), after switching the refrigerant path, return to the state where both the low-stage compressor (51a) and the high-stage compressor (51c) are operated.
The refrigeration apparatus according to any one of claims 3 to 5.
JP2013194304A 2013-09-19 2013-09-19 Refrigeration equipment Expired - Fee Related JP5751299B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013194304A JP5751299B2 (en) 2013-09-19 2013-09-19 Refrigeration equipment
CN201480051053.4A CN105556219A (en) 2013-09-19 2014-09-12 Freezer
EP14846460.5A EP3048386A4 (en) 2013-09-19 2014-09-12 Freezer
PCT/JP2014/074210 WO2015041166A1 (en) 2013-09-19 2014-09-12 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194304A JP5751299B2 (en) 2013-09-19 2013-09-19 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2015059718A true JP2015059718A (en) 2015-03-30
JP5751299B2 JP5751299B2 (en) 2015-07-22

Family

ID=52688816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194304A Expired - Fee Related JP5751299B2 (en) 2013-09-19 2013-09-19 Refrigeration equipment

Country Status (4)

Country Link
EP (1) EP3048386A4 (en)
JP (1) JP5751299B2 (en)
CN (1) CN105556219A (en)
WO (1) WO2015041166A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6827279B2 (en) 2016-07-15 2021-02-10 日立ジョンソンコントロールズ空調株式会社 Cooling / heating switching unit and air conditioner equipped with it
JP2020201009A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Refrigerant cycle system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184862A (en) * 1981-05-08 1982-11-13 Ebara Mfg Heat pump device
JPH02208474A (en) * 1989-02-08 1990-08-20 Shin Meiwa Ind Co Ltd Refrigerating device
JPH0791717A (en) * 1993-09-24 1995-04-04 Hitachi Ltd Air conditioner
JPH1038392A (en) * 1996-07-23 1998-02-13 Sanyo Electric Co Ltd Speed adjuster of blower for condenser
JP2007232255A (en) * 2006-02-28 2007-09-13 Fuji Electric Retail Systems Co Ltd Cooling apparatus and vending machine
JP2008145044A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Air conditioner
JP2009144940A (en) * 2007-12-11 2009-07-02 Mitsubishi Heavy Ind Ltd Heat pump type air conditioner
JP2009222363A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Renewing method of air conditioner, and air conditioner
JP2013108730A (en) * 2011-11-24 2013-06-06 Daikin Industries Ltd Air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336474A (en) * 1989-07-03 1991-02-18 Toshiba Corp Air conditioner
JP4407013B2 (en) * 2000-06-07 2010-02-03 ダイキン工業株式会社 Heat pump equipment
JP4029262B2 (en) 2001-10-18 2008-01-09 株式会社日立製作所 Air conditioner
KR100437804B1 (en) * 2002-06-12 2004-06-30 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same
JP4952210B2 (en) * 2006-11-21 2012-06-13 ダイキン工業株式会社 Air conditioner
JP5334554B2 (en) * 2008-12-15 2013-11-06 三菱電機株式会社 Air conditioner
EP2299207B1 (en) * 2009-08-28 2017-11-15 Sanyo Electric Co., Ltd. Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184862A (en) * 1981-05-08 1982-11-13 Ebara Mfg Heat pump device
JPH02208474A (en) * 1989-02-08 1990-08-20 Shin Meiwa Ind Co Ltd Refrigerating device
JPH0791717A (en) * 1993-09-24 1995-04-04 Hitachi Ltd Air conditioner
JPH1038392A (en) * 1996-07-23 1998-02-13 Sanyo Electric Co Ltd Speed adjuster of blower for condenser
JP2007232255A (en) * 2006-02-28 2007-09-13 Fuji Electric Retail Systems Co Ltd Cooling apparatus and vending machine
JP2008145044A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Air conditioner
JP2009144940A (en) * 2007-12-11 2009-07-02 Mitsubishi Heavy Ind Ltd Heat pump type air conditioner
JP2009222363A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Renewing method of air conditioner, and air conditioner
JP2013108730A (en) * 2011-11-24 2013-06-06 Daikin Industries Ltd Air conditioner

Also Published As

Publication number Publication date
EP3048386A4 (en) 2017-05-17
JP5751299B2 (en) 2015-07-22
CN105556219A (en) 2016-05-04
WO2015041166A1 (en) 2015-03-26
EP3048386A1 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
JP4952210B2 (en) Air conditioner
AU2010364150B2 (en) Air conditioner
EP2963358B1 (en) Air conditioner
US9494363B2 (en) Air-conditioning apparatus
WO2016009748A1 (en) Air conditioner
US8943847B2 (en) Air conditioning apparatus
US9435549B2 (en) Air-conditioning apparatus with relay unit
WO2013102953A1 (en) Air-conditioning device
US9140459B2 (en) Heat pump device
EP2615391B1 (en) Air-conditioning device
JP5984960B2 (en) Air conditioner
JP4909093B2 (en) Multi-type air conditioner
WO2013008365A1 (en) Air-conditioning device
JPWO2011030418A1 (en) Air conditioner
JP2008157557A (en) Air-conditioning system
WO2014199788A1 (en) Air-conditioning device
WO2015140994A1 (en) Heat source side unit and air conditioner
JP6120943B2 (en) Air conditioner
JP6311249B2 (en) Refrigeration equipment
US9587861B2 (en) Air-conditioning apparatus
JP5751299B2 (en) Refrigeration equipment
JP6537603B2 (en) Air conditioner
GB2526486A (en) Air conditioner
WO2021225176A1 (en) Refrigeration cycle system, heat source unit, and refrigeration cycle device
JP2002213801A (en) Multi room type air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

LAPS Cancellation because of no payment of annual fees